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1. Introduction

Fractional models, in which a standard time or space differential operator are replaced by a cor-
responding fractional operator, have gained considerable popularity and importance during the last
few decades, although fractional calculus is an old topic in mathematics, see [1] for historical notes.
Fractional calculus is now used to describe a broad range of non-classical phenomena in the applied
sciences, engineering, and finance due to the intrinsic non-local property of fractional derivatives, for
example, the filtration of solutes in porous soils [2], diffusion of water molecules in brain tissues [3],
electrical charge transport in polymer networks [4], the relationship between certain option pricing
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and heavy-tailed stochastic process [5], anomalous diffusion process for continuous time random walk
models [6].

It is well known that the derivation of the analytical solutions to the fractional differential equations
is generally difficult and computation of them is very expensive due to infinite series in the analyti-
cal solutions. On the other hand, the implementation of numerical approaches to solve the fractional
differential equations also has essential difficulties and challenges due to the non-local nature of the
fractional operators (space fractional) and the dependence on the full history (time fractional). How-
ever, in recent years, a number of successful numerical approaches for fractional differential equations
have been considered such as finite difference methods [7, 8, 9, 10, 11], spectral methods [12, 13], finite
element methods [14, 15, 16, 17], and discontinuous Galerkin methods [18, 19]. Many of these ap-
proaches have limitations in terms of computational efficiency when two and three spatial dimensions
are considered. Recently, Yang et al. in [20] proposed a new approach using a matrix transfer technique
with finite difference and finite element methods to solve the time-space fractional diffusion equation
in two spatial dimensions with homogeneous Dirichlet boundary conditions. The solution is advanced
in time by computing the function of a matrix times a vector by the preconditioned Lanczos method.
This concept was also considered in [21] using the finite element method in space and a semi-implicit
Euler approximation in time. The computation of the fractional power of a matrix times a vector was
done by the contour integral method, the extended Krylov subspace method, and the preassigned poles
and interpolation nodes method.

We here concern ourselves with the following fractional-in-space phase-field models:

e Allen-Cahn type

u,+(—A)°‘u+éF'(u) =0 inQ x (0,7), (1.1a)
u = gP inI'? x (0,T), (1.1b)
g—” = gV in IV x (0,T), (1.1¢)
n
u(x,0) = up(x) in Q. (1.1d)
e Cahn-Hilliard type

w = Aw inQx (0,7), (1.2a)
w o= (—A)au—I—éF/(u) in Qx (0,T), (1.2b)
u = g° in I x (0,T), (1.2¢)

ou ow N
5 = 3, =0 in IV x (0,7), (1.2d)
u(x,0) = up(x) in Q. (1.2e)

The function F in (1.1) and (1.2) represents a configuration potential which may have two (or more)
wells. The general form of F is given by

F(v)=r(v)— %\/2, (1.3)
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where r(-) is a function and A > 0 is a constant. Upon the smoothness of the function r(v), several types
of significant choices have been proposed for F. For instance, the non-smooth logarithmic potential is
[22, 23, 24, 25]

F(v):g[(1+v)1n(1+v)+(1—v)ln(l—v)} —%vz (1.4)

with 0 < 8 < 6., where 0 and 6, are the absolute temperature and the transition temperature, respec-
tively. The smooth and convex one is the standard double-well potential [26, 27], namely,

1
F(v)=( 212 (1.5)
It is an approximation of the logarithmic potential in case the absolute temperature 0 is close to the
transition temperature 0.
Then, f(v) := F (v) = v(+? — 1) represents the bistable non-linearity for the double-well potential
(1.5), whereas f(v) = gln (%) — 0.v is for the logarithmic free energy (1.4). Further, the fractional-

in-space phase-field models (1.1)-(1.2) can be viewed as the gradient flow of the energy

Il(v):/ﬂ(%|Vv|(2a)+%F(v)> dQ. (1.6)

In problem (1.1)-(1.2), u represents the concentration of one of the species of the alloy, w is the
chemical potential, the parameter € represents the diffuse interface width parameter, Q C R¢(d =
1,2,3) is a bounded domain. The operator (— A) * denotes the fractional operators of order o € (0.5,1],
see, e.g., [28, 29, 30].

The system (1.1) (or the system (1.2)) with o = 1, is known as a scaled in time form of the Allen-
Cahn (or Cahn-Hilliard) equation. The Cahn-Hilliard equation was originally introduced by Cahn and
Hilliard in [31] to describe the phase separation and coarsening phenomena in a melted alloy, whereas
the Allen-Cahn equation was introduced by Allen and Cahn in [32] to describe the motion of anti-
phase boundaries in crystalline solids. The Allen-Cahn/Cahn-Hilliard equations are essential building
blocks in the phase field methodology or the diffuse interface methodology for moving interface and
free boundary problems, see, e.g., [33, 34]. Both equations are particular cases of gradient flows,
written as u; — — 8};&") , where @ stands for the variational derivative of the free energy, either taken
in the L?-norm for Allen-Cahn or in H~'-norm for Cahn-Hilliard. Since the Allen-Cahn/Cahn-Hilliard
equations are gradient flows of the energy functional, the total energy is always non-increasing for
both model equations. On the other hand, the Cahn-Hilliard model has a mass conservative property
in contrast to the Allen-Cahn model.

