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Abstract: In this paper, we study a system of viscous conservation laws given by a form of a symmet-
ric parabolic system. We consider the system in the one-dimensional half space and show existence of
a degenerate stationary solution which exists in the case that one characteristic speed is equal to zero.
Then we show the uniform a priori estimate of the perturbation which gives the asymptotic stability of
the degenerate stationary solution. The main aim of the present paper is to show the a priori estimate
without assuming the negativity of non-zero characteristics. The key to proof is to utilize the Hardy
inequality in the estimate of low order terms.
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1. Introduction

We consider a large-time behavior of solutions to a system of viscous conservation laws

ut + f (u)x = (Bux)x (1.1)

over a one-dimensional half line R+ := (0,∞). Here m is a positive integer; u = u(t, x) ∈ Rm is an
unknown m-vector function; f (u) ∈ Rm is a flux function which is a smooth given function of u; B is a
viscosity matrix which is an m × m symmetric and positive constant matrix.

We prescribe an initial condition for (1.1) as

u(0, x) = u0(x) (x ∈ R+), (1.2)

where u0(x) is an initial data satisfying u0(x) → 0 as x → ∞. We also put a Dirichlet boundary
condition

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2018.1.35


36

u(t, 0) = ub (t > 0), (1.3)

where ub ∈ R
m is a constant.

Related to the system (1.1), existence and asymptotic stability of a boundary layer solution, which
is a smooth stationary solution connecting a boundary data and a spatial asymptotic data, for model
systems of compressible viscous gases are proved in the papers [1, 4, 8, 9, 10]. These results are gener-
alized in the papers [7, 14] for a quasi-linear symmetric system of hyperbolic equations and parabolic
equations under the stability condition discussed in [3, 11, 13]. Especially, in order to prove asymptotic
stability of a degenerate boundary layer solution, which exists if the corresponding inviscid system has
a characteristic field with speed zero, it is assumed in [7] that the speed of the non-zero characteristics
are negative. In the paper [6], the simplified system (1.1) with the flux function f (u) given by the
following form and satisfying the following assumption [A1] of symmetricity is considered:

f (u) = Au +
1
2

F(u, u), (1.4)

where A = (a1, . . . , am) (a j ∈ R
m) is a constant m×m matrix; F(·, ·) is a bilinear map on Rm of the form

F(u, v) =

m∑
i, j=1

fi ju jvi =


〈F1u, v〉

...

〈Fmu, v〉

 ∈ Rm

for u = t(u1, . . . , um), v = t(v1, . . . , vm) ∈ Rm, where fi j = t( f 1
i j, . . . , f m

i j ) ∈ Rm (i, j = 1, . . . ,m) are
constant vectors and Fk = ( f k

i j)i j (k = 1, . . . ,m) are constant m × m matrices.

Assumption [A1]. (i) The matrix A is symmetric.

(ii) The bilinear map F(·, ·) is symmetric in the sense of f k
i j = f k

ji = f i
k j.

From Assumption [A1], we see that fi j = f ji and F(u, v) = F(v, u), so that Fk is symmetric.
In the paper [6], the simplified system (1.1) with non-positive characteristics is considered and the

convergence rate of solutions toward the degenerate boundary layer solution is obtained provided that
the initial perturbation belongs to the weighted L2 space. The important property of the system in [6]
is a negativity of non-zero characteristics which enable us to obtain the weighted L2 estimate.

The aim of the present paper is to show asymptotic stability of the degenerate boundary layer so-
lution for (1.1) without assuming that the initial perturbation belongs to weighted spaces. Namely we
show the uniform a priori estimate (3.4) under the assumption [A4]-(i) which means that the charac-
teristic speed of the system is non-positive. The key to proof is to utilize a weight function defined in
(3.9). In the case if the viscosity effect is strong enough, we can also show the estimate (3.4) without
assuming the negativity of non-zero characteristics. This case corresponds to the assumption [A4]-(ii).
To study this problem, we prescribe the following assumption.

Assumption [A2]. The matrix A has a simple zero-eigenvalue.

Note that Assumption [A2] corresponds to analysis on the transonic flow for the model system of
compressible viscous gases studied in the papers [1, 2, 9, 12].
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Notations. For vectors u, v ∈ Rm, |u| denotes the Euclidean norm of u; 〈u, v〉 denotes the Euclidean
inner product of u and v. For real matrices A and B of which eigenvalues are real number, we use a
notation A ∼ B if the numbers of positive eigenvalues, negative eigenvalues and zero eigenvalues of A
coincide with those of B. For p ∈ [1,∞], Lp denotes a standard Lebesgue space over R+ equipped with
a norm ‖ · ‖Lp .

