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Abstract: The problem of steady two-dimensional flow of a fluid of finite depth over a successive
obstacles is considered. Both gravity and surface tension are taken into account in the dynamic
boundary conditions. The fluid is assumed to be inviscid, incompressible and the flow to be irrotational.
The flow is characterized by the two parameters, the Froude number Fr and the inverse Weber
number δ. The fully non-linear problem is solved numerically by using the boundary integral equation
technique. The numerical solutions for sub-critical (Fr < 1) and supercritical (Fr > 1) are presented
for various values of Fr and δ. The effects of surface tension and gravity on the shape of the free
surface are discussed, and solution diagrams for all flow regimes are presented.
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1. Introduction

Free-surface flow over a submerged obstacles is one of the well-known classical problem in fluid
mechanics. Many researchers have investigated free surface flows over an obstacle for different
bottoms topography, for examples, Forbes and Schwartz [13] used the boundary integral method to
find fully non-linear solutions of subcritical and supercritical flows over a semi-circular obstacle.
Supercritical and critical flows over a submerged triangular obstacle were investigated by Dias and
Vanden-Broeck [11]. They employed a series truncation methods to calculate the solutions.
Abd-el-Malek and Hanna [1] studied flow over a triangular obstacle by using the Hilbert method with
gravity effect. When the fluid is subjected to the interaction of gravity and surface tension, in this
case, the problem is generally difficult to solve. Forbes [12] was among the first to propose numerical
solutions of non-linear flows over a semi-circular obstruction under the effect of gravity and surface
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tension. Later, many authors have studied this problem, for example, Grandison [14],
Vanden-Broeck [24]. In the case of flows over two obstacles, Pratt [23] investigated this problem
experimentally and theoretically using weakly non-linear analysis. Later, Belward [3] computed
numerical solutions of a critical flow for which the hydraulic fall occurred at the leftmost obstacle
with downstream supercritical flow. Recently, Binder, Vanden-Broeck and Dias [9] showed that there
exist two types of solution in subcritical flow regime, and one type in supercritical flow regime. This
paper is concerned with the numerical calculations of flow of finite depth over a successive obstacles.
The purpose of this work is to examine further flows with many obstacles in order to classify the
possible solutions. The effects of surface tension and gravity are included in the boundary conditions,
the problem is solved numerically by using the boundary integral equation methods. These methods
are based on a reformulation of the problem as a system of non-linear integro-differential equations
for the unknown quantities on the free surface. These equations are then discretized and the resultant
non-linear algebraic equations is solved by iteration. Such boundary integral equation methods have
been used extensively by many researchers [3, 4, 6, 7, 15, 17] and others. It is assumed that there is
uniform flow far upstream where the flow approaches a uniform stream with constant velocity U and
depth H (see Figure 1). The problem is characterized by the two parameters the Froude number Fr
defined by

Fr =
U
√

gH
(1.1)

and the inverse Weber number δ where
δ =

T
ρU2H

(1.2)

Here T is the surface tension, g is the gravity and ρ is the fluid density. When Fr < 1, the flow is called
subcritical and for Fr > 1 the flow far upstream is called supercritical. In this work, we calculate
waveless solutions for both supercritical and subcritical flows by introducing the effects of surface
tension.
Formulation of the problem and numerical procedure are given in section 2 and section 3 respectively.
In section 4 we discuss the numerical results of free surface flows over a successive triangular obstacles
with different angles γi, i = 1, ...,m−2 and for various values of the two parameters Fr and δ. Solution
diagrams for all flow regimes are presented.

2. Mathematical formulation

We consider steady two-dimensional potential free surface flows past a submerged obstacles at the
bottom of a channel (see Figure 1). The flow is assumed to be inviscid and incompressible. Fluid
domain is bounded below by a horizontal rigid wall A0Am and the successive obstructions forming the
angles γi, i = 1, ...,m−2 with the horizontal, where 0 < |γi| <

π

2
, and above by the free surface EF. Let

us introduce Cartesian coordinates with the x− axis along the bottom and the y− axis directed vertically
upwards, gravity g is acting in the negative y−direction. Let’s introduce the velocity potential φ (x, y)
and the stream function ψ (x, y) by defining the complex potential function f as

f (x, y) = φ (x, y) + iψ (x, y) (2.1)
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Figure 1. Sketch of the flows over a successive obstacles in the physical plane z = x + iy.

