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Abstract: The classical astrophysical theory of Riemann ellipsoids and the quantum nuclear theory
of Bohr and Mottelson share a common mathematical foundation in terms of the differential geometry
of a principal bundle P and its associated vector bundle E, respectively. The bundle P = GL+(3,R)
is the connected component of the general linear group, the structure group G=SO(3) is the vorticity
group, and the base manifold is the space of positive-definite real 3 × 3 symmetric matrices, identified
geometrically with the space of inertia ellipsoids. The bundle is a Riemannian manifold whose metric
is inherited from three-dimensional Euclidean space. A nonholonomic constraint force, like irrotational
flow, determines a connection on the bundle.
Wave functions of the Bohr-Mottelson model are sections of the associated vector bundle E = P×ρV,
where ρ denotes an irreducible representation of the vorticity group on the vector space V. Using
the de Rham Laplacian 4 = ?d∇ ? d∇ for the kinetic energy introduces a “magnetic” term due to
the connection between base manifold rotational and fiber vortex degrees of freedom. A class of
Ehresmann connections creates a new model of nuclear rotation that predicts moments of inertia in
agreement with experiment.
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1. Introduction

Two well-established physical theories of collective motion, the Riemann ellipsoid astrophysical
model of rotating stars and galaxies and the Bohr-Mottelson nuclear rotational model, have a heretofore
unappreciated differential geometric structure.

In Part 1, this article formulates the classical theory of Riemann ellipsoids in terms of the differential
geometry of the principal bundle P, which is the connected component of the general linear group
GL+(3,R). A gauge connection on the bundle P is equivalent physically to a nonholonomic constraint
on the vortex velocity field. The bundle results may be considered a modern update of the discovery of
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Riemann in 1860 [1] and its clarification by Lebovitz and Chandrasekhar in the 1960s [2, 3].
In the usual gauge method for isolated mechanical systems, the structure group is the rotation group,

and the gauge conserved quantity is the angular momentum [4–9]. The gauge theory of Riemann
ellipsoids is different because the vorticity group is the structure group and the Kelvin circulation is
the gauge-conserved quantity. The angular momentum is a Noether conserved quantity too, but it is
unrelated to the gauge symmetry.

Part 2 presents the quantum theory of Riemann ellipsoids which is a generalization of the
Bohr-Mottelson nuclear model [10]. Wave functions are sections of an associated vector bundle. The
quantum kinetic energy is proportional to the Laplace-de Rham operator and it depends on the
exterior covariant derivative and the Riemannian structure. An apt choice of the Ehresmann
connection, motivated by the classical Riemann theory, attains agreement between the bundle theory
and experiment for moments of inertia of atomic nuclei.

2. Part 1: Classical Riemann ellipsoids

MacLaurin (1742) applied Newton’s laws to describe rigidly-rotating stars. At small angular speeds,
a rotating star has the shape of a spheroid, which is an ellipsoid with two equal axis lengths that rotates
about its symmetry axis. Perhaps Maclaurin’s most remarkable discovery was that a rigidly-rotating
star attains a maximum angular speed at an eccentricity e = 0.93. While its angular momentum
continues to increase as the star flattens out to a pancake shape, the limit of the angular speed is zero
as e→ 1.

Jacobi (1834) proved a surprising theorem that, at a critical eccentricity e = 0.81, the star
spontaneously changes its shape from a spheroid to a triaxial ellipsoid, resulting in a lower energy
rotating star. Spheroids are, therefore, an insufficient class of shapes to describe rapidly-rotating stars.

In 1857, Dirichlet [11] posed the question: What happens if a star is rotating faster than Maclaurin’s
rigid body maximum? His Ockham’s razor answer is that the kinematical motion group must be
enlarged from SO(3), the rotation group, to GL(3,R), the general linear group or, for incompressible
fluids, to SL(3,R), the special linear group.

A Riemann ellipsoid (1860) is a self-gravitating, constant density fluid with an ellipsoidal boundary
and a velocity field that is a linear function of the Cartesian position coordinates in its inertial centre
of mass frame [1]. Riemann’s classical theory was applied to the description of astrophysical systems
[12–16] and gaseous plasmas [17].

With minor modifications, Riemann ellipsoid theory may be applied to fluids whose density is not
uniform and to discrete systems of particles. Rapidly rotating atomic nuclei may be modeled as
Riemann ellipsoids when the gravitational self-energy is replaced by the sum of the repulsive
Coulomb self-energy among the protons and an attractive surface energy that approximates the strong
interactions among the nucleons [18, 23]. In these more general settings, Riemann’s main theorem
does not apply. The theorem states that a solution to the second order virials of the Navier-Stokes
equation for a Riemann ellipsoid is a solution to the Navier-Stokes equation itself. Because real stars
and ellipsoidal galaxies are poorly modeled by a uniform density, Riemann’s insightful theorem is of
mostly mathematical and historical interest now.

