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1. Introduction

We consider the following model of tuberculosis transmission:

S=A-p3-uS
E=B01-p)5 +nrl—(u+k(-r)E (D
[=Bp3+k(1 —r)E—(u+d+6+nr)l

where S(t),E(t) and I(t) denote the numbers of susceptible, exposed and infected individuals at time t,
respectively ,with the following parameters:

A is the recruitment into the population; S, the probability that a susceptible individual will be infected
by infectious ; u is the probability that an individual in the population died from reasons not related to
the disease; d is the probability that an infectious individual dies because of the disease.An individual
leaves his region to another for a new treatment with the probability d, thus this individual goes missing
of model. New infected individual may develop the disease directly with probability p. To account
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for treatment, we define | E as the fraction of population receiving effective chemoprophylaxis and
r, as the rate of effective per capita therapy. We assume that chemoprophylaxis of latently infected
individuals E reduces their reactivation rate r; and that the initiation of of therapeutics immediately
removes individuals from active status I and places them into state E,the time before latently infected
individuals who does not received effective chemoprophylaxis become infectious is assumed to satisfy
an exponential distribution, with time % Thus, individuals leave the class E to I at rate k(1 — r;). Also,
after receiving a therapeutic treatment, individuals leave the class I to E at rate r; .

In [6], we have study dynamical and stochastic models of tuberculosis desease. In this paper we extend
the model (1) by introducing, in two times,the effects of immune response and also of environmental
fluctuations. This paper is organized as follows.In sections 2 and 3 we introduce tthe dynamical model
with immune response and notations and give conditions of stability of these different equilibria. in
section 4, we give we study stability of stochastic tuberculosis model.

2. Dynamical model with immune response

The transmission of tuberculosis is mainly by air, but occasionally by the oral or digestive route.
This is mainly the case of pulmonary tuberculosis where the individual gets the disease by inhalation of
particles (nuclei) that are in the air. Thus, the fact of the presence of these particles in the body triggers
a network of immune cells, antibodies and other components of the immune response. The effectors
are these organs can activate or inhibit an activity.The immune system of an organism provides an
extraordinary defense against foreign attacks.Once it recongnize matter as non-self, it actives multiple
chemical and physiological processes to control and eliminate the pathogen.

The immune reaction is represented by the term P representing the immune effectors and is subject to
the following constraints:

1-The immune system responds to the presence of parasites by producing more immune effectors,
2-Immune effectors reduce the number of parasites. Thus the model of tuberculosis, defined below,
is the SEI model augmented by the part that expresses the immune response. The new model for
transmitting TB from one human to another will have two components: the first components are (S,E,I),
writting with taking account of cholerae bacillus:

, SI BS

> :A_ﬁW;€1K+B_“S
E:(I_P)(ﬁﬁ+ﬁ1K+B)+r2[—(p+k(l—r1))E )
: SI BS
I:P(ﬁﬁ+,31K+B)+k(l—rl)E—(u+d+6+r2)I

And second components are B and P. Where B is the amount of bacilli of Koch and P the rate of
effectors of immunity..

We assume that the bacillus population is suitable for logistic growth with a carrying capacity equal to
K. Then,the model on immune response can be writting as follows:

3)

Ber(l—%)—sBP
P=aB-yP

where
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3. Mathematical analysis

Proposition 3.1. Let (S(1),E(t),1(t),B(t),P(t)) be the solution of system (2)—(3) with initial conditions
(S0),E(0),1(0),B(0), P(0)) and the compact set:

akK
Y

A
Agz{(S,E,I,B,P)GRi,OS(S+E+I)S;+9;9>0;BSK,PS } 4)

Then, under the flow described by system (2)—(3) , A is positively set that attracts all solutions of R>

Proof: Let be W(r) = (W, (r), Wo(¢)) with W, (r) = S(¢) + E(¢t) + I(¢t) and W,(r) = P
Its time derivative satisfies:
dw ()
dt

One has B < K which gives following inequalities:

= (A -uWi(0) = (d +0)I;aB - yP) ®)

dr
0 < oK —yP for Wy(t) > %{

dt

{ T = (A =pWi() = (d+ DI S A=pWi() <0 for Wi(1) = & 6)

which implies that Ay is positively invariant set.
Solving this differential equation one has:

A K
0 < (Wi(1), Wa(®) < {= + Wi(0)e™, T + Wa(0)e ™)
H Y
where W(0) is the initial condition of W(t). Then one can conclude that Ay is an attractive set. 6 > 0.

