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Abstract: Conservation laws are usually studied in the context of sufficient regularity conditions
imposed on the flux function, usually C2 and uniform convexity. Some results are proven with the
aid of variational methods and a unique minimizer such as Hopf-Lax and Lax-Oleinik. We show that
many of these classical results can be extended to a flux function that is not necessarily smooth or
uniformly or strictly convex. Although uniqueness a.e. of the minimizer will generally no longer
hold, by considering the greatest (or supremum, where applicable) of all possible minimizers, we
can successfully extend the results. One specific nonlinear case is that of a piecewise linear flux
function, for which we prove existence and uniqueness results. We also approximate it by a smoothed,
superlinearized version parameterized by ε and consider the characterization of the minimizers for the
smooth version and limiting behavior as ε ↓ 0 to that of the sharp, polygonal problem. In proving a
key result for the solution in terms of the value of the initial condition, we provide a stepping stone to
analyzing the system under stochastic processes, which will be explored further in a future paper.
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1. Introduction

Conservation laws, generally expressed in the form

wt + (H (w))x = 0 in R × (0,∞)

w (x, 0) = g′ (x) on R × {t = 0} (1.1)

and the related Hamilton-Jacobi problem

ut +H (ux) = 0 in R× (0,∞)
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u (x, 0) = g (x) on R × {t = 0} (1.2)

for a smooth flux functionH have a wide range of applications, including modelling shocks mathemat-
ical turbulence, and kinetic theory [3, 4, 5, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21]. In Section 2, we
review some background, based on [9], regarding well-established classical results for the conserva-
tion law (1.1) in the case of a flux with sufficient regularity conditions. We also show that these results
can be extended in several ways, allowing new, broader application for much of this well-established
theory. For example, we are able to prove several results in [9] with the much weaker condition of
non-strict convexity assumed on the flux function rather than uniform convexity.

In addition to relaxing some of the convexity and regularity assumptions, we consider the specific
case of a polygonal flux, a (non-strictly) convex sequence of piecewise linear segments. It has been
studied extensively as a method of approximation and building up to the smooth case in Dafermos
[6, 7]. This choice of flux function notably eliminates several of the assumptions of the usual problem
under consideration in that it is (i) not smooth, (ii) not strictly convex, and (iii) not superlinear. The
Legendre transform is also not finite on the entire real line. We consider some of the results for
smooth H and their possible extension to this case. Later in this analysis, it will be key to consider
a smooth, superlinear approximation to H. We index this approximation by two parameters δ and ε,
corresponding to smoothing and superlinearizing the flux function, respectively, and denote it byHε,δ.
In Section 3, we prove an existence result for the sharp, polygonal problem, in addition to several other
results, without the properties of being uniformly convex or superlinear. We also consider the two
different types of minimizers for the sharp problem, both at a vertex of the Legendre transform L or at
a part of L where it is locally differentiable, and demonstrate how (1.3) will hold in various cases with
these different species of minimizers.

For the smooth problem, it is well-known (i.e., [9]) that the minimizer obtained in closed-form
solutions such as Hopf-Lax are unique a.e. in x for a given time t. Far more intricate behavior surfaces
when one takes a less smooth flux function, as in our case with a piecewise linear flux. In particular,
the convexity here is no longer uniform and not even strict. As a result, one can have not only multiple
minimizers, but an infinite set of such points. This involves in-depth analysis of the structure of the
minimizers used in methods such as Hopf-Lax or Lax-Oleinik. In Section 4, by considering the greatest
of these minimizers y∗ (x, t), or its supremum if not attained, we show that y∗ (x, t) is in fact increasing
in x. Further, by carefully considering the relative changes in this infinite and possibly uncountable
number of minima, we prove rigorously the identity

w (x, t) = g′ (y∗ (x, t)) . (1.3)

This expression relates the solution of the conservation law to the value of the initial condition
evaluated at the point of the minimizer. This is a new result even under classical conditions and requires
a deeper examination of multiple minimizers in the absence of uniform convexity. We also prove other
results including that the solution is of bounded variation [25] under the appropriate assumptions on
the initial conditions.

In Section 5, we consider the smoothed and superlinearized flux function Hε,δ. By condensing
these two parameters into one and considering the minimizers of the smooth version, we obtain results
relating to the convergence of these solutions to the polygonal case.

We can also define a particular kind of uniqueness when constructing the solution from a certain
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limit, as we take the aforementioned parameter ε ↓ 0. Utilizing this definition, we are able to prove a
uniqueness result using this smooth approach. This is elaborated on in Section 6.

In Section 7, we consider discontinuous initial conditions. When H is polygonal and g′ is piecewise
constant with values that match the break points of H, the conservation law becomes a discrete combi-
natorial problem. We prove that (1.3) is valid, and w can also be obtained as a limit of solutions to the
smoothed problem. This provides a link between the discrete and continuum conservation laws.

A further application of conservation laws includes the addition of randomness, such as that in the
initial conditions. In doing computations and analysis relating to these stochastic processes, the identity
(1.3) will be a key building block. We present some immediate conclusions in Section 8. For example,
when applied to Brownian motion, we show that the variance is the greatest minimizer y∗ (x, t) and
increases with x for each t.

To illustrate the importance of this result, consider the basic problem wt + |w|x = 0 subject to L∞

initial conditions w(x, 0) = g′(x). As a consequence of our analysis, the solution at a point (x, t) is
completely determined by the value of the initial condition on the interval [x − t, x + t]. Hence, the
value of the solution is given by g(x − t) if the minimum of g(y) is at the left endpoint of the interval,
g(x+ t) if the minimum is at the right endpoint of the interval, and 0 for an interior minimum. Thus, for
an initial condition g′ that is Brownian motion, one minimizes integrated Brownian motion and obtains
the shock statistics. In a second paper, we plan to develop these ideas further.

2. Classical and new results for smooth flux functions

We review briefly the basic theory (see [9]), and obtain an expression that will be more useful than
the standard results when we relax the assumptions in order to incorporate polygonal flux. For now
we assume that the flux functionH (q) : R→ R is uniformly convex, continuously differentiable, and
superlinear, i.e., lim|q|→∞H (q) / |q| = ∞. The Legendre transformation is defined by

L (p) := sup
q∈R
{pq −H (q)} . (2.1)

Here we use script L and H to indicate we are considering the problem with a smooth flux function,
and in Section 3 we will use L and H when considering a piecewise linear flux function.

An initial value problem for the Hamilton-Jacobi problem, on R, is specified as

ut +H (ux) = 0 (2.2a)
u (x, 0) = g (x) (2.2b)

We call the function w a weak solution if it (i) u (x, t) satisfies the initial condition (2.2a) and the
equation (2.2b) a.e. in (x, t) and (ii) (see p. 131 [9]) for each t, and a.e. x and x + z, u (x, t) satisfies the
inequality

u (x + z, t) − 2u (x, t) + u (x − z, t) ≤ C
(
1 +

1
t

)
z2 . (2.3)

The Hopf-Lax formula is defined by

u (x, t) = min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
. (2.4)

The following classical results can be found in [9], p. 128 and 145.
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Theorem 2.1. SupposeH is C2, uniformly convex and superlinear, and g is Lipschitz continuous. Then
u (x, t) given by the Hopf-Lax formula (2.4) is the unique weak solution to (2.2).

Now we consider solutions to a related equation, the general conservation law

wt + (H (w))x = 0 in R× (0,∞)

w (x, 0) = g′ (x) on R × {t = 0} (2.5)

Theorem 2.2. Assume thatH is C2, uniformly convex, and g′ ∈ L∞ (R). Then we have

(i) For each t > 0 and for all but countably many values x ∈ R, there exists a unique point
y (x, t) such that

min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
= tL

(
x − y (x, t)

t

)
+ g (y (x, t)) (2.6)

(ii) The mapping x→ y (x, t) is nondecreasing.

(iii) For each t > 0, the function w defined by

w (x, t) :=
∂

∂x

[
min
y∈R

{
tL

( x − y
t

)
+ g (y)

}]
(2.7)

is in fact given by

w (x, t) =
(
H ′

)−1
(

x − y (x, t)
t

)
To illuminate the notion of a weak solution, we briefly describe the motivation of the defini-

tion. Nominally, if we had a smooth function u that satisfied (2.2a) everywhere in (x, t) and the
initial condition (2.2b) then we could multiply (2.2a) by the spatial derivative of the test function
φ ∈ C∞c (R× (0,∞)) and integrate by parts to obtain∫ ∞

0

{∫ ∞

−∞

uφxt +H (ux) φxdx
}

dt +

∫ ∞

−∞

gφx|t=0dx = 0 . (2.8)

Now we let w := ux and integrate by parts in the x variable, (see [9] p. 148 for details and conditions).
Note that u (x, t) is by assumption differentiable a.e. The test function is differentiable at all points, and
so the product rule applies outside of a set of measure zero. Hence, one can integrate, and one then has∫ ∞

0

{∫ ∞

−∞

wφt +H (w) φxdx
}

dt +

∫ ∞

−∞

g′φ|t=0dx = 0 . (2.9)

We now say that w is a weak solution to the conservation law if it satisfies (2.9) for all test functions
with compact support.

Remark 2.3. From classical theorems, we also know that under the conditions that g′ is continuous
and H is C2 and superlinear, we have a unique weak solution to (2.7) that is an integral solution to
the conservation law (2.5). However, at this stage we do not know if there are other solutions to (2.5)
arising from a different perspective, where g is a differentiable function.
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In order to obtain a unique solution to the conservation law, one imposes an additional entropy
condition and makes the following definition.

Definition 2.4. We call w (x, t) an entropy solution to (2.5) if: (i) it satisfies (2.9) for all test functions
φ : R×[0,∞)→ R that have compact support and (ii) for a.e. x ∈ R, t > 0, z > 0, we have

w (x + z, t) − w (x, t) ≤ C
(
1 +

1
t

)
z . (2.10)

In order to prove that w = ux is the unique solution to (2.5), we note the following: In Theorem 1,
p. 145 of [9] it suffices for the initial condition to be continuous. In the theorem, the only use of the
L∞ (R) condition is that its integral is differentiable a.e. which is certainly guaranteed by the continuity.