2. Existence of stationary solution

In this section, we summarized the existence result of the degenerate boundary layer solution studied
in [6, 7]. Let ũ = ũ(x) be a boundary layer solution, which is a smooth solution to a system of equations

f (ũ)x = (Bũx)x (x ∈ R+), (2.1)

which is rewritten to

ũx = B−1Aũ +
1
2

B−1F(ũ, ũ) (2.2)

by integrating (2.1) over (x,∞) with using ũx(x)→ 0 as x→ ∞. We prescribe boundary conditions for
ũ as

ũ(0) = ub, (2.3)
ũ(x)→ 0 (x→ ∞). (2.4)

To solve the above stationary problem, we introduce a following lemma proved in [6, 7].

Lemma 2.1 ([6, 7]). Let B be a symmetric and positive definite matrix and A be a symmetric matrix.

(i) The matrix B−1A is diagonalizable.

(ii) There exists an orthogonal matrix Q such that P := B−1/2Q diagonalizes the matrix B−1A and
satisfies tP = P−1B−1.

(iii) B−1A ∼ A.

Here B1/2 is a symmetric and positive definite matrix satisfying (B1/2)2 = B and B−1/2 is an inverse
matrix of B1/2.

We give a brief outline of proof of the solvability theorem to the stationary problem (2.2)–(2.4) by
following the argument in [6, 7]. Due to Lemma 2.1, there exists a matrix P of the form

P = (r, P∗), P∗ : m × (m − 1) matrix,

which diagonalizes B−1A, that is,

P−1B−1AP =

(
0 t0
0 Λ

)
, (2.5)

where 0 is a column zero-vector and Λ is a diagonal (m − 1) × (m − 1) matrix satisfying detΛ , 0.
Note that the column vector r is an eigenvector of B−1A corresponding to the zero-eigenvalue, that is,
B−1Ar = 0 and hence Ar = 0, which yields that r is also an eigenvector of A corresponding to the
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zero-eigenvalue. We employ a new unknown function w̃(x) := P−1ũ(x) and deduce the system (2.2) to
that for w̃ as

w̃1x = g1(w̃), (2.6a)
w̃∗x = Λw̃∗ + g∗(w̃), (2.6b)

where

w̃ =

(
w̃1

w̃∗

)
, w̃1 = w̃1(x) ∈ R, w̃∗ = w̃∗(x) ∈ Rm−1,

g(w̃) =

(
g1(w̃)
g∗(w̃)

)
:=

1
2

P−1B−1F(Pw̃, Pw̃), g1(w̃) ∈ R, g∗(w̃) ∈ Rm−1.

Let z = z(x) ∈ R be a solution to (2.6a) restricted on the local center manifold w̃∗ = Φc(w̃1). Namely,
z(x) satisfies

zx = g1(z, Φc(z)) = κz2 + O(|z|3), (2.7)

where κ is a constant given by

κ :=
1
2
〈r, F(r, r)〉. (2.8)

Here the second equality in (2.7) is obtained by using P−1B−1 = tP and Pw̃ = rw̃1 + P∗w̃∗ as well as a
bilinearity of F. To solve the equation (2.7), we put the following assumption.

Assumption [A3]. Let r be an eigenvector of the matrix A corresponding to the zero-eigenvalue. Then
it is assumed that the constant κ defined by (2.8) is not equal to zero.

Note that we assume κ < 0 without loss of generality. We also note that the assumption [A3] is
equivalent to the genuine nonlinearity of the zero-characteristic field.

If the boundary data ub belongs to a certain region M ⊂ Rm, which is a one side of a neighborhood
of the equilibrium divided by a local stable manifold, and if the boundary strength δ = |ub| is sufficiently
small, then the equation (2.7) has a solution z satisfying

z(x) > 0, zx(x) < 0, z(x) ∼
δ

1 + δx
,

|∂k
xz(x)| ≤ C

δk+1

(1 + δx)k+1 (k = 0, 1, . . . ).
(2.9)

By virtue of the center manifold theory, the solution w̃ to (2.6) is given by using z as

w̃1(x) = z(x) + O(δe−cx),
w̃∗(x) = Φc(z(x)) + O(δe−cx),

which gives the existence of the solution ũ.

Theorem 2.2 ([6, 7]). Assume that Assumptions [A1], [A2] and [A3] hold. Then there exists a certain
region M ⊂ Rm such that if ub ∈M holds and δ = |ub| is sufficiently small, then the problem (2.2)–(2.4)
has a unique smooth solution ũ(x) satisfying

ũ(x) = rz(x) + O(z(x)2 + δe−cx), (2.10)
ũx(x) = κrz(x)2 + O(z(x)3 + δe−cx). (2.11)
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3. Energy estimates

In this section, we show the uniform a priori estimate of a perturbation

ϕ(t, x) := u(t, x) − ũ(x)

which gives the existence of a solution globally in time. From (1.1) and (2.1), the equation for ϕ is
given by

ϕt + Du f (u)ϕx = Bϕxx − (Du f (u) − Du f (ũ))ũx (x ∈ R+, t > 0), (3.1)

where Du f (u) = A + (〈 fi j, u〉)i j. The initial condition and the boundary condition are prescribed as

ϕ(0, x) = ϕ0(x) := u0(x) − ũ(x) (x ∈ R+), (3.2)
ϕ(t, 0) = 0 (t > 0). (3.3)

To obtain the uniform a priori estimate, we prescribe the following assumption.

