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1. Introduction

Phenomena of contact between deformable bodies abound since the dawn of time. In order to un-
derstand their inherent complexity, considerable efforts have been achieved in modeling, mathematical
analysis and numerical simulations, within the weak distributional formulation framework, expressed
in terms of evolutional variational inequalities and hemivariational inequalities. The literature dedi-
cated to this field is increasing day by day. The state of the art can be found in the masterpieces [4],
[6], [7], [8].

This work is a continuation of the paper in [1], where the authors studied a dynamic frictional sub-
differential contact for a short memory visco-elastic body, which was supposed to be fixed in some part
on its boundary. There were no thermal effects and no numerical studies.

Here we investigate the extension of this work to thermal contact with friction, for time depending
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long memory visco-elastic materials, with or without the clamped condition. Moreover, we propose
a fully discrete scheme for numerical approximations of the different solutions, and elaborate a gen-
eral numerical analysis of error estimates. Finally various corresponding numerical computations in
dimension two will be given.

The paper is organized as follows. In Section 2 we describe the mechanical problem, its correspond-
ing variational formulation, and then we claim the main existence and uniqueness result under specific
assumptions, that we prove in Section 3. In Section 4, we introduce a fully discrete approximation
scheme, derive and prove an optimal order error estimate under certain solution regularity assump-
tions. Finally in Section 5, we present several numerical simulations, showing then the evolution of
the displacement field and temperature, as well as of the Von Mise’s stress norm.

2. The contact problem

In this section we study a class of thermal contact problems with sub-differential conditions, for
long memory visco-elastic materials. We describe the mechanical problem, list the assumptions on the
data and derive the corresponding variational formulation. Then we state an existence and uniqueness
result on displacement field and temperature, which we will prove in the next section.

The physical setting is as follows. A visco-elastic body occupies a domain Ω in Rd (d = 1, d = 2
or d = 3) with a Lipschitz boundary Γ that is partionned into three disjoint measurable parts, Γ1, Γ2

and Γ3. We denote by ν the unit outward normal on Γ. Let [0,T ] be the time interval of interest,
where T > 0. The body is clamped on Γ1 × (0,T ) and therefore the displacement field vanishes there.
Here we suppose that meas(Γ1) = 0 or meas(Γ1) > 0, which means that Γ1 may be an empty set or
reduced to a finite set of points. We assume that a volume force of density f 0 acts in Ω × (0,T ) and
that surface tractions of density f 2 act on Γ2 × (0,T ). The body may come in contact with an obstacle,
the foundation, over the potential contact surface Γ3. The model of the contact is specified by a general
sub-differential boundary condition, where thermal effects may occur in the frictional contact with the
basis. We are interested in the dynamic evolution of the body.

Let us recall now some classical notations, see e.g. [4] for further details. We denote by S d the
space of second order symmetric tensors on Rd, while “ · ” and | · | will represent the inner product
and the Euclidean norm on S d and Rd. Everywhere in the sequel the indices i and j run from 1 to d,
summation over repeated indices is implied and the index that follows a comma represents the partial
derivative with respect to the corresponding component of the independent variable. We also use the
following notation:

H =
(
L2(Ω)

)d
, H = {σ = (σi j) | σi j = σ ji ∈ L2(Ω), 1 ≤ i, j ≤ d},

H1 = {u ∈ H | ε(u) ∈ H }, H1 = {σ ∈ H | Div σ ∈ H }.

Here ε : H1 −→ H and Div : H1 −→ H are the deformation and the divergence operators, respectively,
defined by :

ε(u) = (εi j(u)), εi j(u) =
1
2

(ui, j + u j,i), Div σ = (σi j, j).

The spaces H,H , H1 andH1 are real Hilbert spaces endowed with the canonical inner products given
by :

(u, v)H =

∫
Ω

uivi dx, (σ, τ)H =

∫
Ω

σi jτi j dx,
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(u, v)H1 = (u, v)H + (ε(u), ε(v))H , (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H.

Recall that D(Ω) denotes the set of infinitely differentiable real functions with compact support in Ω;
and Wm,p(Ω), Hm(Ω) := Wm,2(Ω), m ∈ N, 1 ≤ p ≤ +∞ for the classical real Sobolev spaces; Lp(U; X)
the classical Lp spaces defined on U with values in X.

To continue, the mechanical problem is then formulated as follows.

Problem Q : Find a displacement field u : (0,T ) × Ω −→ Rd and a stress field σ : (0,T ) × Ω −→ S d

and a temperature field ξ : (0,T ) ×Ω −→ R+ such that for a.e. t ∈ (0,T ):

σ(t) = A(t)ε(u̇(t)) + G(t)ε(u(t))

+

∫ t

0
B(t − s) ε(u(s)) ds + Ce(t, ξ(t)) in Ω

(2.1)

ü(t) = Divσ(t) + f 0(t) in Ω (2.2)

u(t) = 0 on Γ1 (2.3)

σ(t)ν = f 2(t) on Γ2 (2.4)

u(t) ∈ U, ϕu(t,w) − ϕu(t, u̇(t)) ≥ −σ(t)ν · (w − u̇(t)) ∀w ∈ U on Γ3 (2.5)

ξ̇(t) − div(Kc(t,∇ξ(t))) = Ce(t, u̇(t)) + q(t) in Ω, (2.6)

− Kc(t, x,∇ξ(t, x)) ν := Ξ(t, x, ξ(t, x)) ∈ ∂ϕ(t, x, ξ(t, x)) a.e. x ∈ Γ3, (2.7)

ξ(t) = θa(t) on Γ1 ∪ Γ2 (2.8)

ξ(0) = ξ0 in Ω (2.9)

u(0) = u0, u̇(0) = v0 in Ω (2.10)

Here, (2.1) is the Kelving Voigt’s time-dependent long memory thermo-visco-elastic constitutive law
of the body, where σ represents the stress tensor; A denotes the viscosity operator depending on
the velocity of infinitesimal deformations ε(u̇), with the notation : for τ ∈ S d, A(t)τ = A(t, ·, τ)
some function defined on Ω; here a dot above a quantity represents the derivative of the quantity with
respect to the time variable; G is the elastic operator depending on the linearized strain tensor ε(u) of
infinitesimal deformations, with G(t)τ = G(t, ·, τ) which is defined on Ω. The term B(t)τ = B(t, ·, τ)
represents the so called relaxation tensor which is time-depending on the linearized strain tensor and is
defined on Ω. Recall that the visco-elastic short memory corresponds to the case B ≡ 0. The last tensor
Ce(t, θ) := Ce(t, ·, θ) denotes the thermal expansion tensor depending on time and on the temperature,
defined on Ω. For example,

Ce(t, θ) := −θCexp(t) in Ω,

where
Cexp(t) := (ci j(t, ·))

is some time-depending expansion tensor, defined on Ω.
In (2.2) is the dynamic equation of motion where the mass density % ≡ 1. The equation in (2.3) is the
clamped condition and in (2.4) is the traction condition. On the contact surface, the general relation
(2.5) is a sub-differential boundary condition such that

D(Ω)d ⊂ U,
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where U represents the set of contact admissible test functions and D(Ω)d is the distribution space.
Here σν denotes the Cauchy stress vector on the contact boundary and ϕu : (0,T ) × Γ3 × R

d −→ R

is a given function. Various situations may be modelled by such a condition, see e.g. the monograph
[6] or the Habilitation thesis [2] p. 117. The differential equation (2.6) describes the evolution of
the temperature field, where Kc(t,∇ξ) := Kc(t, ·,∇ξ) is some nonlinear thermal conductivity function
defined on Ω, depending on time and on the temperature gradient ∇ξ. For axample, denote by

Kc(t, ·) := (ki j(t, ·))

the thermal conductivity tensor defined on Ω, we could consider

Kc(t, ·,∇ξ) = Kc(t, ·)∇ξ.