The essential features of Riemann ellipsoid theory are as follows:

1. GL+(3,R) Collective Motion. Consider a system of A point particles located at the vector Cartesian
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coordinates ~xα in an inertial frame, α = 1, 2, . . . , A. In classical physics, a “point particle” should
not to be taken literally. It is a system of particles centered at a point, say with the linear dimension
of a human hair, which is large enough that quantum physics is not required. The Dirichlet-
Riemann ansatz is that the motion of the entire system is constrained to an orbit of the general
linear group in the Euclidean space R3A,

ξ · (~x1, . . . , ~xA) = (ξ ~x1, . . . , ξ ~xA), (2.1)

for ξ ∈ GL+(3,R). Because all the particles move in tandem, the motion is collective. For particles
in general position, the isotropy subgroup is the identity and the orbit is identified with the Lie
group itself. Hence, the Riemann ellipsoid configuration space is diffeomorphic to the connected
component of the general linear group

P = GL+(3,R) = {ξ ∈ M3(R) | det ξ > 0}. (2.2)

2. Ellipsoidal Shape. The space of all ellipsoids in R3 is identified with the manifold Q of all
positive-definite real symmetric 3 × 3 matrices q. The relationship between P and Q is given by
the surjective mapping π:

P
π
−→ Q

ξ 7−→ q = ξξt (2.3)

The strict Riemann hypothesis of a uniform fluid with a sharp ellipsoidal boundary is relaxed. An
inertia ellipsoid is associated to every orbit point in R3A.

3. Structure (Gauge) Group G. Let G denote the special orthogonal group SO(3) that acts on the
general linear group P by right multiplication, ξ 7−→ Rgξ = ξg−1 for g ∈ G. Its induced action on
Q leaves the ellipsoid unchanged, π(Rgξ) = ξg−1gξt = q, since g−1 = gt, or,

π ◦ Rg = π, for all g ∈ G. (2.4)

The projection π is right invariant with respect to the group G. Hence, the configuration space P
is a principal fiber bundle over the base manifold Q with structure group G [20, 21].

4. P is a Riemannian manifold. For Newtonian physics applications, the metric on the configuration
space must be inherited from the Euclidean metric on R3. This fundamental metric determines
the kinetic energy and Lagrangian dynamics in the inertial frame. Right (or left) invariant vector
fields on the general linear group are a convenient set of tangent vectors to an orbit. Suppose X is
a 3 × 3 real matrix, regarded as a gl(3,R) Lie algebra element, and denote its corresponding right
invariant vector field by

(RX)ξ = −
∑

i j

(X · ξ)i j
∂

∂ξi j
. (2.5)

For X, Y in M3(R), the inherited metric at the point ξ ∈ P is

gξ((RX)ξ, (RY)ξ) = tr(X q Y t), (2.6)

where q = π(ξ) = ξξt
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2.1. Kinematics and Gauss coordinates

Left multiplication by the orthogonal group SO(3) on P is a rotation of the system with respect to
the inertial frame. For a rotation group element r ∈ S O(3), an ellipsoid with inertia tensor q = π(ξ) is
transformed into a rotated ellipsoid with inertia tensor π(Lrξ) = rξξtrt = rqrt.

The physics and geometry of left and right group actions by the orthogonal group are rendered
explicit by making a double coset (or Gauss) decomposition of the general linear group, SO(3)\P/G.
Each double coset contains a diagonal matrix.

The kinematical description of Riemann ellipsoids in the gauge formalism is attained by certain
local trivializations of the bundle P, which separate the degrees of freedom into rotational, vibrational,
and vortex components. Every group element ξ ∈ P can be expressed as a product of three matrices,
ξ = RtA S , where R, S are real orthogonal matrices and A is a diagonal matrix with real positive entries
ai in descending order. The projection q = π(ξ) = RtA2R in the ellipsoidal space of a bundle point
ξ shows that the entries of the square of A are the eigenvalues of q and R is an orthogonal matrix
that diagonalizes q. Physically R rotates the body into the principal axis frame, and the entries of
A are the half-lengths of the inertia ellipsoid’s principal axes. Because eigenvalues are unique, the
diagonal matrix A is determined uniquely by q. The eigenspaces are also uniquely defined by q. If the
eigenvalues are distinct, the eigenspaces are one dimensional and each row of R is unique up to a sign.
Thus, when restricted to suitable open neighborhoods, the matrices R and A provide a local coordinate
chart for the ellipsoidal space Q. Once R and A are determined by the local chart for the base manifold
Q, the orthogonal matrix S in the structure group is given uniquely. A decomposition ξ = RtA S , or
ξ = (q; S ) for q = RtA2R and S = A−1Rξ, in an open neighborhood of P is a local trivialization of the
bundle P. The bundle P is only locally diffeomorphic to the Cartesian product of the base manifold Q
and the structure group G.

