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1. Introduction

Boundary value problems for nonlinear fractional differential equations have recently been
investigated by several researchers. The study of fractional equations ranges from the theoretical
aspects of existence and uniqueness of solutions to the analytic and numerical methods for finding
solutions. A strong motivation for studying fractional differential equations comes from the fact that
they have been proved to be valuable tools in the modeling of many phenomena in engineering and
sciences such as physics, mechanics, chemistry, economics and biology, etc. [4,7,10,14]

Ahmad and Ntouyas [6] investigated the existence of solutions for a fractional boundary value
problem with fractional separated boundary conditions given by

DIx(t) = ft,x(), 1€[0,T], 1<q<2,
a1x(0) + B1(°DPx(0)) = i,
@ x(1) + Bo(‘DPx(1)) =y,, O0<p<]l.
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Where “D? denotes the Caputo fractional derivative of order ¢, f is continuous function on [0, 7] X R
and «;,B;,v;, (i = 1,2) are real constants, with a; # 0.

Also Xiaoyou Liu and Zhenhai Liu [17] investigated the existence and uniqueness of solutions for
the nonlinear fractional boundary value problem with fractional separated boundary conditions given
by :

Dx(r) = f(t, x(£), DPx(1)), t€[0,T], 1<g<2, 1<p<l
a1 x(0) + b1 (“D"x(0)) = ¢y,
ax(T) + byCD'x(T)) = c3, 0<y<l.

Where ¢D* denotes the Caputo fractional derivative of order a, f is continuous function on [0, T]xXRXR
and a;, b;, c;, (i = 1,2) are real constants, with a; # 0O and 7 > 0.

Bashir Ahmad, Juan J, Nieto and Ahmed Alsaedi [5] investigated the existence and uniqueness of
the solutions for a new class of boundary value problems of nonlinear fractional differential equations
with non-separated type integral boundary conditions. Precisely, they consider the following problem

‘Dix(t) = f(t,x(t)), te[0,T], T>0, 1<g<2,
T
x(0) — 41 x(T) = 1y f g(s, x(s5))ds,

0
T
X'(0) = X' (T) = o f h(s, x(s))ds.
0

Where DY denotes the Caputo fractional derivative of order ¢, and f, g,k : [0,T] X R — R are given
continuous functions and Ay, Ay, uy, 4, € R with 4y # 1,4, # 1.

In this paper, we discuss the existence and uniqueness of solutions for a new class of boundary
value problems of nonlinear fractional differential equations depending with non-separated type
integral boundary conditions. Precisely, we consider the following problem

‘Dix(t) = f(t,x(t),"D'x(t)), te[0,T], T>0, 1<g<2, 0<r<li

T
x(0) = 4 x(T) = uy ﬁ g(s, x(s))ds, (1.1)
T
X' (0) — ,x(T) = ,uzf h(s, x(s))ds.
0

Where “D? denotes the Caputo fractional derivative of order ¢, and f € C([0,T] X R X R,R), g,h :
[0,7T] xR — R are given continuous functions and A, Ay, uy, 4, € R with 4; # 1,4, # 1.

The rest of the paper is arranged as follows. In Section 2, we establish a basic result that lays
the foundation for defining a fixed point problem equivalent to the given problem (1.1). The main
results, based on Banach’s contraction mapping principal, Schauder fixed point theorem and nonlinear
alternative of Leray-Schauder type, are obtained in Section 3. Illustrating examples are discussed in
Section 4.
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2. Preliminaries

For convenience of the reader, we present here some necessary definitions about fractional calculus
theory, which can be found in [1,9,12,13].

Definition 2.1. The Riemann-Liouville fractional integral of order ¢ for a continuous function f is
defined as

1

If(r) = m

73
[a-9r s g0
0
provided the right-hand side is point-wise defined on (0, o), where I'(.) is the gamma function, which

is defined by I'(a) = f 1" e ldt.
0

Definition 2.2. For a at least n-times continuously differentiable function f : (0, c0) — R, the Caputo
derivative of order ¢ > 0 is defined as

1
[(n-gq)

‘DIf(r) = fo (t— )" f(s)ds, n-1<qg<nn=][q]+]1,

where [¢] denotes the integer part of the real number gq.

Lemma 2.3. Let a > 0, then the differential equation

‘Dh(t) =0

has solutions h(f) = co + cit + cot* + ... + ¢, " and
I"°D°h(t) = h(t) + co + cit + 2" + ...+ ¢ ",

herec; e R,i=0,1,2,...,n—1andn = [a] + 1.