In the second member, Ce(t, u̇(t)) := Ce(t, ·, u̇(t)) is some nonlinear function defied on Ω, depending on
the displacement velocity, and q(t) represents the density of volume heat sources. For example,

Ce(t, u̇(t)) = −Cexp(t) : 5u̇(t) = −ci j(t, ·)
∂ u̇i

∂ x j
(t).

The associated temperature boundary condition is given by (2.7) and (2.8), where Ξ and ϕ are some
functions defined on (0,T ) × Γ3 × R and θa(t) represents the ambient temperature. Here

∂ϕ(t, x, r) := ∂ϕ(t, x, ·)(r), ∀(t, x, r) ∈ (0,T ) × Γ3 × R

denotes the sub-differential on the third variable of ϕ in the convex or maybe locally Lipschitz frame-
work.

We recall that for a locally Lipschitz function G : R −→ R, at any point a ∈ R and for any vector
d ∈ R, we can define the following directional derivative with respect to d :

limτ→0+

G(a + τd) −G(a)
τ

:= G0(a; d). (2.11)

We have for all a, d ∈ R, for all ξ ∈ ∂G(a):

G0(a; d) ≥ ξ d

and
|G0(a; d)| ≤ |G0(a)| × |d|, |ξ| ≤ |G0(a)|

where
limh→0, h,0

G(a + h) −G(a)
h

:= G0(a).

In the case where G is convex on R, we have

G0(a; d) =


G′r(a)d if d > 0

G′l(a)d if d < 0

0 if d = 0,
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and
G0(a) = max{G′r(a),G′l(a)},

where G′r and G′l denotes the right side and left side derivatives respectively.

In the sequel, for a.e. (t, x) ∈ (0,T ) × Γc, for all (r, s) ∈ R2, we use the notation

ϕ0(t, x, r; s) := [ϕ(t, x, ·)]0(r; s),

and
ϕ0(t, x, r) := [ϕ(t, x, ·)]0(r).

Taking the previous example for Kc, we have

Kc(t, x,∇ξ) ν = ki j(t, x)
∂ ξ

∂ x j
νi.

Let consider the following standard example

ϕ(t, x, r) :=
1
2

ke(t, x)(r − θR(t, x))2, ∀(t, x, r) ∈ (0,T ) × Γ3 × R, (2.12)

where θR is the temperature of the foundation, and ke is the heat exchange coefficient between the
body and the obstacle. We obtain

Ξ(t, x, r) = ∂ϕ(t, x, r) = ke(t, x) (r − θR(t, x)), (t, x, r) ∈ (0,T ) × Γ3 × R.

Finally in (2.9) and (2.10), ξ0, u0, v0 represent the initial temperature, displacement and velocity
respectively.

One may remark that since ϕu is assumed real-valued, then unilateral contact, defined by indicator
functions taking infinite values, is excluded. So the body is in fixed contact with the foundation of the
body according to a friction law. This is consistent with the linear heat conduction modeled in (2.6).
We insist that the new feature here is that we may have the absence of the usual claimed condition in
the case where meas(Γ1) = 0. However, there is coerciveness with regard to the temperature by (2.7).
To derive the variational formulation of the mechanical problems (2.1)–(2.10) we need additional no-
tations. Thus, let consider V the closed subspace of H1 defined by

V = { v ∈ H1 | v = 0 on Γ1 } ∩ U.

We remark that the subspace V may be different or not to the whole space H1, depending on the set U
of admissible contact conditions.

On V we consider the inner product given by

(u, v)V = (ε(u), ε(v))H + (u, v)H ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2V = ‖ε(v)‖2
H

+ ‖v‖2H ∀ v ∈ V.
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It follows that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and therefore (V, ‖ · ‖V) is a real Hilbert space.
Moreover, by the Sobolev’s trace theorem, we have a constant C0 > 0 depending only on Ω, and Γ3

such that
‖v‖L2(Γ3) ≤ C0 ‖v‖V ∀ v ∈ V.

For functional reason, it is convenient to shift the ambient temperature to zero on Γ1∪Γ2. We introduce
for this propose θ = ξ − θa, by assuming θa ∈ H1(0,T ; H1(Ω)). Thus we have ∀t ∈ [0,T ]:

ξ(t) = θa(t) =⇒ θ(t) = 0 on Γ1 ∪ Γ2.

In what follows, we use the following change of variables:

ξ = θ + θa, ξ0 = θ0 + θa(0).

Consider then the following spaces for the temperature field:

E = {η ∈ H1(Ω), η = 0 on Γ1 ∪ Γ2}; F = L2(Ω).

The spaces E and F, endowed with their respective canonical inner product, are Hilbert spaces.
Identifying then H and F with their own duals, we obtain two Gelfand evolution triples (see e.g. [9]
II/A p. 416):

V ⊂ H ≡ H′ ⊂ V ′, E ⊂ F ≡ F′ ⊂ E′

where the inclusions are continuous and dense.

In the study of the mechanical problem (2.1)-(2.10), we assume that the viscosity operatorA : (0,T )×
Ω × S d −→ S d, (t, x, τ) 7−→ A(t, x, τ) satisfies

(i) A(·, ·, τ) is measurable on (0,T ) ×Ω, ∀τ ∈ S d;

(ii) A(t, x, ·) is continuous on S d for a.e. (t, x) ∈ (0,T ) ×Ω;

(iii) there exists mA > 0 such that
(A(t, x, τ1) −A(t, x, τ2)) · (τ1 − τ2) ≥ mA |τ1 − τ2|

2,

∀τ1, τ2 ∈ S d, for a.e. (t, x) ∈ (0,T ) ×Ω;

(iv) there exists cA0 ∈ L2((0,T ) ×Ω;R+), cA1 > 0 such that
|A(t, x, τ)| ≤ cA0 (t, x) + cA1 |τ|,
∀τ ∈ S d, for a.e. (t, x) ∈ (0,T ) ×Ω.

(2.13)

In this paper for every t ∈ (0,T ), τ ∈ S d we denote byA(t) = A(t, ·, ·) a functional which is defined on
Ω × S d andA(t) τ = A(t, ·, τ) some function defined on Ω.
The elasticity operator G : (0,T ) ×Ω × S d −→ S d satisfies :

(i) there exists LG > 0 such that
|G(t, x, ε1) − G(t, x, ε2)| ≤ LG|ε1 − ε2|

∀ε1, ε2 ∈ S d, a.e. (t, x) ∈ (0,T ) ×Ω ;

(ii) G(·, ·, ε) is Lebesgue measurable on (0,T ) ×Ω,∀ε ∈ S d ;

(iii) the mapping G(·, ·, 0) ∈ H .

