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1. Introduction and Preliminaries

For over a half century, fractional calculus played an important role in complex phenomena in
engineering and the applied sciences . For easy application of fractional calculus mathematician gave
many different definitions of fractional derivatives and integrals, out of which the most commonly used
and invoked is the Riemann-Liouville operator. For detail see [1,2].

Definition 1.1. Let f (x) € L'[a, b] and a > 1 then the Riemann-Liouville fractional integral of order
ais

1 X
I f(x) = mf (x-0)"" f(D)dr. (1.1)

It is clear that the right side is defined point-wise on [a, b], where T (@) = fooo ()" et dr, is the
well-known gamma function.

Definition 1.2. Let f : [a,b] — R, where f(x) € L'[a,b] and a > 0, then the Riemann-Hadamard
fractional integral of order a of a function fis

Hya — 1 fx f@ d 1.2
( Ia+f) () ['@ Jo 7[In(x) = In(1)]"™ i (-2
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Definition 1.3. ( /3] see also [4], [5]) Let f : [a,b] — R, where f (x) € L'[a,b] and a > 0, and p > 0,
the Riemann-Katugampola fractional integral of order « of a function f'is

l—a L lf(T)

@ J, oo

(L) () =

(1.3)

Remark 1.1. In generalized fractional integral, if @« € C, Re (@) > 0, n = [Re (@)]and p > 0.Then for
x>0

Ll A) 0 = o = o s
2. lim (15.0) ) = w5 f (log3)” " O

Definition 1.4. A real valued function f (x), x > Ois said to be in the space C,, i € R,if there exist a
real number p > usuch that f (t) = t* f; (t) , wheref; (¢t) € C ([0, 00)).

In this paper we have considered the following functional

1 b
T(f, 8)=mf f(x)g(x)dx——(f f(x)d )((b )f g(x)dx) (1.4)

The inequality (2.1) has various generalizations that have appeared in the literature; see ( [6—14]).
A number of inequalities have appeared in the literature; see ( [6—14]). The main aim of this paper is to
generalize the results of [10] by using the Katugampola’s fractional integral operator and the procedure
which have used is similar to the method describe in [10].

2. Main results

Definition 2.1. Ler f,g : [a,b] — R, A function f and g are two integral functions which are
synchronous on [a, b] if

A, y)=(f O —-f M- g») =20; x,y €[a,b]. (2.1)
Theorem 2.1. Let f and g be two functions synchronous on [0, 00). Then forallt > 0, a > 0, we have

a XPa+p— 1

Iy (fg) (x )_ of (07158 (x), (2.2)

Proof. Since the function f and g are synchronous on [0, ), than for all 7 > 0, n > 0, we have

(f@O-fmEr- g =0. (2.3)
or
f(T)g(T)+f(n)g(n)>f(T)g(n)+g(r)f(n) (2.4)
!

on multiplying both sides of (2.4) by £
of equation over (0, x), we get

@ m and then integrating with respect to 7 on both sides

o [F O g e [T S0 gy
0

@) Jo  (w-7r)l=@ I(@) (xP—1P)1-@ (2.5)
pl - X P~ lf(T)g(n)dT n pl a X P~ lg(T)f(n)dT .
= M) Jo (-l L) Jo “(xr-mr)l-@
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or
PIS (f8) (x) +f(n)g(n) e b 26)
285 b & - TJ;)(IT S+ f () @ ox (prp 7557)06” ‘
we get
PI (fe)+ fmgmPIy (1) = gmPIy (f) + f )Py (8). (2.7)

Now again multiplying both sides of (2.7) by% > i

e than integrating both sides with respect to n
over (0, x), we get

"o ) (x) Te) fO - nﬂ)‘ (de+p1a(1) T(e) o iﬁ)gfzz))rfp

. (2.8)
@ ! @ !
2 P[ (f) I'(a) fO ()i’nnﬂ)l "dn +P] ((y) j(; (xpnnp)' ”dn’
After simple calculation
PIo (D (L5 (f8) () +°15 (f8) (%) ) 2 I, (f V15, (@) +° 15 . (f VI, (8)
hich gi
which gives oI (P, (&)
PI (fg) (%) > W, (2.9)
0
or
@ F( + ) @ @
() () 2 ST I (0 g (), (2.10)
and this ends the proof. O