Theorem 2.4. (Schauder fixed Point theorem )(see [2]) Let U be a closed, convex and nonempty
subset of a Banach space X, let P : U — U be a continuous mapping such that P(U) is a relatively
compact subset of X. Then P has at least one fixed point in U.

Theorem 2.5. (Nonlineair alternative of Leray-Schauder type )(see [2]) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C, and 0 € U. Suppose that F : U — C is a
continuous, compact (that is, F(U) is a relatively compact subset of C ) map. Then either

(i) F has a fixed point in U, or
(i) there is a u € U (the boundary of U in C) and A € (0, 1) with u = AF(x).

AIMS Mathematics Volume 4, Issue 1, 112—-133.
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3. Existence and uniqueness results

Let I = [0,T] and C(I,R) be the space of all continuous real functions defined on I. Define the
space X = {x(¢) : x(t) € C(U,R) and °D'x € C(,R)}, (0 < r < 1) endowed with the norm

[|x]| = clma}xlx(t)l + C2ma}xch’x(t)|, c1,cr € RY, we know that (X, ||.||]) is a Banach space.
te te

Now we present the Green’s function for boundary value problem of fractional differential equation.

Lemma 3.1. For a given y € C([0,T],R), the unique solution of the fractional non separated
boundary-value problem

‘Dix(t)=y(t), te€l[0,T], T>0, 1<g<2,
T

X(O)—/llx(T):,Ul‘f0 8(s, x(s))ds, (3.1)
T
¥(0) = 1T = o f (s, x(s))ds,
0
is given by :
x(t) = fJGa@ﬂsa@CDwumu+“ﬂhT+U_ﬂ”ﬂ Tmsx@ms
CJe T (L-D -1 Jy
- f " g, x(s)ds
=14, ’

where G(t, s) is the Green’s function given by

(="' =97 BT+ =)= 9"

gy  -DIg  (L-DW-DIg-1

G(1,5) = (3.2)
_ A= BT+ (A - Ae-9T
(=Dl (=D =DIg-1) o

Proof. We omit the proof as it employs the standard arguments for instance, see [3]. O

In this section, we given some existence results for the problem (1.1) In view of Lemma 3.1 we
define an operator F' : X — X

(Fx)(®) f (=9 f(s, x(s5)," D" x(s))ds
I'(g) '

&, f T k() D (s
I

+&E L [T — 1) + 1] I}T q_j(;—j)i_)zf(s, x(s), D" x(s))ds

(T = 1)+ 1 fo " s, x()ds - fo g, x(0ds, 1€[0.T], (33)
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1 1

SEACT YT ooy

It is clear that the problem (1.1) has solutions if and only if the operator equation Fx = x has fixed
points. For any x € X, let

(Nx)(t) = f(t, x(1), D"x(t)), te][0,T].

Since the function f is continuous and

1-r

(“D"Fx)(t) = (IT7"Nx)(t) — ra=n

(3.4)

We know that the operator F' maps X into X. Here & is constant given by

T
2 r M2
(/12 _ 1)F(q N f (T — )T f(s, x(5),” D" x(s))ds + L1 fo h(s, x(s))ds.

We put Fx = Fix + F,x, where

— ¢)q-1
(Fio(t) = f ¢ F(s)) F(5.x(5).¢ D' x(s))ds,

T — )t
(Fo0)(t) = —&6i4 1f ( l“(; S (s, x(s)," D" x(s))ds

_ 2
+6Hb[A(T — 1) + 1] f a )q f(S x(s)," D" x(s))ds
T
+oo [T — 1) + 1] ) h(S,X(S))dS—M&ﬁ 8g(s, x(s))dss.

Observe that problem (1.1) has solution if the operator Eq. (3.3) has fixed points, our first result is
based on the Banach fixed point theorem (see [11]).

Theorem 3.2. We suppose that
(A1) The function g, h € C([0,T] X R,R), there exist L,,L, > 0and 0 < L < 1, such that

lg(z, x) — g(t; )l < Lilx =y, |h(t, x) = h(t, )| < Lolx —yl,  for t€[0,T], x,y€R,
(Ay) f € C(0,T] xR X R,R) and there exist constants

(2 - rlLe) — ciléapalll + 4|T*L, - Cl|#1§1|TL1]

