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1. Introduction

Let A(p) denote the class of all functions f defined by
f@ =2+ Y ™ (peN=1.2.3.) (1.0
n=1

which are analytic and p-valent in the unit disk
E={zeC:|z < 1}.

For a real number @ (0 < @ < p) the well-known subclasses S (a), p-valently starlike functions of
order a and C(a), p-valently convex functions of order « of A(p) are given by

S*(a,p) = {f € A(p): %(zf’(z)) >a, (z€ E)},
f(@)
Cla.p) = {f cAp): %(1 + Zf,"@) >a, (e E)}.
@
For [8| < 7 and 0 < @ < 1, a function f € A is said to be B-spirallike of order a in E if
R {e‘ﬂ%} >acosf (z€BE). (1.2)
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The class of all such functions is denoted by S () [3], (also see [5, 14, 15]). In recent years many
interesting subclasses of analytic univalent, multivalent and spirallike functions and their many special
cases were investigated, see for example [1, 2, 6, 7, 8, 9, 10].

Motivated and inspired by the above mention work, we here define the following.

Definition 1.1. A function f € A(p) belongs to the class S g(a, p) if it satisfies the inequality
f(p_l)(z) 1 1

Bz fP(z)  2a|  2a°

for some real B and 0 < « < 1, where fP)(z) is the p" derivative of f(z).

Z€E,

Remark 1.2. First of all, it is easily seen that, for
p=1 and B=0,5¢a,l)= M),
where M(«) is a function class introduced and studied in [12]. Secondly, we have
p=1 Sgla,1)=Sg),
where S g(a) is a function class introduced by Owa and Kamali [13].

Definition 1.3. A function f € A(p) is said to be in the class Cs(, p) if it satisfies the inequality

AN o S
P fr@)  2a| 20

for some real 8 and 0 < « < 1, where fP)(z) is the pth derivative of f(z).

z € E, (1.3)

As a special case, the class Cg(a,1) = Kz(a), is introduced by Owa and Kamali [13]. Using
essentially their technique, we prove the main results for the classes S z(a, p) and Cg(a, p) which is the
main motivation of this paper.

2. Preliminary results

Lemma 2.1. [4]. Let ¢(u,v) be a complex-valued function such that
¢o:D—->C, DcCxC

C being the complex plane and let u = uy + wuy,and v = vy + v,. Suppose that the function ¢(u,v)
satisfies each of the following conditions

1. ¢(u,v) is continuous in D;
2. (1,0) € D and R{¢(1,0)} > 0;
3. Rl v1)} < O for all (uns, vi) € D such that v, < -2

5 . Let

p2)=1+pz+ p2z2 + ...
be analytic (regular) in the unit disk E such that
(p(2),zp'(2)) € D, forall z €E.
If
R{¢(p(2),2p'(2)} >0, then R{p(x)} >0 (z€E).
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3. Main results

Theorem 3.1. A function f € Sg(, p) if and only if, R (e"6 Jif,(_p]))(é))) > a

Proof. Let f(z) € Sg(a, p), then we can write

1 1 1
- —|<— (z€E)
ePF(z) 2a| 2a
where F(z) = f(p 1))((2)) From above, we have
2a — ePF(2)

)
< —_—
2a
S |2a - e‘ﬁF(z)|2 < (e‘ﬁF(z))2

s [2a - ¢PF (Z)] [2a' — ePF (Z)] < (e‘ﬁF (z)) [e‘ﬁF (Z)]
S [2a - e*F (z)] [2a' - e“ﬁm] < (e‘ﬁ F (Z)) [e“ﬁm]

2aePF(7)

& 4a? = 2ae PF(7) - 20¢®F(2) + F(2)F(2) < F(2)F(2)

& 4a® - 2a (e_‘ﬁm + e‘ﬁF(z)) <0
& 2a-2R(*F(2) <0
& 2R (?F(2) < 2«

g 2P @)
o sx( w0 %))

This complete the proof.

When p = 1 we have the following known result proved by Owa and Kamali [13].
Corollary 3.2. f(2) € Sg() iff R (eiﬁ %) > Q.
Theorem 3.3. If f(z) € A(p) satisfies

L

gl

for some |B| < 5 and 0 < @ < cos B, then f(2) € Sp(a, p).

n+1+|(n+1)—2ae‘

an+p| <1- |1 —2ae™?

