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Abstract: We study the initial boundary value problem with dynamic boundary conditions to the
Penrose-Fife equations with a ‘memory effect’ for the order parameter and temperature time evolutions.
The dynamic boundary conditions describe the process of production and degradation of surface
crystallite near the walls, which confine the disordered binary alloy at a nearly melt temperature
during the fast cooling process. The solid-liquid periodic distributions, which were obtained in 1D
case, represent asymptotically periodic piecewise constant spatial-temporal impulses in a long time
dynamics. It is confirmed that, depending on parameter values, the total number of discontinuity points
of such periodic impulses can be finite or infinite. We refer to such wave solution types as relaxation
or pre-turbulent, respectively. These results are compared with experimental data.
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1. Introduction

This paper is a continuation of the previously published results [12], where the authors studied a
boundary value problem for a system of Allen-Cahn, Cahn-Hilliard and heat transfer (with account
of latent heat) equations with no-flux boundary conditions. This system models distributions of a
conserved order parameter (#), non-conserved one (v) and temperature (). It was shown that there
exists a solution of the problem which consists of long-time oscillating functions. Such solutions
describe experimentally observed fluctuations of the order parameter, concentration and temperature
in confined binary alloys or binary polymer mixtures. In the present paper, we consider the following
system:

Tuly + Uy = [(1)1 Q(Lt, V)(F;(Lt, v, 9) - gzuxx)x]m (1)

TV + Vi — 01,0, = W20, V)&V, — F(u,v,0)) + 6, (2)
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Te0y; + ATV + 6, + Av, = DO, 3)

with the dynamic boundary conditions:
ut(ka l) = Nk[l/l(k, t)]a Vt(k, l) = Gk[V(k, l)]’ et(ka t) = Tk[g(k’ t)], k = 07 L (4)

All parameters for the problem (1)—(4) will be given later in Section 2. We will refer to (1) as modified
Cahn-Hilliard equation and to (2), (3) as modified Penrose-Fife equations.

Unlike the conditions assumed for the model studied in [12], in the present paper we take into
account 'memory effects’ for fluxes and we also implement dynamic boundary conditions to capture
a feedback effect. As noted in [21], “Feedback processes are fundamental in all exact sciences. In
fact, they were first introduced by Sir Isaac Newton and Gottfried W. Leibniz some 300 years ago
in the form of dynamic laws”. It turns out that a general melting process exhibits ’surface’ order-
disorder transition, so that wave perturbations with feedback become dominant in the organization of
bulk structures of waves. In this sense, one can talk about surface-induced structures of relaxation,
pre-turbulent, or turbulent types in real physical systems with the surface feedbacks. The feedback
machine consists of the following components: input, output, control unit, processing unit, and one
main processor, which are all connected by four transmission lines (see [21, Figure 1.3]). One-step
machine algorithms can be characterized by the iterations u(f + 1) = f[u(?)], where f : I — [ is a non-
linear function and 7 is some bounded interval. For example, we can consider a well-known logistic
map f : u — au(l — u), where a € [0, 4] is the bifurcation parameter, and / := [0, 1]. In our situation,
we propose to control behaviour of solution near the boundary by the dynamic boundary conditions,
i.e. by using a special choice of inputs and outputs. From experimental point of view, the dynamic
boundary conditions describe a process in an alloy near the surface where bubbles propagate into a
bulk. These surface bubbles penetrate into the bulk along trajectories which are close to characteristics
of correspondent linear hyperbolic equations. Using dynamic boundary conditions, we can reduce
our original PDE problem to a system of difference equations. In some particular cases, asymptotic
properties of solutions for this system can be deduced from iterations of a one-dimensional map (for
example, quadratic or logistic).

The evolution process of the conserved order parameter u will be described by the modified Cahn-
Hilliard (mCH) equation that was originally introduced by Galenko et al. [16]. This equation models
the non-Fickian diffusion of the binary alloys in so-called tau-approximation, which describes the
"memory’ of the alloy. Then the mCH equation follows from the relation

T JiCo ) + I 1) = =M (u, O)(Fl(u, 1) — Eoth) )

with the non-Fickian diffusion flux J, and 8 = 1 — T/T,,, where T,, is the melt temperature of
crystallization on front of liquid phase at a neighbourhood of the disordered state, u is one component
of a binary alloy. Here, F := F(u, u,) is the free energy, &2 = 2F ofi, F is the dimensionless energy of
interaction between atoms of A and B types, &, is the characteristic length, M is the mobility of atoms,
and 7, is the relaxation time. The mCH equation has simple physical meaning. Namely, if the front
velocity for crystalline phase is small enough then the evolution of wetting phase is described by the
classical Cahn-Hilliard (CH) equation. If this velocity is large enough then the crystalline phase is
described by the mCH equation because the non-Fickian flow corresponds to a change of the front
velocity due to a time delay. In the last case, we have to replace the CH equation with the mCH
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equation. In [16], it is shown that the decomposition in binary systems can be described by the mCH
equation in the following cases: (a) local in time dynamics; (b) large characteristic velocities; (c) large
gradients of the concentration; (d) deep super-cooling.

