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Abstract: In this paper, we study the special reversed Dickson polynomial of the form
Dpe1 +...+pes +`,k(1, x), where s, e1, ..., es are positive integers, ` is an integer with 0 ≤ ` < p. In fact, by
using Hermite criterion we first give an answer to the question that the reversed Dickson polynomials
of the forms Dps+1,k(1, x), Dps+2,k(1, x), Dps+3,k(1, x), Dps+4,k(1, x), Dps+pt ,k(1, x) and Dps+pt+1,k(1, x) are
permutation polynomials of Fq or not. Finally, utilizing the recursive formula of the reversed Dickson
polynomials, we represent Dpe1 +...+pes +`,k(1, x) as the linear combination of the elementary symmetric
polynomials with the power of 1 − 4x being the variables. From this, we present a necessary and
sufficient condition for Dpe1 +...+pes +`,k(1, x) to be a permutation polynomial of Fq.
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1. Introduction

Permutation polynomials and Dickson polynomials are two of the most important topics in the area
of finite fields. Let Fq be the finite field of characteristic p with q elements. Let Fq[x] be the ring of
polynomials over Fq in the indeterminate x. If the polynomial f (x) ∈ Fq[x] induces a bijective map
from Fq to itself, then f (x) ∈ Fq[x] is called a permutation polynomial (denoted as PP for convenience)
of Fq. Properties, constructions and applications of permutation polynomials may be found in [5], [6]
and [7]. The reversed Dickson polynomial of the first kind, denoted by Dn(a, x), was introduced in [4]
and defined as follows

Dn(a, x) :=
[ n

2 ]∑
i=0

n
n − i

(
n − i

i

)
(−x)ian−2i

if n ≥ 1 and D0(a, x) = 2, where [ n
2 ] means the largest integer no more than n

2 . Wang and Yucas [8]
extended this concept to that of the n-th reversed Dickson polynomial of (k + 1)-th kind Dn,k(a, x) ∈
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Fq[x], which is defined for n ≥ 1 by

Dn,k(a, x) :=
[ n

2 ]∑
i=0

n − ki
n − i

(
n − i

i

)
(−x)ian−2i (1.1)

and D0,k(a, x) = 2 − k. Some families of permutation polynomials from the revered Dickson poly-
nomials of the first kind were obtained in [4]. Hong, Qin and Zhao [3] studied the revered Dickson
polynomial En(a, x) of the second kind. Very recently, the author [1] investigated the reversed Dickson
polynomial Dn,k(a, x) of the (k + 1)-th kind and obtained some properties and permutational behaviors
of them.

In this paper, we study the special reversed Dickson polynomial of the form Dpe1 +...+pes +`,k(1, x),
where s, e1, ..., es are positive integers, ` is an integer with 0 ≤ ` < p. In fact, by using Hermite
criterion we first give an answer to the question that the reversed Dickson polynomials of the forms
Dps+1,k(1, x), Dps+2,k(1, x), Dps+3,k(1, x), Dps+4,k(1, x), Dps+pt ,k(1, x) and Dps+pt+1,k(1, x) are permutation
polynomials of Fq or not. Finally, utilizing the recursive formula of the reversed Dickson polynomials,
we represent Dpe1 +...+pes +`,k(1, x) as the linear combination of the elementary symmetric polynomials
with the power of 1−4x being the variables. From this, we present a necessary and sufficient condition
for Dpe1 +...+pes +`,k(1, x) to be a permutation polynomial of Fq.

Throughout this paper, as usual, for any given prime number p, we let vp(x) denote the p-adic
valuation of any positive integer x, i.e., vp(x) is the largest nonnegative integer k such that pk divides x.
We also assume p = char(Fq) ≥ 3 and restrict 0 ≤ k < p.

2. Preliminary lemmas

In this section, we list several properties of the reversed Dickson polynomials Dn,k(a, x) of the
(k + 1)-th kind and some useful lemmas.

Lemma 2.1. [5] Let f (x) ∈ Fq[x]. Then f (x) is a PP of Fq if and only if c f (dx) + b is a PP of Fq for
any given c, d ∈ F∗q and b ∈ Fq.

Lemma 2.2. Let s ≥ 0 be an integer and a, b be in Fq
∗. Then the binomial ax

ps−1
2 + bx

ps+1
2 is a PP of Fq

if and only if s = 0.

Proof. First we assume that the binomial ax
ps−1

2 + bx
ps+1

2 is a PP of Fq. If s > 0, then the equation
ax

ps−1
2 + bx

ps+1
2 = x

ps−1
2 (a + bx) = 0 has two distinct roots 0,−b

a which are in Fq. This is a contradiction.