Under the assumptions of Theorem 1, the Lemma of p. 148 of [9] states that, with G := (H ′)−1 , the
function w = ux, i.e.,

w (x, t) = ∂xu (x, t) = ∂x min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
= G

(
x − y∗ (x, t)

t

)
(2.11)

satisfies the one-sided inequality

w (x + z, t) − w (x, t) ≤
C
t

z . (2.12)

Once we have established that w is an entropy solution, the uniqueness of the entropy solution (up
to a set of measure zero) is a basic result that is summarized in [9] (Theorem 3, p 149):

Theorem 2.5. Assume H is convex and C2. Then there exists (up to a set of measure 0), at most one
entropy solution of (2.5).

Note that one only needs g′ to be L∞ in this theorem. One has then the classical result:

Theorem 2.6. Assume that H is C2, superlinear and uniformly convex, and that g′ ∈ L∞. Then the
function w (x, t) given by (2.11) is the unique entropy solution to the conservation law (2.9).

Note that we need the uniformly convexity assumption in order that the one-sided condition holds,
which in turn is necessary for the uniqueness.

A classical result is that if y (x, t) is defined as a minimizer of

Q (y; x, t) := tL
( x − y

t

)
+ g (y) (2.13)

then it is unique and the mapping x 7→ y (x, t) is non-decreasing, and hence, continuous except at
countably many points x (for each t) and differentiable a.e., in x for each t. The Lax-Oleinik formula
above, which expresses the solution w to the conservation law as a function of (H ′)−1.

This formula, of course, utilizes the fact that H ′ is strictly increasing, i.e., that H ∈ C2 and uni-
formly convex. Using similar ideas, we present a more useful formula that will be shown in later
theorems to be valid even when the inverse of H ′ does not exist. For these theorems we need the
following notion to express the argument of a minimizer.
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Definition 2.7. Let B be a measurable set and suppose that there is a unique minimizer y∗ for a quantity
Q (y) such that

Q (y∗) = min
y∈B

Q (y) .

Define the function arg to mean that
y∗ =: arg min

y∈B
Q (y) .

In the case that the minimum is achieved over some collection of points in B, denote by arg+ the
supremum of all such points, regardless of whether the supremum of this set is a minimizer itself.

Theorem 2.8. LetH ∈ C2 and convex and g ∈ C1. Suppose that for each (x, t) , the quantity

y∗ (x, t) = inf
y∈R

{
tL

( x − y
t

)
+ g (y)

}
(2.14)

is well-defined, finite, and is attained for a unique value of y. Then

L′
(

x − y∗ (x, t)
t

)
= g′ (y∗ (x, t)) (2.15)

and w (x, t) := ∂x miny∈R

{
tL

(
x−y

t

)
+ g (y)

}
is given by

w (x, t) = g′ (y∗ (x, t)) . (2.16)

Proof. From Section 3.4, Thm 1 of [9], we know that a minimizer of tL
(

x−y
t

)
+ g (y) (if unique) is

differentiable a.e. in x. We then have the following calculations.
Since we are assuming that infy∈R

{
tL

(
x−y

t

)
+ g (y)

}
> −∞ and both L and g are differentiable, there

exists a minimizer. Since L and g are differentiable, for any potential minimizer one has the identity

0 = ∂y

{
tL

( x − y
t

)
+ g (y)

}
(2.17)

so that (for a.e. x) at a minimum, y∗ (x, t) , one has

− f (y∗, x, t) := L′
(

x − y∗ (x, t)
t

)
= g′ (y∗ (x, t)) . (2.18)

We have then at any point x where y∗ (x, t) is differentiable,

w (x, t) := ∂x min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
(2.19)

= ∂x

{
tL

(
x − y∗ (x, t)

t

)
+ g (y∗ (x, t))

}
= tL′

(
x − y∗ (x, t)

t

)
·

(
−∂xy∗ (x, t)

t
+ 1

)
+ g′ (y∗(x, t)) ∂xy∗ (x, t) . (2.20)

The previous identity implies cancellation of the first and third terms, yielding

w (x, t) = g′ (y∗ (x, t)) a.e. x ∈ R f or each t > 0. (2.21)

�
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Note that the uniqueness of the minimizer is used in the second line of (2.19). If there were two
minimizers, for example, then as we vary x, one of the minima might decrease more rapidly, and that
would be the relevant minimum for the x derivative.

We now explore the case with two minimizers. Using the notation tL
(

x−y
t

)
=: f (y; x, t) as defined

above, we note that whenever we have a minimum of f (y; x, t) + g (y) at some y0 we must have

∂y f (y0; x, t) + g′ (y0) = 0. (2.22)

We are interested in computing w (x, t) = ∂x miny∈R { f (y; x, t) + g (y)} . Suppose that there are two
distinct minima, ŷ0 and ỹ0, with ŷ0 < ỹ0 at some point x0. Then we can define ŷ (x, t) and ỹ (x, t) as
distinct local minimizers that are differentiable in x, and satisfy

lim
x→x0

ŷ (x, t) = ŷ0 and lim
x→x0

ỹ (x, t) = ỹ0 . (2.23)

Then as we vary x, the minima will shift vertically and horizontally. The relevant minima are those
that have the largest downward shift, as the others immediately cease to be minima.

This means that

w (x, t) = min
{
∂x

[
f (ŷ (x, t) ; x, t) + g (ŷ (x, t))

]
, ∂x

[
f (ỹ (x, t) ; x, t) + g (ỹ (x, t))

]}
|x=x0 . (2.24)

Then, as the calculations in the proof of the theorem above show, one has

w (x, t) = min {g′ (ŷ0) , g′ (ỹ0)}

= min
{
−∂y f (ŷ0, x0, t) ,−∂x f (ỹ0; x, t)

}
. (2.25)

Since we are assuming that ŷ0 < ỹ0 and f ′ is increasing, we see that the minimum of these two is
−∂y f (ỹ0; x0, t) , yielding,

w (x, t) = −∂y f (ỹ0; x0, t) = g′ (ỹ0) . (2.26)

Now suppose that for fixed (x0, t) we have a set of minimizers {yα}with α ∈ A for some set A. Should
A consist of a finite number of elements, an elementary extension of the above argument generalizes
the result to the maximum of these minimizers.

Next, suppose that the set has an infinite number of members. The case where the supremum of this
set is +∞ is degenerate and will be excluded by our assumptions. Thus, assume that for a given (x, t) ,
the set {yα} is bounded, and call its supremum y∗. Then either y∗ ∈ A, i.e., it must be a minimizer, or
there is a sequence

{
y j

}
in A converging to y∗. If y∗ < A, then we have, similar to the assertion above,

the identity
w (x, t) = inf

α∈A

{
−∂y f (yα; x, t)

}
. (2.27)

Since f ∈ C2 and y j → y∗ we see that

w (x, t) = −∂y f (y∗; x, t) = g′ (y∗) . (2.28)

Note that (2.28) is valid whether or not y∗ is a minimizer.
Suppose that f ∈ C2 is convex and that we have a continuum of minimizers again. Suppose further

that f ′ is nondecreasing, and there is an interval [a, b] of minimizers of { f (y; x, t) + g (y)} . Note that
the form of f is such that we can write it as

f (y; x, t) = f̂ (y − x) (2.29)
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with f̂ increasing. We can perform a calculation similar to the ones above by drawing the graphs of f̂
and g as a function of y at x0 as follows:

w (x, t) = ∂x min
y∈[a,b]

{ f (y; x0) + g (y)}

= lim
δ→0

miny∈[a,b]

{
f̂ (y − x0 − δ) + g (y)

}
−miny∈[a,b]

{
f̂ (y − x0) + g (y)

}
δ

. (2.30)

We are assuming that there is an interval y ∈ [a, b] of minimizers, such that f (y − x0) + g (y) = C1 for
some constant C1. This means f ′ (y − x0) = g′ (y) . Since C1 occurs on both parts of the subtraction,
we can drop it. Using the mean value theorem we have

f̂ (y − x0 − δ) = f̂ (y − x0) − δ f̂ ′ (ζ) (2.31)

where ζ is between y − x0 and y − x0 − δ. Using the identity f̂ ′ (y − x0) = g′ (y) we can write

w (x, t) = lim
δ→0

miny∈[a,b]

{
−δ f̂ ′ (ζ)

}
− 0

δ

= lim
δ→0

min
y∈[a,b]

{
− f̂ ′ (ζ)

}
= − f̂ ′ (b − x0) = − f ′ (b) (2.32)

since f ′ is nondecreasing, and the minimum of − f ′ (y) is attained at the rightmost point.
Although we have only considered the cases where the set of minimizers is countable or an interval,

this argument suffices for the general case. Indeed, the set A of minimizers will be measurable. If it has
finite measure, it can be expressed as a countable union of disjoint closed intervals A j, i.e., A = ∪∞j=1A j.
It is then equivalent to apply the argument for the countable set of minimizers to the points y j = sup A j

and proceed as above. To illustrate these ideas, consider the following example.

Example 2.9. Let f (y; x) := (x − y)2 and g (y) := −y2 for y ∈ [a, b] and increase rapidly outside of
[a, b], suppressing t. We have f (y; 0) + g (y) = y2 − y2 = 0 so all points in [a, b] are minimizers (see
Figure 1). We want to calculate

∂x min
y∈[a,b]

{ f (y; x) + g (y)} |x=0 , (2.33)

i.e.,

lim
δ→0

miny∈[a,b] { f (y; δ) + g (y)} −miny∈[a,b] { f (y; 0) + g (y)}
δ

= lim
δ→0

{
δ−1 min

y∈[a,b]

{
(y − δ)2

− y2
}}

= −2b. (2.34)

I.e., w (x, t) := ∂x miny∈[a,b] { f (y; x) + g (y)} |x=0 is given by −∂y f (y; x) at the rightmost point of the
interval [a, b]:

− ∂y f (y; 0) = −2b at y = b. (2.35)

Note that by continuity, we have the same conclusion if the interval is open at the right endpoint b.

