
http://www.aimspress.com/journal/Math

AIMS Mathematics, 3(1): 21–34
DOI:10.3934/Math.2018.1.21
Received: 01 March 2017
Accepted: 22 December 2017
Published: 05 January 2018

Research article

Lp-analysis of one-dimensional repulsive Hamiltonian with a class of
perturbations

Motohiro Sobajima1,∗and Kentarou Yoshii2

1 Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science,
2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan

2 Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3
Kagurazaka, Shinjuku-ku, 162-8601, Tokyo, Japan

* Correspondence: Email: msobajima1984@gmail.com; Tel: +81-4-7124-1501.

Abstract: The spectrum of one-dimensional repulsive Hamiltonian with a class of perturbations Hp =

− d2

dx2 − x2 + V(x) in Lp(R) (1 < p < ∞) is explicitly given. It is also proved that the domain of Hp is
embedded into weighted Lq-spaces for some q > p. Additionally, non-existence of related Schrödinger
(C0-)semigroup in Lp(R) is shown when V(x) ≡ 0.

Keywords: repulsive Hamiltonian; WKB methods
Mathematics Subject Classification: 47E05, 47A10

1. Introduction

In this paper we consider

H := −
d2

dx2 − x2 + V(x) (1)

in Lp(R), where V ∈ C(R) is a real-valued and satisfies V(x) ≥ −a(1 + x2) for some constant a ≥ 0 and∫
R

|V(x)|
√

1 + x2
dx < ∞. (2)

The operator (1) describes the quantum particle affected by a strong repulsive force from the origin. In
fact, in the classical sense the corresponding Hamiltonian (functional) is given by Ĥ(x, p) = p2 − x2

and then the particle satisfying ẋ = ∂pĤ and ṗ = −∂xĤ goes away much faster than that for the free
Hamiltonian Ĥ0(x, p) = p2.

In the case where p = 2, the essential selfadjointness of H, endowed with the domain C∞0 (Ω), has
been discussed by Ikebe and Kato [7]. After that several properties of H is found out in a mount of
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subsequent papers (for studies of scattering theory e.g., Bony et al. [2], Nicoleau [10] and also Ishida
[8]).

In contrast, if p is different from 2, then the situation becomes complicated. Actually, papers which
deals with the properties of H is quite few because of absence of good properties like symmetricity.
In the Lp-framework, it is quite useful to consider the accretivity and sectoriality of the second-order
differential operators. In fact, the case − d2

dx2 + V(x) with a nonnegative potential V is formally sectorial
in Lp, and therefore one can find many literature even N-dimensional case (e.g., Kato [9], Goldstein
[6], Tanabe [14], Engel-Nagel [5]). However, it seems quite difficult to describe such a kind of non-
accretive operators in a certain unified theory in the literature.

The present paper is in a primary position to make a contribution for theory of non-accretive
operators in Lp as mentioned above. The aim of this paper is to give a spectral properties of
H = − d2

dx2 − x2 + V(x) for the case where V(x) can be regarded as a perturbation of the leading part
− d2

dx2 − x2; note that if V(x) = [log(e + |x|)]−α (α ∈ R), then α < 1 is admissible, which is same threshold
as in the short range potential for − d2

dx2 − x2 stated in Bony [2] and also Ishida [8].

Here we define the minimal realization Hp,min of H in Lp = Lp(R) asD(Hp,min) := C∞0 (R),

Hp,minu(x) := −u′′(x) − x2u(x) + V(x)u(x).
(3)

Theorem 1.1. For every 1 < p < ∞, Hp,min is closable and the spectrum of the closure Hp is explicitly
given as

σ(Hp) =

{
λ ∈ C ; |Im λ| ≤

∣∣∣∣∣1 − 2
p

∣∣∣∣∣} .
Moreover, for every 1 < p < q < ∞, one has consistence of the resolvent operators:

(λ + Hp)−1 f = (λ + Hq)−1 f a.e. on R ∀ λ ∈ ρ(Hp) ∩ ρ(Hq), ∀ f ∈ Lp ∩ Lq.

Remark 1.1. If p = 2, then our assertion is nothing new. The crucial part is the case p , 2 which
is the case where the symmetricity of H breaks down. The similar consideration for − d2

dx2 + V (but in
L2-setting) can be found in Dollard-Friedman [4].