(2.14)
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We put again G(t)τ = G(t, ·, τ) some function defined on Ω for every t ∈ (0,T ), τ ∈ S d.
The relaxation tensor B : (0,T ) ×Ω × S d −→ S d, (t, x, τ) 7−→ (Bi jkh(t, x) τkh) satisfies

(i) Bi jkh ∈ L∞((0,T ) ×Ω);

(ii) B(t)σ · τ = σ · B(t)τ
∀σ, τ ∈ S d, a.e. t ∈ (0,T ), a.e. in Ω

(2.15)

where we denote by B(t)τ = B(t, ·, τ) which is defined on Ω for every t ∈ (0,T ), τ ∈ S d.
We suppose the body forces and surface tractions satisfy

f 0 ∈ L2(0,T ; H), f 2 ∈ L2(0,T ; L2(Γ2)d) (2.16)

On the contact surface, the following frictional contact function

ψu(t,w) :=
∫

Γ3

ϕu(t,w) da

verifies 

(i) ψu : (0,T ) × V −→ R is well defined;

(ii) t ∈ (0,T ) 7−→ ψu(t,w) is Lebesgue measurable ∀w ∈ V;

(iii) |ψu(t,w)| ≤ c(t) + d ‖w‖V , ∀w ∈ V, a.e. t ∈ (0,T );

(iv) ψu(t, ·) is convex on V a.e. t ∈ (0,T ),

(2.17)

where d > 0 is some constante and c ∈ L2(0,T ;R+).

The thermal expansion tensor Ce : (0,T ) ×Ω × R −→ S d verifies

(i) Ce(·, ·, ϑ) is measurable on (0,T ) ×Ω, ∀ϑ ∈ R;

(ii) there exists Le > 0 such that
|Ce(t, x, ϑ1) −Ce(t, x, ϑ2)| ≤ Le |ϑ1 − ϑ2|

∀ϑ1, ϑ2 ∈ R, a.e. (t, x) ∈ (0,T ) ×Ω;

(iii) there exists cCe
0 ∈ L∞((0,T ) ×Ω;R+), cCe

1 ≥ 0 such that
|Ce(t, x, ϑ)| ≤ cCe

0 (t, x) + cCe
1 |ϑ|, ∀ϑ ∈ R, for a.e. (t, x) ∈ (0,T ) ×Ω.

(2.18)

Here we recall the notation Ce(t, ϑ) = Ce(t, ·, ϑ) some function defined on Ω, for all t ∈ (0,T ) and
ϑ ∈ R.

The nonlinear function Kc : (0,T ) ×Ω × Rd −→ R satisfies :

(i) Kc(·, ·, ξ) is measurable on (0,T ) ×Ω, ∀ξ ∈ Rd;

(ii) Kc(t, x, ·) is continuous on Rd, a.e. (t, x) ∈ (0,T ) ×Ω;

(iii) there exists cKc
0 ∈ L2((0,T ) ×Ω;R+), cKc

1 ≥ 0, such that
|Kc(t, x, ξ)| ≤ cKc

0 (t, x) + cKc
1 |ξ|, ∀ξ ∈ Rd, a.e. (t, x) ∈ (0,T ) ×Ω;

(iv) there exists mKc > 0 such that
(Kc(t, x, ξ1) − Kc(t, x, ξ2)) · (ξ1 − ξ2) ≥ mKc |ξ1 − ξ2|

2,

∀ξ1, ξ2 ∈ R
d, a.e. (t, x) ∈ (0,T ) ×Ω ;

(v) there exists nKc > 0 such that Kc(t, x, ξ) · ξ ≥ nKc |ξ|
2,

∀ξ ∈ Rd, a.e. (t, x) ∈ (0,T ) ×Ω.

(2.19)
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We suppose that the nonlinear function Ce : (0,T ) ×Ω × Rd −→ R satisfies :
(i) Ce(·, ·, v) is measurable on (0,T ) ×Ω, ∀v ∈ Rd;

(ii) there exists LCe > 0 such that
|Ce(t, x, v1) − Ce(t, x, v2)| ≤ LCe |v1 − v2|,

∀v1, v2 ∈ R
d, a.e. (t, x) ∈ (0,T ) ×Ω.

(2.20)

We assume for the heat sources density, that

q ∈ L2(0,T ; L2(Ω)) (2.21)

The nonlinear function Ξ, ϕ : (0,T ) × Γc × R −→ R verifies :

(i) Ξ(·, ·, r), ϕ(·, ·, r) are measurable on (0,T ) × Γc, ∀r ∈ R;

(ii) ϕ(t, x, ·) is locally Lipschitz on on R for a.e. (t, x) ∈ (0,T ) × Γc;

(iii) there exists cϕ0 ∈ L2((0,T ) × Γc;R+), cϕ1 ≥ 0, such that
|ϕ0(t, x, r)| ≤ cϕ0(t, x) + cϕ1 |r|,
∀r ∈ R, a.e. (t, x) ∈ (0,T ) × Γc;

(iv) (Ξ(t, x, r1) − Ξ(t, x, r2)) (r1 − r2) ≥ 0,
∀r1, r2 ∈ R, a.e. (t, x) ∈ (0,T ) × Γc.

(2.22)

We notice that these assumptions are verified for the example (2.12).
Finally we assume that the initial data satisfy the conditions

u0 ∈ H, v0 ∈ V, θ0 ∈ E. (2.23)

To continue, using Green’s formula, we obtain the variational formulation of the mechanical problem
Q in abstract form as follows.
Problem QV : Find u : [0,T ]→ V , θ : [0,T ]→ E satisfying a.e. t ∈ (0,T ):

〈ü(t) + A(t) u̇(t) + B(t) u(t) + C(t) θ(t), w − u̇(t)〉V′×V

+(
∫ t

0
B(t − s) ε(u(s)) ds, ε(w) − ε(u̇(t)))H + ψu(t,w) − ψu(t, u̇(t))

≥ 〈 f (t), w − u̇(t)〉V′×V ∀w ∈ V.

(2.24)

 < θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)
≥< R(t)u̇(t), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.

(2.25)

u(0) = u0, u̇(0) = v0, θ(0) = θ0. (2.26)

Here, the operators and functions A(t), B(t) : V −→ V ′, C(t) : E −→ V ′, f : [0,T ] −→ V ′,
K(t) : E −→ E′, ψ(t, ·; ·) : E × E −→ R, R(t) : V −→ E′ and Q : [0,T ] −→ E′ are defined by
∀v ∈ V , ∀w ∈ V , ∀τ ∈ E, ∀η ∈ E, a.e. t ∈ (0,T ):
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〈A(t) v,w〉V′×V = (A(t) εv, εw)H ; (2.27)

〈B(t) v,w〉V′×V = (G(t) εv, εw)H ; (2.28)

〈C(t)ζ,w〉V′×V = (Ce(t, ζ(·) + θa(t)), εw)H ; (2.29)

〈 f (t),w〉V′×V = ( f 0(t),w)H + ( f F(t),w)(L2(Γ2))d ; (2.30)

〈K(t) ζ, η〉E′×E =

∫
Ω

Kc(t,∇ζ + ∇θa(t)) · ∇η dx; (2.31)

ψ(t, ζ; η) =

∫
Γ3

ϕ0(t, x, ζ(x) + θa(t); η(x)) da(x); (2.32)

〈R(t) v, η〉E′×E =

∫
Ω

Ce(t, v) η dx; (2.33)

〈Q(t), η〉E′×E =

∫
Ω

(q(t) − θ̇a(t)) η dx. (2.34)

We verify that from (2.22) then the term ψ(t, ζ; η) is well defined for all ζ ∈ E, η ∈ E, for a.e.
t ∈ (0,T ).