So the integer s must be zero. Conversely, if s = 0, then it is easy to check that ax
ps−1

2 + bx
ps+1

2 is a PP
of Fq. Therefore Lemma 2.2 is proved. �

Lemma 2.3. [1] For any integer n ≥ 0, we have

Dn,k

(
1,

1
4

)
=

kn − k + 2
2n

and

Dn,k(1, x) =

(
k − 1 − (k − 2)y

)
yn −

(
1 + (k − 2)y

)
(1 − y)n

2y − 1

if x = y(1 − y) , 1
4 .
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Lemma 2.4. [1] Let n ≥ 2 be an integer. Then the recursion

Dn,k(1, x) = Dn−1,k(1, x) − xDn−2,k(1, x)

holds for any x ∈ Fq.

Lemma 2.5. [1] Let p = char(Fq) ≥ 3 and s be a positive integer. Then

2Dps,k(1, x) + k − 2 = k(1 − 4x)
ps−1

2 .

Lemma 2.6. [2] Let α and e be positive integers. Let d = gcd(α, e) and p be an odd prime. Then

gcd(pα + 1, pe − 1) =

{
2, i f e

d is odd,
pd + 1, i f e

d is even.

Lemma 2.7. [5] Let f (x) ∈ Fq[x]. Then f (x) is permutation polynomial of Fq if and only if the
following conditions hold:

(i) f (x) has exactly one root in Fq;
(ii) For each integer t with 0 < t < q − 1 and t . 0 (mod p), the reduction of f (x)t (mod xq − x)

has degree less than q − 1.

Lemma 2.8. Let p be a prime with p > 3 and a be a nonzero element in Fp. Then the binomial x
ps−1

2 +ax
is a PP of Fpe if and only if s = 0.

Proof. Let p > 3, a ∈ F∗p. Clearly, if s = 0, then w(x) := x
ps−1

2 + ax = 1 + ax is a PP of Fpe . In what

follows, we show that w(x) = x
ps−1

2 + ax is not a PP of Fpe when s > 0. Let s > 0 and s ≡ s0 (mod 2e)
with 0 ≤ s0 ≤ 2e − 1. Then

w(x) ≡ x
ps0−1

2 + ax (mod xpe
− x)

for any x ∈ F∗pe since ps−1
2 ≡

ps0−1
2 (mod pe − 1), i.e. ,

w(x) = x
ps0−1

2 + ax (2.1)

for any x ∈ F∗pe . We consider the following three cases.
Case 1. s > 0 and s0 = 0. Then by (2.1) one has w(x) = 1 + ax for any x ∈ F∗pe . So f2( 1

a ) = 0. It

then follows from f2(0) = 0 that w(x) = x
ps−1

2 + ax is not a PP of Fpe .
Case 2. s > 0 and s0 is a positive even number. Then x

ps0−1
2 = 1 for each x ∈ F∗p. By (2.1) one get

w(x) = 1+ax for any x ∈ F∗p. Therefore w(x) = 0 has one nonzero root −1
a ∈ F

∗
p. Hence w(x) = x

ps−1
2 +ax

does not permute Fp since f2(0) = 0. Note that f2(Fp) ⊆ Fp. So one has that w(x) = x
ps−1

2 + ax does not
permute Fpe .

Case 3. s > 0 and s0 is an odd number. Then x
ps0−1

2 = x
p−1

2 for each x ∈ F∗p. It follows from (2.1) that

w(x) = x
p−1

2 + ax

for any x ∈ F∗p. Then we have

(w(x))2 = xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).
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Then by Lemma 2.7, we know that w(x) is not a PP of Fp. Also note that f2(Fp) ⊆ Fp. So w(x) is not a
PP of Fpe .

The above three cases tell us that w(x) = x
ps−1

2 + ax is not a PP of Fpe when s > 0. This finishes the
proof of Lemma 2.8. �

3. Reversed Dickson polynomials Dps+`,k(1, x)

In this section, we present an explicit formula for Dn,k(1, x) when n = ps + ` with s ≥ 0 and
0 ≤ ` < p. Then we characterize Dn,k(1, x) to be a PP of Fq in this case.