There are several challenges for obtaining numerical approximations of these problems such as
the existence of a nonlinear term and the presence of the small interfacial length parameter €. An
appropriate numerical scheme requires a proper relation between physical and numerical scales, that
is, the size of spatial mesh /4 and time step T have to properly be related to the interaction length
€. In the literature, the classic Cahn-Hilliard equation has been studied with well known methods like
spectral methods [35, 36], collocation methods [37], finite element methods [22, 38, 39], discontinuous
Galerkin methods [39, 40, 41, 42], whereas the classic Allen-Cahn equation has been investigated in
[43] for finite element methods, and in [44, 45] for discontinuous Galerkin methods. The resulting
system obtained after the spatial discretization is an inherently stiff system due to the small positive
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parameter €. This is then handled by appropriate temporal discrimination methods, such as the implicit
approximations (which are not energy-stable) [26, 27], the implicit-explicit (IMEX) techniques (which
do not introduce any numerical dissipation) [46, 47, 48, 49], and the average vector field (AVF) method
[45, 50]. In addition, in order to obtain unconditionally energy-stable schemes, splitting of the potential
F(v) into a convex and a non-convex part [51, 52, 53, 54, 55], Taylor’s formula [56] and a Lagrange
multiplier formulation of the potential term [57, 58] are considered.

Recently, there has been a fast increasing number of studies on front propagation of reaction dif-
fusion systems with an anomalous diffusion as super diffusion, i.e., the fractional Allen-Cahn/Cahn-
Hilliard equations. A reason for considering the fractional system (1.2) can be proved by observing that
the Laplace operator (1.2b) in the Cahn-Hilliard equation [31] was actually replaced by a spatial convo-
lution term in order to describe long-range interactions among particles. Due to analytical reasons, this
nonlocal term has been substituted with the term —Au. However, the use of the fractional Laplacian
(— A)au appears to be more adherent to the physical setting. The analysis of nonlocal Allen-Cahn
and Cahn-Hilliard models has been studied in [59, 60, 61, 62, 63]. Especially, the fractional models
offer insight that traditional approaches do not offer, such as in the case of diffusion in heterogeneous
environments. Such super diffusion is related to Lévy processes and can be modeled by a fractional
operator (—A)% with 0.5 < o < 1. Tli¢ et al. in [66] showed that the fractional Laplace operator (—A)%
has the same interpretation as (—A) in terms of its spectral decomposition for homogeneous boundary
conditions. Further, the matrix transfer technique was introduced in [28, 29] to compute the fractional
Laplacian by first computing a matrix representation of the Laplace (independent of the discretization
approach) and then raising it to the fractional order. It is noted that the fractional Laplacian (—A)% is a
nonlocal operator and any approximation of it results in a large dense matrix. However, the sparse ap-
proximation of (—A) can be captured directly in numerical implementations, when the matrix transfer
technique is applied.

We here solve the equation of the form (1.1) or (1.2) by computing the fractional power of a ma-
trix times a vector. To compute the fractional power, the contour integral method proposed in [30]
is applied. It is expected that the fractional reaction-diffusion models as (1.1) or (1.2) with smaller
fractional order exhibit more heterogeneous environments. In addition, the sharp gradients and sin-
gularities emerge locally for small values of the parameter €. To handle these difficulties, we apply
the symmetric interior penalty Galerkin (SIPG) method as a discontinuous Galerkin method for the
spatial discretization. In contrast to continuous finite elements, the space of solutions or test functions
in discontinuous Galerkin methods consist of piecewise discontinuous polynomials. That is, no con-
tinuity constraints are explicitly imposed on the state and test functions across the element interfaces.
In this way, the SIPG approximation allows to capture singularities locally. They also allow the use of
highly nonuniform and unstructured meshes, and have built-in parallelism which permits coarse-grain
parallelization. In addition, the fact that the mass matrices are block diagonal is an attractive feature
in the context of time dependent problems. Further, the fact that methods of this kind are locally con-
servative, which is a particularly relevant feature in the realm of numerical approximation of nonlinear
hyperbolic conservation laws. On the other hand, the implicit-explicit (IMEX) methods are applied for
the temporal discretization. In order to save computational cost we have addressed an adaptive-time
stepping algorithm based on the difference between the first order IMEX method and the second order
IMEX method.

The remainder of this paper is organized as follows: in the next section, we introduce the symmetric
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interior penalty Galerkin (SIPG) method as a discontinuous Galerkin discretization. In Section 3, we
review the contour integral method, which allows us to approximate the fractional Laplacian by a
fractional power of a matrix. The implicit-explicit methods are given in Section 4 for the temporal
discretization. Also, an adaptive-time stepping algorithm is addressed to reduce the computational
cost. In Section 6, several numerical examples are presented to show the effect of the fractional power.
The paper ends with some conclusions and remarks.

2. Symmetric interior penalty Galerkin (SIPG) discretization

In this section, we introduce the symmetric interior penalty Galerkin (SIPG) discretization as a
discontinuous Galerkin (DG) method. It is chosen due to the symmetric property of its bilinear form,
i.e., ap(y,v) = ap(v,y), see, e.g., [67].

We begin with the continuous weak formulation of the classical Allen-Cahn equation by choosing
oa=1

u,—Au—{—%f(u):O inQx (0,T). (2.1)

Then, find u(r) € U such that

(ur,v)+a(u,v)=1(v) YweV, te(0,T], (2.2a)
(u(-,0),v) = (uo,v) Y ev, (2.2b)

where the space of solutions U, and the space of test functions are defined by
U={ucH (Q): ulp=4g"}, V={veH' (Q): v|p =0},

and the (bi)-linear forms are given by

a(u,v):/Q(Vu-Vv) dx, and [(v) :—/Qéf(u)v dx.

We assume that the domain Q2 is polygonal such that the boundary is exactly represented by bound-
aries of triangles. We denote {7}, as a family of shape-regular simplicial triangulations of Q. Each
mesh 7j, consists of closed triangles such that Q = J KeT, K holds. We assume that the mesh is regular
in the following sense: for different triangles K;,K; € 7, i # j, the intersection K; N K is either empty
or a vertex or an edge, i.e., hanging nodes are not allowed. The diameter of an element K and the
length of an edge E are denoted by /g and hg, respectively.