With respect to left multiplication by elements r in the rotation group, the bundle point ξ = RtA S
is transformed to Lrξ = (R rt)tA S , or a rotation r is equivalent to right multiplication of the elements R
of the subgroup S O(3). With respect to right multiplication by elements g in the structure group G, the
bundle point ξ = RtA S is transformed to Rgξ = RtA(S g−1), or a gauge transformation g is equivalent to
right multiplication of the elements S of the subgroup G.

2.2. Velocity

Consider a curve t 7−→ ξ(t) in the bundle P. Such a curve may be identified with the collective
motion of a many-body system for which the trajectory of each particle α is constrained by xα(t) =

ξ(t)yα, where yα is independent of time. The reference particle distribution yα is chosen so that its
dimensionless inertia tensor is the identity matrix. With this choice the instantaneous inertia tensor of
the many-body system simplifies to q(t) = ξξt. The point yα in R3A is a GL+(3,R) orbit representative.

The velocity vector for each particle is vα = ξ̇ yα = u xα for u = ξ̇ξ−1 and ξ̇ = dξ/dt. Note that vα is
a linear function of its position vector xα. The velocity vector may be expressed as the value of a right
invariant vector field on the group P at the point ξ,

V(t) =
∑

i j

(ξ̇ξ−1 · ξ)i j
∂

∂ξi j
= −(Ru)ξ. (2.7)

With respect to a local trivialization, the curve is t 7−→ R(t)tA(t) S (t). At each time t, define the
antisymmetric matrix Ω(t) = ṘRt in the Lie algebra so(3) of the rotation group and the antisymmetric
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matrix Λ(t) = Ṡ S t in the Lie algebra g of the structure group. A basis for the space of 3 × 3
antisymmetric matrices is given by ei for i = 1, 2, 3, where (ei) jk ≡ εi jk. The matrix Ω determines the
angular velocity vector ω, and Λ – the vortex velocity vector λ:

Ω =
∑

i

ωiei, Λ =
∑

i

λiei. (2.8)

For such a local trivialization, the velocity of the curve in the bundle can be shown to be a sum of
rotational, vibrational, and vortex terms,

V(t) = −(RΩ)R +
∑

i

ȧi

(
∂

∂ai

)
A
− (RΛ)S . (2.9)

=
∑

i

(
−ωi

(
Rei

)
R + ȧi

(
∂

∂ai

)
A
− λi

(
Rei

)
S

)
.

The velocity vector may be expressed alternatively as a sum of right invariant vector fields on the
bundle P by using the identities,

(RRtΩR)ξ = −(RΩ)R = (ΩR)i j

(
∂

∂Ri j

)
R

(RRtA−1ȦR)ξ = −ȧi

(
∂

∂ai

)
A

(2.10)

(RRtAΛA−1R)ξ = (RΛ)S = −(ΛS )i j

(
∂

∂S i j

)
S

,

when ξ = RtAS . Here (RΩ)R denotes a right invariant vector field on S O(3) and (RΛ)S denotes a right
invariant vector field on G.

2.3. Riemannian structure

The kinetic energy is proportional to the squared length of the velocity

K = (I/8) gξ(V(t),V(t)), (2.11)

where I is a constant with the units of the moment of inertia. Expanding the velocity into the three
types of motion, Eq. (2.9), the kinetic energy becomes

K = (I/4)
(
−tr(A2Ω2) + tr(Ȧ2) − tr(A2Λ2) + 2 tr(ΩAΛA)

)
. (2.12)

The last term is due to Coriolis coupling between the rotational and vortex degrees of freedom. The
derivatives of the kinetic energy with respect to the angular velocity and vortex velocity are the vectors
of angular momentum and circulation, respectively,

Lk =
∂K
∂ωk

= (I/2) [(a2
i + a2

j)ωk − 2aia jλk] (2.13)

Ck = −
∂K
∂λk

= (I/2) [2aia jωk − (a2
i + a2

j)λk], (2.14)
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where i, j, k are cyclic.
The equations of motion are found using the Lagrangian formalism [22, 23]. Suppose that the

potential energy V(A) is a smooth function of the principal axes lengths. Then the potential is left and
right invariant with respect to the rotation group and the structure group, respectively. But the metric,
and hence the kinetic energy, is also left and right invariant with respect to the rotation and structure
groups. Since the Lagrangian is the difference between the kinetic and potential energies, the two
invariances, according to Noether’s theorem, imply conservation laws. These are the angular
momentum and Kelvin circulation. In the rotating body-fixed frame, the angular momentum and
Kelvin circulation vectors precess

dL
dt

= −ω × L and
dC
dt

= −λ × C. (2.15)

The two vector conservation laws in the inertial centre of mass frame are

d
dt

(
Rt L

)
= 0 and

d
dt

(
S t C

)
= 0. (2.16)

The equations of motion form a Hamiltonian dynamical system [24] and a finite-dimensional Lax
system [19].