Theorem 3.1. Let p = char(Fq) ≥ 3 and s be a positive integer. Then

Dps+1,k(1, x) =
2 − k

4
(1 − 4x)

ps+1
2 +

k
4

(1 − 4x)
ps−1

2 +
1
2
. (3.1)

Furthermore, we have

Dps+2`,k(1, x) =
∑̀
i=0

A2`,ps+2i−1(1 − 4x)
ps+2i−1

2 +
∑̀
j=0

A2`,2 j(1 − 4x) j, ` ≥ 0

and

Dps+2`+1,k(1, x) =

`+1∑
i=0

A2`+1,ps+2i−1(1 − 4x)
ps+2i−1

2 +
∑̀
j=0

A2`+1,2 j(1 − 4x) j, ` ≥ 0,

where all the coefficients Ai, j are given as follows:

A0,ps−1 =
k
2
, A0,0 =

2 − k
2

, A1,ps+1 =
2 − k

4
, A1,ps−1 =

k
4
, A1,0 =

1
2
,

and 

A2m+2,ps+2m+1 = A2m+1,ps+2m+1 + 1
4 A2m,ps+2m−1, if m ≥ 0

A2m+2,ps+2i−1 = A2m+1,ps+2i−1 −
1
4 A2m,ps+2i−1 + 1

4 A2m,ps+2i−3, if 1 ≤ i ≤ m
A2m+2,ps−1 = A2m+1,ps−1 −

1
4 A2m,ps−1, if m ≥ 0

A2m+2,0 = A2m+1,0 −
1
4 A2m,0, if m ≥ 0

A2m+2,2 j = A2m+1,2 j −
1
4 A2m,2 j + 1

4 A2m,2 j−2, if 1 ≤ j ≤ m
A2m+2,2m+2 = 1

4 A2m,2m, if m ≥ 0

(3.2)

as well as 

A2m+1,ps+2m+1 = 1
4 A2m−1,ps+2m−1, if m ≥ 0

A2m+1,ps+2i−1 = A2m,ps+2i−1 −
1
4 A2m−1,ps+2i−1 + 1

4 A2m−1,ps+2i−3, if 1 ≤ i ≤ m
A2m+1,ps−1 = A2m,ps−1 −

1
4 A2m−1,ps−1, if m ≥ 0

A2m+1,0 = A2m,0 −
1
4 A2m−1,0, if m ≥ 0

A2m+1,2 j = A2m,2 j −
1
4 A2m−1,2 j + 1

4 A2m−1,2 j−2, if 1 ≤ j ≤ m − 1
A2m+1,2m = A2m,2m + 1

4 A2m−1,2m−2, if m ≥ 0.

(3.3)
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Proof. First of all, we show (3.1) is true. We consider the following two cases.
Case 1. x , 1

4 . For this case, putting x = y(1 − y) in second identity of Lemma 2.3 gives us that

Dps+1,k(1, x) = Dps+1,k(1, y(1 − y))

=

k+(2−k)u
2

(u+1
2

)ps+1
−

k+(k−2)u
2

(1−u
2

)ps+1

u

=
2 − k

8

(
(u + 1)ps

(u + 1) + (1 − u)ps
(1 − u)

)
+

k
8u

(
(u + 1)ps

(u + 1) − (1 − u)ps
(1 − u)

)
=

2 − k
4

(ups+1 + 1) +
k
4

(ups−1 + 1)

=
2 − k

4
(
(u2)

ps+1
2

)
+

k
4
(
(u2)

ps−1
2

)
+

1
2
,

where u = 2y − 1 and u2 = 1 − 4x. So (3.1) follows if x , 1
4 .

Case 2. x = 1
4 . By the first identity of Lemma 2.3, one has

Dps+1,k
(
1,

1
4
)

=
k(ps + 1) − k + 2

2ps+1 =
2 − k

4
(1 − 4 ×

1
4

)
ps+1

2 +
k
4

(1 − 4 ×
1
4

)
ps−1

2 +
1
2

as required. Thus (3.1) is true for any x ∈ Fq.
Now we give the the remainder proof of Theorem 3.1. By Lemmas 2.4-2.5 and (3.1), we readily

find that there exists coefficients Ai, j ∈ Fq such that

Dps+2`,k(1, x) =
∑̀
i=0

A2`,ps+2i−1(1 − 4x)
ps+2i−1

2 +
∑̀
j=0

A2`,2 j(1 − 4x) j (3.4)

with 0 ≤ ` ≤ p−1
2 and

Dps+2`+1,k(1, x) =

`+1∑
i=0

A2`+1,ps+2i−1(1 − 4x)
ps+2i−1

2 +
∑̀
j=0

A2`+1,2 j(1 − 4x) j (3.5)

with 0 ≤ ` < p−1
2 . Therefore we now only need to determine all the coefficients Ai, j. Let u2 = 1 − 4x.