Note that unlike the modified Cahn-Hilliard equation the Penrose-Fife type equations are very
difficult to solve by using Onsager thermodynamic formalism, because one have to deal with the
non-conserved order parameter and temperature which are coupled by time derivatives, and as a
result, the problem does not allow a variational formulation. According to [7, Eq. (73),(74), p.113]),
the system of Penrose-Fife equations is written as:

v€p = €1+ (T = T,)psx — Fy — af*€TH(1/T),, (6)

e = (KT\)x + B [¢ihur — a($rtpr).]. (7)

where ¢ is order parameter, e is internal energy, T is temperature, 7,, is a melting temperature, K is
the thermal conductivity, F = F(T, ¢) is the local density of the Helmholtz free energy, 8> = 1 — 1T,
v is the basic order parameter kinetic coeflicient, T and € are some dimensionless parameters. These
equations are reduced to the well-known model A if @ = 0, and to the model B if @ = 1. The A, B
models are both of Ginsburg-Landau type and hence, are examples of phenomenological models. If
we assume that K is constant, e = T + A, § = 0 and T = T,,, then equations (6), (7) can be reduced to

YED, = € — f3(T.9), (8)

T+ A¢, = KT,.. &)

Therefore, the system (8)—(9) corresponds to the modified Penrose-Fife equations (2)—(3) with v = ¢,
6 =T,71, =19 =0, with Q and F linearised about (u,v,0) = (1/2,0,0). Also, the modified Cahn-
Hilliard equation and the modified Penrose-Fife equations describe the non-Fickian processes (see
Section 2).

In [12, 15] we have studied a boundary value problem for a system of Allen-Cahn, Cahn-Hilliard
and heat transfer equations with Neumann boundary conditions. It was shown that there exists a family
of solutions with long-time oscillations. Stationary oscillations for the concentration and the order
parameter were known in binary alloy theory but stationary oscillations for the temperature was a new
result. What happens with long-time oscillations if instead of the Neumann boundary conditions, one
implement non-linear dynamic boundary conditions? In this case we obtain spatial-temporal limit
distributions of concentration, order parameter and temperature, depending on the travelling wave
variable s = t — x/V, where V is the velocity of propagation. It should be mentioned that this result is
still holds true if instead of the classical Penrose-Fife equations (see [6, 22]) we consider the modified
hyperbolic Penrose-Fife equations.

The main idea of deriving modified equations is the following one: consider a general continuity
equation for some quantity u:

u=—=Je+ f, (10)

where J is a flux, f is the mass force. According to the Fourier’s law (or Fick’s law), we know that
J = —Du,, (1)
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where D is the diffusion coefficient. If D is a constant then by (10), (11) we arrive to the classical heat
equation:
u; = Du,, + f. (12)

It is well-known that (12) has infinite speed of support propagation for perturbations but this definitely
contradicts experimental results. There are many ways how to approach this paradox. One of
possibilities is to take into account inertia effects of the flux. This method leads to the following
non-Fickian law:

J(t+71) = —-Du,,

where 7 is some relaxation time. For example, for the most of different types of metals the thermal
relaxation time is of the order of picoseconds. Approximating J(t + 7) = J(t) + 7J,(¢), we get the
Maxwell-Cattaneo law:

J(@) + tJ(t) = —Du,. (13)

Differentiating (10) with respect to ¢ and (13) with respect to x, we obtain
Uy = _th + ft,’ Jx + T-]xt = _Duxxa

whence
Tuy = Dy + J + 7f.

From here, due to (10), we obtain the following telegraph equation
Tuy + U = Duy, + g, (14)

where g = f + 7f/. It is well-known that (14) has finite speed of support propagation for perturbations.
Hence, the paradox is finally resolved. Obviously, (14) coincides with (12) if 7 = 0. Following this
way in Section 2, we derive a system (1)—(3).

In the present paper, we show that the process of crystallisation of a melt can be described by
the coupled modified Cahn-Hilliard (CH) and Penrose-Fife (PF) equations which describe the alloy’s
dynamic in a neighbourhood of the equilibrium point a = (u,v,0) = (1/2,0,1 — Ty/T,,), where T,, is
a melting temperature. At the point a this system splits into a linear CH equation and two coupled
linear PF equations. In this case the original problem is getting reduced to the study of PF equations
only, that describe a process of ordering of atoms’ types A and B which are initially in the disordered
state which normalized by A + B = 1. Then, after cooling of the alloy on the flat walls, the front of
crystallization arises at the boundary of a pattern and propagates into the melt. Next, we assume that
this process can be formally described by the dynamic boundary conditions (4).