Proof. 1f f(z) € Sp(a, p) then, it suffices to show that

20 — ePF(2)

1
ePF(2) <

z f(p) (2)
F-D(z)*

for some || < 5 and 0 < @ < cos B, where F(z) =

3.1
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Now we have
20 - P F@)| _ [2ae 8 fP V() - 2fP(2)
eBF(z) |~ 2fP(z)

! _
2 -1+ 30, E‘ZI’S, (2a/e #—(n+ 1)) s pZ"

(p+m)!
1+ Zn 1 (ﬁ;.lll)l (l’l + 1)an+pzn

|2ae B 1| + Y Ef:;l;: (2ae“ﬂ - (n+ 1))‘

n=1 (n+1)!

| ||

A 1271

|1 —2ae™f| + X, L |(n + 1) - 207 |a,, | 52)
L= B & 1+ Dlansy|
The last expression in (3.2) is bounded above by 1 if
- (p 8 (p+n)!
1 - 2ae%| + 1)' + 1) = 2ae™| |a,.,| < 1 _Z T e+ Dawl 33
After simplification of (3.3) we have
(p+ n)‘ - -
Z (n+l)‘ (n+ 1+ + 1) = 20e7|)} any| < 1 -1 - 2ae7™|.
Therefore, f(z) € Sg(a, p) for some |3 < 5 and 0 < @ < cosB. O
When 8 = 0 and p = 1, we have the following result proved by Owa et al. [12].
Corollary 3.4. Let 0 < a < 1. If f(z) € A satisfies the following coefficient inequality
- . a: (0 <ac< %)
D = alal< 5 (1 ~[1-2a) =
n=2 1 -a; (%<cx<1)
then f(z) € M(a).
Taking g = 7 in above Theorem we have the following result.
Corollary 3.5. If f(z) € A(p) satisfies
— (p+n)!
> ptn) (n+ L+t 1P —2V2a(n + 1)+4a2) ep] < 1= \1=2VEa + da?
i (n+ D!
for some 0 < a < ﬁ, then f(z) € Sz(a, p).
Theorem 3.6. Let the function f(z) defined by (1.1) be in the class S g(a, p) and let
1
0<Al<——, 0 . 34
<A< 2cosf—a) <a<cosf (3.4)
Then we have ;
— et _eB
S @) (p!)
R €E). 3.5
{( Z " cosp—ay+1 CEH) (35)
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Proof. If we put

1
A= cosp-m+1
and ,
(P-D(7)\
(E22) —a-ape+a (36)
Pz

where A satisfies (3.4) then p(z) is regular in the unit disk E and p(z) = 1 + piz + p2z° + ...
Logarithmic differentiation of (3.6) yields

f(p) (2) 1
3 _
Ae [ () 2

P'(2)
(1-A)p)+A

]=U—A>

This can be written as

p 0@ zp'(2)
) =4 A)/l {(1=A)p@) + A
equivalently
pV@ s ~ ' (2)
e 0) a=€e"—-a+( A)/l{(l A T A (3.7)

Since f(z) € Sg(a, p) then from (3.7) we have

zp'(2)
A1 -A)pi)+A

%{ﬁ—a+a—A) }}>Q (z€ E,0 < a < cospf).

Let us consider the functional 8(u, v) defined by

\%
(1= A+ AY

O(u,v) = e —a + (1 — A)

where u = p(z) and v = zp’(z). Then 6(u, v) is continuous in D = (C - {ﬁ}) x C.

Also, (1,0) € D and R {0(1,0)} = cos B—a > 0. Furthermore, for all (tu>, v{) € D such that v; < —
we have

2
(1+1d)
2 b

R {0z, v1)} [A(1 = A)u, + A)
A(l = A,

Al - A + 4]

A(l = A) (1 + u%)

22[(1 - Ay + 42]

A? [4/12(cosﬁ - a)’ - 1] 10,
(1 - A3 + 42]

cosﬁ—a+‘R{(1—A) il }

= cosfB—a+

< cosfB—-a-—

= (cosB—a)

IA

0,
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because 0 < @ < cos 8 and 44%(cos 8 — @)® — 1 < 0 implies that A < m.