3.1. Mathematical Analysis of immune response system

System (3) have an extinction equilibrium E, = (0, 0), an immune response free equilibrium E; =

. . . ey . _ rKy arK
(K, 0) and an unique infection equilibrium E;, = (W oK Tyrak

3.1.1. Stability of extinction equilibrium

The jacobian matrix of immune response model at Ej is:

-(00)

and has its trace trace(J) = r — y < 0 and its determinant det(J) = —ry > 0,this means that there is
always an eigenvalue which is positive.hence equilibrium Ej is unstable.

3.1.2. Stability of immune response free equilibrim

System (3) has the following jacobian at immune response free equilibrium:

J:(—r Ks)
a vy
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We see that Trace(J) = —r —y < 0 and det(J) = ry — Kae > 0 for Kr;;s < l.In this case, by Routh-
Hurwitz all eingenvalues are negative or have negative real parts. We can deduce that:

A Kae
Ry =
ry

and when R, < 1, this equilibrium is locally stable.

3.1.3. Stability of infection equilibrium

The jacobian matrix of immune response model (3) at E) is:

¢ry+aK ¢ry+ak

F— r(2yrteaK) reyK
J =
@ -y

.. . . . . 2.2_.2
This jacobian has its Trace(J(E,) = r—%—y < 0 and its determinant det(J(E;)) = W

0. From Routh Hurwitz criterion all eingenvalues are negative or have negative real parts. Hence this
equilibrium is always stable, for Ry > 1

3.2. Equilibria and basic reproduction number

system (2)—(3) two equilibria points:
the desease free equilibrium (%, 0,0, K, 0) and the endemic equilibrium

. _ D1 -p)+pOA
~ u(1-p)D+pQ
(1 - p)A —uS)
ra = (u+ k(1 —r)A
_pu+d+6+2r)I
C opu+k(-rp)
Kr

r+ek
. aKr

- v(r + €K)

I'=

*

*

3.2.1. Local stability of the desease free equilibrium

The stability of the desease free equilibrium will be investigated using the next generator operator

[11] Let be X=(E,LS), system (2)-(3) an be writting as follows: % =F -V, where :

SI BS
(1 =p) (6o +Bi2) ol + (4 k(1 = )E
F = (ﬁSI+/3 BS ) et V= _k(l_g}E+(ﬂggd+5+r2)l
P\P—~ 1
N P18 AL g3t
0 APy Pt

Jacobian matrices ¥ and V on X, are respectively:

Z)?"'(XO):((I)F g)etD(V(XO):(V 0 )
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:(0 0 )etvz(,u+k(l—r1) —k(1 = ry) )
B —-p) Bp —r p+d+6+rn

0 0
‘1[ Bl = p)k(1 —r) +Bp(u+d+6+r) Blup + k(1 = r1)] ]
(w+d+0o)u+k(l—ry)+ur (w+d+0o)u+k(l—ry)+ur

is the next generation matrix of system (2)-(3). The radius of FV~!is

Blup + k(1 —rl))
(w+d+0)(u+k(l—ry))+ur

Hence , the basic reproductive number of system (2)-(3) is:

Blup + k(1 —rl))
(w+d+0o)u+k(l—ry)+ur

The following result is etablished (from theorem 2 of [11])

p(FV™) =

Ro =

Lemma 3.2. [/]] The desease free equilibrium of system (2)-(3) is locally asymptotically stable
whenever Ry < 1, and unstable if Ry > 1

It means that in this case, tuberculosis can be eliminated from community.

3.2.2. Stability of endemic equilibrium
Theorem 3.3. If Ry > 1 et Ry > 1 endemic equilibrium is globally asymptotically stable in Ag

Preuve : Consider the Lyapounov function V:A — R defined as:

