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1. Introduction

The concept of bounded variation function was introduced in 1881 by Camille Jordan [1] for real
functions defined in a closed interval I = [a, b] ⊂ R. He proves that a function is of bounded variation
if and only if it can be represented as the difference of two increasing functions. This representation is
known as the Jordan decomposition.

Because of the existence of several kinds of functions, mainly due to variations of domain and
codomain, it has been necessary to define different types of bounded variation. We can mention Vitali,
Hardy, Arzela, Pierpont, Frechet, and Tonelli who give different definitions of bounded variation for
real functions of two variables. C. R. Adams [2, 3] studied the relation between the concepts defined
by the previous authors.

For bounded variation functions f : [a, b]→ X, where X is a metric space, V. V. Chistyakov studies
many aspects around those functions [4, 5, 6, 7]. In the first reference, he proves an alternative result
to the Jordan decomposition, affirming that for bounded variation functions valued in metric spaces
the decomposition as the difference of two monotone functions is inapplicable. On the other hand,
Bianchini and Tonon [8] assert that there is no hope for a further generalization of this decomposition
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to vector valued BV functions, apart from the case of a function f : R → Rm where the analysis is
straightforward.

Defining the bounded variation with respect to the order in the first part of this paper we show
that the Jordan decomposition is possible for functions valued in Riesz spaces. Additionally, as an
alternative to affirmations of Chistyakov and Bianchini-Tonon, we prove that for functions valued in
Hilbert spaces, proposition 2.10, the Jordan decomposition is satisfied in a generalized sense from
an equivalence relation, being the decomposition for real-valued functions a particular case. This
result allows us to give a negative answer to the Jordan decomposition problem of a bounded variation
function f : I → (H ,H+), where the Hilbert spaceH is ordered by a given extensible coneH+.

1.1. Preliminaries

There are vector spaces in which is possible to define a natural order relation, for instance for
continuous real functions defined on a compact interval [a, b], denoted by C([a, b],R). In this case:
f ≤ g, if f (t) ≤ g(t); for all t ∈ [a, b]. Nevertheless, there are some vector spaces where a natural
order relation cannot be defined. This has led to creating mechanisms that permit comparison vectors
associated with the order.

We listed some concepts that will be useful in our exposition and that are linked to order in vector
spaces. The notation [a, b] always will be reserved for compact intervals in R.

• Let X be a partially ordered set. We say that X is a lattice if every subset consisting of two points
has a supremum and an infimum.
• A vector space X is called ordered if it is partially ordered in such a manner that the structure of

vector space and the order structure are compatible, that is to say:

i) x ≤ y implies x + z ≤ y + z, for every z ∈ X,

ii) x ≥ 0 implies αx ≥ 0, for every α ≥ 0 in R.

If, in addition, X is a lattice with respect to the partial order, then X is called a Riesz space.

• Let X be a Riesz space. A function f : [a, b] → X is bounded above if there exists M ∈ X such
that f (t) ≤ M, for all t ∈ [a, b]. f is bounded below if there exists m ∈ X such that m ≤ f (t), for
all t ∈ [a, b]. We say that f is bounded with respect to the order if it is at the same time bounded
above and bounded below.
• Let X be a Riesz space. f : [a, b] → X is an increasing (decreasing) function if f (t1) ≤ f (t2) (

f (t1) ≥ f (t2)), when t1 ≤ t2.
• Let X be a normed space. X+ a closed subset of X is called a cone if X+ + X+ ⊆ X+, X+

⋂
(−X+) =

{0} and cX+ ⊆ X+, for all c ≥ 0. The order relation ≤ defined by

x ≤ y if and only if y − x ∈ X+

is an order partial in X. The pair (X, X+) is called ordered normed space.
• Let X be an ordered normed space with a cone X+. We say that f : [a, b] → X is an increasing

(decreasing) function if f (t2) − f (t1) ∈ X+ ( f (t1) − f (t2) ∈ X+), provided that t1 ≤ t2.
• Assume that X+ is a cone in X. If there exists a cone X1 in X and b > 0 such that for any x ∈ X+:

B(x, b‖x‖) ⊂ X1, then X+ is called an extensible cone.
The following characterization of extensible cones is useful for our purposes.
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Theorem 1.1. [9] Assume that X+ is a cone in X. Then X+ is extensible if and only if there exists g ∈ X∗

and a constant α > 0 such that g(x) ≥ α‖x‖, for all x ∈ X+.