Theorem 2.2. Let f and g be two functions synchronous on [0, ) ,then for all x > 0, a > 0,8 > 0,

we have
a pa+p—1 5+ 1
?(xp:l)p “(fg)(x)+pﬂ(ﬁ p)plﬁ(fg)(x) >PISF ()P g () +P I f (0PI g (x). (2.11)

Proof. We can prove Theorem 2.2 by the similar method which we have used in Theorem 2.1. We can
say

Cplr I3 (£9) (0 + 715 (1) S— f (1) g (7)

X—T x-1)~ (212)
> B0 o (1) P15 () () + S £ (0TI () ()
on integrating (2.12) over (0, x), with respect to 7 we get
PIV(f(x) X PIT ()
Oré) b 1"(f)( ) [ b @ gvz(%(d >T (2.13)
>~ fo (x-1Vg() dr + B fo x—-1f" f(odr
we get the required result. O

Remark 2.1. Theorem 2.2 can also be proved by putting « = 3 in Theorem 2.1.

Remark 2.2. The inequalities defined in Theorem 2.2 and Theorem 2.1 for a = [ are reversed if the
functions are asynchronous on [0, ) , i.e.(f(x) — f () (g(x) — g () <0, for any x,y € [0, 00).
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Theorem 2.3. Let fi, f ..., f, be n positive increasing functions on [0, o) .Then for any x > 0, @ > O,we
have
L LRI (f) (x
Plg(]_[ ﬁ-) (x) > —L 0 (f:( ) (2.14)
i=i (15 (1))

Proof. We can prove this Theorem by mathematical induction.
For n = 1, we have

IS (f) () = P15 () (%), (2.15)

forall x > 0,a > 0,
for n = 2,on using Theorem 2.1,we have

PIS(f1) (0PI () (x)

YI5 (if) () 2 (2-16)
P )
for all x > 0, @ > 0. Now, suppose that the above relation is true for n — 1
i eI (f) (x
IS (]—[ f,-) (o > L=ty (fn 32( ) (2.17)
i=i (15 (1))

forall x > 0,a > 0.

Since (f;)where i = 1,2, ..., n are positive increasing functions, then their product (H?:_f ﬁ-) (x) 1s also
increasing function.

Now let us consider H?;ll fi = g and f,, = f.Then from Theorem 2.1, we can say that

n n-1 n—1
"l [l_[ ff) () =1y [1_[ ﬁ.ﬂ) (x) =I5 (1) [plg (]—[ (ﬁ-)] (x)] CI5 (£ (x). 2.18)
=1 i=1 i=1

On using the relation (2.17), we get

n—1

Iy []—[ ﬁ-] () = (15 (1) ((”18 (1) []_[ gh (ﬁ)) (x)] Iy (f) (%)) - (2.19)
i=1

i=1

On that way we can say that the above defined theorem is true for all values of n.
O

Theorem 2.4. Let us consider f and g are two functions defined on [0, 00) ,such that f is increasing, g
is differentiable and there exists a real numberp = inf,»o g’ (x). Then we get the inequality

px
a+1

PIS(f9) (X) = (PIS (D) IS (f) (0PI (g) (x) — PIy (f) () + pPIy (xf (%), (2.20)
forallt>0,a >0,
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Proof. Let us suppose the function 4 (x) = g(x) — px, where h is differentiable and it is increasing
on[0, o) . Thus, from Theorem (2.1), we can say

P18 ((g — p) £ () = (P13 (D) 718 () () (P15 (9) () — pPIE ()

- pre -1 41 P
> (P13 (D) 12 () (P2 (9) () — P g (221)
> (712 (D) 1D GPI (9) (6) - Z2712 ().

Hence we get

PIS(fg) (¥) = (PIS (D) IS (f) (0PI (g) (x) -

"I" () () + pPIy (xf (x)). (2.22)

m|
3. Corollaries and consequences

Upon setting p — 1 in above Theorems,we have the following corollaries for Reimann-Liuville

Corollary 3.1. Let fand g be two functions synchronous on [0, o). Then forallt > 0, a > 0, we have

Iy (fg) (x) = ( Iaf( x) Ijg (x). (3.1)
Corollary 3.2. Let fi, f> ..., f» be n positive increasing functions on [0, 00) .Then for any x > 0,a >
0,we have 1
= L@+ 1D\ 1~
I (1_[ f}) OF ( ( )) [T . (32)
i=1
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