2.4. Connections on the bundle P

Constraint forces, in addition to forces described by the potential energy V(A), are typically
significant. The simplest case is the rigid body for which the vortex velocity vanishes, λ = 0. This is a
holonomic constraint which reduces the configuration space to Q � P/G. But constraints are not
typically holonomic. For example, an irrotational fluid (like a water droplet) has zero circulation,
C = 0. Another example is the so-called “falling cat” [25, 26], for which the angular momentum
vanishes, L = 0. In these cases the vortex velocity is proportional to the angular velocity [3]

λk

ωk
=


2aia j

a2
i + a2

j

, irrotational flow

a2
i + a2

j

2aia j
, falling cat

(2.17)

where i, j, k are cyclic. A nonholonomic constraint for a Riemann ellipsoid is a proportionality between
the vortex and angular velocity components, λk = Ak(a1, a2, a3)ωk with a factor Ak that depends on the
axis lengths. This proportionality is equivalent to a connection on the bundle P, as it will be shown
next.

For each point ξ in the bundle, denote the tangent space by TξP. By definition, the vertical space Vξ

is the subspace of TξP consisting of the tangents to curves in the fiber G,

Vξ =
{
X ∈ TξP | π∗X = 0

}
. (2.18)

If Λ ∈ g is a Lie algebra element, then the fundamental vector field, denoted by Λ∗, is the left invariant
vector field on the fiber G. A basis for Vξ is the set of fundamental vector fields {e∗a, a = 1, 2, 3}, where
(ea)bc = εabc.
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A connexion [21] is a smooth assignment of a horizontal subspace Hξ of the tangent space TξP to
each point ξ ∈ P such that

(1) TξP = Hξ ⊕ Vξ (2.19)
(2) Hξ·g = (Rg)∗Hξ . (2.20)

Because the kernel of π∗ at ξ ∈ P is the vertical subspace Vξ, its image is TqQ, and the tangent space
TξP is a direct sum of vertical and horizontal subspaces, the linear transformation π∗ is an isomorphism
from the horizontal subspace onto the tangent space of the base manifold π∗ : Hξ −→ TqQ , where
q = π(ξ). If T ∈ TqQ is a tangent vector to the base manifold, then its horizontal lift is the unique
horizontal vector T̃ ∈ Hξ such that π∗T̃ = T . Given any basis of smooth vector fields in an open
neighborhood of the base manifold, {fm,m = 1, . . . , dim Q}, their unique horizontal lifts are denoted by
{Fm,m = 1, . . . , dim Q}. The set {(Fm)ξ} is a basis for the horizontal subspace Hξ and

(Fm)ξ = (fm)q −
∑

a

Aa
m(ξ)(e∗a)S , (2.21)

where, in a local trivialization, ξ = (q; S ), and the coefficients Aa
m are smooth real-valued functions on

the bundle P.
The second defining property of a connexion, Eq. (2.20), asserts that (Fm)ξ·g = (Rg)∗(Fm)ξ. In

particular, when ξ = (q; I), where I is the structure group identity and g = S −1 ∈ G, the right translation
of a horizontal basis vector at the structure group identity is

(Fm)(q;S ) = (RS −1)∗(Fm)(q;I)

= (fm)q −
∑

a

Aa
i (q; I)(AdS −1ea)∗S (2.22)

= (fm)q +
∑

a

Aa
m(q)(Rea)S .

The functions Aa
m(q) ≡ Aa

m(q; I) are the connection coefficients.
Consider now a basis {(fm)q,m = 1, . . . , 6} for the tangent space at q ∈ Q that consists of the three

right invariant vector fields (Rei)R on the rotation group S O(3) and the three vibrational vector fields
(∂/∂ai)A. A tangent vector to a curve in the base manifold is

T (t) =

3∑
i=1

(
−ωi (Rei)R + ȧi (∂/∂ai)A

)
. (2.23)

The curve’s lift to the bundle is required to have the tangent V(t) of Eq. (2.9),

V(t) = −

3∑
i=1

ωi

(
(Rei)R +

λi

ωi
(Rei)S

)
+

3∑
i=1

ȧi (∂/∂ai)A. (2.24)