O<c
2= T2 usésl| 4y — 1]L,

L > &l + 4|T Ly + [ &|TL

AIMS Mathematics Volume 4, Issue 1, 112—-133.
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and
60,6, >0
with
M M;
0, < , 6, < ,
N; N,
such that
|f(t,x1’)’1)_f(t,x2,)’2)| SOllxl —x2|+92|)’1 _)’2|’ fOr re [0’ T]’xl’x2’yl9y2 ER-
where :
M, = T(q+DIQ-nl(g—r+D{LQ-r[Le - ciléopalll + 4T Ly
—cilm&ITL ] = T waés Ay — 1 Lacy),
N = TQR-rT(q-r+1DeiT4+T Q2 —r)T(qg—r+ Delé 44|T?
+TQ2 =T (g -7+ Dbl + 4T + T2 = 1) T(g+ DT "¢,
+I'2 - nI(g —r+ DT |64 - 1eag
and

M, =Ll (g+ DIFQ - nI(g—r+ 1),
Né = I'Q-rli(g—r+ 1DT% +T'2-nNI'(g-r+ DIEAT e
+IQ2 -nI(g —r+ DIEA|L + A44|T9cq
+(g+ DI -nNTT"cy + (g — r+ DT |64 — 1|cag.

Then the boundary value problem (1.1) has a unique solution.

Proof. Let us set
sup,; 1f(#,0,0) = M, sup,, g 0)| = M, sup,,|h(t,0) = M,,

Br ={xe X, ||x]| £R}, where R > I VL with :
MTc, + &4 T9Mc, + &1 + 4| TMcy
I'(g+1) g+ 1) ['(q)
T "Mc, T 86| — 1|Mc,
+ TMc + +
|1 &1l 1C1 Tg—r+1) T2 -l

+1&Epalll + 4|T* Myey
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T bl — 1|Macy
I'-r

Now we show that FBg C Bg, where F : X — X is defined by Eq. (3.3) for x € Bg, we have:

T6,
+ [E242][1 + Ay

T
(Fx)(®)] < Q(+D wln( ) 0
+ﬁmm+mﬂb+W@WhWI
746, .
sg( — ml|( )+@bm+&|UﬂDl
Y W R W I KL
T g ekl TR

+Hépnlll + 4 |T* My + [ &TM,.

Similarly, we have

D" fo@] <

!
f (t = )T 01|x] + 6:°D x| + M)ds
0

I'(g—r)

T ] T

+ T — ‘1_29 + 6D x| + Md
F(2—r)|ﬂz—1|r(q—1)f0( )T2(O11x] + 6,°D x| + M)dss
Tl

T
L M>)d
F(2—r)|/12—1|f0(2|x|+ 2)ds

< ( T76, N T 26|14 — 116, N T* " |upoll Ay — 1|L2)
*\Tg=r+D "~ TC-nlQ r2-r
T776 T77A A — 116
+( 2, |61 — 1 2)|"D’x|
I'g—r+1) Ire-nl(g)
N 7'M N T 6|4 — 1M N T w4 — 1M,
I'g-—r+1) Ire-nl(g I'-r)

| x|

From the above inequalities, we obtain :

790,
MM|5<%@7—7 m1|( )+@@m+mﬁj
+@mehMT%meawuyﬂ
T6,
CD"
i D Iérll'( .y (q>)| ”
q
Ta+n PTG -

+me+MWU6+M&WMJ

7970 T97|A A, - 110 T*" A; — 1|L
+c2(( L |61 — 116, N |aéoll Ay — 1] 2)|x|
I'(g—r+1) Ire-nlig) I'2-r)
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7970 T97|A A - 110
+(r 2, |61 — 1 2)|"D’x|
(g—r+1) I'2-nlg
N T "M N T 6|4 — 1M N T bl - 1|M2)
I'g-—r+1) Ire-nl(g) F(Z -r)
a9, & A|T0, 16, )
< + LT+ A + 1+ 4|T°L
(F(q T e ekl AlES +albull + 4T Ly
T776,c, N T 6|41 = 1|6,¢2
I'g—r+1) Ire-nl(g)
T w4, — 1|L2€2)|x|
I'2-r)
( T96,c, N 1£11|T90,¢y N 1E2A001 + A4[T6,¢4 N T770yc9
I'(g+1) I'g+1) ['(g) Lg—-r+1)
T -1 MT9 TIM
2651|144 |02€2)|CD’x|+ L, 1§14 1
I'2-nl(g Ig+1) I(g+1)

|EAL||11 + 4| T9Mc
f2a O sl + AT Mses + g T My

N T "Mc, N T 26|14 — 1{Mc,y N T* " wéllAy — 1[Mac,
I'g-—r+1) Ire-nl(g) Ire-r

Lici|xl + o' D'x]) +y

LR+ vy

R.