Using the calculations in (2.22)–(2.32), we can improve Theorem 2.8 above by removing the
”unique minimizer” restriction.
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Figure 1. Consider the case when f (y; x) takes the parabolic form (x − y)2: (a) In some
pathological cases, the initial condition may coincide in such a way that for an entire interval
[a, b], the infimum on the right-hand side of (2.36) is achieved. In Example 2.9, we illustrate
the application of Theorem 2.10; (b) Observe that when f is shifted by a small amount,
there is a varying impact on the continuum of minimizers (where here δ < ε), affirming the
sensitivity of this special case.

Theorem 2.10. LetH ∈ C2 and convex and g ∈ C1. Suppose that for each (x, t), the quantity

y∗ (x, t) = arg+ inf
y∈R

{
tL

( x − y
t

)
+ g (y)

}
(2.36)

is well-defined (finite). Then

L′
(

x − y∗ (x, t)
t

)
= g′ (y∗ (x, t)) (2.37)

and w (x, t) := ∂x miny∈R

{
tL

(
x−y

t

)
+ g (y)

}
is given by

w (x, t) = g′ (y∗ (x, t)) . (2.38)

Remark 2.11. The condition (2.36) is not difficult to satisfy, as we simply need g to be well-defined
a.e. on some interval where L is finite.

Remark 2.12. Theorem 2.10 improves upon the classic theorem, which requires uniform convexity. By
utilizing the concept of the greatest minimizer y∗, we are able to deal with non-unique minimizers and
obtain an expression for the solution to the conservation law using only convexity and not requiring
uniform or strict convexity.

3. Existence of solutions for polygonal (non-smoothed) flux

We use the general theme of [9] and adapt the proofs to polygonal flux (i.e., not smooth or superlin-
ear). We define the Legendre transform without the assumption of superlinearity on the flux function
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H. Although this causes its Legendre transform L to be infinite for certain points, one can still perform
computations and prove results close to those of the previous section under these weaker assumptions,
as L is used in the context of minimization problems..

The first matter is to make sure that we have the key theorem that H and L are Legendre transforms
of one another. We do not need to use any of the theorems that rely on superlinearity. We only assume
that L is Lipschitz continuous, which follows from the definition of H. We also assume that g (the
initial condition for the Hamilton-Jacobi equation) is Lipschitz on specific finite intervals.

Throughout this section, we make the assumption that H (q) is polygonal convex with the line
segments having slopes m1 at the left and mN+1 at the right, with break points c1 < c2 < ... < cN ,
with c1 < 0 < cN . The Legendre transform, L (q), defined below is then also polygonal and convex on
[m1,mN+1] and infinite elsewhere. We will assume m1 < 0 < mN+1. We illustrate this flux function and
some of the properties of the Legendre transform in Figure 2.

Definition 3.1. We define the usual Legendre transform, denoted by L (p), as follows:

L (p) := sup
q∈R
{pq − H (q)}

A computation shows that this is a convex polygonal shape such that L (p) < ∞ if and only if
p ∈ [m1,mN + 1] . It has break points at m1 < m2 < ... < mN+1 and slopes c1, c2, .., cN . The last
break point of L is at mN+1 where the slope and L (mN+1) become infinite. Note that L is Lipschitz on
[m1,mN+1] .

Lemma 3.2. (Duality) Let L (p) be as defined above (with L (p) < ∞ iff p ∈ [m1,mN+1] ). Then
the Legendre transform L (p) of H (p) and the flux function H (q) itself satisfy the following duality
condition:

L∗ (q) := sup
p∈R
{pq − L (q)} = H (q) .

In other words, if we define L (p) as polygonal, convex function between p ∈ [m1,mN+1] as in
Figure 2, with L (p) = ∞ for p < [m1,mN+1] then the operation supp∈R {pq − L (q)} yields the function
H defined above. One can then prove a set of lemmas that are the analogs of those in Section 3.4 of
[9]. The proofs are adapted in order to handle potentially infinite values.

Lemma 3.3. Suppose L is defined as above and g is Lipschitz continuous on bounded sets. Then u
defined by the Hopf-Lax formula is Lipschitz continuous in x, independently of t. Moreover,

|u (x + z, t) − u (x, t)| ≤ Lip (g) |z| .

Proof. Fix t > 0, x, x̂ ∈ R . Choose y ∈ R (depending on x, t) such that

u (x, t) = min
z

{
tL

( x − z
t

)
+ g (z)

}
= tL

( x − y
t

)
+ g (y) . (3.1)

The minimum is attained since both L and g are continuous. Note that while there may be values of
(x − z) /t such that L ((x − z) /t) = ∞, these are irrelevant, as there are some finite values, and x−y

t will
be one of those. Now use (3.1) to write

u (x̂, t) − u (x, t) = inf
z̃

{
tL

(
x̂ − z̃

t

)
+ g (z̃)

}
− tL

( x − y
t

)
− g (y) . (3.2)
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Figure 2. (a) Illustration of the piecewise linear flux function H (q); (b) The Legendre trans-
form L (p) of the function H (q); (c) The Legendre transform evaluated at a point as used in
the Hopf-Lax minimization problem. Note that the value of the Legendre transform is infinite
in the shaded regions; however, this pathology is mitigated since one generally is interested
in a minimization problem, which limits the domain of this operation to a certain interval.
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We define z := x̂ − x + y such that
x − y

t
=

x̂ − z
t

(3.3)

and substitute this z in place of z̃ in (3.2) which can only increase the RHS. This yields the inequality

u (x̂, t) − u (x, t) ≤ tL
(

x̂ − z
t

)
+ g (z) − tL

( x − y
t

)
− g (y)

= tL
( x − y

t

)
+ g (x̂ − x + y) − tL

( x − y
t

)
− g (y)

= g (x̂ − x + y) − g (y) . (3.4)

Using the assumption that g is Lipschitz on bounded sets, one has

u (x̂, t) − u (x, t) ≤ Lip (g) · |x̂ − x| . (3.5)

Note that in obtaining this inequality, x and x̂ were arbitrary (without any assumption on order).
Hence, we can interchange them. I.e., we start by defining y such that, instead of (3.1), it satisfies

u (x̂, t) = tL
(

x̂ − y
t

)
+ g (y) . (3.6)

Thus, we obtain the same inequality as (3.5) with the x and x̂ interchanged, yielding

|u (x̂, t) − u (x, t)| ≤ Lip (g) · |x̂ − x| . (3.7)

�

Lemma 3.4. Suppose L is defined as above and g is Lipschitz continuous on bounded sets. For each
x ∈ R and 0 ≤ s < t we have

u (x, t) = min
y∈R

{
(t − s) L

( x − y
t − s

)
+ u (y, s)

}
.

Proof. Fix y ∈ R, 0 < s < t. Since u and L are continuous, the minimum is attained on the interval
[m1,mN+1] where L is finite. Thus we can find z ∈ R such that

u (y, s) = sL
(y − z

s

)
+ g (z) . (3.8)

Note that since z is the minimizer of L ((y − z) /s), we know that L ((y − z) /s) is finite.
By convexity of L we can write

x − z
t

=

(
1 −

s
t

) ( x − y
t − s

)
+

s
t

(y − z
s

)
L
( x − z

t

)
≤

(
1 −

s
t

)
L
( x − y

t − s

)
+

s
t
L
(y − z

s

)
. (3.9)

Next, we have from our basic assumption that u (x, t) is defined by the Hopf-Lax formula, the identity

u (x, t) = min
ẑ

{
tL

(
x − ẑ

t

)
+ g (ẑ)

}
(3.10)
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so substituting the z defined above in (3.8) yields the inequality

u (x, t) ≤ tL
( x − z

t

)
+ g (z) (3.11)

and now using (3.9) yields

u (x, t) ≤ (t − s) L
( x − y

t − s

)
+ sL

(y − z
s

)
+ g (z) . (3.12)

Now note that the last two terms, by (3.8) are u (y, s) . This yields

u (x, t) ≤ (t − s) L
( x − y

t − s

)
+ u (y, s) . (3.13)

Note that y has been arbitrary. Now we take the minimum over all y ∈ R. We note that there are
values of y for which the right hand side of (3.13) is infinite, but given 0 < s < t and x ∈ R, there will
be some y ∈ R such that (x − y) / (t − s) falls in the finite range of L. Thus, in taking the minimum, the
values for which it is infinite are irrelevant, and we have

u (x, t) ≤ min
y∈R

{
(t − s) L

( x − y
t − s

)
+ u (y, s)

}
. (3.14)

Next, we know again that there exists w ∈ R (depending on x and t that we regard as fixed) such
that

u (x, t) = tL
( x − w

t

)
+ g (w) . (3.15)

We choose y := s
t x +

(
1 − s

t

)
w, which implies

x − y
t − s

=
x − w

t
=

y − w
s

. (3.16)

We know that w is the minimizer (and of course, g is finite in the domain [m1,mN]) so that
L ((x − w) /t) is finite. Thus, by the identity (3.16) above, so are L ((x − w) /t) and L ((y − w) /s) .
Thus, using the basic definition of u (y, s) in the equality, one has

(t − s) L
( x − y

t − s

)
+ u (y, s) = (t − s) L

( x − y
t − s

)
+ min

ẑ

{
sL

(
y − ẑ

t

)
+ g (ẑ)

}
≤ (t − s) L

( x − y
t − s

)
+

{
sL

(y − w
t

)
+ g (w)

}
(3.17)

where the inequality is obtained simply by substituting a particular value for ẑ, namely the w that we
defined above in (3.15).

We can use (3.16) in order to re-write the arguments of L in equivalent forms. By the equality and
the fact that L ((x − w) /t) is finite, so are L ((x − y) / (t − s)) and L ((y − w) /s) . Hence, replacing the
two expressions involving L on the RHS of (3.9) yields

(t − s) L
( x − y

t − s

)
+ u (y, s) ≤ (t − s) L

( x − w
t

)
+

{
sL

( x − w
t

)
+ g (w)

}
= tL

( x − w
t

)
+ g (w) = u (x, t) (3.18)
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where the last identity follows from the expression (3.15) that defines w. Thus (3.18) gives us an
identity for a particular y that we defined, namely

(t − s) L
( x − y

t − s

)
+ u (y, s) ≤ u (x, t) . (3.19)

If we replace y by the minimum over all ŷ we obtain the inequality

min
ŷ∈R

{
(t − s) L

( x − y
t − s

)
+ u (y, s)

}
≤ u (x, t) . (3.20)

Combining (3.14) and (3.20) proves Lemma 3.4. �

Lemma 3.5. If L and g are Lipschitz continuous, one has u (x, 0) = g (x) .