A partition of [a, b] is a finite ordered set of points in [a, b]:

a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b,

which determine subintervals [ti−1, ti], i = 1, . . . , n, such that
⋃

i[ti−1, ti] = [a, b]. The set of partitions
of [a, b] is denoted by P [a, b].

Definition 1.2. Let X be a normed space. We say that f : [a, b] → X is of bounded variation on [a, b]
if

sup{
∑

P

‖ f (ti) − f (ti−1)‖X : P ∈ P[a, b]} ∈ R+ ∪ {0} . (1)

The expression (1) is the variation of f on [a, b] and it is denoted by Vb
a ( f , X).

The set of bounded variation functions defined on [a, b], with values in X, is denoted by
BV([a, b], X). For X = R, we will use the notation BV([a, b]). For t ∈ [a, b] , V t

a( f , X) will be the
variation function.

Remark 1.3. If f (t) = ( f1 (t) , f2 (t) , ..., fm (t)) , where each f j ∈ BV([a, b]), then f ∈ BV([a, b],Rm)
and the next inequality is satisfied√√ m∑

j=1

Vb
a ( f j,R)2 ≤ Vb

a ( f ,Rm) ≤
m∑

j=1

Vb
a ( f j,R). (2)

This can be seen examining, for instance, the case m = 2. Let f (t) = ( f1 (t) , f2 (t)) and P = {a = t0 ≤

t1 ≤ t2 ≤ · · · ≤ tn = b} any partition of [a, b] . By the inequality
√
α1 + α2 ≤

√
α1 +

√
α2, where αi, α2

≥ 0; we have

n∑
i=1

‖ f (ti) − f (ti−1)‖ =

n∑
i=1

√
( f1 (ti) − f1 (ti−1))2 + ( f2 (ti) − f2 (ti−1))2

≤

n∑
i=1

| f1 (ti) − f1 (ti−1)| +
n∑

i=1

| f2 (ti) − f2 (ti−1)|

≤ Vb
a ( f1,R) + Vb

a ( f2,R).

Thus, f ∈ BV([a, b],R2) and

Vb
a ( f ,R2) ≤ Vb

a ( f1,R) + Vb
a ( f2,R).

By the inequality

√√√ n∑
i=1

α1i

2

+

 n∑
i=1

α2i

2

≤

n∑
i=1

√
α2

1i + α2
2i,
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where α ji ≥ 0 for i = 1, 2, ..., n; j = 1, 2; and taking α ji =
∣∣∣ f j (ti) − f j (ti−1)

∣∣∣, we have√√√ n∑
i=1

| f1 (ti) − f1 (ti−1)|

2

+

 n∑
i=1

| f2 (ti) − f2 (ti−1)|

2

≤

n∑
i=1

‖ f (ti) − f (ti−1)‖

≤ Vb
a ( f ,R2).

Evaluating the supremum over all the partitions in [a, b] , we obtain the left-hand inequality of (2).
This inequality may be strict. For example, let f (t) = ( f1 (t) , f2 (t)) =

(
t2, t

)
, t ∈ [−1, 1] . We have that

V1
−1( f1,R) = 2

∫ 1

−1
|t| dt = 2, V1

−1( f2,R) = 2

and √
V1
−1( f1,R)2 + V1

−1( f2,R)2 = 2
√

2.

The affirmation is proved observing that for the partition P0 = {−1, 0, 1/2, 1} :
3∑

i=1

√
( f1 (ti) − f1 (ti−1))2 + ( f2 (ti) − f2 (ti−1))2 =

√
2 +

√
5 +
√

13
4

> 2
√

2.

Since Vb
a ( f ,Rm) is a scalar, then one could think that it must be equal to∥∥∥∥(Vb

a ( f1,R),Vb
a ( f2,R), ...,Vb

a ( fm−1,R),Vb
a ( fm,R)

)∥∥∥∥ . The above example shows that this fact may
not be possible.

Definition 1.4. Let X be a normed space and let X∗ be its dual space. f : [a, b] → X is of weakly
bounded variation if for every ϕ ∈ X∗, the function ϕ( f ) belongs to BV([a, b]).

We know that if X is a normed space and ϕ ∈ X∗, then ‖ϕ(x)‖ ≤ ‖ϕ‖‖x‖X. Therefore, we can observe
that the following result is satisfied.

Lemma 1.5. If f : [a, b]→ X is a bounded variation function, then it is of weakly bounded variation.

The converse of this lemma is not true, see [[10], Example 7.1.8].