Assumption [A4]. It is assumed that either of the following two conditions is satisfied:

(i) The matrix A is non-positive definite, that is, the diagonal matrix Λ is negative definite, or

(ii) The viscosity effect is strong enough to satisfy

〈Bφ, φ〉 > C1F̃|φ|2, F̃ := max
i, j,k
| f k

i j|

for an arbitrary φ ∈ Rm, where C1 is a positive constant in (3.19).

Notice that Assumption [A4]-(i) corresponds to analysis on the transonic flow for the outflow problem
of compressible viscous gases. Assumption [A4]-(ii) corresponds to the condition that the Reynolds
number is sufficiently small for the model system of compressible viscous gases. The a priori estimate
for ϕ is summarized in the following theorem.

Theorem 3.1. Assume that Assumptions [A1], [A2], [A3] and [A4] hold. Let ũ be a degenerate bound-
ary layer solution obtained in Theorem 2.2 and let ϕ ∈ C0([0,T ]; L2) be a solution to (3.1)–(3.3) for a
certain T > 0. Then there exists a positive constant ε0 such that if ‖ϕ0‖L2 + δ ≤ ε0, then ϕ satisfies the
following uniform estimate

‖ϕ(t)‖2L2 +

∫ t

0
‖ϕx(τ)‖2L2 dτ ≤ C‖ϕ0‖

2
L2 (0 ≤ t ≤ T ). (3.4)

Remark. By combining the existence of the solution locally in time with the a priori estimate (3.4),
we can construct a solution ϕ ∈ C0([0,∞); L2) globally in time. Moreover, if we construct the solution
in H1 framework, we can show the asymptotic stability ‖ϕ(t)‖L∞ → 0 as t → ∞. In this paper, we only
give the derivation of the basic estimate (3.4) in L2 framework.

To obtain the estimate (3.4), it is convenient to define the weighted L2 norm

|ϕ|α :=
(∫
R+

z−α|ϕ|2 dx
)1/2

,

where z(x) > 0 is a solution to (2.7) satisfying (2.9).
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Proof of Theorem 3.1. We employ the energy form E and the energy flux F defined by

E =
1
2
|ϕ|2, F =

1
2

A[ϕ, ϕ] +
1
2

F[ũ, ϕ, ϕ] +
1
3

F[ϕ, ϕ, ϕ],

A[u, v] := 〈Au, v〉 =
∑

i, j

ai juiv j, F[u, v,w] := 〈u, F(v,w)〉 =
∑
i, j,k

f k
i juiv jwk,

where u = t(u1, . . . , um), v = t(v1, . . . , vm) and w = t(w1, . . . ,wm). Note that A[u, v] and F[u, v,w] are
multi-linear forms. Then we see that E and F satisfy

Et + Fx + G + 〈Bϕx, ϕx〉 = (〈Bϕx, ϕ〉)x, (3.5)

G := 〈ũx, f (u) − f (ũ) − Du f (ũ)ϕ〉 =
1
2

F[ũx, ϕ, ϕ].

We firstly show the proof of (3.4) under the assumption [A4]-(i) by following the idea in [7]. We
change the variable ϕ to ψ defined by ψ(t, x) := P−1ϕ(t, x) where P is a diagonalization matrix of B−1A
satisfying (2.5). Then we see

ϕ = Pψ = rψ1 + P∗ψ∗, (3.6)

ψ =

(
ψ1

ψ∗

)
, ψ1(t, x) ∈ R, ψ∗(t, x) ∈ Rm−1.

By using tP = P−1B−1, we see

A[ϕ, ϕ] = 〈APψ, Pψ〉 = 〈tPAPψ, ψ〉 = 〈P−1B−1APψ, ψ〉 = 〈Λψ∗, ψ∗〉.