The inequality (2.25) is a consequence of the equation below, < θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +

∫
Γ3

Ξ(t, θ(t) + θa(t))η da

=< R(t)u̇(t), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E,
(2.35)

where recall that Ξ(t, r) := Ξ(t, ·, r) defined on Γ3, for (t, r) ∈ (0,T ) × R.

Our main existence and uniqueness result is stated as follows, that we prove in the next Section.

Theorem 2.1. Assume that (2.13)–(2.23) hold, then there exists an unique solution {u, θ} to problem
QV with the regularity :  u ∈ W1,2(0,T ; V) ∩W2,2(0,T ; V ′) ∩C1(0,T ; H)

θ ∈ L2(0,T ; E) ∩W1,2(0,T ; E′) ∩C(0,T ; F).
(2.36)

3. Proof of Theorem 2.1

The idea is to bring the second order inequality to a first order inequality, using monotone operator,
convexity and fixed point arguments, and will be carried out in several steps.

Let us introduce the velocity variable
v = u̇.
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The system in Problem QV is then written for a.e. t ∈ (0,T ):

u(t) = u0 +
∫ t

0
v(s) ds;

〈v̇(t) + A(t) v(t) + B(t) u(t) + C(t) θ(t), w − v(t)〉V′×V

+(
∫ t

0
B(t − s) ε(u(s)) ds, ε(w) − ε(v(t)))H + ψu(t,w) − ψu(t, v(t))

≥ 〈 f (t), w − v(t)〉V′×V ∀w ∈ V;

< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)
≥< R(t)u̇(t), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E;

v(0) = v0, θ(0) = θ0,

with the regularity  v ∈ v ∈ L2(0,T ; V) ∩W1,2(0,T ; V ′) ∩C(0,T ; H)

θ ∈ L2(0,T ; E) ∩W1,2(0,T ; E′) ∩C(0,T ; F).

To continue, we assume in the sequel that the conditions (2.13)–(2.17) of the Theorem 1 are satisfied.
Let define

W := L2(0,T ;H).

We begin by
Lemma 1. For all η ∈ W, there exists an unique

vη ∈ L2(0,T ; V) ∩W1,2(0,T ; V ′) ∩C(0,T ; H)

satisfying 

〈v̇η(t) + A(t) vη(t), w − vη(t)〉V′×V + (η(t), ε(w) − ε(vη(t)))H
+ψu(t,w) − ψu(t, vη(t)) ≥ 〈 f (t),w − vη(t)〉V′×V ,

∀w ∈ V, a.e. t ∈ (0,T );

vη(0) = v0.

(3.1)

Moreover, ∃c > 0 such that ∀η1, η2 ∈ W:

‖vη2(t) − vη1(t)‖
2
H +

∫ t

0
‖vη1 − vη2‖

2
V ≤ c

∫ t

0
‖η1 − η2‖

2
H
, ∀t ∈ [0,T ]. (3.2)

Proof. Let η ∈ W. Using [9] II/B p. 893, we deduce the existence and uniqueness of vη.
Now let η1, η2 ∈ W. In (3.1) we take (η = η1, w = vη2(t)), then (η = η2, w = vη1(t)). Adding the two
inequalities, we deduce that for a.e. t ∈ (0; T ):

〈v̇η2(t) − v̇η1(t), vη2(t) − vη1(t)〉V′×V + 〈A(t) vη2(t) − A(t) vη1(t), vη2(t) − vη1(t)〉V′×V

≤ −(η2(t) − η1(t), ε(vη2(t)) − ε(vη1(t)))H .
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Then integrating over (0, t), from (2.13)(iii) and from the initial condition on the velocity, we obtain:

∀t ∈ [0,T ], ‖vη2(t) − vη1(t)‖
2
H + mA

∫ t

0
‖vη2(s) − vη1(s)‖2V ds

≤ −

∫ t

0
(η2(s) − η1(s), ε(vη2(s)) − ε(vη1(s)))H ds + mA

∫ t

0
‖vη2(s) − vη1(s)‖2H ds.

We conclude that ∃c > 0 such that ∀η1, η2 ∈ W, ∀t ∈ [0,T ]:

‖vη2(t) − vη1(t)‖
2
H +

∫ t

0
‖vη1(s) − vη2(s)‖2Vds

≤ c
∫ t

0
‖η1(s) − η2(s)‖2

H
ds + c

∫ t

0
‖vη2(s) − vη1(s)‖2H ds.

(3.3)

Now let fix τ ∈ [0,T ]. We have ∀t ∈ [0, τ]:

‖vη2(t) − vη1(t)‖
2
H ≤ c

∫ τ

0
‖η1(s) − η2(s)‖2

H
+ c

∫ t

0
‖vη2(s) − vη1(s)‖2H ds.

Using then Gronwall’s inequality, we obtain ∀τ ∈ [0,T ]:

‖vη2(τ) − vη1(τ)‖2H ≤
(
c

∫ τ

0
‖η1(s) − η2(s)‖2

H

)
ecT .

Finally, integrating the last inequality and reporting the result in (3.3), we get (3.2).
Here and below, we denote by c > 0 a generic constant, which value may change from lines to lines.

Lemma 2. For all η ∈ W, there exists an unique

θη ∈ L2(0,T ; E) ∩W1,2(0,T ; E′) ∩C(0,T ; F)

satisfying 
< θ̇η(t), η >E′×E + < K(t) θη(t), η >E′×E +

∫
Γc

Ξ(t, θη(t))η da

=< R(t)vη(t), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E, a.e. t ∈ (0,T );

θη(0) = θ0.

(3.4)

Moreover, ∃c > 0 such that ∀η1, η2 ∈ W:

‖θη1(t) − θη2(t)‖
2
F ≤ c

∫ t

0
‖vη1 − vη2‖

2
V , ∀t ∈ [0,T ]. (3.5)

Proof. The existence and uniqueness result verifying (3.4) follows from standard result on first order
evolution equation (see e.g. [5]). Indeed we verify that from the expression of the operator R, we have

vη ∈ L2(0,T ; V) =⇒ R vη ∈ L2(0,T ; E′),

as Q ∈ L2(0,T ; E′) then R vη + Q ∈ L2(0,T ; E′).
Using the assumptions (2.19) and (2.22), the operator Ψ(t) : E −→ E′ for a.e. t ∈ (0,T ) defined by

< Ψ(t) ξ, η >E′×E:=< K(t) ξ, η >E′×E +

∫
Γ3

Ξ(t, ξ)η da, ∀ ξ, η ∈ E
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is strongly monotone.
Now for η1, η2 ∈ W, we have for a.e. t ∈ (0; T ):

〈θ̇η1(t) − θ̇η2(t), θη1(t) − θη2(t)〉E′×E + 〈K(t) θη1(t) − K(t) θη2(t), θη1(t) − θη2(t)〉E′×E

= 〈R(t) vη1(t) − R(t) vη2(t), θη1(t) − θη2(t)〉E′×E.