Theorem 1.6. Let X be an ordered normed space with an extensible cone X+. Then every monotone
(increasing or decreasing) function is of bounded variation.

Proof. We prove the case when f is an increasing function, the proof for decreasing functions is similar.
Let {[tk−1, tk] : k = 1, . . . , n} be a partition of [a, b]. Since X+ is an extensible cone, then, by theorem 1.1,
there exists g ∈ X∗ and a constant α > 0 such that ‖ f (tk) − f (tk−1)‖ ≤ αg ( f (tk) − f (tk−1)) , k = 1, . . . , n.
Therefore we conclude the proof with the following inequalities.

n∑
k=1

‖ f (tk) − f (tk−1)‖X ≤ αg

 n∑
k=1

( f (tk) − f (tk−1))


= αg ( f (b) − f (a)) ≤ α‖g‖‖ f (b) − f (a)‖X.

�
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As a consequence of the previous theorem we have that the difference of two increasing functions
is of bounded variation. In subsection 2.2 we will see that the reciprocal of this result may not be true.

Supposing that “≤” is a natural order in the normed space X, then X+ = {x ∈ X : 0 ≤ x} will be a
cone. In this case we have that a monotone function in the ordered normed space (X, X+) may not be of
bounded variation. This fact contrasts with theorem 1.6. In the following example we use the function
defined in [[10], Example 7.1.8].

Example 1.7. Let F be a function from [0, 1] into L∞[0, 1] defined by

F(t)(x) =


1 i f 0 ≤ x ≤ t

0 i f t < x ≤ 1, 0 ≤ t < 1.

L∞[0, 1] has a natural order in the following sense. If h1, h2 ∈ L∞[0, 1], then h1 ≤ h2 if and only if
h1 (x) ≤ h2 (x) a.e. on [0, 1]. Suppose that 0 ≤ t1 < t2 ≤ 1. If x ∈ [0, t1] , then F(t1)(x) = F(t2)(x) = 1.
If x ∈ (t1, t2) , then, since χ[0,t1] ≤ χ[0,t2], it follows that F(t1)(x) ≤ F(t2)(x). The case when x ∈ [t2, 1] is
obvious.
For any P = {0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = 1} ∈ P[a, b], we have ‖F(tk) − F(tk−1)‖L∞[0,1] = 1. Thus

n∑
k=1

‖F(tk) − F(tk−1)‖L∞[0,1] = n.

We conclude that F(t) is an increasing function in the natural sense but is not of bounded variation.

2. The Jordan decomposition of functions with values...

2.1. ...in Riesz spaces

In this subsection X will be a Riesz space. We denote

x+ := sup{x, 0}; x− := sup{−x, 0} and |x|o := x+ + x−.

The previous notation makes sense because a Riesz space is a lattice with respect to the partial order.
We define the concept of bounded variation with respect to the order as follows.

Definition 2.1. A function f : [a, b]→ X is of bounded variation with respect to the order on [a, b] if
there exists a M ∈ X such that

Vo
f [a, b] := sup

P∈P[a,b]

n∑
i=1

| f (ti) − f (ti−1)|o ≤ M,

for all partition P ∈ P([a, b]).

By analogy with the case X = R, it is not difficult to be convinced of the validity of the following
results.

Theorem 2.2. If f : [a, b] → X is monotone on [a, b], then f is of bounded variation with respect to
the order on [a, b]
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Theorem 2.3. Let X be a Riesz space. If f : [a, b] → X is of bounded variation with respect to the
order on [a, b], then f is bounded above on [a, b].

Theorem 2.4. Assume that f , g : [a, b] → X are two bounded variation functions with respect to the
order on [a, b]. Then also the addition and difference of f and g are of bounded variation with respect
to the order. Moreover, we have

Vo
f±g [a, b] ≤ Vo

f [a, b] + Vo
g [a, b] .

Theorem 2.5. Let f : [a, b] → X be a bounded variation function with respect to the order on [a, b],
and assume that c ∈ (a, b). Then f is of bounded variation with respect to the order on [a, c] and on
[c, b]. Moreover, we have

Vo
f [a, b] = Vo

f [a, c] + Vo
f [c, b].

Theorem 2.6. Let f be a bounded variation function with respect to the order on [a, b]. Let Vo be
defined on [a, b] as follows: Vo(t) = Vo

f [a, t] if a < t ≤ b, and Vo(a) = 0. Then:

i) Vo is an increasing function on [a, b].

ii) Vo − f is an increasing function on [a, b].