We split the set of all edges E;, into the set Z}? of interior edges, the set E;? of Dirichlet boundary
edges, and the set ‘E}lv of Neumann boundary edges so that £, = Zf U ZI}? with Z}f = ZI}? U Z}]lv . Let
the edge E be a common edge for two elements K and K*. For a piecewise continuous scalar function
u, there are two traces of u along E, denoted by u|g from inside K and u¢|g from inside K¢. The jump
and average of u across the edge E are defined by:

1
[u]] = uleng +u|gnge,  {ul} = 5 (ule +ul|E), (2.3)
where ng (resp. nge) denotes the unit outward normal to 0K (resp. 0K¢).
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Similarly, for a piecewise continuous vector field Vu, the jump and average across an edge E are
given by

[Vul] = Vulg -ng + Vu|g -nge, {Vul} = (Vu]E + Vue]E) (2.4)

For a boundary edge E € KNT', we set {Vu}} = Vu and [[u]] = un, where n is the outward normal unit
vectoron I'.

For continuous finite element methods (FEMs), the idea is to approximate (2.1) using a conform-
ing, finite dimensional space Vj, C V. On the other hand, we point out that in discontinuous Galerkin
methods the space of solutions or test functions consist of piecewise discontinuous polynomials. That
is, no continuity constraints are explicitly imposed on the state and test functions across the element
interfaces. As a consequence, weak formulations must include jump terms across interfaces, and typi-
cally penalty terms are added to control the jump terms. Then, we define the spaces of test functions,
of the solutions by

Vi=Uy={uel*Q): ulkcP(K) VKeTL}, (2.5)

where P"(K) is the set of polynomials of degree at most r in K. Note that the space U}, of discrete solu-
tions and the space of test functions V}, are identical due to the weak treatment of boundary conditions
in DG methods. Note also that the space V}, is non-conforming such that V;, ¢ V.

Now, we are ready to set up the SIPG discretization of the continuous weak formulation (2.1).
Multiply (2.1) by a test function v € V},, and then integrate over each element K € ‘7,

Z/ utv—Auv dx—— Z u)v dx.

KeT, KeT,

An application of integration by parts on each element integral and the definition of the jump operator
give us

Z/ utv—I—Vu Vv) dx — Z /[[vVu]] ds

KeT, EerduzpE
:—Z/ vdx+2/gvds
KeT, EcE)

The following equality
[vVul = {Vul}- V] + [Vul - v},

which one can verify easily and the fact that [Vu]] = 0 (u is assumed to be smooth) yield

Z/ utv+Vu Vv) dx — /{{Vu}} vl d

KeT, Eeth‘E,
:—Z/f vdx—l—Z/gvds
KeT, EcEl
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To handle the coercivity of the left hand side and control the jump terms, we add the following equali-
ties via [[u]] = 0 on the interior edges E € E

Y [avehlaas = ¥ [ qvepas

Eeth‘Eh E€T)
(&)
L = [l b s = i = [ & bd

where G is the penalty parameter, which should be chosen sufficiently large to ensure the stability of
the SIPG scheme, see, e.g., [67].

Then, the weak formulation of the Allen-Cahn equation (2.1), discretized by the SIPG method reads
as: find uy, € Uy, such that

8uh

(a—t,v) + ap(up,v) = Ih(v) YveV, te(0,T], (2.6a)

(un(+,0),v) = (uo,v) Vv € Vp, (2.6b)

where the (bi)-linear forms are given by

(wv)=Y / (Vu-Vv)dx— Y, /({{Vu}}[[v]]—i—{{Vv}}[[u]]) ds

KeTy i E€E)UEP |
o
+ — [ [u] - [V] ds, (2.7a)
EEE,Z?EJED he /
Z/ —flu)vdx+ Z / [v] {Vv}} ds+ Z /g vds, (2.7b)
KeTyx EcEP EcEY

and u,(+,0) is a Lp-orthogonal projection of the initial condition ug onto Uj,.
Analogously, the weak formulation of the classical Cahn-Hilliard equation (o = 1 in (1.2)), dis-
cretized by the SIPG method reads as: find uy (), wy,(t) € Uy, such that

(%,V) +ap(wp,v) =0 YWweV, te(0,T], (2.8a)
—(wn,vi) +an(up,v) = h(v) Vv eV, te(0,T], (2.8b)

(un(-,0),v) = (uo,v) W € V. (2.8¢)
For each time step, we can expand the discrete solutions as
N np . .
-y Z Ui, wilt) =) ), Wi, (29
i=1j= i=1j=1

where U ]’:,W}, and ¢§ are the unknown coefficients and the basis functions, respectively, for j =
1,2,---,npand i = 1,2,---  N. The number N denotes the number dG elements and n, is the local
dimension of each dG element with

L+ 1)(p+2)
I 2 )
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where p is the degree of the polynomial order.
Inserting (2.9) into (2.6) and (2.8), we obtain the semi-discrete formulations of the Allen-Cahn
equation

du
E-I-M_'LU:M_]B(U), (2.10)
and of the Cahn-Hilliard equation
dUu
E+M*1Lw = 0, (2.11a)
~-W4+M'LU = M 'B(U), (2.11b)
where U,W are the unknown coefficient vectors U = (Ull,--- ,Unlp,m ,U]\lj,--- ,U,i\;), W =
(Wll,--- ,Wnlp,--- ,WAI,,--- ,W,{Z ), M is the mass matrix, L is the stiffness matrix corresponding to

an(u,v), and B(-) is the nonlinear vector of the unknown coefficient vector U corresponding to /;(v).