Then integrating the last property over (0, t), using the strong monotonicity of K(t) and the Lipschitz
continuity of R(t) : V −→ E′, we deduce (3.5).

Proof of Theorem 1.
We have now all the ingredients to prove the Theorem 1.
Consider the operator Λ : W→W defined by for all η ∈ W:

Λ η (t) = G(ε(uη(t))) +

∫ t

0
B(t − s) ε(uη(s)) ds + Ce(t, θη(t)), ∀t ∈ [0,T ],

where

uη(t) = u0 +

∫ t

0
vη(s) ds, ∀t ∈ [0,T ]; uη ∈ W1,2(0,T ; V) ∩W2,2(0,T ; V ′) ∩C1(0,T ; H).

Then from (2.14), (2.15), and Lemma 2, we deduce that for all η1, η2 ∈ W, for all t ∈ [0,T ]:

‖Λ η1 (t) − Λ η2 (t)‖2
H
≤ c ‖θη1(t) − θη2(t)‖

2
F + c

∫ t

0
‖vη1(s) − vη2(s)‖2V ds

≤ c
∫ t

0
‖vη1(s) − vη2(s)‖2V ds.

(3.6)

Now using (3.6), after some algebraic manipulations, we have for any β > 0:∫ T

0
e−βτ ‖Λ η1 (τ) − Λ η2 (τ)‖2

H
≤

c
β

∫ T

0
e−βτ ‖η1(τ) − η2(τ)‖2

H
dτ.

We conclude from the last inequality by contracting principle that the operator Λ has a unique fixed
point η∗ ∈ W. We verify then that the functions

u(t) := u0 +

∫ t

0
vη∗ , ∀t ∈ [0,T ], θ := θη∗

are solutions to problem QV with the regularity (2.36), the uniqueness follows from the uniqueness in
Lemma 1 and Lemma 2.

4. Analysis of a numerical scheme

In this section, we study a fully-discrete numerical approximation scheme of the variational problem
QV . For this purpose, let {u, θ} be the unique solution of the problem QV , and introduce the velocity
variable

v(t) = u̇(t), ∀t ∈ [0,T ].
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Then

u(t) = u0 +

∫ t

0
v(s) ds, ∀t ∈ [0,T ].

Here we make the following additional assumptions on the different data, operators and solution fields:

A ∈ C([0,T ];L(V,V ′)),

B ∈ C([0,T ]; C(V,V ′)),

C ∈ C([0,T ];L(V,V ′)),

B ∈ C([0,T ];L(H ,H)),

ψu ∈ C([0,T ]; C(V,R)),

ψ ∈ C([0,T ]; C(E × E,R)),

f ∈ C([0,T ]; V ′),

K ∈ C([0,T ];L(E, E′)),

R ∈ C([0,T ];L(E, E′)),

Q ∈ C([0,T ]; E′),

v ∈ C([0,T ]; V) ∩C1([0,T ]; H),

θ ∈ C([0,T ]; E) ∩C1([0,T ]; F).

(4.1)

Moreover we assume that for all r, r1, r2 ∈ R, a.e. (t, x) ∈ (0,T ) × Γc :

(i) ϕ′(t, x, r; r1 + r2) ≤ ϕ′(t, x, r; r1) + ϕ′(t, x, r; r2);

(ii) ϕ′(t, x, r2; r1 − r2) + ϕ′(t, x, r1; r2 − r1) ≤ 0;

(iii) there exists cϕ ≥ 0 such that
ϕ′(t, x, r1; r) + ϕ′(t, x, r2;−r) ≤ cϕ |(r1 − r2) r|.

(4.2)

We remark that the example of ϕ given in (2.12) satisfies the hypotheses (4.2).

From Theorem 1, {v, θ} verify for all t ∈ [0,T ]:
〈v̇(t) + A(t) v(t) + B(t) u(t) + C(t) θ(t),w − v(t)〉V′×V

+(
∫ t

0
B(t − s) ε(u(s)) ds, ε(w) − ε(u̇(t)))H + ψu(t,w) − ψu(t, v(t))

≥ 〈 f (t), w − v(t)〉V′×V , ∀w ∈ V.

(4.3)

< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)
≥< R(t)u̇(t), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.

(4.4)

u(0) = u0, v(0) = v0, θ(0) = θ0, (4.5)

Now let Vh ⊂ V and Eh ⊂ E be a family of finite dimensional subspaces, with h > 0 a discretization
parameter. We divide the time interval [0,T ] into N equal parts: tn = n k, n = 0, 1, . . . ,N, with the time
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step k = T/N.
For a continuous operator or function U ∈ C([0,T ]; X) with values in a space X, we use the notation
Un = U(tn) ∈ X.
Then from (4.3) and (4.4) we introduce the following fully discrete scheme.

Problem Phk. Find vhk = {vhk
n }

N
n=0 ⊂ Vh, θhk = {θhk

n }
N
n=0 ⊂ Eh such that

vhk
0 = vh

0, θhk
0 = θh

0 (4.6)

and for n = 1, · · · ,N,

(vhk
n −vhk

n−1
k , wh − vhk

n

)
H

+ 〈An vhk
n , wh − vhk

n 〉V′×V + 〈Bn uhk
n−1, wh − vhk

n 〉V′×V

+〈Cn θ
hk
n−1, wh − vhk

n 〉V′×V + ψu(tn,wh) − ψu(tn, vhk
n )

+(k
∑n−1

m=0B(tn − tm) ε(uhk
m ), ε(wh) − ε(vhk

n ))H

≥ 〈 f n, wh − vhk
n 〉V′×V , ∀wh ∈ Vh.

(4.7)


(
θhk

n −θ
hk
n−1

k , ηh
)

L2(Ω)
+ 〈Kn θ

hk
n , η

h〉E′×E + ψ(tn, θ
hk
n ; ηh)

≥ 〈Rn vhk
n , η

h〉E′×E + 〈Qn, η
h〉E′×E, ∀ ηh ∈ Eh.

(4.8)

where
uhk

n = uhk
n−1 + k vhk

n , uhk
0 = uh

0. (4.9)

Here uh
0 ∈ Vh, vh

0 ∈ Vh, θh
0 ∈ Eh are suitable approximations of the initial values u0, v0, θ0.