+eil&|TLy +

IA A

IA

Now, for any x,y € X and for each ¢ € [0, T'], we obtain

q

I'(g+1)

(F10(0) = (Fiy) @)l < (611x =yl + 6D x =< D'yl),

7776, N T 6|4 — 1|6,
I'(g—r-1) I'2-nl(g)
T? " waéollAy — 1L,
Jix =y
I'-r)

[(F2x)(1) = (F2y)(0)] - < (

7776, TN L6l = U6y e o e
s e NIl
We obtain :
Tq
((Fx)(®) = (Fy)®] < (r( R ey ( ) (q)

Héomalll + W|T?Ly + & ITLy )Ix -

T, AT, T46,
+ + 15|11+ A
(Fgs Dt Tqen +ekll+ip

)|0Drx _c Dryl

AIMS Mathematics Volume 4, Issue 1, 112—-133.



120

Similary, we have :

(D" Fx)(t) = CD'Fy)(®) = |7 "Nx)(t)
tl—r f 5
(T — $)T°N(x)(s)ds
TQR-7 (/12 - l)F(q -1
tl—r
— h(s, ds — (IT7"Ny)(t
gy 1>f (s, x())ds — (I*""Ny)(1)
tl—r f 5
(T — )T"N)(s)ds
Te=n - 1>F(q— 0 g
Z‘l—r 1 f
+ h(s, y(s))ds
r2-nL-1 Js (s, y(s))ds|
( 77776, T 6|4, — 16,
I'g—r+1) Ire-nlig)
T "l Ay — 1|L2)|x ]
T2 -r) Y
T4 T4 26|, — 116
+( ) L&A — 1] 2)|CD’x —e pry|.
I'lg—r+1) Ire-nl(g)
From the above inequalities, we obtain
T90,¢, |§1/11|Tq9101
Fx)@) - (Fy)@®)| < |1+ A4
ICFx@) - (Fy)@ll - < (r(q Tt T et e F( )
T r@]CQ
1 T’L TL
+éplll + 4T Lycy + & TLycy + Tq=r+D)
T L6 = 1oicy T el — 1|chz)|)C ]
T2 - Il TQ2-r) Y
T90 A4|T96 T960
+( 2C1 |§1 il 2C1 + |§2/12”1 + 4y 2C1
I'g+1) Lg+1) I'(g)
Tq_rQQCQ _ |/11 - 1|9262
- Eems Tq r d S  Thers CDI' _C Dr
Ta—r+n 1 2§2|r(2—r)r‘(q))| * = Dl

IA

< Llix=yll.

Which implies that F'is a contraction mapping. By

F has a unique fixed point which is a unique solution of the boundary value problem (1.1).

L(cilx —y| + c2|°D"x = D" x|)

means of the Banach contraction mapping principle,
O

Now, we state a known result due to Schauder which is needed to prove the existence of at least one

solution of (1.1).

Theorem 3.3. Let f : [0,T]XRXR — R,and g, h :

that

AIMS Mathematics
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| £t 2,9) < my(2) + dy X! + by,

| 8(t, %) |< ma(t) + dalxI”>, | (2, x) |< m3(2) + ds|xI”,

for each t € [0,T] and x,y € R with m; € L*([0, T],R*), my,m3 € L'([0,T],R*) and d;,d; > 0,0 <
pi,py < 1,i=1,2,3. Then problem (1.1) has at least one solution on [0, T].

Proof. Schauder’s Fixed point theorem is used to prove that F defined by Eq. (3.3) has a fixed point.
The proof will be given in several steps.

Step 1: F maps the bounded sets into the bounded sets in X.

Denote |[my|| = sup,o 7y | mi(9) |, let B = {x € X, |lx]| < R} and R > 0 is a positive number. It is
clear that By is a closed, bounded and convex subset of the Banach space X. For any x € Bg, we have:

1 B F(CI+1) F(C[+1) s

! T
+ & /11 + Ay = )llm || + I+ 4T
Tg+1) &2 llr(q))ll il + 1624l 1T [[ms]|
m " 1+1 _T‘I dir®t + d
+ + &1l =—— + + P4 d P
€111 [[lmal| (|§1 1|F(q+1) €| llr(q))( | 1)

+HéE | Tdar” + |éapalll + 4T dsr".

(Fa®l < (1€l

So, we have

T4 A |T? |1+ A4,|T?
(Fo| < ( N &1 A4 +§2 Al 1 )||m1||

Ig+1) T(g+1) ['(g)

+HE i lllmall + [Expial| 1 + A4 T |[ms]|
T4 | T1? A1+ A4|T?