This paper is organized follows: In Section 2, we prepare two preliminary results. In Section 3, we
consider the fundamental systems of λu + Hu = 0, and estimate the behavior of their solutions. By
virtue of that estimates, we will describe the resolvent set of Hp in Section 4. In section 5, we prove
never to be generated C0-semigroups by ±iHp under the condition V = 0.

2. Preliminary results

First we state well-known results for the essentially selfadjointness of Schrödinger operators in L2

which is firstly described in [7]. We would like to refer also Okazawa [12].

Theorem 2.1 (Okazawa [12, Corollary 6.11]). Let V(x) be locally in L2(R) and assume that V(x) ≥
−c1 − c2|x|2, where c1, c2 ≥ 0 are constants. Then H2,min is essentially selfadjoint.
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Next we note the asymptotic behavior of solutions to second-order linear ordinary differential equa-
tions of the form

y′′(x) = (Φ(x) + Ψ(x))y(x)

in which the term Ψ(x)y(x) can be treated as a perturbation of the leading part Φ(x)y(x).

Theorem 2.2 (Olver [13, Theorem 6.2.2 (p.196)] ). In a given finite or infinite interval (a1, a2), let
a ∈ (a1, a2), Ψ(x) a positive, real, twice continuously differentiable function, Ψ(x) a continuous real or
complex function, and

F(x) =

∫ {
1

Φ(x)1/4

d2

dx2

(
1

Φ(x)1/4

)
−

Ψ(x)
Φ(x)1/2

}
dx.

Then in this interval the differential equation

d2w
dx2 = {Φ(x) + Ψ(x)}w

has twice continuously differential solutions

w1(x) =
1

Φ(x)1/4 exp
{

i
∫

Φ(x)1/2 dx
}

(1 + ε1(x)),

w2(x) =
1

Φ(x)1/4 exp
{
−i

∫
Φ(x)1/2 dx

}
(1 + ε2(x)),

such that

|ε j(x)|,
1

Φ(x)1/2 |ε j(x)| ≤ exp
{

1
2
Va j,x(F)

}
− 1 ( j = 1, 2)

provided that Va j,x(F) < ∞ (where Va j,x(F) =
∫
|F′(t)| dt is the total variation of F). If Ψ(x) is real,

then the solutions w1(x) and w2(x) are complex conjugates.

For the above theorem, see also Beals-Wong [1, 10.12, p.355].

3. Fundamental systems of λu − u′′ − x2u + Vu = 0

3.1. The case λ ∈ R

We consider the behavior of solutions to

λu(x) − u′′(x) − x2u(x) + V(x)u(x) = 0, x ∈ R, (4)

where λ ∈ R.

Proposition 3.1. There exist solutions uλ,1, uλ,2 of (4) such that uλ,1 and uλ,2 are linearly independent
and satisfy

|uλ,1(x)| ≤ Cλ(1 + |x|)−
1
2 , |uλ,2(x)| ≤ Cλ(1 + |x|)−

1
2 ∀x ∈ R,

|uλ,1(x)| ≥
1
2

(1 + |x|)−
1
2 , |uλ,2(x)| ≥

1
2

(1 + |x|)−
1
2 ∀x ≥ Rλ

for some constants Cλ,Rλ > 0 independent of x. In particular, uλ,1, uλ,2 ∈ Lp(R) if and only if 2 < p <
∞.
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Proof. First we consider (4) for x > 0. Using the Liouville transform

v(y) := (2y)
1
4 u

(
(2y)

1
2
)
, or equivalently, u(x) = x−

1
2 v

(
x2

2

)
,

we have

(λ − x2)x−
1
2 v

(
x2

2

)
= u′′(x) − V(x)u(x) = x

3
2 v′′

(
x2

2

)
+

3
4

x−
5
2 v

(
x2

2

)
− x−

1
2 V(x)v

(
x2

2

)
.

Therefore noting that y = x2/2, we see that

v′′(y) =

− (
1 −

λ

4y

)2

+
λ2 − 3
16y2 +

V((2y)
1
2 )

2y

 v(y) = (Φ(y) + Ψ(y))v(y). (5)

Here we have put for y > 0,

Φ(y) := −
(
1 −

λ

4y

)2

, Ψ(y) :=
λ2 − 3
16y2 +

V((2y)
1
2 )

2y
.

Let

Π(y) := |Φ(y)|−
1
4

(
−

d2

dx2 + Ψ(y)
)
|Φ(y)|−

1
4 , y ≥ λ+ := max{λ, 0}.