*

S I B P
V(S,E,I,B,P) = W[S - Sln;] + Whll - I*lnF] + Ws[B — B*lnE] + Wu[P — P*lnﬁ]

where W,W,, W3 and W, are positive constants to be choosen latter.
Set: Vi(S; E,I,B,P) = W[S - S*In&] + Woll - I'int ]
Va(S;E,1,B,P) = W3[B — B*InZ] + Wy[P — P*In£]

one has:
dV, S-S BS - SI
— =W — - ——S+W — +k1— E—-(u+d+o6+nr)l
7 15 (A ﬁ ﬁlK B uS)+ W, (,BP ﬁl (I-r)E—(u r)I)
S-S5 S B*S* BS I-r
=W 3 B N +'8]K+B*_'81K+B +uS”® —,3——/15)+W2 (ﬂp— Pﬁl +k(1—”1)E
w+d+d6+nr)- ST k(1 YE +(u+d+6+nr)l")—pB B*S*
ETPPTN " e Gy
S-S §1rr S . B*S* BS I1-TI SI S'r
= Wi B = ) ST =) + Bl = g + W Bp(S = )
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B'S*  BS
+k(1 —r)E-E)—(u+d+6+r)I -1 — -
(1 =ri)( ) — (1 r)( ) p,BI(K_i_B* K+B)]
S—S* ST S S*I SI B'S*  B'S
s POy "N TN IR Tk B
B'S BS I- SI Sr Sr s
x+5 k+B TV W(__N+N_ N
B'S*  B'S B'S BS

=W

+B1p(— - + + N+k(1—r)E—-E)—(u+d+06+nr)I-1]

K+B* K+B K+B K B

§-8* S B
=D+ (8- -

5 Bl =D+ (S SN+uS" =)+ 75

I[,Bp[ I - I*)+I—(S SN+k(Q—r)E-FE)—(u+d+5+nr)I-T

< W ($"=9)I

I -
+W,

B S —8%)? S*(S -85
+'61pK+B*(S S < Wlﬁ_%_wlﬁ_( )

B*S* -5*)? S (I-1I? r 1 .
)(S > ) + Wosp —¥ + Wop (S - SHU-T') + Wz(Yk(l —r)(E-E)

K + B* S
B* i . Ww+d+90+r)
+,3119K B*(S SN -=TI") =W, 7
(S —S5*)? U+d+686+r1) I

_ - _ 2
= W1,3(N+,U) S W, 7 (I-r) +(W2ﬁP1N

S =SHU-T') + %k(l -r)E—-EI-T

(I -T) - Wi(u+

(I-TI)]

S *
-W
which gives the following inequality:
(S —S*)? B*S* (S—S*)Z_W(,u+d+(5+r2)

1
WB(G A Wil + ) 2 7

(I-T1

+%<W2—Wl>[5 (S =SHU =TV +I(S -8 - I)+—k(1—r1)(E EYI =T

For W, = W, and take W, and for the fact that %k(l — ry) will be very small we deduce that:

A%
— <0
dt

In the same way one has:

B - B*)? B-B
dV, = —W3%(rk(B +B)—r—¢P))-W; (eB*(P - P7)
P - P - P .
- W4’)f% + Wi (B — B*)
B- B’ P — P*)?
= —W3¥(rk(3 + B*)—-r—¢p)) — W47!
B P
P-P*
— (ePB*W; — aBW,) (B-B)<0

and: 4 =0forS =S*,I=I",B=B"and P = P*
Hence by the LaSalle’s principe [8], endemic equilibrium is globally asymptotically stable in Ag.
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4. Stochastic model

Some authors take stochastic perturbations into account when they investigate the epidemic system
[6, 12, 13, 14].We assume that the perturbation is of white noise type, thatis 8 — S + ”ldW‘(t) , B —
Bi+ "ZdWZ , then we get the following stochastic system:

BS aw BS dWw.
- uS —0'1SI—1 2

- ar  *K+B dr
=(1-p) (,8— +,81 )+r21—(,u+k(1 —~r)E + (1 - p)o ST
BS IyWZ

+(1 =Pz 7)
= (ﬂ+ﬁi)+k(l—r)E—(,u+d+5+r)l+ o1 SI1EL + por, B5 40
PPN TPy B ! DEpo pos

K+B dt
B=rB(l1-2)-¢BP
P=aB-yP

. S
S =A-B2 -
PN ’BIK B

where w;(#) and w,(¢) are standard one dimensional Brownian motion, o; > 0, i=1..3 are the intensity
of the white noise.

Through this paper,unless otherwise specified , we let (Q, F, {F};s0, P) be a complete space with
filtration {F;} satisfying the usual conditions (i.e. it is right continuous and increasing while F
contains all null sets).

The following It ’s formula will be used in the sequel of this paper.