( N €1 N IE20I1 + 44 )(dlrpl )

I(g+1) T(g+1) ['(q)
HE T dor™ + éapal 11 + 41| T 51,

Then from Eq. (3.4), we have

T im,| T , Ti-r
‘D'F < P+ d)r?
(CDFNOL < e "5+ oy @ + 4D + Mg

where

AIMS Mathematics Volume 4, Issue 1, 112-133.
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[béollAy — 1T
< 262 l"l(q) lmy || + &l — 1llmsll

&4, — 1T
I'(g)

Ikl

(dir" +d; ) + el Ay — LT ds|r>.

So, we have:

T |61 = 1T
+ Nl
I'g—r+1) Ire-nl(g)
bl — 1T
I'e-r)
T N |6l — 1T

I'(g—r+1) 'l -r)
2—r

ICD'Fo@l < (

llmsl|

+( W' + dj )

S 1l
+F(2 =9 |taéoll Ay — 11d3

From above inequalities, we obtain

q q q
IEDI < <r(cqli nt E(ﬂql |illT) i §2Mllrtqﬂ)qw Jimil
+erlépnlllmall + erléopalll + A4 [T |lms]
( T + &1 41|c T 4 &A1 + Ayle, T
Ig+1) T(g+1) ['(g)
+erlép|Tdar™ + ciléapial 11 + 44| T?d5r*
+( T N [265]|141 — 1|02T"_r)”m1||
I'g-—r+1) Ire-nl(g)
&l = e T
+ r2—n [l23]
+( T N [ 126l — e, T
I'g—r+1) I'o)r2-r)

) + dir

)dir + dj )

02T2_r
+ Ay = ldsr™.
ra- r)|,uzfz|| 1 — 1lds
Denote:
( T N & Aile T N &A1 +/11|01Tq)|| !
Ig+1) T(g+1) ['(g)
+eilépnlll + 4T (Imsl| + ciléu [llma]|
( T N [26]|14; — 1|C2Tq_r)” !
T(g-r+1) T2 - r(q) :
w26l A1 — 1|c2T1"”m i
T2 -r) 3
AIMS Mathematics
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( cT? &1 Ailei T &A1 + Ayle T o T

M, + + +
I'g+1) T@+1 I'(g) [g—r+1)
A Ay — 1|, T T
@'z -r)
2—r
My = c|lEyulT,  Ms = ciléulll + 4T + calpaéalldy — 1] .
I'e-r)

Now let R be a positive number such that:

4 1
R > max (SL, (5M1d1)ﬁ, (SMyd})™, (5M,d,) = , (5M3d3)1p;) .

Then it is obvious that for any x € Bg,

R R R R
||F.X||<L+M1(d1}’pl +d/l’p)+M2d2}"p2+M3d3l"p3 < §+§+§+§

This implies that ' : B — Bg.

Step 2: F is continuous.

Suppose that {x,} >, C X and x,(r) converges to x(¢) uniformly on [0, T'] as n — oo; that is, lim,,_,, ||x, —

x| =

So we have
lim||lx, — x|l =0 and 1lim|D"x, - D"x||.c = 0,
n—oo n—00

which implies that

lim x,(r) = x(r) and lim “D"x,(t) = D"x(t), te€[0,T],

n—oo

therefore

lim f(z, x,(1),° D" xa(1)) = f (2, x(2)," D"x(2))
lim g(t, x,(t)) = g(t, x(t)),  lim A(t, x,(1)) = h(t, x(1)), t€[0,T],

which gives

(t B S)q : D’ ¢y
I(Fx,)(2) — (Fx)(?)| < I ) ——|f (s, %, D"x,,) — f(s,x,° D'x)|ds
0
+§1 1 F( ) f(S xn, xn) - f(S, X, X) N
s [ E=97 D’ D' y)ld
el + A f o0 D) = s, Dol

+é2p]|1 +/12|Tf (s, x,) = h(s, x)lds
0

AIMS Mathematics Volume 4, Issue 1, 112-133.
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T
+|m€1|f lg(s, x,) — g(s, 0)lds
0

and

t e \g-r-1
|(°D"Fx,)(t) — (‘D'Fx)(®)| < , (tr(qs—)_r) (£ (s, x," D"x) = f(5,x,° D' x)) ds
T!-r (T - 5)172
+F(2 =9 16242/ |41 — 1] . Tq-1)

X(1f (s, x%0," D'x) = f(s, 5,5 D' x)ds

1-r T
-1 - .
ra-n |E2pa] |41 = 1] fo (s, x) = h(s, x)lds

+

Finely, we have

I(F%) (@) = (F)@I = eill(F) (@) = (FX)@ll + D Fx,)(@) = CD'Fx)0lleo — 0,

which means that F' is continuous.