The lift is horizontal if and only if Hξ is spanned by

Fi = (Rei)R +

(
λi

ωi

)
(Rei)S (2.25)
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Fi+3 =
∂

∂ai
, (2.26)

for i = 1, 2, 3. The Riemann ellipsoid connection coefficients vanish for the vibrational vectors and
simplify to a diagonal form for the rotational vectors

Aa
i (q) = δa

i

(
λi

ωi

)
. (2.27)

In particular, the special rotational modes correspond to the following Christoffel symbols:

Ak
k =


0, rigid;

2aia j/(a2
i + a2

j), irrotational;
(a2

i + a2
j)/(2aia j), falling cat,

(2.28)

where i, j, k are cyclic. The coefficients are just functions of the axis lengths due to rotational invariance
of the horizontal subspace, (Lr)∗Hξ = Hrξ.

To conclude the analysis of Riemann ellipsoids, the next two subsections show that the physical
connections for irrotational flow and the falling cat are mathematically natural, corresponding to the
Riemannian connection and to the invariant connection.

2.5. Riemannian connection

The horizontal subspace HIF
ξ for irrotational flow is defined as the orthogonal complement to the

vertical subspace Vξ. Denote the vector space of all 3 × 3 symmetric matrices by m. The orthogonal
complement V⊥ξ is given explicitly by

HIF
ξ =

{
(RY)ξ ∈ TξP | Y ∈ m

}
. (2.29)

To prove this, suppose (RΛ)S , Λ ∈ g, is a vertical vector and (RY)ξ, Y ∈ m, is a horizontal vector. These
two vectors are orthogonal,

gξ((RΛ)S , (RY)ξ) = gξ((RRtAΛA−1R)ξ, (RY)ξ)

= tr
(
RtAΛA−1R(ξξt)Y t

)
= tr

(
RtAΛARY

)
= −tr

(
Y tRtAΛAR

)
= 0. (2.30)

Since the sums of the dimensions of the vertical space and the horizontal space add up to the dimension
of the tangent space TξP, the tangent space is a direct sum of the horizontal and vertical subspaces. If
(RY)ξ is a horizontal vector and g ∈ G, then right invariance implies

(Rg)∗(RY)ξ = (RY)ξg−1 , (2.31)

or (Rg)∗HIF
ξ = HIF

ξg−1 . Since the assignment of the horizontal subspace HIF
ξ is also smooth, it defines a

connexion on P.
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The vibrational vectors are horizontal since Y = RtA−1ȦR is a symmetric matrix. But the rotational
vectors are not horizontal because

gξ((Rei)R, (Reb)S ) = tr (AeiAeb) = −2δiba jak , 0 (2.32)

for i, j, k cyclic. Note that the inner product of two vertical vectors is also nonzero,

gξ((Rea)S , (Reb)S ) = −tr
(
A2eaeb

)
= δab(a2

j + a2
k) (2.33)

for a, j, k cyclic. In order for (Fi)ξ to be the horizontal lift of (Rei)R, it is necessary and sufficient that,
for b = 1, 2, 3 ,

0 = gξ((Fi)ξ, (Reb)S )
= gξ((Rei)R + Aa

i (q)(Rea)S , (Reb)S )
= −2δiba jak + Ab

i (q)(a2
j + a2

k). (2.34)

The off-diagonal connection coefficients for the rotational vectors vanish, and the diagonal values are

Ai
i(q) =

2a jak

(a2
j + a2

k)
(i, j, k cyclic). (2.35)

Thus, the Riemannian connexion for which the horizontal space is perpendicular to the vertical space
corresponds to irrotational flow.

2.6. Invariant connection

The falling cat connexion is the invariant connexion on the Lie group P. Since g is the algebra of
antisymmetric matrices and m is the vector space of symmetric matrices, the Lie algebra of the group P
is a direct sum of vector spaces, M3(R) = g ⊕ m. Moreover the vector space m is invariant with respect
to the adjoint group transformation, Adg(m) ⊂ m for all g ∈ G. These two properties of m are necessary
and sufficient for

HFC
ξ =

{
(LY)ξ = −(RAdξY)ξ ∈ TξP | Y ∈ m

}
(2.36)

to be a horizontal subspace [21]. In order to see that, note that the vertical vectors can be expressed in
left invariant form,

Vξ =
{
(RΛ)S = −(LS tΛS )ξ ∈ TξP | Λ ∈ g

}
. (2.37)

The tangent space to the bundle at ξ is a direct sum of the horizontal and vertical subspaces, because
every matrix is a linear combination of a symmetric matrix Y and an antisymmetric matrix S tΛS . The
right invariance of the horizontal subspaces is a consequence of