Proof. If a < t1 < t2 ≤ b, we can write Vo
f [a, t2] = Vo

f [a, t1] + Vo
f [t1, t2]. This implies that Vo(t2) −

Vo(t1) = Vo
f [t1, t2] ≥ 0. Hence Vo(t1) ≤ Vo(t2) and i) holds. To prove ii), let D(t) = Vo(t) − f (t) if

t ∈ [a, b]. Then, if a ≤ t1 < t2 ≤ b, we have

D(t2) − D(t1) = Vo(t2) − f (t2) − (Vo(t1) − f (t1))
= Vo(t2) − Vo(t1) − [ f (t2) − f (t1)]
= Vo[t1, t2] − [ f (t2) − f (t1)].

From the definition of Vo
f [t1, t2], it follows that

f (t2) − f (t1) ≤ Vo
f [t1, t2].

This means that D(t2) − D(t1) ≥ 0, and ii) holds. �

Theorem 2.7. Let f : [a, b]→ X be. Then f is of bounded variation with respect to the order on [a, b]
if and only if f can be expressed as the difference of two increasing functions.

Proof. If f is of bounded variation with respect to the order in [a, b], we can write f = Vo − D, where
Vo is the function of the previous theorem and D = Vo − f . Both Vo and D are increasing functions.

The converse is immediately deduced by theorems 2.2 and 2.4. �

Example 2.8. Let f : [−π2 ,
π
2 ] → R2 be given by f (t) = (cos t, t), where R2 is considered as a Riesz

space with the order (x1, x2) ≤ (y1, y2), whenever x1 ≤ y1 and x2 ≤ y2. Let P ∈ P [a, b].
If P contains to 0, then

|(cos ti − cos ti−1, ti − ti−1)|o = sup {(cos ti − cos ti−1, ti − ti−1), (0, 0)}
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+ sup {(cos ti−1 − cos ti, ti−1 − ti), (0, 0)}
= (g (i, t) , ti − ti−1)

= (| cos ti − cos ti−1|, ti − ti−1) ,

where

g (i, t) =


cos ti − cos ti−1 if −π2 ≤ t ≤ 0

cos ti−1 − cos ti if 0 < t ≤ π
2

.

Suppose that exist ti−1, ti ∈ P such that 0 ∈ (ti−1, ti). Then

|(cos ti − cos ti−1, ti − ti−1)|o = sup {(cos ti − cos ti−1, ti − ti−1), (0, 0)}
+ sup {(cos ti−1 − cos ti, ti−1 − ti), (0, 0)}

= (h (i, t) , ti − ti−1)

= (| cos ti − cos ti−1|, ti − ti−1) ,

where

h (i, t) =


cos ti − cos ti−1 if ti < |ti−1|

cos ti−1 − cos ti if ti ≥ |ti−1|

.

Thus,

sup
P∈P[a,b]

n∑
i=1

| f (ti) − f (ti−1)|o = sup
P∈P[a,b]

n∑
i=1

(| cos ti − cos ti−1|, ti − ti−1)

= sup
P∈P[a,b]

 n∑
i=1

| cos ti − cos ti−1|, π


=

(
V

π
2
− π2

(cos t,R), π
)
.

Therefore, f is of bounded variation with respect to the order and

Vo
f

[
−
π

2
,
π

2

]
=

(
V

π
2
− π2

(cos t,R), π
)
.

2.2. ...in Hilbert spaces

We will analyze the Jordan decomposition for functions with values in a Hilbert space.

Definition 2.9. Let H be a Hilbert space on R and let x0 be fixed in H . We say that x, y ∈ H are
related with respect to x0, and we use the notation

x ∼x0 y,

if 〈x − y, x0〉 = 0.
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The previous relation is of equivalence, so that, for each x0 ∈ H , we can divide H in disjoint
classes. Since any two elements x, y ∈ H are related with respect to 0, then the only equivalence class
will beH .

Using this relation, in the following proposition we prove a generalization of the Jordan decompo-
sition.

Proposition 2.10. Let H be a Hilbert space on R. If f : [a, b] → H is a bounded variation function,
then, for each x0 , 0 in H , there exists an extensible cone Hx0+ in H and fx01, fx02 : [a, b] → H
increasing functions in

(
H ,Hx0+

)
such that f ∼x0

[
fx01 − fx02

]
.