Step 3: F(Bg) is equicontinuous with By defined as in Step 2.
Since f is continuous, we can assume, without any loss of generality, that |f(z, x(¢),” D"x(t))| < N, and
|h(t, x(¢))| < N, for any x € Bg and 1 € [0, T].

Now let, 0 < t; <1, < T. Then we have

2 (1 - 5)1!
0 ['(g)
"t — syt
0 ['(g)
- )T - (4 — )T
0 ['(q)
r -1
+f[] %lf(s, x(s), D" x(s))|ds
13 — (ta — 1))? — 1] (ty — 1)
fg+h ' Tg+D"
2Ni(ty — 11)? + Nlltg - ttlll
Ig+1) Lg+1)°

|(F1)(12) = (F1x)(11)| | f(s,x(5)," D"x(s5))d's

J(s,x(5)," D' x(s))ds]

IA

£ (s, x(5),” D" x())l ds

IA

7!
|(F2x)(t2) — (F2x)(t)] < (|§2/12||1 - 11|@N1 + [Eopa][1 = /12|TN2)|l2 -l
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So, we have:
2Ni(t —t)?  Nilty — 1] T4
Fx)(t) — (Fx)(t < + + (&)1 = 4| =N
(Fx)e) = (Fx)@) < —prs=+ (122 g™
+ernlll = BTN, )i = 1,
we find that

1 4
(‘D'Fx)(t,) — (CD’Fx)(tl)' 'r 7 fo ((t — 5)*"!

—(t = )T (s, x(5),C D' x(5))ds
1 2

+F(q _ ) (t2 — )7 f(s, x(5).° D' x(s))d's

((/12 — 1)r(q -1 f (T — )72 f(s, x(5)," D" x(s))ds
L-r l—r)

H2 Lo~
oD h(s x(s))ds) e

N\ 1] ’I 2Ni(t, = 1)"

< =
I'(g—r+1) I'g—r+1)
74!
+(Ia&llAs - I'WM
& llAy = 1TN,) = calnlind}
+ e,
ol — 2 r2-r

Hence we have (sinceg > 1,g—r>0and 1 —r > 0)
I(Fx)(2) = (FO)U)Il — 0 as & — 1

and the limit is independent of x € Bg. As a consequence of step 1 to 3 together with the Arzela-Ascoli

theorem implies that F'(Bg) is relatively compact in X. From Theorem 2.4 the problem (1.1) has at least
one solution and the proof is completed. O

Now, we prove the existence of solution of (1.1) by applying Alternative of Leray-Schauder fixed point
theorem.

Theorem 3.4. Let f : [0, T] x R? — R is continuous function and that
(Hy) There exists positive functions a;(t), bi(t),d;(t) € C([0,T],R) such that

£ (2, %, )| < a1 () + ax(D)Ix] + az(Dyl,
lg(t, )l < D1(0) + bo(Olxl,  |h(t, x)| < di(2) + do(D)lx], Ve €[0,T].
(Hy) Suppose that A and p positive constants such that, ) < A < coand 0 < p < 1.

Then the problem (1.1) has at least one solution.
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Proof. It is trivially that F : X — X.
We have shown in Theorem 3.3 that F is continuous.

Firstly, Let B be a uniformly bounded subset of X and let R > 0 be such that ||x|| < R for all x € B.
We prove that F : B — B. For any x € B, we have

(1 T -9
fr()‘”w"f T

g2
e+ AT f T s s 9 D)

IA

|(Fx)(0)]

T
+|§z,uz||1+/11|Tf0 Ih(s,x(S))IdS+|,u1§1|f0 |g(s, x(s))| ds

{ T +|§111|Tq+|§111||1+11|Tq
I'lg+1) I(g+1) I'(g)

My + &l + 4T My + i) | Ms.

So, we have

(CD"Fx)(@)

1 ' —-r—1
F(q—r) f(t—s)q ds

1 —r T _ q-— 2
tr et -1 f s S) s} 1f (5, x(5).E D x(s))]

+Eounll A - 1|f |h(s, x(s))l ds
0

{ e 1&2Aal| A = 1T

N ool — 1T
[(g-—r+1) ['(g)

}M1+ T M,.