Note that this is the analog of Lemma 2 - proof in part 2 of Evans. Part 2 is essentially the same;
one needs only pay attention to finiteness of the terms.

Proof. Since 0 ∈ [m1,mN+1], the interval on which L is finite, one has

u (x, t) = min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
≤ tL (0) + g (x) , (3.21)

upon choosing y = x. Also,

u (x, t) = min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
≥ min

y∈R

{
tL

( x − y
t

)
+ g (x) − Lip (g) · |x − y|

}
= g (x) + min

y∈R

{
tL

( x − y
t

)
− Lip (g) · |x − y|

}
= g (x) − t max

y∈R

{
Lip (g) ·

|x − y|
t
− L

( x − y
t

)}
= g (x) − t max

z∈R
{|z| Lip (g) − L (z)} . (3.22)

Note that maxz∈R {|z| Lip (g) − L (z)} is a finite number since −L (z) is bounded above and is −∞ outside
of the range [m1,mN + 1]. Thus we define

C := max
{
|L (0)| ,max

z∈R
{|z| Lip (g) − L (z)}

}
(3.23)

and combine (3.21) and (3.22) to write

|u (x, t) − g (x)| ≤ Ct for all x ∈ R and t > 0. (3.24)

�

Lemma 3.6. (a) If L and g are Lipschitz, one has for any x ∈ R and 0 < t̂ < t the inequalities∣∣∣u (x, t) − u
(
x, t̂

)∣∣∣ ≤ C
∣∣∣t − t̂

∣∣∣ (3.25)
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C := max
{
|L (0)| , max

z∈R
{|z| Lip (g) − L (z)}

}
. (3.26)

(b) Under the conditions of Lemmas 3.3 and 3.6 one has for some C∣∣∣u (
x̂, t̂

)
− u (x, t)

∣∣∣ ≤ C
∥∥∥(x̂, t̂) − (x, t)

∥∥∥
2

(3.27)

where ‖·‖2 is the usual Euclidean norm.
(c) If L and g are Lipschitz continuous then u : R2 → R is differentiable on R× (0,∞) a.e.

Proof. (a) Let x ∈ R and 0 < t̂ < t. By Lemma 3.3 one has

|u (x, t) − u (x̂, t)| ≤ Lip (g) |x − x̂| . (3.28)

From Lemma 3.4, we have for 0 ≤ s = t̂ < t, the inequality

u (x, t) = min
y

{
(t − s) L

( x − y
t − s

)
+ u (y, s)

}
≥ min

y

{
(t − s) L

( x − y
t − s

)
+ u (x, s) − Lip (u) · |x − y|

}
= u (x, s) + min

y

{
(t − s) L

( x − y
t − s

)
− Lip (g) · |x − y|

}
= u (x, s) + (t − s) min

y

{
L
( x − y

t − s

)
− Lip (g) ·

|x − y|
t − s

}
= u (x, s) + (t − s) min

z
{L (z) − Lip (g) · |z|} (3.29)

where we have just defined z := |x − y| / (t − s) . We can also write this as

u (x, t) ≥ u (x, s) − (t − s) max
z
{Lip (g) · |z| − L (z)} . (3.30)

Using C1 := maxz {Lip (g) · |z| − L (z)} which, as discussed above, is clearly finite, one has then

u (x, t) − u (x, s) ≥ −C1 (t − s) . (3.31)

The other direction in the inequality follows from Lemma 3.4 directly. Substituting x in place of the y
in the minimizer, we have

u (x, t) = min
y

{
(t − s) L

( x − y
t − s

)
+ u (y, s)

}
≤ (t − s) L

( x − x
t − s

)
+ u (x, s)

= (t − s) L (0) + u (x, s) (3.32)

yielding the inequality
u (x, t) − u (x, s) ≤ (t − s) L (0) . (3.33)

Combining (3.32) and (3.33) yields the Lipschitz inequality in t, namely,

|u (x, t) − u (x, s)| ≤ C |t − s| . (3.34)

(b) This follows from the triangle inequality, Lemma 3.3 and part (a).
(c) This follows from Rademacher’s theorem and part (b). �
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Analogous to theorems in Section 3.3, [9], we have the following three theorems. The key idea here
is that our versions allow one to deal with the introduction of potentially infinite values of the Legendre
transform of the flux function.

Theorem 3.7. Let x ∈ R and t > 0. Let u be defined by the Hopf-Lax formula and differentiable at
(x, t) ∈ R× (0,∞) . Then

ut (x, t) + H (ux (x, t)) = 0.

Proof. Fix q ∈ [m1,mN+1] and h > 0. By Lemma 3.4, we have

u (x + hq, t + h) = min
y∈R

{
hL

(
x + hq − y

h

)
+ u (y, t)

}
. (3.35)

Once again since there are some finite values over which we are taking the minimum, the expression
is well-defined. Upon setting y as x, we can only obtain a larger quantity on the RHS, yielding

u (x + hq, t + h) ≤ hL (q) + u (x, t) . (3.36)

Hence, for q ∈ [m1,mN+1], we have the inequality

u (x + hq, t + h) − u (x, t)
h

≤ L (q) . (3.37)

Since we are assuming that u is differentiable at (x, t) we have the existence of the limit of the LHS
of (3.37) thereby yielding

∂tu (x, t) + qDu (x, t) ≤ L (q) , i.e.,

∂tu (x, t) + qDu (x, t) − L (q) ≤ 0. (3.38)

We now use the equality, supq∈R {qw − L (q)} =: H (w), writing

H (Du (x, t)) = sup
q∈R
{qDu − L (q)} . (3.39)

Note that the values of q for which L (q) = ∞ are clearly not candidates for the supp since −L (q) =

−∞. Hence, we can take the sup over all q that satisfy (3.38), (which is equivalent to taking the sup
over q ∈ [m1,mN+1]) to obtain

∂tu (x, t) + sup
q∈R
{∂tu (x, t) + qDu (x, t) − L (q)} ≤ 0, or

∂tu (x, t) + H (Du (x, t)) ≤ 0. (3.40)

Now use the definition
u (x, t) = min

y∈R

{
tL

( x − y
t

)
+ g (y)

}
. (3.41)

Since L and g are continuous, the minimizer exists and for some z ∈ R depending on (x, t) we have

u (x, t) = tL
( x − z

t

)
+ g (z) . (3.42)
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Define s := t − h, y := s
t x +

(
1 − s

t

)
z so x−z

t =
y−z

s . Then we can write, using the definition of u (y, s),

u (x, t) − u (y, s) = tL
( x − z

t

)
+ g (z) −min

ŷ

{
sL

(
y − ŷ

s

)
+ g (ŷ)

}
. (3.43)

By substituting z (defined by (3.40)) in place of ŷ in this expression, we subtract out at least as much
and obtain the inequality

u (x, t) − u (y, s) ≥ tL
( x − z

t

)
+ g (z) −

{
sL

(y − z
s

)
+ g (z)

}
= (t − s) L

( x − z
t

)
(3.44)

by virtue of the equality x−z
t =

y−z
s . Note that by definition, L

(
x−z

t

)
= L

(
y−z

s

)
< ∞, so there is no

divergence problem there. Now replace y with its definition above, and use t − s = h to write (3.44) as

u (x, t) − u
(
x + h

t (z − x) , t − h
)

h
≥ L

( x − z
t

)
. (3.45)

Since we are assuming that the derivative exists at (x, t) we can take the limit as h→ 0+ and obtain

x − z
t

Du (x, t) + ∂tu (x, t) ≥ L
( x − z

t

)
(3.46)

We use the definition of H again, and write

ut (x, t) + H (Du (x, t)) = ut (x, t) + max
q∈R
{qDu − L (q)}

≥ ut (x, t) +
x − z

t
Du (x, t) − L

( x − z
t

)
(3.47)

where we have chosen one value of q, namely (x − z) /t to obtain the inequality. Note, again, that
from the original definition in (3.42), L

(
x−z

t

)
must be finite. Hence, the RHS of (3.47) is well-defined.

Combining (3.46) and (3.47) yields the inequality

∂tu (x, t) + H (Du (x, t)) ≥ 0. (3.48)

Combining (3.48) with (3.42), we obtain the result that u satisfies the Hamilton-Jacobi equation at
(x, t). �

Theorem 3.8. The function u (x, t) defined by the Lax-Oleinik formula [9] is Lipschitz continuous,
differentiable a.e. in R× (0,∞) and solves the initial value problem

ut + H (ux) = 0 a.e. in R× (0,∞)

u (x, 0) = g (x) f or all x ∈ R .

Definition 3.9. We say that w ∈ L∞ (R× (0,∞)) is an integral solution of

wt + H (w)x = 0 in R× (0,∞)
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w (x, 0) = h (x) f or all x ∈ R

if for all test functions φ : R×[0,∞) → R (i.e., φ that are smooth and have compact support) one has
the identity ∫ ∞

0

∫ ∞

−∞

wφtdxdt +

∫ ∞

−∞

hxφdx|t=0 +

∫ ∞

0

∫ ∞

−∞

H (w) φxdxdt = 0.

Theorem 3.10. Under the assumptions that g is Lipschitz and that H is polygonal and convex (as
described above), the function w (x, t) := ∂xu (x, t) where u is the Hopf-Lax solution (2.4) is an integral
solution of the initial value problem for the conservation law above.

Remark 3.11. We follow the notation of [9] in calling the solution described in 3.10 an integral
solution. This kind of solution is often also referred to as a solution in the distribution sense.

This is the analog of Theorem 2, Section 3.4 of [9], but the statement of the theorem there is
somewhat different.