For n = 1, . . . ,N, suppose that uhk
n−1, vhk

n−1, θhk
n−1 are known, then by using standard result on elliptic

variational inequalities of the second kind (see e.g. [9] p. 892), we calculate vhk
n by (4.7), θhk

n by (4.8)
and uhk

n by (4.9). Hence the discrete solution vhk ⊂ Vh, θhk ⊂ Eh exists and is unique.
We now turn to an error analysis of the numerical solution. The main result of this section is the
following.
Theorem 2. We keep the assumptions of Theorem 1. Under the additional assumptions (4.1), then
for the unique solution vhk ⊂ Vh, θhk ⊂ Eh of the discrete problem Phk, we have the following error
estimate

max1≤n≤N ‖vn − vhk
n ‖

2
H +

(
k
∑N

n=1 ‖vn − vhk
n ‖

2
V

)
+ max1≤n≤N ‖θn − θ

hk
n ‖

2
F +

(
k
∑N

n=1 ‖θn − θ
hk
n ‖

2
E

)
≤ c ‖u0 − uh

0‖
2
V + c ‖v0 − vhk

0 ‖
2
H + c ‖θ0 − θ

h
0‖

2
F

+c max1≤n≤N ‖vn − wh
n‖H + c max1≤n≤N ‖θn − η

h
n‖

2
F

+c k
∑N

j=1 ‖v j − wh
j‖

2
V + c k

∑N
j=1 ‖θ j − η

h
j‖

2
E

+c
(∑N−1

j=1 ‖(v j − wh
j) − (v j+1 − wh

j+1)‖H
)2

+c
(∑N−1

j=1 ‖θ j − η
h
j − (θ j+1 − η

h
j+1)‖F

)2

+c k2 + c k
∑N

j=1 ‖v j − wh
j‖V ,

(4.10)

where for j = 1, . . . ,N, wh
j ∈ Vh, ηh

j ∈ Eh are arbitrary.
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Proof. The method takes again and generalize classical techniques used in [2], where we refer for
details. Here we mention only the main steps of the proof.
Denote

en = vn − vhk
n , εn = θn − θ

hk
n , 0 ≤ n ≤ N,

the numerical solution errors.
We begin by the estimate of (εn).
Let fix n = 1, · · · ,N. From (4.4) where we put t = tn and η = −ηh, ηh ∈ Eh, then add to (4.8), we obtain(

θ̇n −
θhk

n −θ
hk
n−1

k , ηh
)

L2(Ω)
+ 〈Kn θn − Kn θ

hk
n , η

h〉E′×E

≤ ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh) + 〈Rn vn − Rn vhk

n , η
h〉E′×E.

Writing then

θ̇n −
θhk

n − θ
hk
n−1

k
= θ̇n −

θn − θn−1

k
+
εn − εn−1

k
,

and replacing ηh by ηh
n − θn + εn we obtain(

εn−εn−1
k , εn

)
L2(Ω)

+ 〈Kn θn − Kn θ
hk
n , εn〉E′×E

≤ 〈Kn θn − Kn θ
hk
n , θn − η

h
n〉E′×E

+〈Rn vn − Rn vhk
n , εn〉E′×E + 〈Rn vn − vhk

n , θn − η
h
n〉E′×E

+
(
θ̇n −

θn−θn−1
k + εn−εn−1

k , θn − η
h
n

)
L2(Ω)
−

(
θ̇n −

θn−θn−1
k , εn

)
L2(Ω)

+ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh).

From (2.19) we have

|〈Kn θn − Kn θ
hk
n , θn − η

h
n〉E′×E | ≤ c ‖θn − θ

hk
n ‖E × ‖θn − η

h
n‖E.

From (2.20) we have

|〈Rn vn − Rn vhk
n , η

h〉E′×E | ≤ c ‖vn − vhk
n ‖L2(Ω) × ‖η

h‖L2(Ω).

Then using (4.2) we obtain

ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh) ≤ c ‖θn − θ

hk
n ‖E × ‖θn − η

h
n‖E.

Consider the quantity for n = 1, · · · ,N,

Ξn :=
(εn − εn−1

k
, εn

)
F

+ 〈Kn θn − Kn θ
hk
n , εn〉E′×E.

We have for some cK > 0,

Ξn ≥
1
2k

(
‖εn‖

2
F − ‖εn−1‖

2
F

)
+ cK ‖εn‖

2
E.
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Summing then Ξ j from j = 1 to j = n, and after some manipulation, we obtain

1
2k

(
‖εn‖

2
F − ‖ε0‖

2
F

)
+

∑n
j=1 ‖ε j‖

2
E

≤ c
∑n

j=1

∥∥∥∥θ̇ j −
θ j−θ j−1

k

∥∥∥∥2

F
+ c

∑n
j=1 ‖θ j − η

h
j‖

2
E

+c
∑n

j=1 ‖e j‖
2
V + c

∑n
j=1

(
ε j−ε j−1

k , θ j − η
h
j

)
F
.

Denote now by

Mε := max1≤n≤N ‖εn‖F ,

AT0 := max1≤n≤N ‖θn − η
h
n‖F ,

AT1 :=
∑N

j=1

∥∥∥∥θ̇ j −
θ j−θ j−1

k

∥∥∥∥2

F
,

AT2 :=
∑N

j=1 ‖θ j − η
h
j‖

2
E,

AT3 :=
∑N

j=1 ‖θ j − η
h
j − (θ j+1 − η

h
j+1)‖F .

We deduce from the last inequality that for some constant c > 0 and for n = 1, · · · ,N,

‖εn‖
2
F + k

∑n
j=1 ‖ε j‖

2
E ≤ c ‖ε0‖

2
F + c AT 2

0 + c k (AT1 + AT2)

+c AT3 Mε + c k
∑n

j=1 ‖e j‖
2
V .

(4.11)

We now turn to the estimate of (en).
Let fix n = 1, · · · ,N. Using (4.3) where we put t = tn and w = vhk

n , and adding to (4.7) where wh = wh
n,

we have

(v̇n, vhk
n − vn)H +

(vhk
n −vhk

n−1
k , wh

n − vhk
n

)
H

+〈An vn, vhk
n − vn〉V′×V + 〈An vhk

n , wh
n − vhk

n 〉V′×V

+〈Bn uhk
n , vhk

n − vn〉V′×V + 〈Bn uhk
n−1, wh

n − vhk
n 〉V′×V

+〈Cn θn, vhk
n − vn〉V′×V + 〈Cn θ

hk
n−1, wh

n − vhk
n 〉V′×V

+Rhk
n + ψu(tn,wh

n) − ψu(tn, vn) ≥ 〈 f n, wh
n − vn〉V′×V , ∀wh

n ∈ Vh,

where for n = 1, · · · ,N:

Rhk
n =

( ∫ tn

0
B(tn − s) ε(u(s)) ds − k

n−1∑
m=0

B(tn − tm) ε(uhk
m ), −ε(en)

)
H

+
(
k

∑n−1
m=0B(tn − tm) ε(uhk

m ), ε(wh
n) − ε(vn)

)
H
.

Writing then  v̇n = v̇n −
vhk

n −vhk
n−1

k +
vhk

n −vhk
n−1

k ;

An vn = An vn − An vhk
n + An vhk

n ,
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we obtain (en−en−1
k , en

)
H

+ 〈An vn − An vhk
n , en〉V′×V

≤ 〈An vhk
n , wh

n − vn〉V′×V

+
(
v̇n −

vn−vn−1
k , −en

)
H

+
(vhk

n −vhk
n−1

k , wh
n − vn

)
H

+〈Bn un − Bn uhk
n−1, −en〉V′×V + 〈Bn uhk

n−1, wh
n − vn〉V′×V

+〈Cn θn −Cn θ
hk
n−1, −en〉V′×V + 〈Cn θ

hk
n−1, wh

n − vn〉V′×V

+Rhk
n + ψ(tn,wh

n) − ψu(tn, vn) − 〈 f n, wh
n − vn〉V′×V

Consider the quantity for n = 1, · · · ,N,

En =
(en − en−1

k
, en

)
H

+ 〈An vn − An vhk
n , en〉V′×V .