Then we see that for every y ≥ λ+,

|Π(y)| ≤
(
1 −

λ

4y

)−3 3λ2

64y2 +

(
1 −

λ

4y

)−2
λ

4y3 +

(
1 −

λ

4y

)−1
|λ2 − 3|

16y2 +
|V((2y)

1
2 )|

2y
≤

Mλ

y2 +
|V((2y)

1
2 )|

2y
,

where Mλ is a positive constant depending only on λ. Therefore∫ ∞

λ+

|Π(y)| dy ≤ Mλ

∫ ∞

λ+

1
y2 dy +

∫ ∞

√
2λ+

|V(x)|
x

dx < ∞.

Thus Π ∈ L1((λ+,∞)). By Theorem 2.2, we obtain that there exists a fundamental system (vλ,1, vλ,2) of
(5) such that

vλ,1(y)yi λ4 e−iy → 1, vλ,2(y)y−i λ4 eiy → 1 as y→ ∞

(see also [11]). Taking uλ, j(x) = x−
1
2 vλ, j(x2/2) for j = 1, 2, we obtain that (uλ,1, uλ,2) is a fundamental

system of (4) on (λ+,∞) and

uλ,1(y)x
1
2 +i λ2 e−i x2

2 → 2−i λ4 , uλ,2(x)x
1
2−i λ2 ei x2

2 → 2i λ4 ,

as x→ ∞. The above fact implies that there exists a constant Rλ > λ+ such that
1
2

x−
1
2 ≤ |uλ, j(x)| ≤

3
2

x−
1
2 , x ≥ Rλ, j = 1, 2.

We can extend (uλ,1, uλ,2) as a fundamental system on R. By applying the same argument as above to
(4) for x < 0, we can construct a different fundamental system (ũλ,1, ũλ,2) on R satisfying

1
2
|x|−

1
2 ≤ |ũλ, j(x)| ≤

3
2
|x|−

1
2 , x ≤ −R̃λ, j = 1, 2.

By definition of fundamental system, uλ, j can be rewritten as

uλ,1(x) = c11ũλ,1(x) + c12ũλ,2(x), uλ,2(x) = c21ũλ,1(x) + c22ũλ,2(x).

Hence we have the upper and lower estimates of uλ, j ( j = 1, 2), respectively. �
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3.2. The case λ ∈ C \ R

We consider the behavior of solutions to

λu(x) − u′′(x) − x2u(x) + V(x)u(x) = 0, (6)

where λ ∈ C\R with Im λ > 0. The case Im λ < 0 can be reduced to the problem Im λ > 0 via complex
conjugation.

3.2.1. Properties of solutions to an auxiliary problem

We start with the following function ϕλ:

ϕλ(x) := x−
1+λi

2 ei x2
2 , x > 0. (7)

Then by a direct computation we have

Lemma 3.2. ϕλ satisfies
λϕλ − ϕ

′′
λ − x2ϕλ + gλϕλ = 0, x ∈ (0,∞), (8)

where gλ(x) := (1+λi)(3+λi)
4x2 , x > 0.

Remark 3.1. If λ = i or λ = 3i, then ϕλ is nothing but a solution of the original equation (6) with
V = 0.

Next we construct another solution of (8) which is linearly independent of ϕλ. Before construction,
we prepare the following lemma.

Lemma 3.3. Let λ satisfy Im λ > 0 and let ϕλ be given in (7). Then for every a > 0, there exists Fλ
a ∈ C

such that ∫ x

a
ϕλ(t)−2 dt → Fλ

a as x→ ∞

and then x 7→
∫ x

a
ϕλ(t)−2 dt − Fλ

a is independent of a. Moreover, for every x > 0,∣∣∣∣∣∫ x

a
ϕλ(t)−2 dt − Fλ

a −
i
2

xλie−ix2
∣∣∣∣∣ ≤ Cλx−Im λ−2,

where Cλ :=
|λ|

4

1 +

√
1 +

(
Re λ

Im λ + 2

)2
 .

Remark 3.2. If a = 0 and λ = i, then F i
0 gives the Fresnel integral limx→∞

∫ x

0
e−it2 dt. Hence F i

0 =
√
π/8(1 − i).