We are now ready to employ the matrix transfer technique introduced in [28], which states that
the error introduced by approximating the fractional Laplacian by a fractional power of the matrix
A = ML converges at the same rate as the underlying discretization method. Then, the fractional
Laplacian operator is approximated as [20, p. 1162, eqn. (2.2)]

(—A)%u ~ AU. (2.12)

In the following section, we employ the contour integral method introduced in [30] to compute the
fractional power of A times a vector.

3. Contour integration method (CIM)

In this section, we review the contour integral method, which allows us to approximate the fractional
Laplacian by a fractional power of a matrix. An analytic function & of a square matrix A can be
represented as a contour integral in the complex plane [68, Definition 1.11]

h(A) = % /F h(z)(zI—A)~ldz, (3.1)

where i = +/—1, and I is a closed contour lying in the region of analyticity of 4 and enclosing the
spectrum of A. Then, a numerical quadrature method is applied to the integration (3.1) to approximate
h(A).

We here compute the vector #(A)b for a given vector b by using the definition (3.1) with the tech-
nique proposed in [30]. The basic principle is based on an application of the midpoint rule over a
circle contained within an annulus whose outer boundary maps to the interval (—oo,0] and whose inner
boundary maps to the interval [A;, Ay], which are the eigenvalues of A, see Figure 1 (taken from [21]).

Then, the vector #(A)b is computed via the following quadrature formula

g
h(A)b~TIm ) w;i(nI—A)"'b, (3.2)
i=1
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.

Figure 1. Conformal map from the annulus (left) to the domain C\{(—ee,0] U [A1,Ay]}
(right). The quadrature points in the CIM denoted by the dots. See, [21] in details.

where the weights and shifts are denoted by w and 1, respectively, and n, is the number of quadrature
points.

The SIPG discretization of the Dirichlet problem provides a nonsingular and real-symmetric ma-
trices L and M. Then, by using the symmetry property of these matrices, we can integrate over only
the upper half the contour. The algorithm based on the method in [30] is given in Algorithm 1. In the
algorithm, we use the routines ellipkkp and ellipjc, which are described in [69] to compute complex

arguments.

Algorithm 1 CIM for computing A* for the Dirichlet problem

1: 1 =eigs(L.M,1,SM’); 11 =1(1);
1 =eigs(L,M,1;LM’); IN =1(1);
k = (sqrt(IN/11)-1)/(sqrt(IN/11)+1);
[K Kp] = ellipkkp(-log(k)/pi);
t = .51*Kp-K+(ng-.5:-1:0)*2*K/nq;
[sn cn dn] = ellipjc(t,-log(k)/pi);
xi = sqrt(11*IN)*(1/k+sn)./(1/k-sn);
dxidt = cn.*dn./(1/k-sn). " 2;
wts = h(xi).*dxidt;
v = zeros(length(b),1);
: fori=1:n,do
y = (xi()*M-L)\ (M*b);
v =V + wtj(j)*y;
end for

R U

— e e e
AN R A

% min. eigenvalue of A
% max. eigenvalue of A
% a convenient constant
% elliptic integrals
% midpoint rule points
% jacobi elliptic functions
% quadrature nodes

% derivative wrt t
% quadrature weights

% 1nitialize output

% update solution vector

v =-4*¥K*sqrt(11*IN)*imag(v)/(k*pi*nq); % scale the solution

However, many applications require Neumann-type boundary conditions. As done in the Dirichlet

problem, a contour I' surrounding the eigenvalues of A cannot be found. Therefore, the Algorithm 1
should be modified to compute (3.2). Burrage et al. in [21, Sec. 4] handle this problem by adding a
correction term. It is shown in Algorithm 2. The first line of the Algorithm 2 yields the first non-zero
eigenvalue of the matrix A.
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Algorithm 2 CIM for computing A* for the Neumann problem

1: 1=eigs(L,M,3,SM’); 11 =1(1); 9% min. eigenvalue of A
2: I =eigs(LM,1,;LM’); IN =1(1); % max. eigenvalue of A
3:

4: v = -4¥K*sqrt(11*IN)*imag(v)/(k*pi*nq); % scale the solution

5. e = ones(length(b),1);

6: v=v+ (e *(M*(b-v)))/(e’*M*e)*e; % corrector term

4. Implicit-explicit schemes

After spatial discretization of the phase-field models, the leading system is typically stiff for small
values of the parameter €. Explicit methods are not suitable for stiff systems, whereas implicit methods
require the solution of nonlinear equations at each time step. Therefore, the implicit-explicit IMEX)
method can play an important role for such problems, see, e.g., [70, 71]. In such a procedure, the
Laplacian term is discretized implicitly in time and the nonlinear terms are discretized explicitly. This
can also be recognized and analyzed as a splitting technique. In addition, it typically allows for a larger
time step than explicit methods, while avoiding the use of nonlinear solvers.