Finely, we have

I(F)(@)] <

{ T N cilé | T? N cilEr |l + AT N T
I'g+1) T(@+1) ['(g) [g—-r+1)
ColaésllAy = 1T

+Cz|§2/12||/11 -1
re-r)

I'(g)
+cilui | M
KiM, + K;M, + K3 M;.

WMy +{ciléapalll + 41T + 1M,

IA

Where:

T
M, = max |f(s,z1,22)|, M = max f |h(s, z1)l,
(5,21,22)€[0,T1xR2 (s,z)€[0,TIXR )

= max S, 2
max f lg(s, 20)]
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o T? cilé 4T N cil&iql|ll + 44T N T N cr|ér |4 — 1T

= +
'"T@+D T@+D [(g) Flg-r+1) I(g)
Coltas ||y — 1T
K> = clléllt + 4,17 + SH22 K= alugl
I'e2-r)
Hence Fu is uniformly bounded.
Secondly, we prove the compactness of the operator F, we define

|f(t, x(2),C D"x(t))] < Ny, |h(t, x(t))] < N,. For any t,,t, € [0,T] are such that #; < #,, we have the
following facts:

2t — 1)+ - 1|

|(Fx)(r2) = (Fx)(t)] < 1

T(g+1)
79!
+(I&2 a1y — g+ sl - TN, Itz = tal.
So, we have
. . 2ty ="+ (1 = 1))
‘D'Fx)(t,) — (D Fx)(t < N
¢ x)(1) — ( x)(n)| < Ta—r+1) 1
T !
+(1& 0,014, = 1| —N
( 2142 1 F(q) 1
|;—r_ }—r
+ A - 1TN,) —1 1
2ol — 1ITN,) oo
Hence
2c1(ty = 1) + c1|f; — 1]
Fx)(t) — (FO)I < N
I(Fx)(52) — (F)@)ll < T+ 1) 1
T
+(I&2 0141 - lIpe e+ lamall = 1TeiNa Ity = 1]
200t — 17" + et = 1) 74!
N + (160114, - l|—cN
T(q—r+1) 1 (|§2 ol lF(q)C2 1
1-r 1-r
Heaalld - 1|T02N2)|t2; R—
r'2-r) h

and the limit is independent of x € B. Therefor the operator F is equicontinuous. By the Arzela-Ascoli
theorem, the operator F' is completely continuous.

Thirdly, the result will follow from the Leray-Schauder nonlinear alternative (Theorem 2.5) once
we have proved the boundeness of the set of all solutions to equations x = AFx for 4 € (0, 1).
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A
Let U = {x € X : ||x|]| < R} where R = 15 Then

|(Fx)(@)|
Where
A
Ay
Az
AIMS Mathematics

<

IA

—p
— ¢)1 T — )1
“r( )) ar(s)ds + | f ( S) ar(s)ds
0
_ 2
LT -+ T f & S)q a(s)ds

T
el AT = 1)+ T f d(s)ds + | f by(s)ds

T (t — ¢)4-1 Y|
of [ s+l f (s
T — 5)i2
AT =+ T f T ()ds
0

T T
e[ (T —1) + T]|f da(s)lxlds + |/11§1|f bz(S)dS}|x|
0 0

Lt —s)0!
I'(q)

HE [T =) +T] If
A + As|x| + A5|°D'x|.

T (T - 5)1!

az(9)I°D'xlds + 1§14 f as(s)ds

_)q2

as(s)d s}ICDer

q-1 T T_ q-1
(’r( )) a(s)ds + &A1) f ( s) a(s)ds
_ q2
HELI(T - )+ T f & S) ar(s)ds

T
+HE o [A(T — 1) + T]|f d(s)ds + |ﬂ1§1|f bi(s)ds
0 0

L (t—5)1! (T - syt
o) a(s)ds + &4, | )

T(T = §)12
+|§2/12[/11(T—[)+T]|f ( S)
0

a>(s)ds

a>(s)ds

T T
+ | Eup[ (T — 1) + T]|f dy(s)|xlds + |,U1§1|f by(s)ds
0 0

T — )91 _ a1
« F(”;)) ay($) D xlds + 614, f S) a(s)ds
T - 5)i-2
+ 1 &IAT - 1) + T f ( r(;; as(s)ds
0
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By the definition of the Caputo fractional derivative with 0 < r < 1,

I°D"(Fx)(1)] <
<
Where
Al =
A, =
A, =

AIMS Mathematics

T2 -nlg- Db —1]