Proof. By integration by part, we have∫ x

a
t1+λie−it2 dt =

( i
2

xλie−ix2
−

i
2

aλie−ia2
)

+
λi
4

(
xλi−2e−ix2

− aλi−2e−ia2)
−
λi(λi − 2)

4

∫ x

a
tλi−3e−it2 dt.
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Noting that tλi−3e−it2 is integrable in (a,∞), we have∫ x

a
t1+λie−it2 dt → −

i
2

aλie−ia2
−
λi
4

aλi−2e−ia2
−
λi(λi − 2)

4

∫ ∞

a
tλi−3e−it2 dt =: Fλ

a

as x→ ∞. And therefore
∫ x

a
t1+λie−it2 dt − Fλ

a is independent of a and∣∣∣∣∣∫ x

a
t1+λie−it2 dt − Fλ

a −
i
2

xλie−ix2
∣∣∣∣∣ =

∣∣∣∣∣λ4 x−λ−2e−ix2
+
λi(λi − 2)

4

∫ ∞

x
tλi−3e−it2 dt

∣∣∣∣∣ ≤ Cλx−Im λ−2.

This is nothing but the desired inequality. �

Lemma 3.4. Let ϕλ be as in (7) and define ψλ as

ψλ(x) := ϕλ(x)
∫ x

a

1
ϕλ(t)2 dt − Fλ

aϕλ(x), x > 0. (9)

Then ψλ is independent of a and (ϕλ, ψλ) is a fundamental system of (8). Moreover, there exists a0 > 0
such that

1
3

x−
Im λ+1

2 ≤ |ψλ(x)| ≤ x−
Im λ+1

2 , x ∈ [a0,∞).

Proof. From Lemma 3.3 we have

x
Im λ+1

2

∣∣∣∣∣ψλ(x) −
i
2

x−
1−λi

2 e−i x2
2

∣∣∣∣∣ = x
Im λ+1

2 |ϕλ(x)|
∣∣∣∣∣∫ x

a

1
ϕλ(t)2 dt − Fλ

a −
i
2

xλie−ix2
∣∣∣∣∣ ≤ Cλx−2.

Putting a0 = (6Cλ)
1
2 , we deduce the desired assertion. �

3.2.2. Fundamental system of the original problem

Next we consider
λw − w′′ − x2w + gλw = g̃λh, x > 0 (10)

with a given function h, where gλ is given as in Lemma 3.2 and g̃λ := gλ − V . To construct solutions of
(6), we will define two types of solution maps h 7→ w and consider their fixed points.

First we construct a solution of (6) which behaves like ψλ at infinity.

Definition 3.5. For b > 0, define

Uh(x) := ψλ(x) − ψλ(x)
∫ x

b
ϕλ(s)g̃λ(s)h(s) ds − ϕλ(x)

∫ ∞

x
ψλ(s)g̃λ(s)h(s) ds, x ∈ [b,∞)

for h belonging to a Banach space

Xλ(b) :=
{

h ∈ C([b,∞)) ; sup
x∈[b,∞)

(
x

Imλ+1
2 |h(x)|

)
< ∞

}
, ‖h‖Xλ(b) := sup

x∈[b,∞)

(
x

Imλ+1
2 |h(x)|

)
.
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Remark 3.3. For arbitrary fixed b > 0, all solutions of (10) can be described as follows:

wc1,c2(x) = c1ϕλ(x) + c2ψλ(x) +

∫ x

b

(
ϕλ(x)ψλ(s) − ϕλ(s)ψλ(x)

)
g̃λ(s)h(s) ds,

where c1, c2 ∈ C. Suppose that h ∈ C∞0 ((b,∞)) with supp h ⊂ [b1, b2]. Then wc1,c2 ∈ C([b,∞)). In
particular, for x ≥ b2,

wc1,c2(x) =

(
c1 +

∫ b2

b1

ψλ(s)g̃λ(s)h(s) ds
)
ϕλ(x) +

(
c2 −

∫ b2

b1

ϕλ(s)g̃λ(s)h(s) ds
)
ψλ(x).

Therefore wc1,c2 behaves like ψλ (that is, wc1,c2 ∈ Xλ(b)) only when

c1 = −

∫ b2

b1

ψλ(s)g̃λ(s)h(s) ds = −

∫ ∞

b
ψλ(s)g̃λ(s)h(s) ds.

In Definition 3.5 we deal with such a solution with c2 = 1.

Well-definedness of U in Definition 3.5 and its contractivity are proved in next lemma.