(Rg)∗(RAdξY)ξ = (RAdξY)ξg−1 = (RAdξg−1 AdgY)ξg−1 ∈ HFC
ξg−1 , (2.38)

since AdgY ∈ m for all g ∈ G and Y ∈ m. The assignment of the subspaces is smooth, so HFC
ξ is indeed

a horizontal subspace.
The relation

ȧi

(
∂

∂ai

)
A

= −(RRtA−1ȦR)ξ = (LS tA−1ȦS )ξ (2.39)
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shows that the vibrational vectors are horizontal (S tA−1ȦS is symmetric), but the rotational vectors are
not horizontal since

(Rei)R = −(RRteiR)ξ = (LS tA−1eiAS )ξ (2.40)

and S tA−1eiAS is not symmetric. If the matrix S tA−1eiAS is expressed as a sum of symmetric Xs and
antisymmetric Xa parts, i.e., Xs = (S tA−1eiAS − S tAeiA−1S )/2, Xa = (S tA−1eiAS + S tAeiA−1S )/2, the
angular momentum may be written as a sum of horizontal and vertical vectors

(Rei)R = (LXs)ξ + (LXa)ξ ∈ HFC
ξ ⊕ Vξ. (2.41)

The horizontal lifts of the angular momentum vectors are

(Fi)ξ = (Rei)R + Aa
i (q)(Rea)S

= (LXs)ξ +
[
(LXa)ξ − Aa

i (q)(LS teaS )ξ
]
, (2.42)

where (LXs)ξ is the horizontal lift and the two vertical vectors in the square brackets must cancel.
Therefore, the invariant connexion is given by

Aa
i (q)ea = (A−1eiA + AeiA−1)/2, (2.43)

or the connection coefficients are diagonal and

Ai
i(q) =

(a2
j + a2

k)

2a jak
, (2.44)

where i, j, k are cyclic.

3. Part 2: Quantum Riemann ellipsoids

A modern formulation of classical Riemann ellipsoids, as presented here, is in terms of the
differential geometry of the principal G-bundle P, where the structure or gauge group is the vorticity
group G�SO(3) and the base manifold is the space of all ellipsoids. A time-dependent curve in the
base manifold describes the rotation and vibration of the ellipsoid. The connection determines the
horizontal lift of the ellipsoid’s trajectory to the bundle and its additional vortex degrees of freedom.
The physical origin of the lift depends on the response of the particles or fluid to the ellipsoid’s
motion. The response may be a trivial rigid body motion or complex irrotational flow or something
in-between.

The framework for the quantum theory of Riemann ellipsoids is the associated vector bundle, E
= P×ρV for ρ an irreducible representation on the vector space V of the gauge group G ⊂ P. Wave
functions are sections of the associated bundle.

A non-negative integer C labels the inequivalent (2C+1)-dimensional irreducible representations
ρ of the vorticity group G � SO(3). The Hilbert space Hρ of bundle sections consists of functions
Ψ : P → V of type-ρ,

Ψ(ξg) = ρ(g−1)Ψ(ξ), for all ξ ∈ P, g ∈ G, (3.1)

which are square-integrable
∫
||Ψ(ξ)||2dµ(ξ) < ∞, where dµ(ξ) denotes the Haar measure on P. The

representation of x ∈ P is
(πρ(x)Ψ)(ξ) = Ψ(x−1ξ), for all ξ ∈ P. (3.2)
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When the representation ρ is trivial (C=0), the bundle sections are the wave functions of the nuclear
Bohr-Mottelson model [10,27,28]. However, nature allows any irreducible representation of the gauge
vorticity group and all associated bundles are physical.

3.1. Laplacian on the associated G-bundle

The Laplacian determines the kinetic energy and the moment of inertia. It is the key dynamical
element of the quantum theory of Riemann ellipsods.

The exterior covariant derivative d∇ determines a Laplacian 4 that acts on vector-valued functions
ψ on the base manifold Q ' P /G:

d∇ ? d∇ψ = 4(ψ)ω. (3.3)

In this equation defining 4, the volume element ω and Hodge star ? refer to the base manifold and
its Riemannian geometry. A connexion one-form A on the base manifold determines the exterior
covariant derivative. Hence the calculation of 4 requires choices for several geometrical ingredients.
In this section and the next, the Ehresmann connexion is not restricted to Riemannian, and 4 is not
generally the Laplace-Beltrami operator.

3.2. Riemannian geometry on Q

A basis of six vector fields for a chart U ⊂ Q is { fs; s = 1, 2, . . . , 6}, where fα = lα, the angular
momentum projected on the body-fixed frame, and f3+α = tα, the vibrational momentum, (α = 1, 2, 3).