On the one hand, by (3.4) and (3.5), one then has

Dps+2`,k(1, x) − xDps+2`−1,k(1, x) = Dps+2`,k(1, x) −
1 − u2

4
Dps+2`−1,k(1, x)

=

`+1∑
i=0

A2`,ps+2i−1ups+2i−1 +
∑̀
j=0

A2`,2 ju2 j −
1
4

∑̀
i=0

A2`−1,ps+2i−1ups+2i−1

−
1
4

`−1∑
j=0

A2`−1,2 ju2 j +
1
4

∑̀
i=0

A2`−1,ps+2i−1ups+2i+1 +
1
4

`−1∑
j=0

A2`−1,2 ju2 j+2

=
1
4

A2`−1,ps+2`−1ups+2`+1 +
∑̀
i=1

(
A2`,ps+2i−1 −

1
4

A2`−1,ps+2i−1 +
1
4

A2`−1,ps+2i−3
)
ups+2i−1

+
(
A2`,ps−1 −

1
4

A2`−1,ps−1
)
ups−1 +

(
A2`,2` +

1
4

A2`−1,2`−2
)
u2`
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+

`−1∑
j=1

(
A2`,2 j −

1
4

A2`−1,2 j +
1
4

A2`−1,2 j−2
)
u2 j + A2`,0 −

1
4

A2`−1,0. (3.6)

On the other hand, Lemma 2.4 tells us that

Dps+2`+1,k(1, x) = Dps+2`,k(1, x) − xDps+2`−1,k(1, x).

So by comparing the coefficient of the term ui in the right hand side of (3.6) and (3.5), one can get the
desired results as (3.3). Following the similar way, one also obtain the recursions of Ai, j as (3.2). So
the proof Theorem 3.1 is complete. �

For any nonzero integer x, let v2(x) be the 2-adic valuation of x. By Theorem 3.1, the following
results are established.

Theorem 3.2. Let q = pe with p being an odd prime and e being a positive integer. Let s be a
nonnegative integer. Then each of following is true.

(i). If k = 0, then Dps+1,k(1, x) is a PP of Fq if and only if either p ≡ 1 (mod 4) and v2(s) ≥ v2(e), or
p ≡ 3 (mod 4) and v2(s) ≥ max{v2(e), 1}.

(ii). If k = 2, then Dps+1,k(1, x) is a PP of Fq if and only if p = 3, v2(s) = 0 and gcd(s, e) = 1.
(iii). If k , 2 and k , 0, then Dps+1,k(1, x) is a PP of Fq if and only if s = 0.

Proof. By (3.1) of Theorem 3.1, we have that Dps+1,k(1, x) is a PP of Fq if and only if the polynomial

(2 − k)x
ps+1

2 + kx
ps−1

2

is a PP of Fq.
(i). Let k = 0. Then Dps+1,k(1, x) is a PP of Fq if and only if the monomial x

ps+1
2 is a PP of Fq, namely,

gcd
( ps + 1

2
, pe − 1

)
= 1.

So we consider the following two cases on the odd prime p.
Case 1. p ≡ 1 (mod 4). Then ps+1

2 must be odd. It then follows that

gcd
( ps + 1

2
, pe − 1

)
= gcd

( ps + 1
2

,
pe − 1

2

)
=

1
2

gcd(ps + 1, pe − 1).

So in this case, by Lemma 2.6 we get that gcd( ps+1
2 , pe − 1) = 1 if and only if e

gcd(s,e) is odd which is
equivalent to v2(e) ≤ v2(s).

Case 2. p ≡ 3 (mod 4). Then v2( ps+1
2 ) ≥ 1 when s is odd. In this case we have 2| gcd( ps+1

2 , pe − 1)
which is not allowed. So in the case of p ≡ 3 (mod 4), s must be even. Then ps+1

2 is an odd number. It
follows from Lemma 2.6 that gcd( ps+1

2 , pe − 1) = 1 if and only if e
gcd(s,e) is odd which is equivalent to

v2(e) ≤ v2(s) and v2(s) ≥ 1, i.e., v2(s) ≥ max{1, v2(e)} as desired. Part (i) is proved.
(ii). Let k = 2. Assume that Dps+1,k(1, x) is a PP of Fpe . Then Dps+1,k(1, x) is a PP of Fpe if and only

if x
ps−1

2 is a PP of Fpe . Clearly, s > 0 in this case. Suppose p > 3, then x
ps−1

2 is a PP of Fpe if and only if

gcd
( ps − 1

2
, pe − 1

)
= 1.
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This is impossible since p−1
2 | gcd

( ps−1
2 , q − 1

)
implies that

gcd
( ps − 1

2
, q − 1

)
≥

p − 1
2

> 1.