The complex velocity w can be written as

w =
d f
dz

= u − iv (2.2)

Here u and v are velocity components in the x and y directions, and z = x + iy. For convenience,
we define dimensionless variables by taking H as the reference length and U as the reference velocity.
Without loss of generality, we choose ψ = 0 on the free surface EF. By the choice of our dimensionless
variables, we have ψ = −1 on the bottom A0Am and φ = 0 at the point A m

2
( see Figure 2 ).

The problem is formulated in terms of the velocity potential φ(x, y). This function satisfies Laplace’s
equation

∆φ = 0 in the fluid domain

The Bernoulli’s equation on the free surface EF can be written

1
2

(
u2 + v2

)
+ δK +

1
Fr2

(y − 1) =
1
2
. (2.3)

Here K is curvature of the free surface, Fr and δ are defined in (1.1) and (1.2) respectively.
The kinematic boundary conditions in f -plane are given by{

v = 0 on ψ = −1 and −∞ < φ < φA1 and φAm−1 < φ < +∞

v = u tan |γi| on ψ = −1 and φAi < φ < φAi+1 , i = 1, ...,m − 2
(2.4)

Now we reformulate the problem as an integral equation. We define the function τ − iθ by

w = u − iv = eτ−iθ (2.5)
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Figure 2. Sketch of the flow in the potential f-plane f = φ + iψ.

and we map the flow domain onto the upper half of the ζ−plane by the transformation

ζ = α + iβ = e−π f = e−πφ (cos πψ − i sin πψ) . (2.6)

The flow in the ζ−plane is shown in Figure 3. The curvature K of a streamline, in terms of θ, is
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Figure 3. The upper half ζ−plane ζ = α + iβ.

given by

K = −eτ
∣∣∣∣∣∂θ∂φ

∣∣∣∣∣ . (2.7)
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Substituting (2.7) into (2.3), Bernoulli’s equation becomes

1
2

e2τ − δeτ
∣∣∣∣∣∂θ∂φ

∣∣∣∣∣ +
1

Fr2 (y − 1) =
1
2

on EF. (2.8)

We apply the Cauchy’s integral formula to the function τ − iθ in the complex ζ-plane with a contour
consisting of the α−axis and the semicircle of arbitrary large radius R in the upper half plane. After
taking the real part and R −→ +∞, we obtain

τ (α0) = −
1
π

∫ +∞

−∞

θ (α)
α − α0

dα. (2.9)

Where τ (α0) and θ (α) denote the value of τ and θ on the free surface. The integral in (2.9) is a
Cauchy principal value type.

The kinematic boundary conditions (2.4) in ζ-plane become
θ = 0 for −∞ < α < αA1 and αAm−1 < α < αAm

θ = γi for αAi < α < αAi+1 , i = 1, ...,m − 2
θ = unknown 0 < α < +∞

(2.10)

By using (2.10), Eq (2.9) becomes :

τ (α0) = −
1
π

i=m−2∑
i=1

γi log

∣∣∣∣∣∣αAi+1 − α0

αAi − α0

∣∣∣∣∣∣ − 1
π

∫ +∞

0

θ (α)
α − α0

dα. (2.11)

Rewriting this equation in terms of φ by substituting α = e−πφ, α0 = e−πφ0 ,
this gives

τ′ (φ0) = −
1
π

i=m−2∑
i=1

γi log

∣∣∣∣∣∣e−πφAi+1 + e−πφ0

e−πφAi + e−πφ0

∣∣∣∣∣∣ +

∫ +∞

−∞

θ′ (φ) e−πφ

e−πφ − e−πφ0
dφ. (2.12)

Here τ′ (φ0) = τ
(
e−πφ0

)
and θ′ (φ) = θ

(
e−πφ

)
. The Eq (2.8) is now rewritten in terms of τ′ and θ′ as

1
2

e2τ′(φ0)
− δeτ

′(φ0)
∣∣∣∣∣∂θ′ (φ)
∂φ

∣∣∣∣∣ +
1

Fr2 (y − 1) =
1
2

on EF. (2.13)

Integrating the identity
d (x + iy)

d f
= w−1. (2.14)

We obtain the following parametric representation of the free surface EF

x(φ) =

∫ φ

−∞

e−τ
′(φ0) cos θ′(φ0)dφ0 for −∞ < φ < +∞ (2.15)

y(φ) = 1 +

∫ φ

−∞

e−τ
′(φ0) sin θ′(φ0)dφ0 for −∞ < φ < +∞ (2.16)

By substituting (2.16) into (2.13), an integro-differential equation is created and it is solved
numerically.
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3. Numerical procedure

In this section, we describe numerical approach for the nonlinear problem derived in previous
section. This numerical procedure has been successfully used by B. J. Binder [9], P.
Guayjarernpanishk [15] and others for solving nonlinear integral equations. Firstly, the free surface
must be truncated at φ1 and φN for the corresponding far upstream x −→ −∞, and far downstream
x −→ +∞, respectively. The truncated free surface is then discretized into N equally segments with

φI =

[
−(N − 1)

2
+ (I − 1)

]
∆, I = 1, ...,N,−∞ < φ < +∞ (3.1)

and the unknown variables on the free surface are

θI = θ (φI) , I = 1, ...,N.