The Riemannian geometry on Q is inherited from the Riemannian geometry on P in a natural way.
Using the connexion on P , two tangent vectors on Q may be lifted to horizontal vectors on P . The
Riemannian geometry on P determines the inner product of the two lifted vectors. This inner product
onP is set equal to the new inner product onQ. In the case of the Riemannian connexion, the horizontal
lift of lα is Dα, and tα is already horizontal. Hence the Riemannian metric for the orthogonal basis of
vector fields { fs} on Q is

g( fs, fs) = Bs, (3.4)

where, for α = 1, 2, 3, Bα = g(Dα,Dα) = II
α are the irrotational flow moments of inertia and B3+α =

g(tα, tα) = a2
α. The corresponding dual basis of one-forms { f s} is also orthogonal,

g( f s, f s) = B−1
s . (3.5)

3.3. Volume element and Hodge star on P /G

The Haar measure vol on P determines the Haar measure on the coset space P /G. The scaling
property is resolved in a way similar to that for P because only the space D is involved. Thus the
volume element on Q is

ω = h f 1 ∧ f 2 ∧ . . . ∧ f 6. (3.6)

The Riemannian geometry and volume element on Q determines the Hodge star on this space,

? f s =
h
Bs

f̂ s, (3.7)

where f̂ s = (−1)q−1 f 1 ∧ . . . f q−1 ∧ f q+1 ∧ . . . ∧ f 6. Note that f q′ ∧ f̂ s = δq′qh−1ω.
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3.4. Connexion one-form on Q

A connexion one-form A defined on the base manifold is a Lie algebra-valued form,

A = −
∑

sβ

Aβ
s(q)ρ̇(eβ) f s, (3.8)

where s ranges over the basis of vector fields on the base manifold, β runs over a basis eβ of the Lie
algebra of the structure group, and the connexion coefficients Aβ

s(q) are smooth functions on the base
manifold q ∈ P /G. The connexion one-form consists of (dim V)2 one-forms,

Au
u′ = −

∑
sβ

Aβ
s(q)ρ̇(eβ)u

u′ f s, (3.9)

where u, u′ range over a basis for the representation space V of ρ̇.
For the Riemannian or irrotational flow connexion, the coefficients Aβ

s(m) are zero when either
q = 4, 5, 6 or β , q,

AI = −
∑
α

AI
αρ̇(eα)lα, (3.10)

and the irrotational flow connexion coefficients are functions of a1, a2, a3.
The covariant derivative in the direction of fs of a section ψ of E is another section of E,

∇sψ = fsψ + A( fs)ψ. (3.11)

In the first term of this expression, the vector field fs is applied to each of the components of the
vector-valued function ψ, and, in the second term, the matrix A( fs) is applied to the column vector ψ.

The exterior covariant derivative d∇ maps vector-valued p-forms to vector-valued (p + 1)-forms.
When ψ is a 0-form, the covariant derivative determines its exterior covariant derivative

d∇ψ = (∇sψ) f s. (3.12)

For the Riemannian connexion,

d∇ψ =

3∑
α=1

{(
(lα − AI

αρ̇(eα))ψ
)

lα + tα(ψ)tα
}
. (3.13)

Any E-valued p-form is a sum of monomials η ∧ µ, where η is a bundle section or E-valued 0-form
and µ is an ordinary p-form on the base manifold. The exterior covariant derivative of a monomial is

d∇(η ∧ µ) = d∇η ∧ µ + η ∧ dµ. (3.14)

3.5. Laplacian 4

If ψ is a bundle section, then Eq.(3.12) gives its exterior covariant derivative. The Hodge star of the
resulting 1-form is a 5-form,

? d∇ψ = (∇sψ)
h
Bs

f̂ s. (3.15)
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Because d f̂ s = 0, the exterior covariant derivative of this 5-form is the 6-form,

d∇ ? d∇ψ = ∇s′

(
(∇sψ)

h
Bs

)
f s′ ∧ f̂ s

= h−1∇s

(
(∇sψ)

h
Bs

)
ω. (3.16)

Hence the de Rham Laplacian is

4 =

3∑
α=1

{
∇2
α

II
α

+ tα
1
a2
α

tα + tα(ln h)tα

}
. (3.17)

Although the Riemannian connexion determines 4, the derivation applies to any Ehresmann
connexion. A summary of the construction of the de Rham Laplacian for the associated bundle E = P

×ρ G is as follows:

1. Choose a connexion 1-form A, Eq. (3.8).
2. Define the Riemannian metric on the base manifold by horizontally lifting vector fields on the

base manifold to the Riemannian manifold P .
3. Choose the volume element ω on the coset space P /G and find the corresponding Hodge star on

the base manifold.
4. Determine the exterior covariant derivative d∇.
5. Evaluate the de Rham Laplacian on bundle sections ψ, d∇ ? d∇ψ = (4ψ)ω.