Proof. From Theorem 3.8 above we know that u is Lipschitz continuous, differentiable a.e. in
R× (0,∞) and solves the Hamilton-Jacobi initial value problem subject to initial condition h (x) where
g (x) =

∫ x

0
h (z) dz. We multiply ut +H (ux) = 0 with a test function φx and integrate over

∫ ∞
0

∫ ∞
−∞
...dxdt.

Upon integrating by parts one obtains the relation above in the definition of integral solution. The in-
tegration by parts operations are justified by the fact that u (x, t) is Lipschitz in both x and t. Also,

w (x, 0) = ∂xu (x, 0) = g′ (x) .

�

Notably, we have used the largest of the minimizers rather than the least to improve on the result of
[9] by requiring only convexity instead of uniform convexity of the flux function.

4. Proof that solution is BV and greatest minimizer is non-decreasing in x

Theorem 4.1. Suppose H is polygonal (with finitely many break points), convex, H (0) = 0, and g is
differentiable. Then for any (x, t) there exists y∗ (x, t) that is defined as the greatest minimizer, i.e.,

min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
=

{
tL

(
x − y∗ (x, t)

t

)
+ g (y∗ (x, t))

}
(4.1)

and any other number ŷ that minimizes the left hand side satisfies ŷ ≤ y∗.

Remark 4.2. By using the largest minimizer instead of the least as in the classical theorems, we
obtain a particular inequality below that is a consequence of convexity rather than from the stricter
assumption of uniform convexity.

Remark 4.3. (Minimizers) We first illustrate the key idea. The minimizers must either be on the
vertices of L or on the locally differentiable parts of L. We suppress t and suppose x = 0. For
fixed x, t in order to have a non-isolated set of minimizers of f (y; x, t) + g (y), they need to be on the
differentiable part of f (i.e., non-vertex). This latter case means that on some interval, e.g., [a, b] one
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has f (y; 0, t) + g (y) = 0 (note that we can always shift up or down, so we can adjust the constant to
0). On this stretch of y we can write

f (y; 0) = my and − g (y) = my

Thus all y ∈ [a, b] are minimizers. If we increase x slightly we obtain

f (y; x) = m (y − x) and − g (y) = my

so that
f (y; x) + g (y) = m (y − x) − my = −mx.

This means that the minimum is less (if x > 0) but again, all y are minimizers. In computing the
derivative

∂x min
y
{ f (y; x) + g (y)}

we see that we can use any y and we will obtain the same result. I.e., if ŷ is any minimizer, then we
have (as one can see graphically, or from computation), where g is differentiable,

∂x min
y
{ f (y; x) + g (y)} = −∂y f (ŷ; x) = g′ (ŷ) .

Hence, we can take for example the largest of these ŷ, or sup ŷ since the derivatives are constant (and,
f and g are C1 so we can use continuity).

Proof. Note first that by definition of the Legendre transform, L (q), one has that L (q) < ∞ if and only
if q ∈ [m1,mN+1] . Also, the interval is closed, since one has for some c ∈ R,

L (mN+1) = sup
q
{mN+1q − H (q)} = c (4.2)

for some constant c, and similarly at the m1 endpoint. Hence, if we define, for fixed x and t,

v (y) := tL
( x − y

t

)
+ g (y) (4.3)

and note that v is continuous, since, by assumption g and L are also continuous.
A continuous function on a closed, bounded interval attains at least one minimizer, which we will

call y1 ∈ [x − mN+1t, x − m1t] and denote v (y1) =: b. Note that v is infinite outside of this interval. Now
for any index set A, let {yα}α∈A be the set of points such that yα ∈ [x − mN+1t, x − m1t] and v (yα) = v (y1) .
Let y∗ := sup {yα : α ∈ A}which exists since it is a bounded set of reals. Thus there is a sequence

{
y j

}∞
j=1

such that lim j→∞ y j = y∗. By continuity of v one has then that

v (y∗) = lim
j→∞

v
(
y j

)
= lim

j→∞
b = b. (4.4)

Thus, y∗ is a minimizer, there is no minimizer that is greater than y∗, and it is unique by definition of
supremum. �
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We write y∗ (x, t) as the largest minimizer for a given x and t. We define y∗1 := y∗ (x1, t) and y∗2 =

y∗ (x2, t) . We have the following, analogous to [9] but using convexity that may not be strict.

Lemma 4.4. If x1 < x2, then

tL
(

x2 − y∗1
t

)
+ g

(
y∗1

)
≤ tL

( x2 − y
t

)
+ g (y) i f y < y∗1.

Proof. For any λ ∈ [0, 1] and r, s ∈ R we have from convexity

L (λr + (1 − λ) s) ≤ λL (r) + (1 − λ) L (s) . (4.5)

Now let x1 < x2 and for y ∈ y∗1 define λ by

λ :=
y∗1 − y

x2 − x1 + y∗1 − y
. (4.6)

By assumption, x1 < x2 and y < y∗1 so that λ ∈ (0, 1). Let r :=
(
x1 − y∗1

)
/t and s := (x2 − y) /t. A

computation shows
λr + (1 − λ) s = (x2 − y) /t . (4.7)

This yields

L
(

x2 − y∗1
t

)
≤ λL

(
x1 − y∗1

t

)
+ (1 − λ) L

( x2 − y
t

)
. (4.8)

Next, we interchange the roles of r and s, i.e, r̂ := (x2 − y) /t and ŝ :=
(
x1 − y∗1

)
/t and note that

λr̂ + (1 − λ) ŝ = (x1 − y) /t. (4.9)

Thus, convexity implies

L
( x1 − y

t

)
≤ (1 − λ) L

(
x1 − y∗1

t

)
+ λL

( x2 − y
t

)
. (4.10)

Adding (4.8) and (4.10) yields,

L
(

x2 − y∗1
t

)
+ L

( x1 − y
t

)
≤ L

(
x1 − y∗1

t

)
+ L

( x2 − y
t

)
. (4.11)

By definition of y∗1 := y∗ (x1, t) as a minimizer for x1 (with t still fixed) we have

tL
(

x1 − y∗1
t

)
+ g

(
y∗1

)
≤ tL

( x1 − y
t

)
+ g (y) . (4.12)

Upon multiplying (4.11) by t and adding to (4.12) we obtain, as two of the L terms cancel,

tL
(

x2 − y∗1
t

)
+ g

(
y∗1

)
≤ tL

( x2 − y
t

)
+ g (y) , (4.13)

provided, still, that y < y∗1 . Hence, if y∗2 is the largest minimizer for x2, it must be greater than or equal
to y∗1. I.e., any value y < y∗1 satisfies (4.13) so it could not be a larger minimizer than y∗1. �
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An immediate consequence of this result is the following:

Theorem 4.5. For each fixed, t, as a function of x, y∗ (x, t) is non-decreasing and is equal a.e. in x to
a differentiable function.

Proof. From previous calculations we know that L is polygonal convex and is finite only in the closed
interval [m1,mN+1] . Also, we have L ≥ 0. Now we apply Lemma 4.4 as follows. By definition of y∗2
we have

min
y∈R

{
tL

( x2 − y
t

)
+ g (y)

}
=

{
tL

(
x2 − y∗2 (x, t)

t

)
+ g

(
y∗2 (x, t)

)}
. (4.14)

By Proposition 3.2, we have that for any y < y∗1, the expression
{
tL

(
x2−y

t

)
+ g (y)

}
is already equal to or

greater than tL
( x2−y∗1

t

)
+ g

(
y∗1

)
, so there cannot be a minimizer that is less than y∗1 . Hence, we conclude

y∗2 ≥ y∗1 .
This means that with y∗ (x, t) defined as the largest value that minimizes tL

(
x2−y

t

)
+ g (y), i.e.

y∗ (x, t) = arg+ min
{
tL

( x2 − y
t

)
+ g (y)

}
we have that the function y∗ is a non-decreasing function of x for any fixed t > 0. This implies that it
is continuous except for countably many values of x. Also, for each t > 0, one has that y∗ (x, t) is equal
a.e. to a function ỹ (x) such that ỹ is differentiable in x and one has ỹ (x) =

∫ x

0
ỹ′ (s) ds + z (x) where z

is non-decreasing and z′ = 0 except on a set of measure zero ([23], p. 157). �

Lemma 4.6. Let g be differentiable,

v (x, t) := tL
( x − y

t

)
+ g (y) , (4.15)

w (x, t) := ∂xv (x, t) = ∂x min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
. (4.16)

Suppose that ŷ (x, t) is the unique minimizer of v (x, t) and that L
(

x−y
t

)
is differentiable at ŷ. Then

w (x, t) = g′ (ŷ (x, t)) = L′
(

x − ŷ
t

)
. (4.17)

Remark 4.7. When we take the derivative of the minimum, note that the uniqueness of the minimizer
is the key issue. If there is more than one minimizer, as we vary y in order to take the derivative, one of
the minimizers may become irrelevant if the other minimum moves lower. This issue will be taken up
in the subsequent theorem.

Proof. Suppose that x and t are fixed and that ŷ (x, t) is the unique minimizer of v (x, t) . Since L, g are
differentiable, and ŷ (x, t) is also differentiable (since ŷ is the only minimizer we can apply the previous
result on the greatest minimizer), we have the calculations:

0 = ∂y

{
tL

( x − y
t

)
+ g (y)

}
, (4.18)

i.e.

L′
(

x − ŷ (x, t)
t

)
= g′ (ŷ (x, t)) . (4.19)
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Note that the minimum of v will not occur at the minimum of g unless L has slope zero. We have then

w (x, t) := ∂x min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
= ∂x

{
tL

(
x − ŷ (x, t)

t

)
+ g (ŷ (x, t))

}
= tL′

(
x − ŷ (x, t)

t

)
·

(
−∂xŷ (x, t)

t
+ 1

)
+ g′ (ŷ(x, t)) ∂xŷ (x, t) . (4.20)

The previous identity implies cancellation of the first and third terms, yielding

w (x, t) = g′ (ŷ (x, t)) . (4.21)

�

Lemma 4.8. Let x, t be fixed, and assume the same conditions on L and g. If ŷ (x, t) is the unique
minimizer of v (x, t) and occurs at a vertex of L

(
x−y

t

)
, then

w (x, t) = g′ (ŷ (x, t)) .