So p = 3 and s > 0 in what follows. Now Suppose s > 0 is even, then it is easy to see that
2| gcd( 3s−1

2 , 3e − 1) which is a contradiction. This means that s must be an odd number and then so
is 3s−1

2 . Thus we have that x
3s−1

2 is a PP of F3e if and only if

gcd
(3s − 1

2
, 3e − 1

)
=

1
2

gcd
(
3s − 1, 3e − 1

)
=

1
2

(3gcd(s,e) − 1) = 1,

which is equivalent to that s is odd and gcd(s, e) = 1. So Part (ii) is proved.
(iii). k , 0 and k , 2. Then the desired result follows from Lemma 2.2 that (2− k)x

ps+1
2 + kx

ps−1
2 is a

PP of Fq if and only if s = 0. Part (iii) is proved. �

Theorem 3.3. Let q = pe with p being an odd prime and e being a positive integer. Let s be a
nonnegative integer and s0 be the least nonnegative residue of s modulo 2e. Then each of following is
true.

(i). If k = 0, p = 3, then Dps+2,k(1, x) is not a PP of F3e .
(ii). If k = 0, p > 3, s0 = 0, then Dps+2,k(1, x) is a PP of Fpe .
(iii). If k = 0, p > 3, s = e, then Dpe+2,k(1, x) is a PP of Fq if and only if q = pe ≡ 1 (mod 3).
(iv). If k = 2, then Dps+2,k(1, x) is a PP of Fq if and only if s = 0.
(v). Let k = 4, p = 3. If s = 0 or s0 = 1, then the binomial Dps+2,k(1, x) is a PP of F3e . If s > 0 and

s0 is even, then Dps+2,k(1, x) is not a PP of F3e .
(vi). Let k = 4, p > 3. Then Dps+2,k(1, x) is a PP of Fpe if and only if s = 0.
(vii). If k , 0, 2, 4 and p - (4 − k), then Dps+2,k(1, x) is a PP of Fq if and only if s = 0 and k , 3.

Proof. By Theorem 3.1, we have that Dps+2,k(1, x) is a PP of Fq if and only if the polynomial

(4 − k)x
ps+1

2 + kx
ps−1

2 + (2 − k)x

is a PP of Fq.
(i). Let k = 0, p = 3. Then Dps+2,k(1, x) is a PP of Fq if and only if the monomial x

ps+1
2 + 1

2 x is a PP
of Fq. Let

f1(x) := x
ps+1

2 +
1
2

x.

It is easy to see that f1(x) is not a PP of F3e since f1(0) = f1(1) = 0. So in this case Dps+2,k(1, x) is not a
PP of F3e .

(ii). Let k = 0, p > 3, s0 = 0. Then ps+1
2 ≡ 1 (mod pe − 1) which implies that

f1(x) ≡
3
2

x (mod xpe
− x)

for any x ∈ F∗q. Note that f1(0) = 3
2 × 0 = 0 and the monomial 3

2 x is a PP of Fq. So f1(x) is a PP of Fq.
That is to say Dps+2,k(1, x) is not a PP of Fpe .
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(iii). Let k = 0, p > 3, s = e. Then by Theorem 7.11 in [5] we have f1(x) is a PP of Fq if and only
if η

((1
2

)2
− 1

)
= 1, i.e., η(−3) = 1, where η(·) denotes the quadratic character of Fq. One can also find

that η(−3) = 1 if and only if q = pe ≡ 1 (mod 3), as desired.
(iv). If k = 2, then the desired result follows from Lemma 2.2 that the binomial 2x

ps+1
2 + 2x

ps−1
2 is a

PP of Fq if and only if s = 0. So Dps+2,k(1, x) is not a PP of Fpe if and only if s = 0.
(v). Let k = 4, p = 3. Then Dps+2,k(1, x) is a PP of Fq if and only if 2x

ps−1
2 − x is a PP of Fq. Let

f2(x) := x
ps−1

2 +
1
2

x.

Obviously f2(x) = x
3s−1

2 + x = 1 + x is a PP of F3e when s = 0. Now let 0 < s ≡ s0 (mod 2e) with
0 ≤ s0 ≤ 2e − 1. Then ps−1

2 ≡
ps0−1

2 (mod pe − 1). Therefore

f2(x) ≡ x
3s0−1

2 + x (mod x3e
− x)

for any x ∈ F∗q. If s0 = 1, f2(x) ≡ 2x (mod x3e
− x) and f2(0) = 2 × 0 = 0. This means that f2(x) = 2x

for any x ∈ Fq. So f2(x) is a PP of Fq when s0 = 1. If s > 0 and s0 is even, then x
3s0−1

2 + x = 1 + x for
any x ∈ F∗3. Note that f2(F3) ⊆ F3 and f2(0) = f2(−1) = 0, which tells us that f2(x) is not a PP of F3.
Thus the desired results follows. Unfortunately, following the similar way, we cannot say anything for
the case of s > 0 and s0 being odd with s0 ≥ 3.

(vi). Let k = 4, p > 3. Then Dps+2,k(1, x) is a PP of Fq if and only if 2x
ps−1

2 − x is a PP of Fq. It then
follows from Lemma 2.8 that Dps+2,k(1, x) is a PP of Fq if and only if s = 0, as required.