Proof. By the Riesz lemma, for x0 ∈ H there is only one h0 ∈ H
∗ such that h0(x) = 〈x, x0〉. By lemma

1.5, h0 ◦ f : [a, b] → R is of bounded variation. Therefore, there exist g1, g2 : [a, b] → R increasing
such that h0 ◦ f = g1 − g2. Because of x0 , 0, the functional h0 is not identically zero. Let α ∈ (0, ‖x0‖)
and

Hx0+ = {x ∈ H : 〈x, x0〉 ≥ α ‖x‖} . (3)

This set is a cone because if x and −x ∈ Hx0+, then

α ‖x‖ ≤ 〈−x, x0〉 ≤ −α ‖x‖ ,

thus x = 0. Also, if λ ≥ 0 and x ∈ Hx0+, we have that 〈λx, x0〉 ≥ α ‖λx‖ . By theorem 1.1, Hx0+ is an
extensible cone.

Since

h0 (x0) = ‖x0‖
2 > α ‖x0‖ ,

x0 belongs toHx0+.

Let fx01 (t) = g1 (t) x0 and fx02 (t) = g2 (t) x0. Because 0 ≤ g1 (t2) − g1 (t1) for t1 < t2, then we have

fx01 (t2) − fx01 (t1) =
[
g1 (t2) − g1 (t1)

]
x0 ∈ Hx0+.

Making a similar observation for fx02, we have that fx01 (t) and fx02 (t) are increasing functions.
On the other hand, considering that h0 ◦ f = g1 − g2 :

(h0 ◦ f ) (t) = 〈 f (t) , x0〉 (4)

=
[
g1 (t) − g2 (t)

] 1
‖x0‖

2 〈x0, x0〉

=
1
‖x0‖

2

〈[
g1 (t) − g2 (t)

]
x0, x0

〉
=

1
‖x0‖

2

〈
fx01 (t) − fx02 (t) , x0

〉
. (5)

SinceHx0+ is a cone and 1
‖x0‖

2 > 0, then the functions 1
‖x0‖

2 fx0i (t) , i = 1, 2, are increasing in
(
H ,Hx0+

)
.

Redefining fx01 (t) and fx02 (t), respectively by the previous multiple functions, then, by (4) and (5), we
get

f ∼x0

[
fx01 − fx02

]
.

�
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Due to Riesz’s lemma and taking x0 ∈ H associated with the functional h0, we have the following
corollary.

Corollary 2.11. Let H be a Hilbert space on R. If f : [a, b] → H is a bounded variation function,
then, for each h0 ∈ H

∗, there exists an extensible coneHh0+, inH and fh01, fh02 : [a, b]→ H increasing
functions in

(
H ,Hh0+

)
such that f ∼x0

[
fh01 − fh02

]
.

Remark 2.12. Because g1 and g2 may be V t
a(h0 ◦ f ,R) and V t

a(h0 ◦ f ,R)− h0 ◦ f (t) , respectively, then
we have

fh01 (t) = V t
a(h0 ◦ f ,R)x0 (6)

and
fh02 (t) =

[
−h0 ◦ f (t) + V t

a(h0 ◦ f ,R)
]

x0.

This opens the possibility of defining the right side of (6) as the variation function of f with respect to
x0.

Remark 2.13. We can make a variant of the proof of proposition 2.10, if we consider the cone

Hx00 = {x ∈ H : 〈x, x0〉 ≥ 0} .

Hx0+
should be extend toHx00 , and this last one is non-extensible.

Remark 2.14. We can observe that the proposition 2.10 generalizes the case H =R. The cone Hx0+

associated to each x0 ∈ R, x0 , 0, has the form

Hx0+ = {x ∈ R : xx0 ≥ α |x|} (7)

=


[0,∞) if x0 ≥ α > 0

∅ if x0 < α.

We have: x, y ∈ R are x0−related if and only if x = y. Thus f ∼x0

[
fx01 − fx02

]
if and only if f =

fx01 − fx02. We observe that for any other x1 , 0, we have by (7) thatHx0+ = Hx1+; although x0 , x1.

Example 2.15. Let [a, b] = [−π2 ,
π
2 ],H =R2, x0 = (1, 1), and α = 1 ∈

(
0,
√

2
)
. It follows that the cone

associated to x0 is

Hx0+ =

{
(x1, x2) ∈ R2 : x1 + x2 ≥

√
x2

1 + x2
2

}
=

{
(x1, x2) ∈ R2 : x1, x2 ≥ 0

}
= R2

+.