Proof. Note that L (z) < ∞ if and only if z ∈ [m1,mN+1]. Since the vertical coordinate of the vertex of
L remains constant as one increases x, the change in the minimum is equal to g′ (y) at that point. I.e.,
one has

w (x, t) = ∂x min
y∈R

{
tL

( x − y
t

)
+ g (y)

}
= ∂x

{
tL

(
x − ŷ (x, t)

t

)
+ g (ŷ (x, t))

}
= g′ (ŷ (x, t)) . (4.22)

At the endpoints, y = x − mN+1t and y = x − m1t the situation is the same, since as one varies x, the
value of L on one side has an infinite slope (see Figure 2). Note that this argument does not depend on
ŷ being differentiable. �

Theorem 4.9. Let g be differentiable and L convex polygonal as above. For fixed t > 0 and a.e. x one
has

w (x, t) = g′ (y∗ (x, t)) . (4.23)

Proof. Since g is differentiable (for all x) any minimum of
{
tL

(
x−y

t

)
+ g (y)

}
must occur on a point,

ŷ (x, t) where L has a vertex (including the endpoints, see Figure 3) or at a point where v (y) = 0. There
are two possible types of minimizers, Type (A) occurring at the vertices of L, and Type (B) that occur
at the differentiable (i.e., flat part of L). These two types are illustrated in Figure 3. From the lemmas
above, we know that when there is a single minimizer, ŷ, the conclusion follows. Thus we consider
the possibility of more than one minimizer, ŷ j.

For a given x, t it is clear that there can only be finitely many minimizers of Type (A) , i.e., the
number of vertices. Although there may be infinitely many minimizers, ŷ j of the Type (B) we know
that g′ (ŷ (x, t)) = L′

(
x−ŷ

t

)
so that there are only finitely many values of g′ (ŷ (x, t)) regardless of the
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Figure 3. The two types of minima that can occur for a piecewise flux function and general
initial data: (a) at a vertex of the Legendre transform L (q) of the flux function H (q); (b) at a
point where the Legendre transform L (q) of the flux function H (q) is locally differentiable.

type of minimizer. For any x, t we let y∗ (x, t) be the largest of the minimizers, which is certainly well-
defined since there are only finitely many minimizers. From the earlier theorem, we know that y∗ (x, t)
is increasing in x (for fixed t > 0) and differentiable for a.e. x. In fact, if we focus on any minimizer,
ŷ j (x, t) we see that ∂xŷ j (x, t) exists for either type of minimum. If it is Type (A) then as we vary x, the
vertex moves and the minimum shifts along the curve of g. Since g is differentiable, the location of the
minimum varies smoothly in x, so ∂xŷ j (x, t) exists. If it is Type (B) then both L and g are differentiable,
so it is certainly true that ∂xŷ j (x, t) exists.

For fixed (x, t) and each of the finitely many values of g′ (ŷ (x, t)) we can determine the minimum of
g′ (ŷ (x, t)) =: m (i.e., m depending on (x, t) ). First, they may correspond to vertices. There are at most
M of those, since there can only be one minimizer for each vertex. Then we have a class of minimizers
for each segment of L

(
x−y

t

)
, i.e. M + 1 of those. We can take the largest minimizer in each class, since

g′ will be the same in each class. When we differentiate with respect to x, we compare each of the J
(which is an integer between 1 and 2M + 1 ) minimizers. It is the least of these that will be relevant,
since we are taking

∂x min
y∈R

{
tL

(
x − ŷ j

t

)
+ g

(
ŷ j

)}
.

In other words, as we vary x,we want to know how this minimum varies. Thus a minimizer is irrelevant
if tL

( x−ŷ j

t

)
+ g

(
ŷ j

)
does not move down as much as another of the ŷ j as x increases. If l , k and

g′ (ŷk (x, t)) > g′ (ŷl (x, t)) then ŷk (x, t) is irrelevant for points beyond x. On the other hand, if we have
g′ (ŷk (x, t)) = g′ (ŷl (x, t)) then we obtain the same change in the minimum, and we can just take the
larger of the two.

If we have minimizers that are of Type (B) then it is the furthest right segment that corresponds to
the least g′ since we have the identity (see Lemma 4.6 above) L′

(
x−ŷ(x,t)

t

)
= g′ (ŷ (x, t)).

In other words, either the g′ values are identical on some interval, in which case we have w (x, t) =

g′
(
ŷ j (x, t)

)
= g′ (ŷl (x, t)) for example, and we can take either minimizer and obtain the same value for
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w (x, t) ,or one value is greater and is thus irrelevant.
Alternatively, if the derivatives are different, then the smaller g′ is the only one that is relevant. In

either case we can take the largest value of ŷ and we have

w (x, t) = g′ (y∗ (x, t)) .

One remaining question is whether we have a largest minimizer y∗ (x, t) . The segments (i.e., lines of
L) are on closed and bounded intervals, the supremum of points ŷ (x, t) exists, and there is a sequence
of points, ỹm that converges to this supremum, ỹ. Since L and g are continuous

lim
m→∞

{
tL

( x − ỹm

t

)
+ g (ỹm)

}
= tL

( x − ỹ
t

)
+ g (ỹ) .

Thus, we must have that ỹ = y∗ and is the greatest of the minimizers. �

Theorem 4.10. Suppose that g′ is BV. Then w (x, t) is BV in x for fixed t.

Proof. Since g′ is BV it can be written as the difference of two increasing functions, h1 and h2.

Then hi (y∗ (x, t)) are increasing (since they are increasing functions of increasing functions) and hence
g′ (y∗ (x, t)) is BV. �

5. Approximation solutions of the sharp vertex problem with the smoothed version

It is important to relate the solutions of the conservation law with the polygonal flux H to the
solutions wεcorresponding to the smoothed and superlinearized flux function Hε. In particular, Hε

is also uniformly convex, and the hypotheses of the classical theorems are satisfied. Throughout this
section we will assume g ∈ C1.

There are two basic parts to this section. First, we show that H and Hε have Legendre transforms
that are pointwise separated by Cε, i.e., |L (p) − Lε (p)| ≤ Cε also, and hence a similar identity for
f (y; x, t) = tL

(
x−y

t

)
. We will also show that if there is a unique pair of minimizers, yε (x, t) and y (x, t)

then they also separated by at most C̃ε.
Second, we analyze |wε (x, t) − w (x, t)| for a single minimizer of tL

(
x−y

t

)
+ g (y) and demonstrate

that the result can be extended for a minimum that is attained by multiple, even uncountably many,
minimizers {yα}.

5.1. Construction of smoothed and uniformly convex H

Given a function that is locally integrable, one can mollify it using a standard convolution ([9], p.
741). Alternatively, we will use a mollification as in [11] in which the difference between a piecewise
linear function and its mollification vanishes outside a small neighborhood of each vertex.

Lemma 5.1 (Smoothing). Suppose that G (y) is piecewise linear and satisfies

G′ (y) =

{
α < 0 i f y < ym

γ > 0 i f y > ym,
(5.1)

g (y) = βy for some β ∈ (α, γ) and Gε (y) is any function that satisfies

sup
y∈A
|Gε (y) −G (y)| ≤ C1ε (5.2)
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for any given compact set A. Let yεm := arg miny∈A {Gε (y) − g (y)} . Then one has ym :=
arg min {G (y) − g (y)} and ∣∣∣yεm − ym

∣∣∣ ≤ C2ε (5.3)

where C2 depends on A, α, β, γ.

Proof. The first assertion that ym is the argmin follows from immediately from the properties assumed
for g and G′. To prove the second assertion, i.e., the bound

∣∣∣yεm − ym

∣∣∣ ≤ Cε, one defines Φ (y) :=
G (y) − g (y) and Φε (y) := Gε (y) − g (y) . The graph of Φ := G − g is a v-shape with Φ (0) = 0. We can
draw parallel lines Cε above and below Φ and observe that εΦε lies within these lines, as illustrated in
Figure 4.

Figure 4. Standard mollification of the flux function Φ. The mollifiation Φε is shown in solid
light blue, and remains within the bounds Φ±ε, shown in dashed red and dashed blue. Other
mollifications are also possible, such as in [11] where the values of Φε and Φ coincide exactly
outside an interval of measure ε.

Note that a necessary condition for yεm to be the argmin of Φε is that

Φε

(
yεm

)
≤ Φε (ym) (5.4)

since Φε

(
yεm

)
must be below all Φε (y). Both of the quantities Φε

(
yεm

)
and Φε (ym) are within the bounds

in the graph above so that we can write this inequality in the form

Φ
(
yεm

)
−Cε ≤ Φε

(
yεm

)
≤ Φε (ym) ≤ Φ (ym) + Cε (5.5)
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Thus Φ
(
yεm

)
− Φ (ym) ≤ 2Cε, i.e., by definition of Φ one has

(α − β)
(
yεm − ym

)
≤ 2Cε. (5.6)

So for yεm > ym we have the restriction

yεm − ym ≤
2C
α − β

ε. (5.7)

In a similar way we obtain a restriction in the other direction and prove the lemma. �

As discussed above, given any H (q) that is piecewise linear with finitely many break points, one
can construct an approximationHε (q) that has the following properties:

(a) |Hε (q) − H (q)| ≤ C1ε for all q ∈ R, and (b)Hε (q) − H (q) = 0 if |q − ci| > C2ε where ci is any
break point of H.

Subsequently, all references to smoothing will mean that conditions (a) and (b) are satisfied. Note
that Hε (q) is convex (but not necessarily uniformly convex). Since it is smooth, we haveH ′′ε (q) ≥ 0.

In order to have uniform convexity we can add toHε (·) a term δq2 where 0 < δ ≤ ε and define

Hε,δ (q) := Hε (q) + δq2. (5.8)

ThenH ′′ε,δ (q) > δ > 0 so thatHε,δ is uniformly convex and has two continuous derivatives.