We are interested in existence of travelling wave type solutions for the linearised system (1)—(3).
We use the method of reduction of the boundary value problem to the initial value problem for the
system of difference equations with continuous time. These difference equations form hyperbolic
dynamical system for which we can to apply the method developed by Sharkovsky (see [29]). By
this reduction we show that there exist locally (in a neighborhood of an equilibrium point) oscillating
spatia-temporal asymptotic solutions with a finite or an infinite number of discontinuity points on their
periods. For example, if one of these boundary functions has at least one internal extremum then
wave oscillations of order parameter and temperature arising in the bulk belong to the pre-turbulent
type. If one of these functions is monotone on the interval (0, /) with two attractive and one repelling
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fixed points, then the PF system is bistable. In this case, we obtain asymptotic periodic impulse
function with constant amplitudes and the one point of discontinuities on a period (see, Figure 2).
Note that these periodic functions are smooth for smooth initial data, excluding the point t = +co
(see [29]). Note that discontinuities of smooth solutions across the interface arise when t — +oo0.
Otherwise, the solutions are smooth at each finite time # > 0 under an assumption that initial data of the
problem are also smooth. An attractor of the system represents a set of generalized functions (see [29])
which are piecewise constant periodic functions. Solutions can have different sets of discontinuities:
finite, infinite, countable or uncountable, and we refer to such solutions as relaxation, pre-turbulent
or turbulent type, respectively. We reference a reader to [29, Definition 1.5, p. 154] for details about
solutions of relaxation, pre-turbulent and turbulent types. The type of the long time limit of a periodic
solution depends on the topological structure of the mapping ® : R> — R? which is controlled by
the dynamic boundary conditions of the problem. The mapping ® leads to a system of two difference
equations with continuous time. This mapping is hyperbolic, and structurally stable with only a finite
number of attractive and repelling points in R2.

Also, we show that this linearised equations (1)—(3) with non-linear boundary conditions (4)
accurately describe the surface-induced spatial-temporal structures of wave type which enter into the
bulk as ‘solitons’. Limit distributions of the order parameter and temperature are periodic piecewise
constant functions with a finite or an infinite number of discontinuity points on a period. The
topological form of these functions is determined by the topological form of the boundary conditions.
Moreover, these functions are elements of attractors of the corresponding dynamical system. The
structure of such an attractor also depends on the initial data. Elements of the attractor can be
deterministic or random functions (see [14, 26, 27, 28, 29]). As noted in [8, p.70], “Despite decades
of research, the growth of lamellar eutectic in bulk sample is still not well understood”. We consider a
mathematical model which can be applied to the study of formation and evolution of spatial-temporal
lamellar eutectic structures of relaxation, pre-turbulent and turbulent type (see Figure 3). These
solutions describe ‘one-dimensional’ micro-structures with finite, countable or uncountable
boundaries, which arise due to the solidification process.

The paper is organized as follows. In Section 2, we formulate the initial boundary value problem
for the linear Penrose-Fife equation and the Cahn-Hilliard equation with dynamic boundary conditions
and initial data satisfying the smooth fitting conditions at the endpoints x = 0 and x = [/, where [
is the size of a sample. We use the observation that these equations at the equilibrium point can be
decomposed as the CH equation, which is independent of order parameter and temperature, and as the
coupled Penrose-Fife equations. By this reason, we will study the boundary value problem for the PF
equations only. In Section 3, it will be shown that the initial boundary value problem can be reduced
to the initial value problem for the system of difference equations with continuous time. Moreover, in
Sections 3 and 4, we will consider an example when all functions in boundary conditions are linear
except one that is in the boundary condition for temperature. In this case, the problem reduces to the
quasi-one-dimensional difference equation in R?, which, respectively, can be analyzed by application
of the quadratic map. Additionally, in Section 5 we consider applications to experiments and discuss
the physical interpretation of the dynamic boundary conditions.

2. The problem statement

In this section, we linearise the modified Cahn-Hilliard equation, the Penrose-Fife equation and the
heat transfer equation about the equilibrium (u, v, ) = (1/2,0, 8,), where 6, is a critical temperature,
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and we consider the long-time asymptotic behaviour of solutions. First of all, we derive these modified
equations. Hence, let us consider the following system of equations (see [12]):

u = w1 Qu, v)(Fl(u, v, 0) — €°u),]e w1 € R, (15)
Ve = W O, v)(EHvyy — Fl(u,v,0)+06, o€R, w,eR", (16)
6, + v, =D, A€eR, (17)

where u is a conserved order parameter, v is a non-conserved order parameter, € is temperature,
O(u,v) =u(l —u)(1/4 — V) >0 (18)

is mobility, A is latent heat parameter, w;, w, are positive constants (below, we take w; = w, = 16).
These equations represent the simplest form of the phase field model (see [6, 22]). In this case, the
Ginzburg-Landau functional can be written as:

) 2
E-= f [F(u,v,6) + %(ui +2)]dx, (19)
0
where p
F(u,v,0) = E[G(u +v)+G(u—v)] + yu(l —u) —,3v2 (20)
is a free energy, y and 8 € R,
G(s) = slns+(1—=s)In(l - s) Q1)

is entropy. Equations (16)—(17) are Penrose-Fife equations. Next, if we assume that a characteristic
relaxation time of the temperature field is much faster than a relaxation time of concentration and that
the heat transfer of both phases is described by the parabolic equation. If a characteristic relaxation time
for the order parameter is much smaller than the relaxation time for the temperature then we obtain
the parabolic equation for the order parameter (the classic Allen-Cahn equation) and the hyperbolic
equation for the temperature in the Penrose-Fife system. Note that if it is not true then both Penrose-
Fife equations are of hyperbolic type.
Next, assume that all fluxes satisfy the non-Fickian generalised law, i. e.

T i+ Ji + w0, v)(Fl(u, v, 0) — €%u,,), = 0, (22)
Ty Jay + Jo + 00, v)(E*v,, — Fl(u,v,0)) = 0, (23)
Tg.]g,’t + J3 + Dgx = 0, (24)

where 7,, 7,, T4 are the corresponding relaxation times. Using the following relations
w=-=Jiy, vi==J+00, 6, + v, = —-J3,,
by (22)—-(24) we arrive at
Tulty + ty = [w1 Q1 VI(F, (4, v, ) = 8214) ] (25)

TV + Vi — 01,0, = W20, V(& — Fl(u,v,6)) + 06, (26)

AIMS Mathematics Volume 3, Issue 3, 409-425



415

T@HU + /17'9\/” + 9[ + /lvt = DQXX' (27)

Note that the system (25)—(27) coincides with (15)—(17) when 7, = 7, = 79 = 0. This approach was
used in the study of the Cahn-Hilliard equation with delay argument for application to polymer blends
with dynamic boundary conditions in [11, 14]. These equations describe evolution of distributions with
non-Fickian diffusion and represent ‘tau-approximation’ for ‘numerical turbulence’. Moreover, this
idea was also used by James Clerk Maxwell for heat transfer equation (see [3, 19]). Next, linearising
(25)—(27) about the equilibrium point (&, v, ) = (1/2,0, 0), we obtain the following system of equations

Tyly + Uy = _82uxxxx - 2)(uxx’ (28)
TV + Ve — 0T,0, = €vy + 2BV + 06, 29)
T90[[ + AT@V{ + 6[ + /1\/[ = Dgxx. (30)

As a result, the linearised Cahn-Hilliard and Penrose-Fife equations are uncoupled, and we can
consider the Penrose-Fife equations separately by using the following dynamic boundary conditions
(4), where Ny, Gy, YV : I — I; k= 0,1 are the given smooth functions, / := [0,/]and 6 = 1 —T/T,,.
Note that the boundary conditions describe ‘probability’ density of crystallite injection with feedback
into the bulk after cooling below 7' < T,. We conclude that, for special initial conditions of
exponential type, the attractor of the Penrose-Fife problem contains piecewise constant periodic
functions p(s), p2(s) (see Figure 2), where s = ¢t — x/V.

3. Travelling wave solutions to the initial boundary value problem

Using that the Cahn-Hilliard equation (28) is uncoupled from the system (29), (30) we can study
separately the linearised hyperbolic Penrose-Fife equations:

TV + Vv, — 01,0, = €V, + 2Bv + o0, (31)
ngtt + /ITQVU + 01 + /lvt = D@M (32)
coupled with
vi=Golv] at x=0, v,=Gq[v] at x=1, (33)
6, ="ol6] at x=0, 6 ="T[0] at x=1I, (34)

where 7, T are the corresponding relaxation times. We will look for a solution of these equations in
the form of travelling waves, namely,

v(x, 1) = v(s), 6(x,t) = 0(s), where s =t — x/V. 35

Substituting (35) into (31),(32), we get that

2

(TV - %)v" +Vv =2Bv=01,0 + 00, (36)
D 24 / ’ ’
(Tg _ W)(9 O = —drg — . (37)
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Here, B = x — x. is the interaction energy between atoms of type A and B, y. is an
decomposition of a disordered phase on two ordered phases. By (36), (37) we deduce that

17

agV"" +apV” +ayy' +azv =0ifrg—1, # %,

ay”’ +ay” + a3y =0ifrg-71, = &,

where
_ £ D _ £ D
@ =T —3)Te—37), X1 =T, — 7 +Tg— 37 + TAT Ty,

a, =1 +0A(t, + 19) — 26(79 — %), a3 =od—2p,
a; :Tv—é—zz, &2:14'0'/1’1'9, ;3 20'/1—2[3.