Lemma 4.1. [14] Assume that X(t)€ R is an It6’s process of the form
dx(t) = f(x, 0)dt + ¢(x, )dB(t) )

where f:R" X [0, +00) — R" and ¢(x, ) : R" X [0, +00) — R" are measurable functions.
Given V (x,t) is a Lyapounov function, we define the operator LV by:

LV(x,t) = Vi(x,t) + V(x, ) f(x,1) + %trace[ng Vi(x, Do(x, 1)].

dv(x,p) . dV(xt dV(x,t PV(x,t
Where V,(x,1) = “002; Vi(x, 1) = S0, S0, V(1) = ()i

Then the general It6 ’s formula is given by:

dV(x,t) = LV(x,1) + Vi(x, )G(x, )dW(t)
For the sequel we need the following definitions :

Definition 4.2. The solution of system (7) is stochastically ultimately bounded a.s. if for any € € (0, 1)
, there exists a positive constant 0 = o(€) such that for any initial value (S(0), E(0), 1(0)) € Ri , the
solution of system (7) has the property :

lim sup P{|X(¢)| > 0} < € )

t—00

Definition 4.3. The trivial solution x(t)=0 of (7) is said to be stable in probability if for all € > 0,

lirr%) P(sup |x(t, xo)| =€) =0

Xo— >0
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Definition 4.4. The trivial solution x(t)=0 of (7) is said to be asymptotically stable if it is stable in
probability and moreover
lim P(lim x(z, x9) = 0) = 1
—o0

x0—0

Definition 4.5. The trivial solution x(t1)=0 of (7) is said to be globally asymptotically stable if it is
stable in probability and moreover
P(lim x(t, x0) = 0) = 1
—o00

Definition 4.6. The trivial solution x(t)=0 of (7) is said to be almost surely exponentially stable if for
all xy € R",
1
lim n In |x(z, xp)| < O a.s.
t—00

Definition 4.7. The trivial solution x(t)=0 of (7) is said to be exponentially p stable if there is a pair
of positive constants C and C, such that for all x, € R", B(|x(t, xo)|” < Ci|x(t, xo)|Pe > ont > 0

4.1. Existence and uniqueness of positive solutions

Lemma 4.8. For any given (S(0), E(0),1(0), B(0), P(0)) € R3 , there is a unique solution
(S (1), E(1); I(1), B(t), P(1)) € Ay, on t > 0 and will remain in R> with probability one.

Proof Since the coefficients of model (7) satisfy the local Lipchitz condition, then there exists
a unique local solution on [0, 7.), where 7, is the explosion time. Proposition (3.1) shows us that
0<S®H+E®+1(1)<5,B<KetP(t) <2 forte[0,7,)
We, now, want to show that this solution is global, i.e. 7, = +o00 a.s. Let ny > 0 be sufficiently large
for for any (S (0), £(0), 1(0), B(0), P(0))) remaining in the interval [%, no]. For each integer n > n, , we
define the stopping time:
7, = inflr € [0,7,):5() ¢ (L n), E@) & (L.n). 1) & (L.m), B(t) ¢ (L,m) orP(1) & (L, m))
By reduction to absurdity , we suppose that 7, = +oo is false, there is a pair of constant 7 > 0 and for
any € € (0, 1) such that P{r,, < T} > . Consequently , there is an integer n; > ny such that

Pit, <T}>en>n (10)
Define C* V : R* — R, lake this:
V(S,I,B,R)=(S —InS) +(E~InE)+ (I —-Inl)+(B—1InB) + (P —In P)

for (S (1), E(1), I(1), B(t), P(t)) € Ag. One has:

1
LV:(I—E)(A—ﬁSI—ﬁls —/,lS—O'lsIdwl—O'zS sz)

K+ B K+B
1 B
+ (1= o)A = pYBST+BeS =) + ol = (u+ k(1 = )E + (1 = p)or S 1AW,

BBdW2)+(1 —%)(p(ﬁSI+,BeS Y+ k(1 —r)E—-(u+0+d+n)l

+ (1 - S
( D)o K+

K+ B
B 1 B 1

1-=)rB(l — = —-¢BP 1 - —=)aB-vyP
K+Bsz)+( B)(r( X ¢ )+ ( P)(a yYP)
2 272 2 p2

2 2 2
(B + K)? E2(B + K)?