Lemma 3.6. The following assertions hold:

(i) for every b > 0, the map U : Xλ(b)→ Xλ(b) is well-defined;
(ii) there exists bλ > 0 such that U is contractive in Xλ(bλ) with

‖Uh1 − Uh2‖Xλ(b) ≤
1
5
‖h1 − h2‖Xλ(b), h1, h2 ∈ Xλ(bλ)

and then U has a unique fixed point w1 ∈ Xλ(bλ);
(iii) w1 can be extended to a solution of (6) in R satisfying

1
12

x−
Imλ+1

2 ≤ |w1(x)| ≤ 2x−
Imλ+1

2 , x ∈ [bλ,∞).

Proof. (i) By Lemma 3.4 we have ψλ ∈ Xλ(b). Therefore to prove well-definedness of U, it suffices to
show that the second term in the definition of U belongs to Xλ(b).

Let h ∈ Xλ(b). Then for x ∈ [b,∞),

x
Im λ+1

2

∣∣∣∣∣ϕλ(x)
∫ ∞

x
ψλ(s)g̃(s)h(s) ds

∣∣∣∣∣ ≤ xIm λ‖h‖X

∫ ∞

x
s−Im λ−1|g̃λ(s)| ds ≤ ‖h‖X‖s−1g̃λ‖L1(b,∞)

and

x
Im λ+1

2

∣∣∣∣∣ψλ(x)
∫ x

b
ϕλ(s)g̃(s)h(s) ds

∣∣∣∣∣ ≤ ‖h‖X ∫ x

b
s−1|g̃λ(s)| ds ≤ ‖h‖X‖s−1g̃λ‖L1(b,∞).

Hence we have Uh ∈ C([b,∞)) and therefore Uh ∈ Xλ(b), that is, U : Xλ(b)→ Xλ(b) is well-defined.

(ii) Let h1, h2 ∈ Xλ(b). Then we have

Uh1(x) − Uh2(x) = −ψλ(x)
∫ x

b
ϕλ(s)g̃λ(s)(h1(s) − h2(s)) ds − ϕλ(x)

∫ ∞

x
ψλ(s)g̃λ(s)(h1(s) − h2(s)) ds.
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Proceeding the same computation as above, we deduce

‖Uh1 − Uh2‖Xλ(b) ≤ 2‖s−1g̃λ‖L1(b,∞)‖h1 − h2‖Xλ(b).

Choosing b large enough, we obtain ‖Uh1 − Uh2‖Xλ(b) ≤ 5−1‖h1 − h2‖Xλ(b), that is U is contractive in
Xλ(b). By contraction mapping principle, we obtain that U has a unique fixed point w1 ∈ Xλ(b).

(iii) Since w1 satisfies (10) with h = w1, w1 is a solution of the original equation (6) in [b,∞). As in the
last part of the proof of Proposition 3.1, we can extend w1 as a solution of (6) in R. Since Uw1 = w1

and U0 = ψλ, it follows from the contractivity of U that

‖w1 − ψλ‖X = ‖Uw1 − U0‖X ≤
1
5
‖w1‖X ≤

1
5
‖w1 − ψλ‖X +

1
5
‖ψλ‖X.

Consequently, we have ‖w1 − ψλ‖X ≤ 4−1‖ψλ‖X ≤ 4−1 and then for x ≥ b,

|w1(x)| ≥ |ψλ(x)| − |w1(x) − ψλ(x)| ≥
(
1
3
− ‖w1 − ψλ‖X

)
x−

Imλ+1
2 ≥

1
12

x−
Imλ+1

2 .

�

Next we construct another solution of (6) which behaves like ϕλ at infinity.

Definition 3.7. Let b > 0 be large enough. Define

Ũh(x) := ϕλ(x) +

∫ x

b

(
ϕλ(x)ψλ(s) − ϕλ(s)ψλ(x)

)
g̃λ(s)h(s) ds

for h belonging to a Banach space

Yλ(b) :=
{

h ∈ C([b,∞)) ; sup
x∈[b,∞)

(
x−

Imλ−1
2 |h(x)|

)
< ∞

}
, ‖h‖Yλ(b) := sup

x∈[b,∞)

(
x−

Imλ−1
2 |h(x)|

)
.