We first divide the time interval [0, T] as follows

O=tn<n<---<ty,=T

with the time step size T, =1, —t,—1, n=1,2,--- ,Nr. Then, we can consider the first- and second-
order IMEX approximations of the following system of ordinary differential equations (ODEs) for the
Allen-Cahn model

dU

EJFA“U:M*IB(U) (4.1)
and for the Cahn-Hilliard model
dU
——+AW =0 4.2
T ; (4.2a)
~W4+AU = M B(U). (4.2b)

4.1. First-order implicit-explicit scheme
We here consider the semi-implicit scheme as a first-order IMEX scheme:
e The Allen-Cahn model (2.10)

Un-H _yn
AN =M IBUM). (4.3)

Tn

e The Cahn-Hilliard model (2.11)

n+l _ yrn

U =0 awm = o, (4.42)
T
Aoyt —wrtt — MEIB(UM). (4.4b)
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4.2. Second-order implicit-explicit schemes

The modified Crank-Nicolson/Adams-Bashforth scheme is applied for the Allen-Cahn model:

1 1
+A°‘(19—6U"+1 + %U” + gU’H) = %MIB(U”) — EM’IB(U”’I), (4.5)

Un+1 —_yn
Tn

while the Crank-Nicolson/Adams-Bashforth scheme is applied for the Cahn-Hilliard model:

n+l __ g

T awt = o, (4.60)
1 3 1
5AO‘(U”“+U”)—W”+1 = EM’lB(U”)—EM’IB(U”’l). (4.6b)

Remark 4.1. In our numerical simulations, we use two different matrix functions h(z) to compute the
fractional matrix A%, which is formed on both left-and right-hand side of the IMEX schemes. When we
first apply the Laplace transform and then Laplace inversion to the ODE system (2.10) or (2.11), the
matrix function h(z) is defined in terms of an exponential function, see [72]. Then, we have h(z) as

1
h(z)=—
) exp(1z%)
for the left-hand side. Note that the fraction is due to inversion in the IMEX schemes. On the other
hand, for the right-hand side, we choose as h(z) = z* as was done in [30].

Remark 4.2. The phase-field models such as Allen-Cahn equations and Cahn-Hilliard are obtained
as gradient flows of an energy functional. Therefore, the total energy is always non-increasing for both
model equations in the continuous setting. In our numerical simulations, we show the non-increasing
property of the energy. However, it can not be justified at a theoretical level due to the explicit treatment
of the nonlinear terms.

4.3. Time-step size adaptivity

For small values of the parameter €, the transition layer moves slowly and then an inordinate number
of time steps is required to resolve the dynamics response of the fractional-in-space phase-field system.
To reduce the amount of work, adaptivity in time should be used. Our time-step size adaptivity is
based on the ideas presented in [73, 74]. To update the time-step size, we use the difference between
two solutions, which are a predictor and a corrector. The first-order IMEX schemes are chosen as a
predictor, whereas the second-order IMEX schemes are chosen as a corrector. The time-step adaptive
algorithm is presented in Algorithm 3. To update the time-step size, we use the following controller

. Tol\'/?
Tpr1 =P ( ) T, 4.7)

€n

where p is a safety coefficient, which is introduced to reduce the probability of rejecting T, ;. In

numerical examples, we take p = 0.9 as suggested in [75]. The parameter Tol determines the required
accuracy of the numerical solution. The impact of Tol on the number of times steps will be studied in
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Section 6. Finally, to avoid a strong increase or decrease of subsequent time steps, we use the following

formula as proposed in the deterministic framework [76]

A(en,Tn) = min{SpmaxTn, MaX{SminTn, Ty 1} }-

(4.8)

In numerical simulations, s,,; = 0.1 and s,,,, = 2 are used. A step size is accepted if e, < Tol,

otherwise it is rejected.

The time-step size adaptivity allows us to reduce the computation time by factors of hundreds

compared to the uniform step size.

Algorithm 3 Time-step adaptive algorithm

1: Given Uy, Tg, Tol
2: forn=1,2,---Nr do
3. Compute P, using a first-order implicit-explicit scheme.

4:  Compute C, using a second-order implicit-explicit scheme.
5. Calculate ¢;,, = ”Cﬂlc_ ﬁ”” .

6: Setreject =0. ’

7. if e, > Tol then

8: Recalculate time-step size T, < A(ey,Ty).
9: Update reject = reject + 1.

10: goto step 3.

11:  else

12: Update time-step size T,+1 = A(en,Tn)-
13: continue

14 end if

15: end for

5. The discrete energy stability

In this section, we show the discrete energy stability property of the fractional Allen-Cahn equation
(1.1) with the double-well potential (1.5) as done in [81]. After being semi-discretized in space, the

following ODE system is obtained

U oaws iy =
dt-l—AU—i-e(U U)=0.

If we define the semi-discrete energy as:

1 1
Fu(U) = EZ(U,.2 —1)*+ EUTAO‘U,

i
then the ODE system (5.1) can be viewed as the gradient flow of the energy £,(U), i.e.,

dUu

& v, U).
dr vE(U)

5.1

(5.2)

(5.3)
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Taking the L? inner product of (5.3) with —ij—l{ gives us

d‘Zh(U) dU 2
—||l—15<0 54

which implies that the energy is non-increasing. Now, we show that this energy stability can be inher-
ited by the first-order scheme (4.3).

Theorem 5.1. Under the assumption T < ¢&/2, max |ug(x)| < 1, and || (I+14%) - ||lo < 1, the numerical
xeQ

solutions obtained by the scheme (4.3) can guarantee the discrete energy property, i.e.,

EnnU™) < B (U™ Yn=0,1,..., (5.5)
where . .
Tin(U) = 3o L (U7 = 1)7+ SUTA". (5.6)

i
Proof. We show the maximum principle property of the first-order scheme (4.3) by induction. First, we

have ||U°||. < 1 from the assumption. Now, we assume that the result holds for n = m, i.e., |U" || < 1.
Next, we show that it is true for n = m+ 1. It follows from the numerical scheme (4.3) that

(122Ut = v (U - U). (5.7)

Each element of U™ + (U™ — (U™)?) is of the form

Then, the following statement holds
g () =1 +g(1 ~33) >0,  Vre|-1,1]

provided that 0 < t < ¢&/2. It implies that |g(x)| < 1 for |x| < 1. As a result, we obtain |U™ +
L(U™—(U™?) || < 1if [[U™]o < 1. This, together with the assumption, completes the induction.
Consequently, we have

IU"w<1 VYu=0,1,.... (5.8)

Now, using the maximum principle we show the discrete energy decay property of the scheme (4.3).
Taking the difference of the discrete energy between two time levels, we obtain

B0 = BaaU") = X (072 =1)" = (012 -1)?]
_|_§ ((Un—l—l)TAocUn-H _ (Un)TAOLUn) )

The application of the L? inner product of (4.3) with (U™ —U") " yield
(Un—H _ Un)T (Un—H _ Un) —|—’C(Un+1 _ Un) TAOLUn—H + g (Un—H _ Un)T ((Un)3 . Un) 0.