+ po S 1AW, + po,S

1 S°I
+5@ 4o +(=ploi—r+ (1 -ployp )+ ploiS?
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S2B?
2.2
+ —_—
TP BB Ky
B B S
LV = A+3,u+6+y+,8€ +(,8h+§)1 ulS +I1+R)—-p,S — ﬂem7—63
- 5 2 212
——§I+ (O'I +O_2(B+K)2 (1-p) 0'l 2
S2B? S2B?
+(1 - 222 + 2 252+ 2.2
=Py or G gy TP S O p gy

from (7) we have:
A 2A2 2
LV<A+3u+k(l=r)+n+d6+y+B.+Br+&—+07(=) +po5=C
2 2

Therefore, we obtain:

ST S S
dV < Cdr—((1 - P)(E —p)odWi (1) — (1 - (1 - P)E - P7)0'z dw,() (11D

K+ B
By integrating both sides of (18) from O to 74 A T yields that:

AT tAT tINT SI
f(; dV(S(), E(?),1(1), B(t), P(1)) < f Cdt—-(1- p)fO O-l(f - p)o1dWdW, (1)
0

(AT
S S B
- 1 -(1-p)=—p)or———=dW,(t
j; ( (1-p) E p I )o—— K+ B 2(7)
where 7, A T = min{t,, T}. Whence taking the expectative of the above inequality leads to

EV(IS(ty  AT),E(ty AT), I(ty ANT),B(t, AT),P(t,AT))) < V(5(0), E(0),1(0), B(0), P(0)) +CT (12)

Set Q, = {r, < T} for n > n; by inequality (18),we have P(Q,) > &. Note that every w € Q,, there
exists at least one of S (7, w), I(1,, w) ,B(1,, w) and P(7,, w) equals either n or ;, hence

1 1
V(S (1p, ), E(tp, ), [(T,w)) > (n—1-Inn) A(—==1-1n-)
n n
as consequence from (22) one has:
V(S (O)’ E(O)’ I(O)’ B(O)’ P(O)) +CT > E[IQ,,(OJ) V(‘S Thns (,()), E(Tn’ (L)), I(Tn’ CL)), B(Tn’ (_U),
1 1
Pr,,w)]=>em—-1=-Inm)A(-—-1-1In-)
n n
where 1, is indicator function of €,. Let n — +oo leads to the following contradiction:
+ 0o > V(§5(0), E(O), 1(0), B(0), P(0)) + CT = +o0 (13)

So we must have 7, = co. Therefore , the solution (S(t),E(t),I(t),B(t),P(t)) of model will not explode at
a finite time with probability one. This completes the proof of lemma (4.8).
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Theorem 4.9. The solutions of System (7) are stochastically ultimately bounded for any initial value

(5(0),1(0), B(0), R(0)) € Ay

Proof From lemma (4.1) we know that the solution (S (1), E(¢), I(t), B(t), P(¢)) will remains in R? for

all # > 0 with probability 1. defines functions:
Vi=e'S% V,=eE% et Vs =€'I” pour0 <6 < 1.
By Ito’s formula, one has :
dV, = LVdt + Oe’S"(crlSldWI + O-2K+BdW2)
dV, = LV,dt + (1 - p)@e’Eg(O'lSIdWl + O—2K+BdW2)
dV; = LVsdt + p@e’le(alSIdWl + 0-2K+BdW2)

where _ Qo A 9(9 D/ 272 —t
LV =€'S7[1 +0(5 ﬁN ﬁ1K+B— )+ =5—=(o1 +0'2(K+B e ]
LV, = ¢'E?[ 1+9(,8(1—p) +,81 (K+B)E)+r2E (u+ k(1 —=ry))
2 —
H(e 1)( %SEg + 0 2((K+B)E)2)e t]
LV; = ef19[1 +0(Bpy +BipS iy k(1L =r)F = (u+d+6+12)
9(9 1)(0.252 +0—2((K+B)])2)e_t
Thus, there exists Cy, C, and C5 such that:

LV, < Cle’,LVZ < Czet et LV; < C3€t

It follows that:
e'E(S°() - E(S%0)) < Cyé
e'E(E%(t)) — E(E°(0)) < Cyé', et
e'E(I°(t)) — E(I°(0)) < Cse'
We get now:
limsup, ,, ES%1) < C| < o
limsup, ., E(E)’(f) < C; <
limsup,_, ., EI’(t) < C3 < o

for X(1) = (S (1), E(1), I(t)) € R, note that
XD = (S2(t) + EX(¢) + I*(£))? < 32max{S°(t), E%(r), I°(r)}
< 35S + EXt) + I°())

consequently:
limsup E|X(#)] < 32(Cy + C, + C3)

t—00

as result, there exists a positive ¢; sutch that

lim sup E| VX (?)| < 6,

t—o00
now fore >0, let o = i—z, by Chebychev’inequality,

EINXI _

P{IX <
{IX(0l} < NG

wich gives the desired assertion.