Next, for simplicity, we will consider the case V? = T—Dﬁ = f—i only.
4. Asymptotic solutions for the Penrose-Fife equations

4.1. Asymptotic solutions for the order parameter

Ifv?=2= ‘j—z then from (38) we obtain that

Ty
oAdt, V" + (1 + cA(t, + TV + (A =28V = 0.

By (40) we deduce that

1 ” ’ _ _ 14+0A(ty+719) _ oA-28
V" + agv” + a;v' =0, where ag = e O e

Integrating (41) from s = tto s =t —[/V, we arrive at
V(@) + agV (1) + av(@) = V'@ = 1/V) +agV' (@t = 1/V) +av—1]V),
whence, taking into account the boundary conditions (33), we get

Go[v(DIGo[v(D)] + agGolv(D)] + av(t) =

energy of

(38)

(39)

(40)

(41)

(42)

G vt = UG [v(t = 1/V)] + aoG[v(t = 1/V)] + ayv(t = 1/ V). (43)

Let us denote by Gy = GGy + ayGo + ald, G, = GG +aoG, + a,1d, where Id is the identity map.

Then from (43) we find the following difference equation
v(t) = G[v(t — I/ V)], where G := G;' o G;.
On the other hand, integrating (41) on s, we arrive at

v(s) = ki + kpe™* + kze™* if ag — 4a, 0,

v(s) = ki + kze_%os + kgse_%os ifag—4a; =0

—ap £ \Jaj — 4apa

2

VY k; € R, where

/11:

(44)

(45)
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So, (45) forms admissible class of initial functions for difference equation (44), i.e.
vo(t) = ky + koe'' + kze™ if ag — 4a; # 0,

K1) _0, .
vo(?) = ki +k2€_2t+k3t€ 2’1fa0—4a1 =0

forall r € [-1/V,0).
For example, consider the boundary conditions (33) in the form

vi=avatx=0, v,=f(v)atx =1, (46)

where f(v) satisfies f(v)(f'(v) + ag) = (a(a + ag) + a;)(v* + 8) — a,v. Here a(a + ap) + a; # 0 and ¢ are
arbitrary parameters, then (44) is reduced to the logistic equation:

w(t) = Vit =1/V) +6. 47)

It can be shown (see [18, 29]) that solutions of this equation tend to 2V//V — periodic function p,(¢) €
P* with a finite or an infinite number of discontinuity points t* € I" on a period as t — +oo0, where P*
is a set of attractive circles of amap G : I — I, N is a common multiple of the attractive circles.

Now, we show what happens, for example, if we linearise boundary condition (33) at a disordered
state v = 0. By (33) we arrive at

vi(0,1) = Gol0] + G{[0]v(0, 1), v(l,t) = G1[0] + G[O]v(l, ?). (48)

In this case, similar to (44) we get the following linear difference equation:

v(t=1/V) = m(t) + my, 49)
where
_ G}[0)(Gy[0]+ap)+ay _ Gol0I(G}[0]+ap)~G1[0)(G} [0]+ao)
L= GI01(G [01+ag)+a; > "'72 ~ G [01(G/ [0]+ap)+aj :
Equation (49) has a general solution
_y
w(t) = O(Hm, iy lf?m ifm; # 1, and v(¢) = O(r) — %mz tifm =1, (50)

where O(¢) is an arbitrary [/ V-periodic function. So, the linearised boundary conditions give us very
simple asymptotic behaviour.

4.2. Asymptotic solutions for temperature

If V2 = 2 = £ then by (36), (37) we deduce that

0" + b6 + by =0, where by = L p, = 2P0 (51)
Subtracting (51) at s =t —[/V from (51) at s = ¢, we arrive at
") —-60"@=1l/V)+Db[6() =0 =1/V)]+ b,V () =V (-1/V)] =0. (52)

Taking into account the boundary conditions (34) and equation (44), we get
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TolODI o0 + b1 Yo[0(n)] = Y1 [0( — L/V)IL1[6(r — I/ V)] + by 1[0 — 1/ V)]—-
b2(Go o Gv(t = I/V)] = G [v(t = [/V)]).  (33)

Let us denote by Yo = Ty Yo + by T, T, = 1|l + byTy, and G := G, — Gy o G. Then from (53) we
find the following difference equation

0(t) = Ty o (T1[6(t — 1/ V)] + b,Gv(t = 1/ V))). (54)
On the other hand, integrating (51) on s, we get

6(s) = kae ™" = 2 — gahel — jhe™ Vi € R, a0 —day # 0,4 % by, (55)

where k;, k», k3 are from (45). Thus, (55) provides admissible class of initial functions for difference
equation (54), i.e. fp(r) = kye ™1 — 2 — Jobe gt Koot for all £ € [—1/V,0),

For example, if b, = 0 and T := ‘Y‘g "o T : I — I is structurally stable hyperbolic map then again
we obtain the same difference equation to (44). It can be shown (see [18, 29]) that solutions of this
equation tend to periodic piecewise constant function with a finite or an infinite number of discontinuity
points on one period as t — +oo. If b, # 0 then we have to consider the coupled system of difference

equations.