We have
En ≥

1
2 k

(
‖en‖

2
H − ‖en−1‖

2
H
)

+ mA (‖en‖
2
V − ‖en‖

2
H).

For N large enough (recall that k = T
N ), we have 1

2 k − mA ≥ 1, then

En ≥
1

2 k
(
‖en‖

2
H − ‖en−1‖

2
H
)

+ mA ‖en‖
2
V .

To continue, we denote in the sequel by

Me := max1≤n≤N ‖en‖H,

BV0 := max1≤n≤N ‖vn − wh
n‖H,

BV1 :=
∑N

j=1

∥∥∥∥v j−v j−1

k − v̇ j

∥∥∥∥2

H
,

BV2 :=
∑N

j=1 ‖v j − wh
j‖

2
V ; B̂V2 :=

∑N
j=1 ‖v j − wh

j‖V ,

BV3 :=
∑N−1

j=1 ‖(v j − wh
j) − (v j+1 − wh

j+1)‖H,

I :=
N−1∑
j=1

∥∥∥∥ ∫ t j

0
v − k

j∑
i=1

vi

∥∥∥∥2

V
,

BV4 :=
∑N

j=1 ‖u j − u j−1‖
2
V , AT4 :=

∑N
j=1 ‖θ j − θ j−1‖

2
F ,

BV5 :=
∑N

j=1 |〈B j u j−1, v j − wh
j〉V′×V |, AT5 :=

N∑
j=1

|〈C j θ j−1, v j − wh
j〉V′×V |,

F :=
∑N

j=1 |〈A j v j, v j − wh
j〉V′×V + ψu(t j, v j) − ψu(t j,wh

j) − 〈 f j, v j − wh
j〉V′×V |,

Then we sum E j from j = 1 to j = n. After some algebraic manipulations, we obtain for N large
enough, for any small ε > 0, for some constant c > 0, for n = 1, · · · ,N,

‖en‖
2
H + k

∑n
j=1 ‖e j‖

2
V ≤ c ‖e0‖

2
H + c ‖u0 − uh

0‖
2
V

+c BV0 + c k (BV1 + BV2 + BV4 + BV5 + I) + c BV3 Me

+c k (AT4 + AT5) + c k F

+c k
∑n

j=1 (αhk
j )2 + c k

∑n
j=1 β

hk
j ‖v j − wh

j‖V

+ε k
∑n−1

j=0 ‖ε j‖
2
F + c k

∑n−1
j=1

(
k
∑ j

i=1 ‖ei‖
2
V

)
,
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where for n = 1, · · · ,N:

αhk
n :=

∥∥∥∥ ∫ tn
0
B(tn − s) ε(u(s)) ds − k

∑n−1
m=0B(tn − tm) ε(uhk

m )
∥∥∥∥
H

βhk
n =

∥∥∥∥k
∑n−1

m=0B(tn − tm) ε(uhk
m )

∥∥∥∥
H
.

From (4.1) and after some upper bound computations, we obtain for n = 1, · · · ,N:

k
∑n

j=1 (αhk
j )2 ≤ c k2 + c k

∑n−1
m=0 ‖uhk

m − um‖
2
V

≤ c k2 + c ‖u0 − uh
0‖

2
V + c k I + c k

∑n−1
j=1

(
k
∑ j

i=1 ‖ei‖
2
V

)
;

and
k
∑n

j=1 β
hk
j ‖v j − wh

j‖V ≤ c k
∑n−1

m=0 ‖uhk
m − um‖

2
V + c k (BV2 + B̂V2)

≤ c ‖u0 − uh
0‖

2
V + c k I + c k

∑n−1
j=1

(
k
∑ j

i=1 ‖ei‖
2
V

)
+ c k (BV2 + B̂V2);

and
k I ≤ c k2;

k AT1 ≤ c k2;

k BV1 ≤ c k2;

k AT4 ≤ c k2;

k BV4 ≤ c k2;

AT5 + BV5 + F ≤ c B̂V2.

Using then (4.11), we deduce for some constant c > 0, for n = 1, · · · ,N,

‖en‖
2
H + k

∑n
j=1 ‖e j‖

2
V

≤ c ‖e0‖
2
H + c ‖u0 − uh

0‖
2
V + c ‖ε0‖

2
F + c BV0 + c AT 2

0

+c k (BV2 + B̂V2) + c k AT2 + c k2

+c BV3 Me + c AT3 Mε

+c k
∑n−1

j=1

(
k

∑ j
i=1 ‖ei‖

2
V

)
.

Using then Gronwall’s inequality, and again the estimation (4.11), we conclude that for some constant
c > 0, and for n = 1, · · · ,N,

max
(
‖en‖

2
H + k

∑n
j=1 ‖e j‖

2
V ; ‖εn‖

2
F + k

∑n
j=1 ‖ε j‖

2
E

)
≤ c ‖e0‖

2
H + c ‖u0 − uh

0‖
2
V + c ‖ε0‖

2
F + c BV0 + c AT 2

0

+c k (BV2 + B̂V2) + c k AT2

+c k2 + c BV2
3 + c AT 2

3 .

This gives the estimation (4.10) stated in Theorem 2.

The inequality (4.10) is a basis for error estimates for particular choice of the finite-dimensional sub-
space Vh and under additional data and solution regularities.
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As a typical example, let us consider Ω ⊂ Rd, d ∈ N∗, a polygonal domain. Let T h be a regular
finite element partition of Ω. Let Vh ⊂ V and Eh ⊂ E be the finite element space consisting of
piecewise polynomials of degree ≤ m − 1, with m ≥ 2, according to the partition T h. Denote by
Πh

V : Hm(Ω)d → Vh and Πh
E : Hm(Ω) → Eh the corresponding finite element interpolation operator.

Recall (see e.g. [3]) that: ‖w − Πh
Vw‖Hl(Ω)d ≤ c hm−l |w|Hm(Ω)d , ∀w ∈ Hm(Ω)d;

‖η − Πh
Eη‖Hl(Ω) ≤ c hm−l |η|Hm(Ω), ∀ η ∈ Hm(Ω).

where l = 0 (for which H0 = L2) or l = 1.
We assume more generally the following additional data and solution regularities for some α ≥ 1:

u0 ∈ Hα+1(Ω)d;

v ∈ C([0,T ]; H2α+1(Ω)d), v̇ ∈ L1(0,T ; Hα(Ω)d);

θ ∈ C([0,T ]; Hα+1(Ω)), θ̇ ∈ L1(0,T ; Hα(Ω)).

(4.12)

Then we choose in (4.10) the elements

uh
0 = Πh

V u0, vh
0 = Πh

V v0, θh
0 = Πh

E θ0,

and
wh

j = Πh
V v j, ηh

j = Πh
E θ j, j = 1 · · ·N.