(14)

15)

(16)

7)

(18)

(19)
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5. Moment exponential stability

In this section we study the p” moment exponentially stability of the desease free equilibrium::

Theorem 5.1. Set p > 2, if Ry < 1, the disease free equilibrium is p™ moment exponentially stable in
Ag

The proof of this theorem needs the two next results:

Theorem 5.2. (Afanas’ev et Komanowski, [2]) Suppose that there exists a function V(tx)
€ CY*(R,,R"), satisfying the following inequalities:

Kilx| < V(t,x) < Kol

and
LV(t,x) < —-Kxs|x”,t >0

where p, K|,K, and K5 are positive constants.Then the equilibrium of (7) is pth moment exponentially
stable.When p=2, it is usually said to be exponentially stable in mean square and the disease free
equilibrium is globally asymptotically stable.

Lemma 5.3. If p > 2 and €,x,y > 0. then

-1 1
xly < p=De )Sx” + —glPyP
p p
and (r—2) 5
< BT p Lo
p p
Proof of theorem (5.1): Set p > 2 and (5(0), 1(0), B(0), P(0)) € Ay, from lemma (4.1) , the solution
of the system remains in Ay. Let be the following Lyapounov function

yP

A 1
V:C1(——S)p+—IP+CQBp
H p

One gets by It6’s formula

A B B S 1 A _
LV = —qp(; =SV A =BiS g By —HS) + 5ep(p - 1)(; - S [o7SPr
+O'ZS2—2]+I”_1(,8pS +,BpS—I+k(1—r)E—(,u+d+6+r)I]
2 (K + B)? YKL B N ! 2
2

1 B
+ E(p - D[o3IPS? + o217%S? 1+ copBP~ Y (rB(1 - E) — &Bp]

(K + B)?

=—¢ pu(é—S)”+cp(£—S)p_](,8S +BS1)
A R ""K+B
1 A B? B ST
—C — (= =8 2[038 P + 028 —— 1+ " [B1 pS —— —
+5Ci(p )(,u Y Loy + 05 (K+B)2] HITBPS +,3PN

2 2

1 . B
—(u+d+8+r)I+ (- D[o31PS? + o31” 2Szm] + copBP(r — r— —&P)
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. A B .
of (4) givesus § < " and the fact that == < 1, we obtain:

A A A A A
LV < —cipp(— = S)’ + cip(— = S (B—+ B1—D + crup(— = S)P7'S
H H H 7 H
1 A e A% A? oA A
—saplp— D)= =8)Y"loy= I'+oa— 1+ 1" Bip— +Bp—1 —(u+r+5+nr)l)
2 U U U U 7
A2

1 A? 1
+=(p-Dloi=I"+ =(p - Do3— ]
H 2 M

2
A A A 4, A A 1 A e oA

< —cipu(— =SV +apB—(= =8 +apBi—(—= =S I - scip(p = D(— = §)" "o — 1
H HoH 7y 2 U u

A% A A 1 A? A?
+oy— 1B— - (u+d+5+ )’ +B—I""+ =(p— Dioy— I' + 02— } + coprB"'I
7" H 2 U H

— copoéB?

and by application of lemma (4.1), one gets now :
A 1 A A A A _
LV < —ei(pu = (p = De(B= + 5(p = D(p = Do (ZIN( = S + peifi—(— =)
Ho2 T 7Y
A
—((u+d+6+1)—B=1+cie™)+c1(p - Do?e® P2 4 cyrelr
u
1 ,A? .
+ z(p — Do — )+ c3(d+ 6+ r)e )P — (copd — cpre)BP
u
- —(p—-1 él_l _22é2é_1)
< —cilpp = (p = DeB—+ 5(p = D(p = 2)1(=)N(= = S5)
Ho2 Ho
A
—((u+d+5+nr)—B—0+ce"™) +ci(p - D)o3e® P2 + (cor + c37)e' ™7
u

1 ,A?
+ E(p — 1)o"— NI? — c(pd — re)B?
u

We choose ¢ sufficiently small such that the coefficients of (L—‘ — §)?7 and B? be negative.
We ,also, can choose ¢y, ¢, and c¢3 positive such that the coefficient of /7 be negative. according to
theorem (5.1), the proof is complete.