Lemma 5.2 (Approximate Legendre Transform). Let

L (p) := sup
q∈R
{pq − H (q)} , Lε,δ (p) := sup

q∈R

{
pq −Hε,δ (q)

}
. (5.9)

and let A be the (compact) subset of R where L(p) is finite. For any p ∈ A one has∣∣∣Lε,δ (p) − L (p)
∣∣∣ ≤ Cε. (5.10)

Remark 5.3. Note that since H has finite max and min slopes, outside this range we have L (p) :=
supq∈R {pq − H (q)} = ∞ . For Lε,δ (p) we will have a very large, though not infinite value when p
exceeds this range, so p outside this range is also irrelevant in terms of minimizers. Thus, without loss
of generality we can restrict our attention to p in a compact set.

Proof. Note that arg maxq {pq − H (q)} = arg minq {H (q) − pq} and similarly for Hε,δ (q). We then use
the Lemma above by defining

Gε (q) := Hε,δ (q) − pq with δ := ε2 < 1.

We can then apply the previous Lemma, noting that
∣∣∣Hε,ε2 (q) − H (q)

∣∣∣ ≤ Cε implies

|Gε (q) −G (q)| ≤ Cε ,

to conclude that with qm := arg min G (q) and qεm := arg min Gε (q)∣∣∣qm − qεm
∣∣∣ ≤ Cε.

AIMS Mathematics Volume 3, Issue 1, 96–130



122

Since G and Gε are Lipschitz, one has∣∣∣Lε,ε2 (p) − L (p)
∣∣∣ =

∣∣∣∣∣∣sup
q∈R

{
pq −Hε,ε2 (q)

}
− sup

q∈R
{pq − H (q)}

∣∣∣∣∣∣
=

∣∣∣{pqεm −Hε,ε2
(
qεm

)}
− {pqm − H (qm)}

∣∣∣
≤ |p|

∣∣∣qεm − qm

∣∣∣ +
∣∣∣Hε,ε2

(
qεm

)
− H (qm)

∣∣∣
≤ |p|

∣∣∣qεm − qm

∣∣∣ +
∣∣∣Hε,ε2

(
qεm

)
− H

(
qεm

)∣∣∣
+

∣∣∣H (
qεm

)
− H (qm)

∣∣∣
≤ C̃ε

since we noted above that
∣∣∣Hε,ε2 (q) − H (q)

∣∣∣ ≤ Cε and H is Lipschitz. This proves the Lemma. �

5.2. Proving convergence of solutions wε → w

We define
f (y; x, t) = tL

( x − y
t

)
, fε,δ (y; x, t) = tLε,δ

( x − y
t

)
and consider any fixed t ∈ [0,T ] for some T ∈ R+ and x, y on bounded intervals. The bounds on L and
Lε,δ then imply ∣∣∣ f (y; x, t) − fε,δ (y; x, t)

∣∣∣ ≤ Cε.

Next, we claim that if there is a single minimizer for f (y; x, t) + g (y), denoted by y∗ (x, t) and y∗ε (x, t)
for fε (y; x, t) + g (y), then y∗ε (x, t) → y∗ (x, t) a.e. in x. This is proven in the same way as Lemma 5.2,
and analyzed in Section 4. Note that if the minimum is not within Cε of the vertex (i.e. not near a
minimum of g), then the conclusion will be immediate since the mollification does not extend more
than a distance Cε from the vertex.

Now, we want to compare the solution w (x, t) with wε (x, t) and assert that for any t > 0 and a.e. x
one has

lim
ε→0

wε (x, t) = w (x, t) .

If we assumed that there is a single minimizer, y∗ (x, t) then the result would be clear from the relations

w (x, t) = g′ (y∗ (x, t)) , wε (x, t) = g′
(
y∗ε (x, t)

)
,

and the fact that g′ is continuous in x and y∗ε (x, t)→ y∗ (x, t).
The subtlety is when we have more than one minimizer. Note from the earlier material on the

sharp problem, we only need to consider finitely many minimizers, since there are only finitely many
vertices, and only finitely many segments of L. The minimizers can be at the vertices, or they may
be on the segments. But if they are on the segments, the minimizers are in finitely many classes that
correspond to the same value of g′ (ŷ (x, t)) = L′

(
x−ŷ(x,t)

t

)
. Thus we can choose the larger of these two

minimizers, for example.
We consider the two Types (A) and (B) and suppose first that there are two minimizers of the same

type.
Type (A). Suppose that for some (x0, t) we have ŷ1 and ŷ2 that are both Type (A) minimizers, i.e.,

at different vertices of L. If g′ (ŷ1) < g′ (ŷ2) then at some ε, the mollified versions will also satisfy
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g′
(
ŷε1

)
< g′

(
ŷε2

)
. This means that for x , x0 only ŷ1 and ŷε1 will be relevant. Analogously, we have the

opposite inequality. If we have g′ (ŷ1) = g′ (ŷ2), then we may not have g′
(
ŷε1

)
= g′

(
ŷε2

)
. However, since

g′ is continuous, and we know that
ŷε1 → ŷ1 and ŷε2 → ŷ2

we have then
g′

(
ŷε1

)
→ g′ (ŷ1) and g′

(
ŷε2

)
→ g′ (ŷ2) .

Thus we have from our basic results w (x, t) = g′ (y∗ (x, t)) and wε (x, t) = g′
(
y∗ε (x, t)

)
, that

wε (x, t)→ w (x, t) .

In Figure 5(a), we illustrate the case where g′ (y1) = g′ (y2) .

Figure 5. (a) For multiple minimizers of Type (A), if g′ evaluated at different minimzers
has a different value, as soon as x is varied slightly the value of L

(
x−y

t

)
+ g (y) changes

proportionally to the slope ci, so all but one of the minimizers cease to be a minima as
they change by different amounts. Therefore this case occurs for a set of x having measure
zero. If g′ is equal at two or more minimizers (pictured), then the change of the value is
uniform to first order and we may consider the minimizer with largest argument without loss
of generality; (b) By a similar argument for minimizers of Type (B) we need only consider
those on the last segment, with slope −c1. For all minimizers y∗ of this form, g′ (y∗ (x, t)) will
be identical, so choose the greatest without loss of generality.

Type (B). In this case we are on the straight portion of L, and the minimum must occur (as discussed
in the earlier section) when ∂y

{
L
(

x0−y
t

)
+ g (y)

}
= 0. This means that any minimum ŷ must satisfy

L′
(

x0−ŷ
t

)
= g′ (ŷ). If there are two minima at different segments, the one corresponding to the lowest

value of g′ will be relevant. To see this, recall from Figure 2 that we start with break points c1 < ... <

cN+1 and c1 < 0, cN+1 > 0. These become the slopes for L and, when we define f (y; x, t) := tL
(

x−y
t

)
the slopes are −cN+1 < 0 on the left up to the last one, −c1 > 0 on the right. Any minimizer, ŷ, of

f (y; x, t) + g (y) = tL
( x − y

t

)
+ g (y)
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on the flat part of f must satisfy f ′ (ŷ) + g′ (ŷ) = 0. On the last segment, for example we have the
requirement

g′ (ŷ) = − (−c1) = c1 < 0.

For any of the previous segments we obtain g′ (y) = c j > c1 . Hence if there are minimizers on previous
segments, they become irrelevant as soon as we increase x.

The slope of the straight line, f , will be positive, i.e., −c1 and the minimum in the illustration above
will be just to the left of the minimum of g.

Hence, in the case of a minimum of Type (B) we see that it is only the minimizers on this rightmost
segment that are relevant (except on a set of measure zero). Although there may be infinitely many
minimizers on this segment, they all yield the same g′

(
ŷ j

)
value of ck (where k is the minimum index

for which the slope ck corresponds to a minimizer), so we can take the largest of them, y∗ and write
w (x, t) = g′ (y∗ (x, t)) = ck. Thus one has w (x, t) = ck. This is illustrated in Figure 5(b).

If we have a combination of minimizers of the two types, then the situation is similar. Except on
a set of measure zero in x, we need only consider those values for which g′ (·) is minimum, the other
values cease to become a minimum as x is varied. As discussed above, we only need to consider finitely
many of these minimizers.

Estimating |we − w| is simpler in the Type (B) case since we only have finitely many values for
g′. When we take the smoothed version, Hε yielding the smoothed Lε each of these points ŷ j (x, t) is
approximated by ŷεj (x, t) that will correspond to the same g′. Note that on the flat part (non-vertex) of
L, the smoothing in the way that we are doing it does not change the slope. In fact, L and Lε will be
identical except on an interval of order ε about the vertices.

Once have isolated the minimizer, y∗, we have that the y∗ε is within ε of y∗. Previous results then
yield the convergence of wε (x, t) to w (x, t) .We will also need the following technical lemma.

Lemma 5.4. For the conservation law with the smoothed flux function Hε,δ, defined Aδ,ε as the set of
minimizers y (x, t) in the Hopf-Lax formula. Similarly, define A as the set of minimizers for the sharp
problem with the piecewise linear flux function H. Then we have

lim
ε↓0

sup Aε,δ = sup A a.e. (5.11)

Theorem 5.5. For given t > 0 and for a.e. x, the largest minimizer y∗ (x, t) of the sharp problem
satisfies the identity

w (x, t) = g′ (y∗ (x, t)) (5.12)

by Theorem 4.9. In particular, this implies that

lim
ε→0

wε (x, t) = w (x, t) (5.13)

pointwise a.e.

Proof. Should the set Aε,δ consist of a single element, the proof is trivial. Therefore, assume that the
minimizer in Aε,δ is not unique. We may consider without loss of generality the case of two such
minimizers, as the arguments presented here are easily generalized to n such minimizers.

We consider two such minimizers at a point x0 for the sharp problem and denote them by yi (x0)
(i = 1, 2). First take the case where they are both Type (A) minimizers. We take the partial derivative
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with respect to x of the Legendre transform at the minimum point, which is well-defined as y1 also
depends on x and the minimizer moves as one shifts x. Therefore, one has

g′ (y1 (x0)) = ∂x

{
tL

(
x − y1 (x)

t

)
+ g (y1 (x))

}
x=x0

(5.14)

and similarly for g′ (y2 (x0)) . If g′ (y1 (x0)) , g′ (y2 (x0)), the minimizer with the smaller value when
evaluated under g′ will become irrelevant as x0 changes. Therefore, one sees that this case is confined
to sets of measure zero and can be ignored.