From the assumptions (4.12), we have:

‖u0 − uh
0‖V ≤ c hα, ‖e0‖H ≤ c hα, ‖ε0‖F ≤ c hα;

AT0 ≤ c hα, BV0 ≤ c h2α;

AT3 ≤ c hα, BV3 ≤ c hα;

k AT2 ≤ c h2α, k BV2 ≤ c h2α, k B̂V2 ≤ c h2α.

Using these estimates in (4.10), we conclude to the following error estimate result.
Theorem 3. We keep the assumptions of Theorem 2. Under the additional assumptions (4.12), we
obtain the error estimate for the corresponding discrete solution vhk

n , θhk
n , n = 1, . . . ,N.

max0≤n≤N ‖vn − vhk
n ‖H +

(
k
∑N

n=0 ‖vn − vhk
n ‖

2
V

)1/2

+ max0≤n≤N ‖θn − θ
hk
n ‖F +

(
k
∑N

n=0 ‖θn − θ
hk
n ‖

2
E

)1/2
≤ c (hα + k).

In particular, for α = 1, we have

max0≤n≤N ‖vn − vhk
n ‖H +

(
k
∑N

n=0 ‖vn − vhk
n ‖

2
V

)1/2

+ max0≤n≤N ‖θn − θ
hk
n ‖F +

(
k
∑N

n=0 ‖θn − θ
hk
n ‖

2
E

)1/2
≤ c (h + k).
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5. Numerical computations

Here we provide numerical simulations derived from the previous discrete schemes, by using Mat-
lab computation codes, in the case of bilateral contact with Tresca’s friction law.
Here the following classical examples are taken :

Ce(t, θ) := −θ (ci j(t)) in Ω;

Kc(t,∇θ) = (ki j(t))∇θ in Ω;

Ce(t, v) = −ci j(t) ∂ vi
∂ x j

in Ω;

ϕ(t, r) = 1
2ke(t) (r − θR(t))2 on Γ3.

On the contact surface Γ3, we consider a bilateral condition and satisfies (see e.g. [4], [6]):


uν = 0, |στ| ≤ g(t),

|στ| < g(t) =⇒ u̇τ = 0,

|στ| = g(t) =⇒ u̇τ = −λστ, for some λ ≥ 0,

on (0,T ) × Γ3.

Here g(t) represents the friction bound, i.e., the magnitude of the limiting frictional traction at which
slip begins, with g ∈ L∞((0,T ) × Γ3), g(t) ≥ 0 a.e. on Γ3. We deduce the admissible displacement
space:

V := {w ∈ H1; wν = 0 on Γ3},

and the sub-differential contact function independent on time:

ϕu(t, x, y) = g(t, x)|yτ(x)| ∀x ∈ Γ3, y ∈ Rd,

where yτ(x) := y − yν(x)ν(x), yν(x) := y · ν(x), with ν(x) the unit normal at x ∈ Γ3. We have then

ψu(t, v) :=
∫

Γ3

g(t) |vτ| da, ∀v ∈ V

is well defined on V and independent on time with the property: for some c > 0,

|ψu(t,w) − ψu(t, v)| ≤ c ‖v − w‖L2(Γ3)d , ∀v, w ∈ V.

Thus from the definition it is clear that ψu(t, ·) : V −→ R is convex. By using the continuous embed-
ding from V into L2(Γ3)d and the last inequality, we find that

ψu(t, ·) is Lipschitz continuous on V.

Then the assumptions in (2.17) are verified.
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We consider for simulations a rectangular open set, linear elastic and long memory viscoelastic opera-
tors, with non clamped condition.

Ω = (0, L1) × (0, L2); Γ1 = ∅;

Γ2 = ({0} × [0, L2]) ∪ ([0, L1] × {L2}) ∪ ({L1} × [0, L2]); Γ3 = [0, L1] × {0};

(G(t) τ)i j =
E(t) κ(t)
1−κ(t)2 (τ11 + τ22) δi j +

E(t)
1+κ(t)τi j, 1 ≤ i, j ≤ 2, τ ∈ S 2;

(A(t) τ)(t)i j = µ(t) (τ11 + τ22) δi j + η(t) τi j, 1 ≤ i, j ≤ 2, τ ∈ S 2;

(B(t) τ)i j = B1(t) (τ11 + τ22) δi j + B2(t) τi j, 1 ≤ i, j ≤ 2, τ ∈ S 2, t ∈ [0,T ]

Here E(t) is the Young’s modulus, κ(t) the Poisson’s ratio of the material, δi j denotes the Kronecker
symbol, µ(t) and η(t) are viscosity constants, at each time t ∈ [0,T ].
We refer to the previous numerical scheme, and use spaces of continuous piecewise affine functions
Vh ⊂ V and Eh ⊂ E as families of approximating subspaces. For computations we considered the
following data (IS unity), ∀t ∈ [0,T ]:

L1 = L2 = 1, T = 1

µ(t) = 8 et, η(t) =
20

1 + t2 , E(t) =
4

1 + t
, κ(t) =

0, 2
1 + t2 , f 0(x, t) = (0, −5t)

f 2(t, x) = (0, 0), ∀x ∈ {0} × [0, L2]

f 2(t, x) = (1 + t, 0), ∀x ∈ ([0, L1] × {L2}) ∪ ({L1} × [0, L2])

c11(t) = c12(t) = c21(t) = t, c22(t) = t2

k11(t) = k22(t) = 1 + t, k12(t) = k21(t) = t

ke(t) = 1 + t, q(t) = et

B1(t) = B2(t) = 10−2 e−t

u0 = (0, 0), v0 = (0, 0), θ0 = 0

In Figure 1 (see figures below) is representing the initial configuration.
In Figure 2 we have the deformed configuration at final time, where θR(t) = 0, θa(t) = 5 e−t, 0 ≤ t ≤ 1,
for two different types of Tresca’s friction bounds. For smaller friction bound with respect to the
surface fraction on Γ2, where g(t, x) = t+x

4 , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1, we observe on the contact surface a
slip phenomena in the direction of the fraction: which means that the friction bound has been obtained.
Whereas for large friction bound, e.g. for g(t, x) = 9 (t + x), 0 ≤ t ≤ 1, 0 ≤ x ≤ 1, then slip in the
direction of the traction could be less easy, friction in this case appears more important as well as for
the deformation.
In Figures 3, we compute the Von Mises’ norm which gives a global measure of the stress in the body.
We observe that stress is more important for larger friction bounds, at the contact surface or at the
traction surface.
In Figures 4, we show the influence of the different temperatures of the foundation (θR(t) = 0 or
θR(t) = 30) on the temperature field ξ of the body.
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Figure 1. Initial configuration
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Figure 2. Deformed configurations at final time, θR(t) = 0, θa(t) = 5 e−t, 0 ≤ t ≤ 1
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Figure 3. Von Mises’ norm in long memory deformed configurations, θR(t) = 0, θa(t) =

5 e−t
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Figure 4. Temperature ξ at final time in long memory, g(t, x) = 9 (t + x)
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tions to Nonlinear Functional Analysis, Dunod et Gauthier-Villars, 1969.

6. P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Contributions to
Nonlinear Functional Analysis, Basel: Birkhäuser, 1985.
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