4.3. Example

In the general situation, we do not have any classical theory to apply. Therefore we will study one of
simple examples to illustrate some possible scenarios of asymptotic behaviour of solutions. Consider
the boundary conditions (33), (34) in the form

vi=avatx=0, v,=Bvatx =1 (56)

0, =yO0atx=0, 6, =g@)atx=1I, 57

where g(0) satisfies g(6)(g'(0) + by) = y(y + b1)(6* + ). Here y # {0, —b,}, ae + ag) + a; # 0 and u
are arbitrary parameters. Then the system of difference equations (44), (54) are reduced to

i) — __bla=p)ap-an)
O(I)—G(t—l/V)+av(t—l/V)+,u, a—m, (58)
W) = byt = 1/V), b=l (59)

Note that @ = 8 then (58), (59) reduces to the following uncoupled system:
0(t) = *(t = 1/V) + u, v(t) =v(t—1/V). (60)

If |b| < 1 then the map
fu i (0,v) > (8 +v+u,bv) (61)

describes all trajectories of the dynamical system attracted by a line v = 0. Thus asymptotic behaviour
of equation (58) is determined by properties of the one-dimensional logistic map

fﬂ:9|—>92+/¢ (62)
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Figure 1. The upper pictures illustrate convergence of v(¢) to zero and divergence of (¢) for
u = 0.28 > 1/4, initial data v(r) = 0.002 + 0.005 exp (-21), 6(¢) = 0.005 + 0.001 exp (-1), b =
1/2,and [/V = 1. The middle pictures illustrate convergence of v(¢) to zero and convergence
from above of 6(¢) to 8; ~ 0.15 (dashed line) for u = 1/8 < 1/4, initial data v(r) = 0.02 +
0.05 exp (—21), 6(t) = 0.05+0.01 exp(—1), b = 1/2,and [/V = 1. The lower pictures illustrate
convergence of v(f) to zero and oscillating convergence of 6(¢) to §; ~ —0.37 (dashed line) for
u = —1/2 > =3/4, initial data v(r) = 0.002 + 0.005 exp (—21), 6(t) = 0.005 + 0.001 exp (-1),
b=1/2,andl/V = 1.

of the line v = 0 mapped into itself. For example, if u > 1/4 then 6(tf) — +co as t — oo (see the

upper picture on Figure 1) because there are no any fixed points. For u = 1/4, we have the saddle-

node type fixed point (1/2,0). For u < 1/4, the map £, has two fixed points (6;,0) = = 21_4”,0),

1+ T

(62,0) = (—5—,0). As aresult, we have a saddle-node bifurcation at u = 1/4.

If u € (—3/4,1/4) then the point (6, 0) is stable node type, and the point (6,,0) is unstable saddle
type (see Figure I). The attractive region of the point (6, 0) is an open unbounded region W at the plane
(6, v) with a boundary which contains the saddle point (6,, 0) of codimension one and separatrix of this
point, and also countable set of curves. These curves are pre-image of the separatrix for iterations

:j”,n = 0,1,.... The limit solution f2(8,v) is (1) (6;,0) as (8,v) € W; (2) (6,,0) as (6,v) € OW; (3)
(+00,0) as (6,v) ¢ W.
If u € (=5/4,-3/4) then the points (6, »,0) are saddle type and the map has attractive circle of period

0) = (CY2 ), (g, 0) = (Y

2 formed by points (65, ,0). In this case, we have solutions of

AIMS Mathematics Volume 3, Issue 3, 409-425



420

relaxation type (see, Figure I).

0.04¢—
}0.02 4 D - . !
O_ s
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t
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O_ L - - - . L L L 4
0 5 10 15 0 5 10 15
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Figure 2. The upper pictures illustrate convergence of v(¢) to zero and convergence of 6(¢) to
piecewise constant function 6(¢) = 63 = —1, 6(t) = 6, = 0 for -5/4 < u = -1 < =3/4, initial
data v(¢) = 0.002 + 0.005 exp (—21), 6(¢) = 0.005 + 0.001 exp (), b = 1/2,and I/V = 1. The
lower pictures illustrate convergence of v(¢) to zero and convergence of 6(f) to pre-turbulent
type solution for —1.401 = y* < u = —1.3 <= 5/4, initial data v(¢) = 0.002 + 0.005 exp (-21),
6(t) = 0.005 +0.001 exp (=), b =1/2,and I/V = 1.