4. Conclusion

The nonholonomic constraints to irrotational flow and the “falling cat” problem correspond to the
Riemannian connection and the invariant connection, respectively. Littlejohn and Reinsch [29]
reviewed the relationship between gauge theory and traditional physics approaches to nonholonomic
constraints, especially in atomic and molecular science, while Massa and Pagani [30] and Bates and
Sniatycki [31] provide mathematical overviews of the nonholonomic problem.

The concept of a horizontal lift is physically natural. It says that a many-body system responds
to rotations and vibrations (described by a curve γ in the base manifold) by internal vortex motions
(described by a horizontally-lifted curve γ̃ in the bundle). This response is determined typically by
a nonholonomic constraint that depends ultimately on the nature of the forces between the particles.
The constraint that the tangent to the lifted curve lies in a horizontal subspace is equivalent to a bundle
connection.

The connections corresponding to rigid rotation, irrotational flow, and the falling cat were shown
to be natural geometrical or group-theoretical concepts. Although not mathematically natural, other
choices of connection coefficients define nonholonomic constraint forces that are not excluded by
physical law. For example, the S -type Riemann ellipsoids are a sequence of special case solutions for
which the angular momentum, Kelvin circulation, and the angular and vortex velocity vectors are
aligned with a principal axis, say the 1-axis [2, 3]. This sequence is indexed by a continuous real
parameter f restricted to the interval −2 ≤ f ≤ 0. There is only one horizontal lift to consider and the
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connection coefficient is
A1

1(q) = −
f a2a3

(a2
2 + a2

3)
. (4.1)

At f = 0, the connection yields rigid rotation, and, at f = −2, it is irrotational flow. The S -type
ellipsoids are the simplest models that allow for a continuous interpolation between rigid rotation and
irrotational flow. This connection has no natural geometrical or group-theoretic significance – but it
does model a variety of rotating physical systems.

An unsolved basic science problem is to determine the connection from the interactions among
the particles that form a rotating system. A complete theory of collective rotation requires equations
that incorporate these interactions into the gauge theory and whose unique solution are the connection
coefficients. They must involve a coordinate independent object and the curvature form is the obvious
candidate.

The quantum theory introduces interesting new physics. For rigid rotation, the connection 1-form
A = 0. The base manifold vector fields lα, tα are then horizontal. Hence the metric on the base manifold
differs from Eqs. (3.4, 3.5) by Bα = IR

α instead of the irrotational flow inertia. §3.3 gives the volume
element and Hodge star. The result is the rigid rotor Laplacian,

4R =

3∑
α=1

{
l2
α

IR
α

+ tα
1
a2
α

tα + tα(ln h)tα

}
. (4.2)

More generally, suppose r is a parameter, 0 ≤ r ≤ 1, and the connection one-form is Ar = (1− r) AI.
For r = 0, the Laplacian corresponds to irrotational flow and, for r = 1, rigid rotation. The horizontal
lift of lα is Dα = lα − (1 − r) AI

αcα, and the metric in this case is an interpolation between the rigid and
irrotational inertias,

Ir
α = Bα = g(Dα,Dα) = r2IR

α + (1 − r2)II
α. (4.3)

The Laplacian for this connection differs from the irrotational flow and rigid rotor by the interpolated
inertia and by the covariant derivative ∇α = lα − Ar

α ρ̇(eα),

4r =

3∑
α=1

{
∇2
α

Ir
α

+ tα
1
a2
α

tα + tα(ln h)tα

}
. (4.4)

For deformed nuclei, the experimental moment of inertia is about five times the irrotational flow
inertia and half the rigid rotor inertia. Thus the interpolating parameter is about r = 2/3.

The covariant derivative ∇ is a generalization of the electromagnetic covariant derivative for which
the connection is the vector potential. Thus the Laplacian of this paper introduces a so-called
“magnetic” interaction into the Bohr-Mottelson nuclear collective model. This interaction is
velocity-dependent, i.e., it depends on the angular momentum. Because the connection coefficients
depend on the axes lengths, the interaction also depends on the deformation.

An interesting contrast between particle physics and collective physics concerns the Riemannian
geometry of the base manifold. In the standard model of particle physics, the base manifold is
Minkowski space and the metric on it is fixed. In the collective model, the Riemannian geometry of
the base manifold depends on the Riemannian geometry of the bundle P and on the connection.
Tangent vectors to the base manifold of ellipsoids must be lifted horizontally to the bundle where the
Riemannian metric is well-defined.
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