(vii). Let p ≥ 3, k , 0, 2, 4 and p - (k − 4). Denote

f3(x) := (4 − k)x
ps+1

2 + kx
ps−1

2 + (2 − k)x.

First, if s = 0, then f3(x) = (6 − 2k)x + k which is a PP of Fpe if and only if k , 3. In what follows we
will show that f3(x) is not a PP of Fpe when s > 0. Let 0 < s ≡ s0 (mod 2e) with 0 ≤ s0 ≤ 2e−1. Then

f3(x) ≡ (4 − k)x
ps0 +1

2 + kx
ps0−1

2 + (2 − k)x (mod xpe
− x). (3.7)

We consider the following cases.
Case 1. s > 0, s0 = 0. By (3.7) we have f3(x) ≡ (6 − 2k)x + k (mod xpe

− x), which means that
f3(x) = (6 − 2k)x + k for any x ∈ F∗pe . If k = 3, then ∀x ∈ F∗pe f3(x) = k. Obviously, f3(x) is not a PP of
Fpe . If k , 3, then f3(x) = 0 has one nonzero root k

2k−6 ∈ F
∗
pe since k , 0. But f3(0) = 0. So f3(x) is not

a PP of Fpe in this case.
Case 2. s > 0 and s0 is a positive even number. Then x

ps0 +1
2 = x and x

ps0−1
2 = 1 for each x ∈ F∗p,

which together with (3.7) imply that f3(x) = (6 − 2k)x + k for any x ∈ F∗p. If k = 3, then ∀x ∈ F∗p,
f3(x) = k. Obviously, f3(x) is not a PP of Fp. If k , 3, then f3(x) = 0 has one nonzero root k

2k−6 ∈ F
∗
p

since k , 0. But f3(0) = 0. Therefore f3(x) is not a PP of Fp in this case. So is f3(x) of Fpe since
f3(Fp) ⊆ Fp.

Case 3. s > 0 and s0 is odd. Then x
ps0 +1

2 = x
p+1

2 and x
ps0−1

2 = x
p−1

2 for each x ∈ F∗p, which together
with (3.7) imply that f3(x) = (4− k)x

p+1
2 + kx

p−1
2 + (2− k)x for any x ∈ F∗p. If p = 3, then k must equal 1

since 0 ≤ k < p and k , 0, 2, 4, which contradicts to the condition p - (4 − k). So one has p > 3. Then

[ f3(x)]2 ≡ k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).
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Then by Lemma 2.7, we know that f3(x) is not a PP of Fp. Also note that f3(Fp) ⊆ Fp. So f3(x) is not
a PP of Fpe .

Combining the above cases, we verify that f3(x) is not a PP of Fpe when s > 0. Thus Part (vii) is
proved. So the proof of Theorem 3.3 is complete. �

Theorem 3.4. Let q = pe with p being an odd prime and e being a positive integer. Let s be a
nonnegative integer and s0 be the least nonnegative residue of s modulo 2e. Then each of following is
true.

(i). If k = 0, p = 3, then D3s+3,0(1, x) is a PP of F3e if and only if v2(s − 1) ≥ max{1, v2(e)}.
(ii). Let k = 0, p > 3. If s0 is an even number, then Dps+3,0(1, x) is not a PP of Fpe .
(iii). If k = 2, s = 0, then Dps+3,k(1, x) is a PP of Fq

(iv). Let k = 2, s > 0, p = 3. If s0 = 1, then D3s+3,2(1, x) is a PP of F3e . If s0 is even, then D3s+3,2(1, x)
is not a PP of F3e .

(v). Let k = 2, p > 3. Then Dps+3,2(1, x) is a PP of Fpe if and if s = 0.
(vi). If k = 3, then Dps+3,k(1, x) is a PP of Fq if and only if p = 3 and v2(s − 1) ≥ max{1, v2(e)}.
(vii). If k , 0, 2, 3, then Dps+3,k(1, x) is not a PP of Fpe .

Proof. By Theorem 3.1, we have that Dps+3,k(1, x) is a PP of Fq if and only if the polynomial

(2 − k)x
ps+3

2 + 6x
ps+1

2 + kx
ps−1

2 + (6 − 2k)x (3.8)

is a PP of Fq.
(i). Letting k = 0, we have Dps+3,k(1, x) is a PP of Fq if and only if (3.8) is a PP of Fq, i.e., the

trinomial x
ps+3

2 + 3x
ps+1

2 + 3x is a PP of Fq. Let

f4(x) := x
ps+3

2 + 3x
ps+1

2 + 3x.