Consequently, assume
g′ (y1 (x0)) = g′ (y2 (x0)) . (5.15)

We now want to examine yε1 and yε2, the minimizers for the smoothed out version. We have suppressed
the parameter δ (by setting δ = ε2) and the time t for notational convenience. We then compute

∂x

{
tL

(
x − yεi (x0)

t
+ g

(
yεi (x0)

))}
= g′

(
yεi (x0)

)
. (5.16)

It is possible that one might have g′
(
yε1 (x0)

)
< g′

(
yε2 (x0)

)
(or the reverse inequality) despite having

(5.15). However, this would imply that for the ε case, yε2becomes irrelevant due to g
(
yε2

)
increasing

faster as x is changed, and in this case yε1 would be left as the largest minimizer. However, g′ is
continuous, so that

g′
(
yε1 (x0)

)
→ g′ (y1 (x0))

g′
(
yε2 (x0)

)
→ g′ (y2 (x0)) . (5.17)

Hence, (5.17) implies g′
(
yε1 (x0)

)
→ g′ (y2 (x)). Note that this result holds even though one may have

yε1 9 y2.
Thus, if there were more than two Type (A) minimizers, then we would have

w (x, t) = g′ (y∗ (x, t)) = lim
ε→0

wε (x, t) (5.18)

Next, consider the situation with more than one Type (B) minimizer. Should these minimizers occur
among points where L′ (·) takes different values, the one with the smaller value evaluated at L′ becomes
irrelevant by the same token as for multiple Type (A) minimizers. Therefore, assume without loss of
generality that these minimizers both occur along the last segment, i.e., where f has slope −c1

g′ (ŷi (x0)) = c1. (5.19)

Then we have

∂x min {} = ∂x

{
tL

(
x − yi (x)

t

)
+ g (yi (x))

}
= −c1 (5.20)

so that all derivatives will be identical.
Next, for each yiwe have yεi such that

∣∣∣yεi − yi

∣∣∣ < Cε, so one may write

∂x min
y∈R

{
tL

( x − y
t

+ g (y)
)}

= −cN = lim
ε→0

g′
(
y∗ε (x, t)

)
(5.21)
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where
y∗ε := arg+ min

y∈R

{
tL

( x − y
t

)
+ g (y)

}
. (5.22)

This leaves the one remaining case where there is one minimizer of each type, i.e. one Type (A)
minimizer and one Type (B). As in the above cases, one can then assume that g′ has the same value
at both of these minimizers, for if not, the minimizer with the greater value of g′ would cease to be
relevant, so that the set of such x for fixed t where this occurs is of measure zero. In a similar fashion
to the above cases, one has (5.13). Together with Lemma 5.4, this completes the proof. �

6. Uniqueness for polygonal flux

In the preceding sections, we have shown that w (x, t) = g′ (y∗ (x, t)) is a solution to the conservation
law (1.1). In this section we establish a criterion under which it is the only solution by characterizing
w as the unique solution constructed from the limit of the functions wε as ε ↓ 0, which are unique
provided g′ is continuous. This approach is reminiscent of the well-known vanishing viscosity limit
for Burgers’ equation.

Definition 6.1. Let H ∈ C0 (R) and suppose further that H is differentiable a.e. We say w (x, t) is a
limiting mollified solution to the initial value problem for the conservation law for the flux function H
if

(i) There exist smoothH j that converge uniformly on compact sets to H.
(ii) The solutions w j for the conservation law with fluxH j converge, for each t > 0, to w a.e. in x.
(iii) For any other sequence H̃ j and solutions w̃ j satisfying (i) and (ii), we have

lim
j→∞

w̃ j = lim
j→∞

w j = w. (6.1)

Remark 6.2. For the case of a polygonal flux H with break points {ci}
n
i=1, clearly H ∈ C∞

(
R\ {ci}

n
i=1

)
and is continuous on all of R. Indeed, we can show rigorously that this case satisfies Definition 6.1.

Theorem 6.3. Let g′ be continuous, H a polygonal flux function, and w be the solution of the corre-
sponding conservation law. Then

w (x, t) = g′ (y∗ (x, t)) (6.2)

is the unique limiting mollified solution satisfying w (x, 0) = g′ (x).

Proof. Since w j are weak solutions and w j → w for any sequence w j (as shown in Section 5), the result
follows. �

7. A discretized conservation law: polygonal flux with matching piecewise constant initial
conditions

In earlier sections, when considering the piecewise linear flux function H, we chose initial condi-
tions that were smooth. An important version of this problem deals with initial conditions g′ that are
not smooth, but instead piecewise constant, as is treated in [13]. The values of these constants are taken
as a subset of the break points {ci}

N
i=1 of H. Consequently, as one can see from Figure 2, the values of
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the initial condition match the slopes of the Legendre transform L of the flux function. Furthermore,
direct computation verifies that the range of the solution w (x, t) will also have range {ci}

N
i=1.

The analysis of the minimizers is similar to those of the previous sections, except from the fact that
we have an additional type of minimizer, Type (C) in which the vertices of f (y; x, t) := L

(
x−y

t

)
and g′

coincide For such a minimum, the derivative g′ (ŷ (x, t)) does not exist as in general the limits from the
left and right do not agree. However, there are only finitely many vertices of L, and hence there are at
most a finite number of Type (C) vertices for a fixed t.

For Type (A) and (B) minimizers, we proceed in the same way, including the smoothing. Although
the Type (B) minimum now occurs at a vertex of g, the analysis of the x-derivative yields the same
result. Note that in this case one also needs to mollify g′, yielding the following results.

Theorem 7.1. Let L be polygonal convex and g′ be piecewise constant. Then

w (x, t) = g′ (y∗ (x, t)) when the minimizer y∗ is at a vertex of L

= L′ (y∗)x, t) when the minimizer y∗ is at a vertex of g (7.1)

a.e. in x (for fixed t > 0) is a solution to (1.1). Note that for a fixed t > 0 and x a.e., one of the cases in
(7.1) occurs. Furthermore

wε (x, t) = g′ε
(
y∗ε (x, t)

)
→ w (x, t) a.e. in x (7.2)

Note that one can apply the limiting mollified uniqueness concept in the same manner as earlier.

Proof. To obtain the result wε → w, we observe that if h := g′ is piecewise constant, then g (y) :=∫ y

0
h (s) ds is Lipschitz with Lip (g) = maxi {|ci|}, and differentiable a.e by Rademacher’s Theorem.

Note that the only subtlety is for Type (C) in which the minimizer of tLε
(

x−y
t + gε (y)

)
may be on

one segment of g for which the minimizer tL
(

x−y
t

)
+ g (y) is on the adjacent one. But this is an issue

that is of measure 0 in x for a given t. �

When restricting the values of the initial conditions to the break points of H, we obtain the following
more specific result.

Corollary 1. If Lis polygonal convex with break points {ci}
N
i=1 and the range of g is contained in {ci},

then the solution w (x, t) takes on values only in {ci} .

Proof. The minimizers of tL
(

x−y
t

)
+ g (y) will consist of the vertices of g and tL

(
x−y

t

)
exclusively. If ŷ

is a Type (A) minimizer (i.e. vertex of L but on the differentiable portion of g), then

∂x

{
tL

(
x − ŷ (x, t)

t

)
+ g (ŷ (x, t))

}
= g′ (ŷ (x, t)) (7.3)

as before. If it is of Type (B), i.e. ŷ is at a vertex of tL
(

x−y
t

)
, then ∂x {...} = L′

(
x−y

t

)
. In both cases,

∂x {...} ∈ {ci}. Hence, this is an alternative proof of [13], p. 74. �
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8. Conclusions and applications

In this paper, we have shown a number of important extensions to classical results. In the classical
Lax-Oleinik theory, more restrictive assumptions such as C2 smoothness and uniform convexity of the
flux function are required. In many of our results, we have proven rigorous theorems with only a C0,
(non-strictly) convex flux function H. This is particularly significant as it facilitates an understanding
of the behavior introduced by sharp corners, i.e. at points where the flux function fails to have a
derivative in the classical (non-weak) sense and is nowhere strictly convex.

In fact, when the assumptions mentioned above are relaxed, the uniqueness of the minimizers does
not, in general, persist. Indeed, there is the potential to have the minimum achieved at an infinite,
even uncountable number of points. However, we have shown that this difficulty can be addressed by
considering the greatest of these minimizers y∗ (x, t), or supremum in the case of an infinite number. We
have shown that the solution is described by w (x, t) = g′ (y∗ (x, t)), so we have effectively substituted
the requirement for uniqueness of the minimizer with the behavior of a specific, well-defined element
of the set of minimizers after analyzing the relative change of the Hopf-Lax functional at each of these
points. The results have immediate application to conservation laws subject to stochastic processes.
For example, if the initial condition g′ (x), is assumed to be Brownian motion, then the solution at time
t > 0 is given by w (x, t) = g′ (y∗ (x, t)) . In the case of Brownian motion [1, 2, 24] with fixed value 0 at
x = 0, one obtains that the mean and variance at t are 0 and y∗ (x, t), respectively.

For each t > 0, we know that y∗ (x, t) is an increasing function of x from Theorem 4.5. Since the
variance of Brownian motion also increases as |x| increases, we obtain the result that the increase in
variance persists for all time.

This is an example of the application of these results to random initial conditions. The methodology
can also provide a powerful computational tool. Computing solutions of shocks from conservation
laws is a complicated task even when the initial data are regular. When one has random initial data,
e.g. Brownian motion (or even less regular randomness), the difficulties are compounded.

The results we have obtained suggest a computational method that amounts to determining the
minimum for the function tL

(
x−y

t

)
+ g (y). In this expression, the first term can be regarded as a

deterministic slope while the second is an integrated Brownian motion that can easily be approximated
by a discrete stochastic process. In this way one can obtain the probabilistic features of the solution
w (x, t) without tracking and maintaining the shock statistics. In a future paper, we plan to address in
detail the application of these results to an array of stochastic processes.
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