By remark 1.3, the function f : [−π2 ,
π
2 ] → R2 given by f (t) = (cos t, t) is of bounded variation from

[−π2 ,
π
2 ] toH , therefore the function

(h0 ◦ f ) (t) = 〈 f (t) , x0〉

= cos t + t,
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is of bounded variation from [−π2 ,
π
2 ] to R. Since

V t
− π2

(h ◦ f ;R) =

∫ t

− π2

|1 − sin u|du

= t + cos t +
π

2
,

then g1 (t) = t + cos t + π
2 and g2 (t) = π

2 . Hence

f1 (t) =
1
2

(
t + cos t +

π

2
, t + cos t +

π

2

)
and

f2 (t) =
1
2

(
π

2
,
π

2

)
,

which are increasing functions with respect toHx0+. We note that indeed:

〈 f (t) − [ f1(t) − f2(t)], (1, 1)〉 = 〈(−
t
2

+
cos t

2
,

t
2
−

cos t
2

), (1, 1)〉 = 0,

whereby
(cos t, t) ∼(1,1)

[
f1 (t) − f2 (t)

]
.

If we take into account the cone H+ = {(x1, x2) ∈ R : x1, x2 ≤ 0}, it is easy to see that f1 is not
increasing with respect to this cone.

Lemma 2.16. Let
(
H ,Hx0+

)
be an ordered Hilbert space with a coneHx0+ defined in (3), with x0 , 0,

and let h0 (x) = 〈x, x0〉. If f is an increasing function in
(
H ,Hx0+

)
, then h0 ◦ f : [a, b] → R is

increasing and satisfies that f ∼x0 h0 ◦ f (t)x0.

Proof. Because f is increasing in
(
H ,Hx0+

)
, then, by proposition 2.10 and theorem 1.6, f is of

bounded variation. Hence there exist fx01 and fx02 increasing in
(
H ,Hx0+

)
such that f ∼x0

[
fx01 − fx02

]
.

Because we can choose

fx01 (t) = V t
a(h0 ◦ f ,R)x0

and

fx02 (t) =
[
V t

a(h0 ◦ f ,R) − h0 ◦ f (t)
]

x0,

we have

f ∼x0 h0 ◦ f (t) x0.

If t1 < t2, then: h0 ◦ f (t2) − h0 ◦ f (t1) = 〈 f (t2) − f (t1), x0〉 ≥ α ‖ f (t2) − f (t1)‖ ≥ 0, therefore h0 ◦ f is
increasing. �

Using lemma 2.16 in the following proposition we show that if we have an ordered Hilbert space
(H ,H+) , where H+ is a given extensible cone and f : I → H is a bounded variation function, then
the Jordan decomposition cannot be possible.
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Proposition 2.17. Let H be a Hilbert space, let Hx0+, with x0 , 0, the extensible cone defined in (3).
There exists f : I → H of bounded variation such that the only possibility of satisfying f ∼x0 ( f1 − f2),
where f1 and f2 are increasing, is that f1 ∼x0 f2.

Proof. Let x1 ∈ H with x1 , 0 such that 〈x1, x0〉 = 0. Let λ : [a, b] → R an increasing function and
f (t) = λ(t)x1. Then f is a bounded variation function in H . Suppose that there exist f1, f2 increasing
functions in

(
H ,Hx0+

)
such that f ∼x0 [ f1 − f2]. By lemma 2.16, we have

f1(t) ∼x0 h0 ◦ f1(t)x0 and f2(t) ∼x0 h0 ◦ f2(t)x0, (8)

which is equivalent to

〈 fi(t), x0〉 = h0 ◦ fi(t)‖x0‖
2, i = 1, 2.

Thus:

0 = 〈 f (t) − ( f1(t) − f2(t)), x0〉

= 〈λ(t)x1 −
[
h0 ◦ f1(t) − h0 ◦ f2(t)

]
x0, x0〉

=
[
h0 ◦ f1(t) − h0 ◦ f2(t)

]
‖x0‖

2.

Therefore: h0 ◦ f1(t) = h0 ◦ f2(t), for all t ∈ [a, b]. By (8), we conclude that

f1 ∼x0 f2.

�

As consequence of the previous proposition, we can find bounded variation functions with values
in a Hilbert space (therefore normed) for which the Jordan decomposition is satisfied only if they are
related with the zero function. The difference of the previous proposition with proposition 2.10 is that,
at this last, the extensible cone is predetermined, while in proposition 2.10 the cone depends on x0.
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