5.1. Almost sure exponential stability of tuberculosis model with immune response

In this subsection, we investigate stochastic stability of the desease free equilibrium,
Ey = (%, 0,0,K,0). the following result gives the suffucient condition for almost surely exponential
stability.

Theorem 5.4. If Ry < 1 and 3* < 207y then the disease free equilibrium is almost surely exponential
stable in Ay
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Proof: Define

A
V=In((—-S)+E+I+B+P)
M

Using 1t6 ’s formula:

1 1
LV = < (-dS +dE +dIl +dB+dP) + =
S-S+E+I+B+P (G-S+E+I1+B+Py

dsds

1
(5 =S +E+I1+B+Py

+ dEdE + dIldI + dBdB + dPdP) + (dSdl +dSdB + dSdP + dldB

+ dIdP + dBdP)
one has:
V= %_S)+E1+I+B+P(—A+2(ﬁlSK+B+,BSI)+,uS—,u(E+I)—(d+6)I
B 1 2
+(r+a)B—r? — &BP —yP] - %—S +E+I+B+R)2(2O-%S212+O-§SZ(K+B)2))
! 202521

< -AN+BST+uS —uE+1)] -
L—‘—S+E+I+B+P[ F Hs i )

1
A_S+E+I+B+P

A=S+E+I+B+Py

26,8 + (r + a)B)

K+ B

define U = %,
28,U - 20%U* — u = 20U — 2%)2 + (82 - 207u) /207
one has:
dv < [-20%(U - 2[’)711)2 + (8 - 20%u)/2031dt + 20, UdW (1)

< (B2 = 202u)/20)dt + 200 UdW, (1)
By integrating from O to t, we cheek:

ln(% ~-S+E+I+B+P)< ln(% —S8(0)+ E(0) + 1(0) + B(0) + P(0)) + (8 — 203 0)/20)t + G(t) (20)

with G(t)a martingale defined by :G(¢) = o fot ZdW,(1), and in vertue of lemma (5.3) the solution of
model(7) remains in A, it exists a positive constatnt C sutch that

t
<G,G >= a%f Z’ds < Ct
0
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finally by th strong law of large numbers for local martingales, we have:

lim supln(— -S+E+I+B+P)< (Bl 20'%;1)/20'%) <0 a.s.

t—+00

5.2. Almost sure convergence
5.2.1. extinction

The following result gives conditions for extinction of tuberculosis desease, it means that the
desease dies out with probability 1.:

Theorem 5.5. If [(B +B1)—(wu+d+0) - %0’%(%)2] < 0et Ry < 1, then I(t) converge almost surely
exponentially to 0.
Mathematicaly, we have to show that:

In/(t
lim sup nt() <0

—o00

Proof: One has
SI BS

. BS
E+I—(ﬁﬁ+ﬁ]m)—ﬂE—(ﬂ+d+5)l+0']SldW1+0'2K+BdW2
which gives
<(5S_ +B ) E—(u+d+6)l+0iSIdW, + r—2o—aw.
= 1K+B H T T e g

Let be a Lyapounov function V(I(¢)) = In I(t), By Itd’s calculus:

1
av((n) = 7d1(t) 5 12 —(dI(1))’
and then
BS 252 BS
dv(I(1)) < (,8 + B 1K+ B)) (u+d+06)— —[0%52 2m] + o S1dW, + Tr BdW2

1 ,A BS
<B+B)—(u+d+0) - 50{(;)2 + o SIdW, + O BdW2

gives the following equation:

1 , A r " BS
Ini(t) =Inly+ (B+ 1) — (u+d+6) — o (—)*dt + f o SIAW () + | or——=dW,
2 /l 0 0 K+ B

Ini(r) <Inly + t+G(1) (21)

1, A
,8+/31)—(y+d+5)—5cr§(;)2

wher G(t) is a martingale defined by:
T A t
G(1) = f IC R AGES f o2dW,
0 H 0
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THis calculus implies that:

A
<Gi}z§0ﬁ$?2+aba

And by the strong law of large numbers for local martingales [12, 14] we have:

lim sup ¥ =0 almost surely.
—00
and then:
hmsupQ< ,8+,81)—(/1+d+6)—— 1( )? a.s. (22)