If u € [u*,—5/4], where u* = —1.401, then the map f, has circles of periods 1,2,22,..,2" (ones of
each periods!), where 2 < n = n(u) — +oo as u — u*. A circle of a period 2" is attractive but another
circles are repelling. In this case, a solution tends to a piecewise constant 2V//V-periodic function as
t — +oo, excluding the solution 6(¢) = 6,. The limit function has, at least, a countable set of points of
discontinuities on a period. A number of oscillations of the limit solutions on each interval (¢,7 + [/V)
tends to a power function as t — +oco. We will call such solutions as solutions of pre-turbulent type
(see Figure 2).

If u € (=7/4, ") then a set of non-wandering points of the map consists from attractive circle of a
period 3 and Cantor set which represents closure of a set of points for repelling circles (see [17]). As a
result, a solution tends to a 3//V-periodic function as t — +oo (see Figure 3).

If u € A := (-2,-7/4) then bifurcations of solution accompanied by a change of periods with
respect to the universal ordering (see [29, 30]):

1<2<22<22<..<7-22<5-22<3.22<7-2<5-2<3:2<..<7<5<3.  (63)

The period doubling bifurcations arise with universal velocity v = 4.669 and ones characterised by the
universal relations of amplitudes of arising oscillations p = 2.502. From (63) it follows that for each m
exists a map which has a circle of the period m’ and one has not of circles of periods m < m’ asm < m’.
For the period doubling bifurcations from (63) we get that 2 < m foralli > 0ifm # 2/, i =0,1,2,...
Next, define by u[n] a least value of a parameter u for which the map f, has a circle of a period n. Then
for f, there is the ordering (see [30]):

pl1] < pul2] < pld] < oo <pl5-21 < pl3-21 < ... < ul5] < pl3l. (64)
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Figure 3. The upper pictures illustrate convergence of v(¢) to zero and convergence of 6(t) to
31/V = 3 periodic function for -2 < u = —1.5 < y*, initial data v(t) = 0.002+0.005 exp (—21),
0(t) = 0.005+0.001 exp (1), b = 1/2,and [/V = 1. The lower pictures illustrate convergence
of v(t) to zero and convergence of 6(¢) to turbulent type solution for u = -2, initial data
v(t) = 0.002 + 0.005 exp (—21), 8(t) = 0.005 + 0.001 exp (—1), b = 1/2,and [}V = 1.

Assume that
A}, ={u e A: f,hasacircle of a period 2m + 1)2"} #0, m,neZ", (65)
and y, = inf AJ. Then from (64) we arrive at
Ho S Ho < Mo S5 S Spy < S 3 < pg <l (66)

If u = —2 and initial function 8y(7) : =2 < 6y(¢) < 2Vt € [-1/V,0) then a solution tends to a function,
which values are equal to [-2, 2] for any ¢, as t — +oo. It means that a solution of 8(¢) = 8*(t—1/V) +
for any ¢ < t” has a number of oscillations with the amplitude [-2,2] on interval (¢’ + t,t” + ) as
t — +oco. The number of oscillations increases by 2 every time as time interval ¢ increases by //V and
eventually goes to infinity. In this case, we will talk about limit solutions of turbulent type (see Figure
3). In addition, if 4 < -2 then all solutions become unbounded, except 6(¢) = 6 5.

Note that the experiment which proves the existence of surface oscillating distributions of
temperature has been done by Gao et al. (see, [9, Figure 2a]). The influence of latent heat on
formation of surface heat structures in a pattern has been also explained in this article.

5. Discussion

5.1. Comparison with experiment

As an example of possible application of our results, we present some data from an experimental
study of ordering (segregation) at the CuAu (100) surface. In [1], it is shown that Au enrichment in the
top surface layer persists up to temperature far beyond the bulk order—disorder transition temperature.
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The segregation, which happens below the bulk order-disorder transition temperature 7,,, depends on
compositional depth profile that gives information about the binding characteristics of such alloys. So,
monotone profile indicates weak pair interaction between the two components but oscillating profile
results from stronger pair interaction. Therefore it is useful to perform layer-selective composition
analysis in the near-surface region. For example, for low-energy interaction there are no layers but for
lager energy there arise three or more surface-layers (see [1, 4, 10, 20, 31, 32]). The theoretical study by
Tersoff [32] for CuAu (100) predicts Au segregation with oscillating segregation depth profile. So, Au
rich layers can alternate with Au depleted layers. The average amplitude of these oscillations decreases
while temperature increases. This average amplitude, according to Tersoff, decays exponentially into
the bulk when value of T, is above the bulk ordering transition temperature.

Thus, investigation of surface segregation requires layer composition analysis as a function of
temperature. Such information can be obtained by the low-energy ion scattering beyond first layer
chemical composition. The Cu and Au concentrations in the top layer are measured with He™ ion
scattering. Information about the first and second layer composition is obtained from Na™ scattering
spectra (see [1, Figure 2]). The spectra taken on the two different azimuthal directions show that Au is
the dominant species in the top layer where both Cu and Au are detected in the second layer. The
experimental results are well reproduced by the solutions of relaxation type with a unique point of
"discontinuities’ on a period (see, Figure 1). So, the quantitative evaluation is possible.