Now let p = 3. Then f4(x) is a PP of Fq if and only if x
3s+3

2 is a PP of Fq. The latter is equivalent to
gcd( 3s+3

2 , 3e − 1) = 1. Now we let gcd(3s+3
2 , 3e − 1) = 1. If s is even, then one has v2( 3s+3

2 ) ≥ 1. It
follows that 2| gcd( 3s+3

2 , 3e−1), which is a contradiction. So s must be odd. Then 3s+3
2 is an odd integer.

It follows from Lemma 2.6 that gcd( 3s+3
2 , 3e − 1) = gcd( 3s−1+1

2 , 3e−1
2 ) = 1

2 gcd(3s−1 + 1, 3e − 1) = 1 if
and only if e

gcd(s−1,e) is odd. This means that gcd( 3s+3
2 , 3e − 1) = 1 if and only if v2(e) ≤ v2(s − 1) and

v2(s − 1) ≥ 1, namely, v2(s − 1) ≥ max{1, v2(e)}, as desired.
(ii). Let k = 0, p > 3. Then ps+3

2 ≡
ps0 +3

2 (mod pe − 1) and ps+1
2 ≡

ps0 +1
2 (mod pe − 1). So

f4(x) ≡ x
ps0 +3

2 + 3x
ps0 +1

2 + 3x (mod xpe
− x). (3.9)

Clearly, if s0 is even, then x
ps0 +3

2 = x2 and x
ps0 +1

2 = x for any x ∈ F∗p. Then by (3.9) we have f4(x) =

x2 + 6x = x(x + 6) for any x ∈ F∗p. Hence f4(x) = 0 has one nonzero root −6 in F∗p. But f4(0) = 0. It
then follows that f4(x) is not a PP of Fp. One notes that f4(Fp) ⊆ Fp. Therefore f4(x) is not a PP of Fpe .
It follows that Dps+3,k(1, x) is not a PP of Fq when s0 is even.

(iii). Letting k = 2, we have Dps+3,k(1, x) is a PP of Fq if and only if (3.8) is a PP of Fq, i.e. ,
3x

ps+1
2 + x

ps−1
2 + x is a PP of Fq. Let

f5(x) := 3x
ps+1

2 + x
ps−1

2 + x.
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Let s = 0. Then f5 = 4x + 1, which clearly is a PP of Fq. So Dps+3,k(1, x) is a PP of Fq.
(iv). Let k = 2, p = 3, s > 0. Then the desired result follows from the proof of Part (v) of Theorem

3.3.
(v). Let k = 2, p > 3. By Part (iii) we only need to show that Dps+3,k(1, x) is not a PP of Fq when

s > 0. Let 0 < s ≡ s0 (mod 2e) with 0 ≤ s0 ≤ 2e − 1. Then one has

f5(x) ≡ 3x
ps+1

2 + x
ps−1

2 + x (mod xpe
− x).

If s0 is even, then f5(x) = 4x + 1 for any x ∈ F∗p. In this situation, f5(x) = 0 has one nonzero root
−1

4 ∈ F
∗
p. So f5(x) is not a PP of Fp since f5(0) = 0. Also note that f5(Fp) ⊆ Fp. Thus f5(x) is not a PP

of Fpe in this case. If s0 is odd, then f5(x) = 3x
p+1

2 + x
p−1

2 + x for any x ∈ F∗p. So in F∗p, we have

( f5(x))2 ≡ xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f5(x) is not a PP of Fp. We note that f5(Fp) ⊆ Fp. Therefore f5(x)
is not a PP of Fpe . It infers that Dps+3,k(1, x) is not a PP of Fq when s > 0. Part (v) is proved.

(vi). Let k = 3. Then Dps+3,k(1, x) is a PP of Fq if and only if (3.8) is a PP of Fq, i.e., the trinomial

f6(x) := −x
ps+3

2 + 6x
ps+1

2 + 3x
ps−1

2

is a PP of Fq. By the result of Part (i), we then have from the fact D3s+3,3(1, x) = D3s+3,0(1, x) that f6(x)
is a PP of of F3e if and only if v2(s − 1) ≥ max{1, v2(e)}. Then we only need to show that f6(x) is not a
PP of Fpe when p > 3. Let s ≡ s0 (mod 2e) with 0 ≤ s0 ≤ 2e − 1. Then one has

f6(x) ≡ −x
ps0 +3

2 + 6x
ps0 +1

2 + 3x
ps0−1

2 (mod xpe
− x).