!
I'(g—-r) f(t - )" ay(s)ds
- 0
N T2 fT(T — 9 2ay(s)ds
F2-nlg- Dk —11Jy |
T r
T2, -1 J, DO
!
- I'(g—r) f(t_ )" ay(s)dss
- 0
T2, T
T — 5)i2
TG - Nl(g — D], = 1] ﬁ (T = s ax(s)ds
T || r
r(z - r)|/12 ] dz(S)ds}lxl
r(q ) f (6= )™ as(s)ds
T2, R .
T — 5)? cp
T2 = Alg- DIk - 1] fo (T = 5 as(s)ds}*D']
A} + Ajlx| + A5°D'x.
!
I(g-r) f(t — )" ay(s)ds
- 0
T P
T — ¢
T2~ Pl - DItz - 1|f0 (T = )" "ai(s)ds
T | r
e T S

' _ -r—1
F(q—r)jo‘(t )T ar(s)ds

+ T\ fT(T — )7 2ay(s)ds
T2 - (g - Dids — 1] Jo
T ol !
dr(s)d
T =1 J, PO

!
f (t — )T as(s)ds

0
T2,

I'(g—r)

T
f (T — )" 2as(s)ds
0
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Therefore, we can obtain that

IFx@)ll

IA

c1(Ay + Aslx(®)] + As|°D"x(2)]) + c2(A] + Ad|x(2)| + A5|°D"x(2)|)
(1A} + 2A)) +(c1As + 2 AYX(D)] + (€143 + A" D" x(2)]
~—————

=A
A + p(cy max |x()| + ¢, max [“D"x(¢)|)
tel tel

IA

< A+pllxl.
Suppose there exists a x € U and a A € (0, 1) such that x = AFx, then for this x and 1 we have
R =[xl = A|Fx|| < A+ pllxl]| =R,

which is a contradiction. By Theorem 2.5, there exists a fixed point x € U of F. This fixed point is a
solution of (1.1) and the proof is complete.

O
4. Examples
Example 4.1. Consider the following boundary value problem :
1 ‘Dix(t
‘D2x(t) = > n'(x) + 'Dix( )|3 , te€][0,1]
(rt+4) (+3)%(1 + D1 x(2)|)
1 1 ' 3«
O+-xh== [ 2 g 4.1)
HO) + 5x(1) 3j; A+
1 3 1 20y
"(0) + =x(1) = = d
X0+ 33D 2[0 3+
Here,
3 3 1 -1 2 -1 1 3 1 1 -2
= —. V= - = — = — = — = — = — = — = —
q X =5 k=3 s M1 3,,112 2,01 2,02 3,51 3
1 1 1
&= E’T =1 and |[f( x1,y1) — f(t x2,¥2)| < E|X1 — x| + §|)’1 - yal,
|80 2) — (.3) 1< 21— 3] At ) — h(t,y) |< 2 — 31,6y = =6, = |
,X) — s S X - s ,X) — s S DX = ) = = -
8 8,y 4 y y 3 Y, oh 16 2 9
3 2
Li=-,L,=—-.
1 4& 2 3
Furthermore,

0, <0.14971, 6, <0.54173, 1> L > 0,6666.

Thus, by Theorem 3.2 the boundary value problem (4.1) has a unique solution on [0, 1].
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Example 4.2. Consider the following boundary value problem :

1

"D x(1)| )3 rel0.1]

1 1
CD% 1) = (412 — 9¢ -0 4 = Nz + | ——~2
) =( e " 4|x( W+ 2 (1 + cos? x(t)

1
x(0) + %x(l) = é fo [(s = De™® + %|x(s)|%]ds, (4.2)

/ 1, _1 g e, ] 3
x'(0) + gx (1) = gjo‘ [(s7 —2s)e + §|x(s)| 1ds.

In this case, we have

andq— = T=1 A = A M U !
==, r=-, =1, E— = —, = -, = —
4 : ? ! 5 2 3

1 | 1
gt.x)=(@t—-1e ™" + TR a2 =@ - 20e + §|x|%,

since ! {
1t x, Y| < 48 = 9t + —|x]* + =|y3,
4 2
| 3 1 1
lg(t, x)| < |t = 1] + §IXI2, |h(t, x)| < |7 =2t + §|x|2.

Let 1 1 1 1 1 1 1
d:_’ d__$ = - __ad:_9 d__a - - A
1422/012;0233349/03;042

and

m(t) = |4 =91 € L=(0,1), my() =1|t— 1€ L'(0,1), my@) =| —21 € L'(0,1)

Now it is easy to verify that all conditions of Theorem 3.3 are satisfied. Therfore, the fractional
boundary value problem (4.2) has at least one solution on [0, 1].
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