AIMS Mathematics Volume 3, Issue 1, 66-95



79

The following equality holds

(Un—H _ Un) TA(xUn—H _ Un—H T a0+l _ (Un)TAOLUn)

1
5 ((
+% ((Un—i-l Un)TAOL<Un+1 o Un)) )

We note that :
2 (@ =12 == 1)%) < (0’ —b)(a—b)+(a—b)’

for all a,b € [—1,1]. An application of the above inequality and the property ||[U" || <1 Vr=0,1,...

yields

fh,n(Un+1) — ‘Zhyn(Un) < Z [ (U"+1 Uzn) + (Uin+l - Uin)z]

+§ ((Un+1>TA0LUn+1 i (Un)TAocUn)

R MCASA

_% ((Un—H _ Un)TAOL(Un—H _ Un)) )

We know that the matrices L. and M are real and symmetric. Also, L. is nonnegative definite, and M is
positive definite. Moreover, the nonnegative definiteness of L implies xTM~1/2AM!/2x > 0 so that A
is also nonnegative definite.

With the help of the nonnegative definiteness of A and the assumption T < €/2, the desired result is
obtained. O

6. Numerical results

In this section, we investigate the performance of our spatial and temporal discretization strategies
for the fractional-in-space Allen-Cahn/Cahn-Hilliard equations. To achieve the required accuracy for
all examples, 50 quadrature points are used in the contour integral method described in Section 3. We
use piecewise linear polynomials to form the SIPG discretization in space in all numerical experiments.
The penalty parameter ¢ in the SIPG discretization is chosen as 6 = 6 on the interior edges E” and ¢ =
12 on the boundary edges 9. 1f not specified, all examples are implemented on a mesh, constructed
by first dividing Q into 32 x 32 uniform squares and then dividing each square into two triangles.

We note that the reliable performance of the phase-field computations demands long simulation
time, it is critical to understand the stability properties of the underlying numerical schemes. However,
our simulations end with the small final time since our model problems (1.1) or (1.2) are scaled versions
of the original Allen-Cahn/Cahn-Hilliard equations.

6.1. Allen-Cahn model
6.1.1. Motion of a circle with double-well potential
We first consider a motion of a circle on the domain Q = [0, 1] x [0, 1] with the double-well potential

(1.5), taken from [77] in order to show the order of convergence. Suppose a radially symmetric initial
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condition is given as follows:

0.25— 1/(x—0.5)2+ (y—0.5)2
V2e ’
which represents a circle centered at (0.5,0.5) with a radius Ry = 0.25. Tt is well known that the

solution with the initial condition uo(x,y) is radially symmetric and the radius of the interfacial circle
shrinks by the rate of the curvature of the circle. The rest of problem data are

uo(x,y) = tanh

0Q=1" =0, e=0.01.

Since the fractional-in-space Allen-Cahn equations (1.1) do not have exact solution, we choose a
reference numerical solution 7, ; as the exact solution in order to compare with the corresponding
coarse time- or space-stepping approximations. The reference solutions are computed on the mesh,
which is constructed by first dividing s X s uniform squares and then dividing each square into triangles
and at the final time 7 = 0.0256. The uniform time-stepping size is chosen as T = T'/s. Here, the
reference solution iy, ; is computed by taking s to be equal to 64.

Table 1 shows the L;-norm error and convergence rate of various fractional orders, i.e., 0t =
1,0.88,0.64, at T = 0.0256 by applying the first order IMEX scheme (4.3). The rate of convergence is
independent of the fractional order a. The results are similar to the observations in [59].

Table 1. Example 6.1.1: Error results on the L, norm and convergence rates, where the
reference solution iy, ¢ is computed with s = 64 at T = 0.0256.

s o=1 o =0.88 o =0.64
|ldne—unz|| Rate | ||l —upe| Rate | ||dpr—upz|| Rate
4 | 1.144e-1 - 2.432e-1 - 3.408e-1 -
8.127e-2 0.49 | 1.356e-1 0.84 | 2.364e-1 0.53
16 | 3.981e-2 1.03 | 6.789%¢-2 1.00 | 1.217e-1 0.96
32 | 1.634e-2 1.28 | 3.029e-2 1.16 | 5.546e-2 1.13

6.1.2. Dumbbell example with double-well potential

We now consider a dumbbell example, taken from [78], with the double-well potential (1.5). The
data of problem are

Q=[-1,11, aQ=I", ¢¥=0, €=00025 15=5x10">,

with the following initial condition

tanh (2 ((x—0.5)2 +y2 — (0.39)2)>, if x> 0.14,
up(x,y) =4 tanh (22— (0.15)2)), if —0.3<x<0.14,
tanh (3 ((x+0.5)% + % — (0.25)22)), if x < —0.3.
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Figure 2. Initial condition of Example 6.1.2.

t=0.00353 t=0.03878 t=0.07967 t=0.11738
t=0.00748 t=0.07001 t=0.13154 t=0.18281
t=0.03605 t=0.15459 t=0.26674 t=0.37035

Figure 3. Example 6.1.2: Diffusion power o = 1,0.9,0.8 (from left to right) with Tol =
1073,
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Figure 4. Example 6.1.2: Energy function versus time (left) and time-step size versus time
(right) with Tol = 1073,

(x=1 (X=O.9 (x=0.8
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-4
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0.2 0 0.1 0.2 0.3 0.4
time time time

10 : : 107 : : 10

Figure 5. Example 6.1.2: Evolution of the length of the time steps with various Tol parame-
ters.