Lemma 3.8. The following assertions hold:

(i) for every b > 0, the map Ũ : Yλ(b)→ Yλ(b) is well-defined;
(ii) there exists bλ > 0 such that Ũ is contractive in Yλ(bλ) with

‖Ũh1 − Ũh2‖Yλ(b) ≤
1
5
‖h1 − h2‖Yλ(b), h1, h2 ∈ Yλ(bλ)

and then Ũ has a unique fixed point w̃1 ∈ Yλ(bλ);
(iii) w̃1 can be extended to a solution of (6) in R satisfying

1
2

x
Im λ−1

2 ≤ |w̃1(x)| ≤ 2x
Im λ−1

2 , x ∈ [bλ,∞).

Proof. The proof is similar to the one of Lemma 3.6. �
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Considering the equation (6) for x < 0, we also obtain the following lemma.

Lemma 3.9. For every λ ∈ C with Im λ > 0, there exist a fundamental system (w1,w2) of (6) and
positive constants cλ,Cλ,Rλ such that

|w1(x)| ≤ Cλ(1 + |x|)
Im λ−1

2 , x ≤ 0, |w1(x)| ≤ Cλ(1 + |x|)−
Im λ+1

2 , x ≥ 0, (11)

|w2(x)| ≤ Cλ(1 + |x|)−
Im λ+1

2 , x ≤ 0, |w2(x)| ≤ Cλ(1 + |x|)
Im λ−1

2 , x ≥ 0 (12)

and
|w1(x)| ≥ cλ(1 + |x|)−

Im λ+1
2 , x ≥ Rλ, |w2(x)| ≥ cλ(1 + |x|)−

Im λ+1
2 , x ≤ −Rλ. (13)

Proof. In view of Lemma 3.6, it suffices to find w2 satisfying the conditions above.
Let w∗ and w̃∗ be given as in Lemmas 3.6 and 3.8 with V(x) replaced with V(−x). Noting that w1

can be rewritten as w1(x) = c1w∗(−x) + c2w̃∗(−x), we see from Lemma 3.6 and 3.8 that (11) and the
first half of (13) are satisfied. Set w2(x) = w∗(−x) for x ∈ R. As in the same way, we can verify (12).

Finally, we prove the last half of (13). Since H2,min is essentially selfadjoint in L2(R), λ belongs
to the resolvent set of H2, that is, N(λ + H2) = {0}. This implies that w2 < L2(R). Noting that
w2 ∈ L2((−∞, 0)), we have w2 < L2((0,∞)). Now using the representation

w2(x) = c1w1(x) + c2w̃1(x), x ∈ R,

we deduce that c2 , 0. Therefore using Lemma 3.6 (iii) and Lemma 3.8 (iii), we have

|w2(x)| ≥ |c2| |w̃1(x)| − |c1| |w1(x)| ≥
|c2|

2
x

Im λ−1
2 − 2|c1| x−

Im λ+1
2 ≥

|c2|

4
x

Im λ−1
2

for x large enough. �

4. Resolvent estimates in Lp

The following lemma, verified by the variation of parameters, gives a possibility of representation
of the Green function for resolvent operator H in Lp.

Lemma 4.1. Assume that λ ∈ ρ(H̃) in Lp, where H̃ is a realization of H in Lp. Then for every
u ∈ C∞0 (R),

u(x) =
w1(x)
Wλ

∫ x

−∞

w2(s) f (s) ds +
w2(x)
Wλ

∫ ∞

x
w1(s) f (s) ds, x ∈ R,

where f := λu − u′′ − x2u + Vu ∈ C∞0 (R) and Wλ , 0 is the Wronskian of (w1,w2).

Proposition 4.2. Let 1 < p < ∞. If |1 − 2
p | < Im λ, then the operator defined as

R(λ) f (x) :=
w1(x)
Wλ

∫ x

−∞

w2(s) f (s) ds +
w2(x)
Wλ

∫ ∞

x
w1(s) f (s) ds, f ∈ C∞0 (R)

can be extended to a bounded operator on Lp. More precisely, there exists Mλ > 0 such that

‖R(λ) f ‖Lp ≤ Mλ

|Imλ|2 − (
1 −

2
p

)2−1

‖ f ‖Lp , f ∈ Lp(R). (14)
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In particular, Hp,min is closable and its closure Hp satisfies{
λ ∈ C ; |Im λ| >

∣∣∣∣∣1 − 2
p

∣∣∣∣∣} ⊂ ρ(Hp).

Proof. Let f ∈ C∞0 (R). Set

u1(x) := w1(x)
∫ x

−∞

w2(s) f (s) ds, u2(x) := w1(x)
∫ ∞

x
w1(s) f (s) ds.