—00

this completes the proof.
6. Persistance

Definition 6.1. System (7) is said to be persistent in the mean, if

1 !
lim inf — f I(s)ds >0
0

t—+00

Theorem 6.2. If ———— o d+ 5 1 then (7) is persistent in the mean , moreover we have:

lim inf —

t—+0o0

1 ft[(s)ds> (/1+d+6+r2)(ﬁm -1)
0 BG + (p+d+96)

lftE(s)ds> p_ Wrdrod sy D

0 Cptk(1+n) (BE + u+d+6)

(y+d+5+rgwmmﬁmg—1)
(,8%+(,u+d+6))

lim inf

t—+00

lim inf — f(— - S(s8)ds > pu

t—+00

The proof is based on the following lemma:

Lemma 6.3. [1] Let g € C([0, 00) X Q,[0,0)) and G € C([0, ) X Q, [0, )). If there exists positive
constants Ay and A such that:

Ing(r) > Aot — /lf g(s)ds + G(1) a.s.
0

G(t)

forallt >0, and lim,_,,., == = 0 a.s., then

S B o Ao
lim inf — | g(H)dt > — a.s.
t—+00 t 0 A
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Proof of theorem (6.2): Consider the following Lyapounov function:
VIS,E.D=a;(S+E+D+aS +Inl

where ; and a; are defined below. By Ito’s formula we have:

BS
dV =a[A—uS + E+1)—(d+0)I]+ a[A - ,8 —,81K+B—,uS—0'151dW1
S BS
_0'2K+BdW2]+p(ﬁ BII(K B))+k(1—r1)7—(,u+d+5+r2)+p0'15dW1
BS SZBZ
— 2p* = 2p + (038P + ———
+ pO-ZI(K+ B)dW2 +(2p p+2)(o1S°T + K+ B)z)

>a[(A=—ulS +E+1)—(d+ )]+ ar[(A—uS) —,BISi —ﬁél)dt—o-lSIdwl
K+ B u

— S
TP KB 1K + B)

B
s—L _aw
TPOW T g

B A
dWs] + p(B1S ———— +B— — (U +d + 6 + 1ry) + 1S *)dt + po S dW,
u

A A
2p@+d+5+¢ﬁwﬂW+d+5+h)—D+Karﬂhw—ﬁkﬁ—5)

B A 1
- (a/2 - %),315 K+ B + (041 _ﬁhﬁ)l + (1 - (IQI)SO'deWl + (7 - Q’Q)O'QS X BdW2

with @, = &£ and 8 = (@ + a,)u one has:

A A
de(/u+d+5+r2)(ﬂ'u(ﬂ+d+6+r2) —1)a’t—(ﬁ(;+(,u+d+5))ldt

1
+(1 —aﬂ)SqudWl +(7 —CZz)O'zSK BdW2

and integrating both sides, one obtains:

V(S,E,) > V(So,Ep, I0)) + (u+d+6+nr) - 1)t—(B(%+(,u+d+6))f 1dt
0

uu+d+9o+rp)

! 1 ! B
+(1—021)0'1j;SdW1+(Y—az)02LSde2

hence
Inl>Ww+d+d+nr)p A e (ﬂA+(,u+d+5))ftldt+D(t)
T — — —_
- PP+ d + 6+ 1) u 0

with
! 1 ! B

D(I)IV(SO,EO,I())_(CH+612)S—CllE—CZ]I-i-(l—a’zI)O']deW]‘l‘(Y—aZ)O'szﬂsz
0
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by the the strong low of martingale, one deduces that:

lim %:

t—+oc0

0

By the lemma (4.8) one has:

(/1+d+6+r2)(,8m—1)

I(t) >
© BG + (u+d+96)
From (4)
E > rd — (k(1 = r) +pE
wich gives
Ey—-E
lim inf E(¥) > L lim inf(/(¢)) + lim inf S —
=00 U+ k(1 —rp) - t—00 (u+ k(1 —rt
S ry (y+d+6+r2)(ﬂm—l)
T u+k(1+71) (ﬁi—‘+(y+d+6))

For the last equality, we take account of the following relation::
A
AN =dS +E+D)=W(——-S)—uE - (u+d+06)dt
U
A
> (u(——8)—uE — ul)dt
u

hence
N — N,

A
liminf(— — §) > lim + puliminf I(¢) + p lim inf E(¢)
—00

t—oo e t—oo /'tt t—oo

(y+d+5+r2)(ﬂm—l)
(ﬂ%+(y+d+6))

> p
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