Figure 2 displays the initial condition g, which is a dumbbell shape with unequal bells. The
snapshots of the solution of the fractional-in-space Allen-Cahn equation in time are displayed for
various fractional powers (o« = 1,0.9,0.8) in Figure 3. With standard diffusion, i.e., o = 1, we see that
the curvature drives towards a circle (constant curvature) in time. The motion of smaller fractional
powers is similar, although the rate is slower.

The behaviour of the numerical value of the energy function (1.6) and the adaptive time-step size
are displayed in Figure 4 with the tolerance parameter Tol = 10~3. The energy function (1.6) decreases
in time for all cases. Reducing the fractional power increases the required time to reach the metastable
state. For parameters Tol € {5.1073,1073,5.10~*}, the evolution of the length of the time step is
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shown in Figure 5. The time-step size oscillates for smaller fractional powers, when the tolerance
parameter is large. In addition, the number of time steps increases with decreasing the Tol and the
fractional power QL.

Table 2. Example 6.1.2: Number of time steps (total, rejected) for o =1,0.9,0.8 with various
tolerance parameters.

Tol a=1 a=0.9 a=0.8
Total Rej. | Total Rej. | Total Re;.
5.1073 | 99 16 143 22 | 288 45
1073 [174 2 194 2 3125
51074 (290 2 307 2 500 2

Table 3. Example 6.1.2: Number of time steps for adaptive and uniform time-step size
approaches with Tol = 1073.

o | # Adaptive time-steps | # Uniform time-steps
1 174 2348

0.9 194 3657

0.8 312 7408

The number of time-steps is given in Table 2 with various tolerance parameters. It can be seen
that the number of rejected time-steps is increasing for small fractional powers with large tolerance
parameter. Table 3 also shows the performance of the adaptive time-step size with respect to the
uniform time-step size, i.e., T=5 x 107>, As expected, the time-step size adaptivity allows us to

reduce the computing time compared to the uniform time-step size.

Table 4. Example 6.1.2: Values of the coefficients a and b in the form ar—" for the various
values of the o in the adaptive time refinement.

o=1]0=09 | a=0.8
a| 20.57 | 21.93 20.73
b| 0232 | 0.164 0.119

Now, we investigate the coarsening rate of the Allen-Cahn equation with respect to changes of the
fractional power. To measure this quantity, we consider the rate of change of the energy density, as
done in [79, 80]. The rate of change of the energy with respect to time is considered as the form of
at~", where t represents the time. The coefficients, i.e., a and b, are computed by using the following
commands in MATLAB®:

f =fittype('a*x"(-b)’);
cfun=fit (time,enerqgy, f,’Startpoint’, [10,-1/3]);

Table 4 shows the values of the coefficients a and b obtained for the various values of the o in the
adaptive time refinement. As the o decreases, the values of the coefficient b also decreases, which
means that the decay of the energy decreases.
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t=0.00341 t=0.02731 1=0.04496 t=0.10277

t=0.00784 t=0.05702 t=0.08254 t=0.16351

t=0.02583 t=0.11562 t=0.16211 1=0.29632

t=0.06669 t=0.23754 t=0.32059 t=0.5494

t=0.2128 t=0.66193 t=0.86441 t=1.4004

Figure 6. Example 6.1.3: Diffusion power oo = 1,0.9,0.8,0.7,0.6 (from top to bottom).
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6.1.3. Intersection of two dumbbells with double-well potential

We now investigate an intersection of two dumbbells on the Laplacian. The double-well potential
(1.5) function is taken. The rest of problem data are

Q=[-1,1, o0Q=I" =0 €=001, 1=5%x107>,

with the following initial condition

uo(x,y) = ug(x,y)uj(x,y),

where
tanh %((x—0.5)2+(y—0.4)2—(0.25)2)), if x> 0.3,
ub(x,y) = tanh (2 ((y—04) - (0.15)2)), if —03<x<0.3,
tanh %((x+0.5)2—|—(y—0.4)2—(0.25)2)), if x < —0.3,
and
tanh %é(x2+(y—0.6)2—(0.25)2)>, ify> 0.4,
() = { tanh (22 (22— (0.15)2)), if —0.4<y<04,
tanh (3 (2 + (y—0.6)> — (0.25)2)), ify < —0.4.

Figure 7. Initial condition of Example 6.1.3.

The initial function ug, which is an intersection of two dumbbells, is shown in Figure 7. For various
fractional powers (o0 = 1,0.9,0.8,0.7,0.6), the snapshots of the solutions in time are displayed in
Figure 6. As the previous example, reducing of fractional power decreases the rate of motion of initial
curvature.

Figure 8 illustrates the behaviour of the numerical energy function (1.6) and the adaptive time-
step size. The evolution of the length of the time-step for o = 0.8,0.7,0.6 is shown in Figure 9 for

parameters Tol € {5.1073,1073,5.107%}. It is observed that decreasing the tolerance parameter makes
the motion of time-step size smoother.
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Figure 8. Example 6.1.3: Energy function versus time (left) and time-step size versus time
(right) with Tol = 1073.
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Figure 9. Example 6.1.3: Evolution of the length of the time steps with various Tol parame-
ters for oo = 0.8,0.7,0.6.