Here ∆ > 0 is the mesh spacing. We evaluate the values τ′ (φ0) at the midpoints

φM =
φI+1 + φI

2
, I = 1, ...,N − 1 (3.2)

by applying the trapezoidal rule to the integral in (2.12) with summations over φI such that φ0 is the
midpoints. We evaluate yI = y(φI) and xI = x(φI) by applying the Euler’s method and by using (2.14).
This yields {

y1 = 1
yI+1 = yI + ∆e−τM sin θM, I = 1, ...,N − 1

and {
x1 = 0
xI+1 = xI + ∆e−τM cos θM, I = 1, ...,N − 1.

Here θM =
θI+1 + θI

2
. We now satisfy (2.13) at the midpoints (3.2). This yields N non-linear algebraic

equations for the N unknowns θI , I = 1, ...,N. The derivative,
∂θ′

∂φ
, at the mesh points (3.1), is

approximated by a finite difference, whereby

∂θ′

∂φ
=
θI+1 − θI

∆
, I = 1, ...,N − 1.

The system of N equations with N unknowns is solved by Newton’s method.

4. Presentation of results and discussion

The numerical procedure of section 3 is used to compute solutions for free surface flows over a
successive triangular obstacles. For simplicity, we assume that the triangles are isosceles forming the
angles γi, i = 1, ...,m − 2 with the horizontal (see Figure 1). Also, we choose φA m

2
= 0. Most of the

calculations in this paper are obtained with N = 401 and ∆ = 0.15. For a given values of φ at the points
Ai, i = 1, ..,m − 1, we compute waveless solutions for various values of the angles γi, Froude number
Fr and the inverse Weber number δ. We denote by L =

∣∣∣φAi+1 − φAi

∣∣∣ , i = 1, ...,m − 2 which represents
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the length of the sides of the triangles. The problem is essentially characterized by four parameters;
The Froude number Fr, the inverse of Weber δ, |γi| and L. In supercritical (Fr > 1) or subcritical flow
(Fr < 1) and a fixed values of L = 2.5 and |γi| =

π
4 , the effect of surface tension on the shape of free

surface, is shown in Figures 4 and 5. It should be noted that the free surface elevation increases when
the inverse Weber number δ decreases. The Figures 6 and 7 show the effect of the Froude number Fr
for fixed values of δ = 0.5, |γi| =

π
6 and L = 3. It can be seen that the elevation of the free surfaces

increases as Froude number Fr increases. When the surface tension is neglected (δ = 0) and Fr → ∞
(without gravity) and for an arbitrary values of δ and γi; the problem has an exact solution that can be
computed via the streamline method due to Kirchhoff [2], in this case, the elevation of free surfaces
reaches its maximum. The effect of varying the length L, whilst γi, δ and Fr are fixed is shown in
Figure 8. Figure 9 illustrates the effect of varying the angles γi where δ = 0.7 and Fr = 2 are fixed.
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Figure 4. The shapes of free surface for Fr = ∞, |γi| =
π

4
, L = 2.5 and various values of the

inverse Weber number δ.

5. Conclusion

In this paper, the problem of irrotational, two-dimensional free-surface flow over a successive
obstacles has been presented. The fluid is assumed to be incompressible and inviscid. The fully
non-linear problem is formulated by using a boundary integral equation technique. The numerical
solutions are obtained, in the presence of surface tension and gravity. For supercritical flow (Fr > 1),
there is a three-parameters family of solutions depending on the height of obstacle, the inverse Weber
number δ and the Froude number Fr which is similar to the case of subcritical flow (Fr < 1). We
have seen the effect of surface tension on free surface profiles for supercritical and subcritical flows. It
noted that when the inverse Weber number decreases or the Froude number increases , the free surface
elevation increases. The same observation is made when γi or L decreases the elevation of the free
surface decreases and vice versa. The maximum free-surface elevation is obtained in the absence of
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the surface tension and gravity, in this case, the exact solution can be found via the hodograph
transform due to Kirchhoff [2].
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