Therefore, the functional 8(u, v) satisfies all the conditions of Lemma 2.1.This proves that R {p(z)} >

that is from (3.6)

plz

R (f(p—l)(z))/lelﬁ s (p!)—/le‘ﬂ .
z 2A(cosfB—a) + 1

_ et
sR(f(p D(Z)) -

This completes the proof.
For f = 0 and p = 1, in above theorem we have the following known result given by [11].

Corollary 3.7. Let f € A be in the class So(a, 1) and 0 < A < ﬁ, 0 < a <0 then

f@\ 1
9%( Z ) "o+l €

Theorem 3.8. A function f € Cg(a, p) if and only if
‘){ elﬁ 1+ w >
() '
Proof. Let f(z) € Cg(a, p), then we can write

1 1 1

- — | < —.
efG(z) 2a| 2a

This can be written as

1 1 - 1 2a - e?G(2) 1
eBG(z) 2a 2a 2ae8G(z) 2a

|2a —¢? G(z)|2 < (e‘ﬁG(Z))2

(2a —¢? G(z)) Qa - e8G(z)) < (e‘ﬁG(Z)) (€¥G(2))
(2a — P G(z)) (2a - e“ﬁm) < (e‘ﬁ G(Z)) (e‘Lﬁ@)
4a” - 20| G(2) + € G(2)| + GRIGR) < G(IGR)
4a” - 2a[eG(2) + €°G(z)| < 0

2a [2a/ -R (e"BG(z))] <0

2a - 2R (e"BG(z)) <0

) Zf(”“)(z)

¢t ¢ ¢ ¢ ¢ ¢ O

()

This completes the proof.

0,
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Theorem 3.9. If f(z) € A(p) satisfies

Z(p+n) {n+1+|(n+1)—2ae‘

n=1

apip| < 1= |1 = 2ae™ (3.8)

}

for some |B| < 5 and 0 < a < cos B, then f(z) € Cg(a, p).
Proof. To prove that f(z) € Cg(a, p) we need to prove that

2a — e*G(2)

e | <! (3.9)

(p+1)
for some |6] < 2,0 < @ < 1, where G(z) = 1 + szi’p)(z()z)_

For this consider the left hand side of (3.9), we have

2ae™ b fP)(z) — (f(p)(z) + Zf(p+1)(Z))
(fP(z) + zfP*D(2))

20e7 — 1+ X7 L5 (n + 1) aye 206 — (n + 1)

(p+n)! 2
L+ 1<5+'11>~ n+1)

1= 2ae™|+ 2o, &3 |(n+ 1) ey

1=y, g,y )2

n=1 (n+l)!

2a - e$G(2)
eBG(2)

an+p|
|(n+1) - 2ae™|

an+p|

The last expression is bounded above by 1 if

Z PED g D age ||+ 1) = 206

1)'
_Z(P+n) L1
1)’

for some |B| < 7 and 0 < a < 1. After simplification, inequality (3.10) can be written as

|1 - 2ae™| +

| (3.10)

i(’””) (n+ 14|+ 1)-2ae|)

n=1

a,,+p| < 1—|1—2ae b

This completes the proof. O
When we take p = 1, we have the following known result given in [13].
Corollary 3.10. If f € A satisfies

i{ n+|n—2a/e

n=2

Wlau < 1|1 = 20e™|

Jor some |B| < 5 and 0 < @ < cos B, then f € Kg(a).
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Taking p = 1, 8 = 0 in above theorem we have the following result given in [12].

Corollary 3.11. Let 0 < a < 1. If f € A satisfies the following coefficient inequality

o o (0<as<li)
Zn(n—a/)lan|§%(1_“_2&'): 3
n=2 1-a; (%<a/<1)

then f(z) € N(a).
Taking 8 = 7 in above Theorem we have the following result.

Corollary 3.12. If f(z) € A(p) satisfies

an+p|

> (”;”)! (n+ 1+ \/(n+ 1 = 2V2a(n + 1)+4a/2)

n=1

< 1- \/1 —2V2a + 4a?
for some 0 < a < 2, then f(z) € Sz (a, p).
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