Table 5. Example 6.1.3: Number of time steps (total, rejected) for o« = 1,0.9,0.8,0.7,0.6
with various tolerance parameters.

Tol a=1 oa=0.9 o=0.8 oa=0.7 oa=0.6
Total Rej. | Total Rej. | Total Rej. | Total Rej. | Total Re;j.
5.1073 | 40 4 47 2 62 1 102 29 | 250 115
1073 107 1 123 1 181 1 285 1 637 O
510741192 1 203 1 313 1 530 1 1287 1
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Table 6. Example 6.1.3: Number of time steps for adaptive and uniform time-step size
approaches with Tol = 1073,

o | # Adaptive time-steps | # Uniform time-steps
1 107 2056

0.9 123 3271

0.8 181 5927

0.7 285 10988

0.6 637 28090

Table 7. Example 6.1.3: Values of the coefficients a and b in the form at~? for the various
values of the o in the adaptive time refinement.

o=1|0=09 | a=08|a=0.7

a| 12.93 13.54 12.84 10.91

b | 0.2376 | 0.1908 | 0.1641 | 0.1579

Table 5 shows the number of time-steps for o« = 1,0.9,0.8,0.7,0.6 with various tolerance parame-
ters. The number of time steps increases with decreasing the parameter 7ol and the fractional power .
Further, the number of the adaptive and uniform time-steps are displayed in Table 6. It can be seen that
the time-step size adaptivity allows us to reduce the computation time by factors of hundreds compared

to the uniform time-step size.
As the previous example, Table 7 shows the values of the coefficients ¢ and b in the form ar .

Similarly, the value of the b decreases, when o decreases.

6.1.4. Spinodal decomposition with logarithmic free energy

We now consider a test example with the logarithmic free energy (1.4). The initial condition is a
random state by randomly distributing numbers from —0.01 to 0.01. The rest of problem data are

Q=102 aQ=TI?, ¢”=0, 1p=5%x10", 6=0.1, 6, =0.2.

Figure 10. Initial condition of Example 6.1.4.
In this example, we investigate the effect of fractional power when a spinodal decomposition is
considered. The initial state is well mixed, see Figure 10. The snapshots of the phase evolution for

various values of fractional power (o0 = 1,0.8,0.6) are illustrated in Figure 11 with € = 1073.
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Figure 11. Example 6.1.4: Diffusion power o = 1,0.8,0.6 (from top to bottom) with € =
1073 and Tol = 1074,

Figure 12. Example 6.1.4: Diffusion power o = 1,0.8,0.6 (from left to right) with € = 10~*
and Tol = 10~* at = 0.016.
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Figure 13. Example 6.1.4: Energy function versus time (left) and time-step size versus time
(right) with € = 10~* and Tol = 1074,
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Figure 14. Example 6.1.4: Evolution of the length of the time steps with various Tol param-
eters with € = 10~ for o« = 1,0.8,0.6.

Early stages of phase transition yield a rapid movement to bulk regions for o = 1. However, smaller
fractional powers lead much more heterogeneous phase structures with smaller bulk regions. Figure 12
also shows the snapshots of phase evaluation at r = 0.016 with € = 1074,

The behaviour of the numerical energy function (1.6) and the adaptive time-step size versus time
are displayed in Figure 13 for €¢ = 10~*. The numerical energy decrease is observed for all the cases.
Lastly, Figure 14 shows the evolution of the time-step size for various tolerance parameters.
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6.2. Cahn-Hilliard model

Finally, we consider a Cahn-Hilliard system with double-well potential and the following initial
condition:

1
up(x,y) = tanh (— (min{ A/ (x+0.3)24+y2—-0.2, 1/ (x—0.3)2 +y2 —0.2,
V2e
\/ X2+ (y+0.3)2-0.2, \/)c2 +(y—0.3)2 +x2})) .
The rest of problem data are

Q=[-1,1 0Q=IV, =01, 1=10".

o=1

16 ====0=0.85

14 v 0=0.7

energy function

~
~~~~~~~~
‘‘‘‘‘‘‘‘‘‘
......

time

Figure 15. Example 6.2: Energy function versus time with the fixed time step.

Table 8. Example 6.2: The values of the coefficients a and b in the form ar~? with the fixed
time step.

std. |a=1| o=0.85
a | 0.890 | 0.840 1.235
b | 0.257 | 0.253 0.225

Figure 15 plots the change of the discrete energy in time, which decreases as predicted, by using
the semi-implicit method in time with the fixed time step. As the Allen-Cahn examples, the rate of the
motion is slower for the small number of the fractional powers.

Further, Table 8 shows the values of the coefficients a and b in the form ar~? with the fixed time
step. As the previous examples, the smaller the value of o, the smaller the energy decay does. The
total mass m = [ u dx equals to a constant value 2.8754.

7. Conclusions

In this paper we have investigated the numerical solutions of the fractional-in-space phase-field
equations, discretized by the symmetric interior penalty Galerkin (SIPG) method in space and an
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implicit-explicit (IMEX) method in time. The contour integral method (CIM) has been used to com-
pute the fractional power of a matrix times a vector. To reduce computation time, an adaptive time-step
size method is proposed. The numerical results of the fractional-in-space phase-fields equations show
that such a kind of modelling can aid to understand the effects of spatial heterogeneity. Although,
the ideas expressed in this paper have applicability in this setting, the numerical approximations of
the Riesz derivatives, discretized by discontinuous Galerkin methods, should also be considered in the
more general framework.
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