The surface composition as a function of temperature range is obtained from quantitative evaluation
of both, He* and Na* measurements. For this purpose, the Cu and Au concentrations in the surface
layers were varied in the simulations until the best agreement between measured and calculated spectra
were obtained.

To make it the crystal must be heated up to temperature of data points. At temperature 7 < T,
the rapid cooling with liquid nitrogen must be necessary. Then at temperature 7 < 0°C arise mixing
in surface layers (or disordered state). The Au concentration at a neighbourhood T = T,, is 0.95 of
common concentration Au+ Cu = 1 and decreases with higher temperature while the Cu concentration
increases. As a result, there is the typical graphic form for oscillations of relaxation type with finite
points of ’discontinuities’ on a period. These oscillations describe the layers which are parallel to the
(100) plane of the pattern.

Note that the remaining small Au concentration in the second layer indicates slight deviation from
’ideal’ bulk temperature that qualitatively corresponds to the mathematical results. That is the
oscillations are spatial-temporal piecewise constant distributions. Indeed, as noted in [1]: ’The
asymmetric development of the Au concentration in the two layers relative to the bulk value X4, is
also assign of a damped oscillating concentration depth profile, which is similar to the case of
Cuz;Auw’. Thus, these results indicate on existence of a continuous phase transition in the surface
region. Next, the asymmetric development of the Au concentration in the two layers which are
relative to the bulk value X of the concentration Auy,, is a sign of a damped oscillating concentration
depth profile that are similar to the case of CuzAu [5, 24].

5.2. Physical sense of boundary conditions

At higher temperatures gradual desegregation is observed, i.e. decreasing of the Au concentration
in the first layer accompanied by increasing Au concentration in the second layer. The degree of
desegregation can be used to estimate the segregation energy AH. The Langmuir-McLean relation
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should be applied [23] to describe temperature dependence of the concentration X of the segregating
components as

Xsurface Xbulk Al
- = efsT, (67)
1 - Xsurface 1 - Xbulk
where kg is the Stefan-Boltzmann constant. For example, if é—h; < 1 then the solutions of the Penrose-

Fife equations are determined in main by the boundary conditions, i.e. by the surface segregation
energy. Thus, the cooling of a crystal with impurity leads to the formation of meta-stable states (or a
number of clusters) which contain defects. These states are long lived (or meta-stable). Note that the
crystallization in the bulk is difficult to identify but the crystallization at the surface can be determined
by using of scanning tunneling microscope [35, 24].

Further, let us consider an example of simplest dynamic boundary conditions which are due to
surface defects. If T > T,,, then positions of impurities are not correlated. But below T, defects
are correlated so that the rate of change of the order parameter v is proportional to v*. It leads to
phenomenon that if 7 < T,,, then defects are structured in clusters, and one would expect an increase
in the number of defect fluctuations. In 1D approximation, the radiuses of clusters and its density
may be described by distributions of relaxation type. Such distributions are captured by the boundary

condition

9
a—::kv2+,u, kueR (68)

at the left wall that confines the binary alloy in the liquid state, and the same linear boundary conditions
at the right wall. In a similar way, one can construct a special dynamic boundary conditions for the
temperature, or even more complex boundary conditions, which are connected the order parameter
and temperature in some nonlinear way. To conclude, we note that the dynamic boundary conditions
were previously discussed in [13] for the binary alloys. At first, this type of boundary conditions was
considered for polymer mixtures by Binder et al. [2, 25]. The Cahn-Hilliard equation in 3D geometry
with dynamic boundary conditions was studied in [13], where 3D-wave structures were obtained for
the unit cube domain. These results can also be applied to the Penrose-Fife equations.

6. Conclusion

We consider the self-organization phenomenon in a binary alloy with memory which is in the
disordered state and confined by the two flat walls. This problem postulated as an initial boundary
value problem for the hyperbolic Penrose-Fife equations with dynamic boundary conditions. Such
type model describes evolution of order parameter and temperature in a binary alloy. It is shown that
the solutions of the problem can be represented in the form of travelling waves. This allows us to
reduce the PDE problem to the initial value problem for two difference equations with continuous
time delay. In particular case when these equations have special quadratic form, it is proved that
asymptotic solutions satisfy to the Sharkovsky ordering. These solutions have the finite or infinite
points of discontinuities on a period. As a result, we get the oscillating solutions for order parameter
and temperature. Thus, behaviour of order parameter and temperature about the walls, due to the
dynamic boundary conditions, leads to appearance of surface induced spatia-temporal oscillations
into a bulk.
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