Also, (2.10), (2.11), (3.6) and multi-linearity of F yield

F =
1
2
〈Λψ∗, ψ∗〉 + O(|ϕ|3 + δe−cx|ϕ|2) ≤ −c1|ψ∗|

2 + O(|ϕ|3 + δe−cx|ϕ|2), (3.7)

G = κ2z2ψ2
1 + z2G ′ + O(z3|ϕ|2 + δe−cx|ϕ|2), (3.8)

where c1 is a positive constant. Here G ′ is a quadratic form consisting of ψ1 and ψ∗ satisfying

|G ′| ≤ C1(|ψ1||ψ∗| + |ψ∗|
2),

where C1 is a positive constant. To obtain the estimate (3.4), we employ the weighted energy method
with using a weight function

W(x) =
ω

ω − κz(x)
, ω :=

2c1κ
4

9(3C2
1 + 2C1κ2)

. (3.9)

If δ is small enough to satisfy |z(x)| ≤ ω/2, we see that W satisfies

2
3
≤ W(x) ≤ 2, Wx(x) =

1
ω
κ2W2z2 + O(z3) > 0. (3.10)

Multiplying (3.5) by W, we get

(WE )t + (WF )x −WxF + WG + W〈Bϕx, ϕx〉 = (W〈Bϕx, ϕ〉)x −Wx〈Bϕx, ϕ〉. (3.11)
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We estimate −WxF + WG in (3.11). From (3.7) and (3.10), we have

−WxF ≥
4κ2c1

9ω
z2|ψ∗|

2 + O(z2|ϕ|3 + δe−cx|ϕ|2). (3.12)

Also, (3.8) and (3.10) give

WG ≥
2κ2

3
z2ψ2

1 − 2C1z2(|ψ1||ψ∗| + |ψ∗|
2) + O(z3|ψ|2 + δe−cx|ϕ|2)

≥
κ2

3
z2ψ2

1 −
3C2

1 + 2C1κ
2

κ2 z2|ψ∗|
2 + O(z3|ψ|2 + δe−cx|ϕ|2), (3.13)

where we have used 2C1|ψ1||ψ∗| ≤
κ2

3 ψ
2
1 +

3C2
1

κ2 |ψ∗|
2. Therefore, (3.12) and (3.13) yield

−WxF + WG ≥ cz2|ϕ|2 + O(z3|ψ|2 + z2|ψ|3 + δe−cx|ϕ|2). (3.14)

The last term in the right-hand side of (3.11) is estimated as

|Wx〈Bϕx, ϕ〉| ≤ Cδ(z2|ϕ|2 + |ϕx|
2). (3.15)

Integrating (3.11) over [0,T ] × R+, substituting (3.14) and (3.15) in the resultant equality and letting δ
suitable small, we have

‖ϕ‖2L2 +

∫ t

0

(
|ϕ|2−2 + ‖ϕx‖

2
L2

)
dτ ≤ C‖ϕ0‖

2
L2 + C

∫ t

0

∫
R+

(
z2|ϕ|3 + δe−cx|ϕ|2

)
dx dτ. (3.16)

To estimate the remainder terms in the right-hand side, we compute∫
R+

z2|ϕ|3 dx ≤ ‖ϕ‖L∞ |ϕ|2−2 ≤ C‖ϕ‖L2
(
|ϕ|2−2 + ‖ϕx‖

2
L2

)
, (3.17)

where we have used the Sobolev inequality ‖ϕ‖L∞ ≤ C‖ϕ‖1/2
L2 ‖ϕx‖

1/2
L2 and |ϕ|−2 ≤ C‖ϕ‖L2 . Also, due to

the Poincaré type inequality, we see ∫
R+

e−cx|ϕ|2 dx ≤ C‖ϕx‖
2
L2 . (3.18)

Substituting (3.17) and (3.18) in (3.16), we get

‖ϕ‖2L2 +

∫ t

0

(
|ϕ|2−2 + ‖ϕx‖

2
L2

)
dτ ≤ C‖ϕ0‖

2
L2 + C sup

0≤t≤T
‖ϕ‖L2

∫ t

0

(
|ϕ|2−2 + ‖ϕx‖

2
L2

)
dτ

which yields the desired estimate (3.4) provided that ‖ϕ0‖L2 is sufficiently small.
Next, we show the proof of (3.4) under Assumption [A4]-(ii). By using

|G | ≤
1
2
|ũx||F(ϕ, ϕ)| ≤ CF̃z2|ϕ|2 ≤ CF̃

1
x2 |ϕ|

2

and the Hardy inequality, we see∫
R+

|G | dx ≤ CF̃
∫
R+

1
x2 |ϕ|

2 dx ≤ C1F̃‖ϕx‖
2
L2 , (3.19)

where C1 is a positive constant. Thus, integrating (3.5) and substituting the above inequality with using
Assumption [A4]-(ii), we obtain the desired estimate (3.4). Consequently, we complete the proof. �
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Notice that the computation in the present paper is also applicable to the model system of compress-
ible and viscous gas which is given by a hyperbolic-parabolic system. We also note that the condition
[A4] is assumed because of the technical reason. It is open problem that we can remove this condition
or not.
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