We divide the proof of u1 ∈ Lp(R) into two cases x ≥ 0 and x < 0; since the proof of u2 ∈ Lp(R) is
similar, this part is omitted.

The case u1 for x ≥ 0, it follows from Lemma 3.9 and Hölder inequality that

|u1(x)| ≤ C2
λ(1 + |x|)−

Im λ+1
2

[∫ 0

−∞

(1 + |s|)−
Im λ+1

2 | f (s)| ds +

∫ x

0
(1 + |s|)

Im λ−1
2 | f (s)| ds

]
≤ C2

λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

‖ f ‖Lp(R−)(1 + |x|)−
Im λ+1

2

+ C2
λ(1 + |x|)−

Im λ+1
2

(∫ x

0
(1 + |s|)

Im λ−1
2 p′−αp′ ds

) 1
p′

(∫ x

0
(1 + |s|)αp| f (s)|p ds

) 1
p

≤ C2
λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

‖ f ‖Lp(R−)(1 + |x|)−
Im λ+1

2

+ C2
λ

(
Im λ − 1

2
p′ − αp′ + 1

)− 1
p′

(1 + |x|)−
1
p−α

(∫ x

0
(1 + |s|)αp| f (s)|p ds

) 1
p

(15)

with 0 < α < Imλ+1
2 + 1/p′. By the triangle inequality we have

‖u1‖Lp(R+) ≤ C2
λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

(
Im λ + 1

2
p − 1

)− 1
p

‖ f ‖Lp(R−) + I1(α)

and

(
I1(α)

)p
= C2p

λ

(
Im λ − 1

2
p′ − αp′ + 1

)− p
p′

∫ ∞

0
(1 + |x|)−1−αp

(∫ x

0
(1 + |s|)αp| f (s)|p ds

)
dx

= C2p
λ

(
Im λ − 1

2
p′ − αp′ + 1

)− p
p′

(αp)−1
∫ ∞

0
| f (s)|p ds.

Choosing α = 1
pp′

(
Im λ−1

2 p′ + 1
)
, we obtain

‖u1‖Lp(R+) ≤ C2
λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

(
Im λ + 1

2
p − 1

)− 1
p

‖ f ‖Lp(R−) + C2
λ

(
Im λ − 1

2
+

1
p′

)−1

‖ f ‖Lp(R+).

The case u1 for x < 0, by the same way as the case x > 0, we have

|u1(x)|p ≤ C2p
λ

(
Imλ + 1

2
p′ − βp′ − 1

)− p
p′

(1 + |x|)−1+βp
∫ x

−∞

(1 + |s|)−βp| f (s)|p ds, (16)
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where 0 < β < Imλ+1
2 − 1

p′ . Taking β = 1
pp′

(
Imλ+1

2 p′ − 1
)
, we have

‖u1‖Lp(R−) ≤ C2
λ

(
Imλ + 1

2
−

1
p′

)−1

‖ f ‖Lp(R−).

Proceeding the same argument for u2 and combining the estimates for u1 and u2, we obtain (14). �

Corollary 4.3. Let R(λ) be as in Proposition 4.2. Then for every f ∈ Lp(R), R(λ) f ∈ C(R) and

sup
x∈R

(
(1 + |x|)

1
p |R(λ) f (x)|

)
≤ C̃λ‖ f ‖Lp . (17)

Proof. Let f ∈ C∞0 (R) and set u1 and u2 as in the proof of Proposition 4.2. Since the proof for u1 and
u2 are similar, we only show the estimate of u1. From (15), we have for x ≥ 0,

(1 + |x|)
1
p |u1(x)| ≤ C2

λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

‖ f ‖Lp(R−)(1 + |x|)−
Im λ

2 + 1
p−

1
2

+ C2
λ

(
Im λ − 1

2
p′ − αp′ + 1

)− 1
p′

(1 + |x|)−α
(∫ x

0
(1 + |s|)αp| f (s)|p ds

) 1
p

≤ C2
λ

(
Im λ + 1

2
p′ − 1

)− 1
p′

‖ f ‖Lp(R−) + C2
λ

(
Im λ − 1

2
p′ − αp′ + 1

)− 1
p′

‖ f ‖Lp(R+),

where 0 < α < Imλ+1
2 + 1

p′ . This implies (17) for x ≥ 0. If x ≤ 0, then from (16) we can obtain

(1 + |x|)
1
p |u1(x)| ≤ C2

λ

(
Imλ + 1

2
p′ − βp′ − 1

)− 1
p′

‖ f ‖Lp(R−),

where 0 < β < Imλ+1
2 − 1

p′ . This yields (17) for x ≤ 0. The proof is completed. �

By interpolation inequality, we deduce the following assertion.

Proposition 4.4. Let 1 < p < ∞ and p ≤ q ≤ ∞. Then

D(Hp) ⊂
{
w ∈ C(R) ; 〈x〉

1
p−

1
q w ∈ Lq

}
.

More precisely, there exists a constant Cp,q > 0 such that∥∥∥∥〈x〉 1
p−

1
q u

∥∥∥∥
Lq
≤ Cp,q

(
‖Hpu‖Lp + ‖u‖Lp

)
, u ∈ D(Hp).

Proof. The assertion follows from Proposition 4.2 and Corollary 4.3. �

Proposition 4.5. (i) If 2 < p < ∞ and 0 < |Im λ| < 1 − 2
p , then N(λ + Hp) , {0}, and then{

λ ∈ C ; |Im λ| ≤ 1 −
2
p

}
⊂ σ(Hp);

(ii) If 1 < p < 2 and 0 < |Im λ| < 2
p − 1, then N(λ + Hp) ( Lp, and then{
λ ∈ C ; |Im λ| ≤

2
p
− 1

}
⊂ σ(Hp).
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Proof. (i) (2 < p ≤ ∞, Im λ < 1 − 2
p ) Noting that

Im λ + 1
2

>
1
p
, −

Im λ − 1
2

>
1
p
,

we have by (11),∫ ∞

−∞

|w1(x)|p dx ≤ Cλ

(∫ 0

−∞

(1 + |s|)
Im λ−1

2 p ds +

∫ ∞

0
(1 + |s|)−

Im λ+1
2 p ds

)
≤ Cλ

(1 − Im λ

2
p − 1

)−1

+

(
Im λ + 1

2
p − 1

)−1 < ∞.
This means that w1,w2 ∈ N(λ + Hp).

(ii) (1 < p < 2, Im λ < 2
p − 1) Note that Hp is the adjoint operator of Hp′ . Since w1 ∈ D(Hp′) for every

u ∈ C∞0 (R), ∫ ∞

−∞

(λu + Hpu)w1 dx =

∫ ∞

−∞

u(λw1 + Hp′w1) dx = 0,

the closure of R(λ + Hp) does not coincide with Lp, that is, R(λ + Hp) ( Lp.
Since σ(Hp) is closed in C and we can argue the same assertion for Imλ < 0 via complex conjuga-

tion, we obtain the assertion. �

Combining the assertions above, we finally obtain Theorem 1.1.

5. Absence of C0-semigroups on Lp (p , 2, V = 0)

In Theorem 1.1, we do not prove any assertions related to generation of C0-semigroups by ±iHp.
In this subsection we prove

Theorem 5.1. Neither iHp nor −iHp generates C0-semigroup on Lp.

Proof. We argue by a contradiction. Assume that iHp generates a C0-semigroup T (t) on Lp. Then it
follows from Theorem 1.1 (the coincidence of resolvent operators) that we have T (t) f = S (t) f for
every t > 0 and f ∈ L2 ∩ Lp, where S (t) is the C0-group generated by the skew-adjoint operator iH2.

Fix f0 ∈ L2 ∩ Lp such that F f0 < Lp (F is the Fourier transform). Then by the Mehler’s formula
(see e.g., Cazenave [3, Remark 9.2.5]), we see that

[
S (t)

]
f (x) =

(
1

2π sinh(2t)

) N
2

e−i 1
2 tanh(2t) |x|

2
∫ ∞

−∞

e−
i

sinh(2t) x·ye−i 1
2 tanh(2t) |y|

2
f (y) dy.

In other words, using the operators

Mτg(x) := e−i |x|
2

2τ g(x), Dτg(x) := τ−
N
2 g(τ−1x),

we can rewrite S (t) as the following form S (t) f = Mtanh(2t)FDsinh(2t)Mtanh(2t) f . Taking ft0 =

M−1
tanh(2t0)D

−1
sinh(2t0) f0 ∈ Lp, we have

S (t0) ft0 = Mtanh(2t)F f0 < Lp.

This contradicts the fact T (t0) ft0 ∈ Lp. This completes the proof. �
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