If s0 is even, then f6(x) = −x2 + 6x + 3 for any x ∈ F∗p. Then f6(x) is not a PP of Fp since f6(2) =

f6(4) = 11. Also note that f6(Fp) ⊆ Fp. Thus f6(x) is not a PP of Fpe for p > 3 and s0 being even. If s0

is odd, then f6(x) = −x
p+3

2 + 6x
p+1

2 + 3x
p−1

2 for any x ∈ F∗p. So in F∗p, we have

( f6(x))2 ≡ 9xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f6(x) is not a PP of Fp. We note that f6(Fp) ⊆ Fp. Therefore f6(x)
is not a PP of Fpe when p > 3 and s0 is odd. So f6(x) is a PP of Fq if and only if p = 3 and v2(s − 1) ≥
max{1, v2(e)}, that is, Dps+3,k(1, x) is a PP of Fq if and only if p = 3 and v2(s − 1) ≥ max{1, v2(e)}. Part
(vi) is proved.

(iv). Let k , 0, 2, 3 and 0 ≤ k < p. Then Dps+3,k(1, x) is a PP of Fq if and only if (3.8) is a PP of Fq,
i.e., if and only if

f7(x) := (2 − k)x
ps+3

2 + 6x
ps+1

2 + kx
ps−1

2 + (6 − 2k)x

is a PP of Fq. Let s ≡ s0 (mod 2e) with 0 ≤ s0 ≤ 2e − 1. Then one has

f7(x) ≡ (2 − k)x
ps0 +3

2 + 6x
ps0 +1

2 + kx
ps0−1

2 + (6 − 2k)x (mod xpe
− x).

If s0 is even, then f7(x) = (2−k)x2 + (12−2k)x+k for any x ∈ F∗p. One then finds that f7( 4
k−2 ) = f7( 8−2k

k−2 )
and 4

k−2 ,
8−2k
k−2 when k , 4. If k = 4, then p ≥ 5. In this case, f7(x) = −2x2 + 4x + 4 for any x ∈ F∗p,
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which implies f7(−1) = f7(3) when k = 4. Therefore f7(x) is not a PP of Fp. Also note that f7(Fp) ⊆ Fp.
Thus f7(x) is not a PP of Fpe when s0 is even. If s0 is odd, then

f7(x) = (2 − k)x
p+3

2 + 6x
p+1

2 + kx
p−1

2 + (6 − 2k)x (3.10)

for any x ∈ F∗p. We consider the following two cases.
Case 1. Let p = 3. Then k = 1 since k < p and k , 0, 2. Hence ∀x ∈ F∗3, f7(x) = x3 + 2x. It then
follows from f7(0) = f7(1) = 0 that f7(x) is not a PP of F3. We note that f7(F3) ⊆ F3. Therefore f7(x)
is not a PP of F3e .
Case 2. Let p > 3. By (3.10), in Fp we have

( f7(x))2 ≡ k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f7(x) is not a PP of Fp. We note that f7(Fp) ⊆ Fp. Therefore f7(x)
is not a PP of Fpe when p > 3 and s0 is odd.

Hence f7(x) is not a PP of Fpe when k , 0, 2, 3, from which we deduce immediately that Dps+3,k(1, x)
is not a PP of Fpe when k , 0, 2, 3. Part (vii) is proved. So we completes the proof of Theorem 3.4. �

Theorem 3.5. Let q = pe with p being an odd prime and e being a positive integer. Let s be a
nonnegative integer and s0 be the least nonnegative residue of s modulo 2e. If Dps+4,k(1, x) is a PP of
Fq, then either k = 0 and s0 is odd, or k > 0, k , 2 and s = 0.

Proof. It is sufficient to show that Dps+4,k(1, x) is not a PP of Fq when k = 0, s0 is even, or k > 0, s > 0.
By Theorem 3.1, we get

32Dps+4,k(1, x) = k(1 − 4x)
ps−1

2 + (8 + 2k)(1 − 4x)
ps+1

2

+ (8 − 3k)(1 − 4x)
ps+3

2 + 2 + 3k + (12 − 2k)(1 − 4x) + (2 − k)(1 − 4x)2.

Then Dps+4,k(1, x) is a PP of Fq if and only if kx
ps−1

2 + (8+2k)x
ps+1

2 + (8−3k)x
ps+3

2 + (12−2k)x + (2−k)x2

is a PP of Fq. Let

f8(x) := kx
ps−1

2 + (8 + 2k)x
ps+1

2 + (8 − 3k)x
ps+3

2 + (12 − 2k)x + (2 − k)x2.

Now we show that f8(x) is not a PP of Fq when k = 0, s0 is even, or k > 0, s > 0. Then the following
cases are considered.

Case 1. k = 0 and s0 is an even. Then f8(x) = 4x
ps0 +1

2 + 4x
ps0 +3

2 + 6x + x2. It infers that

f8(x) ≡ 4x
ps0 +1

2 + 4x
ps0 +3

2 + 6x + x2 (mod xq − x).

Additionally, ∀x ∈ F∗p, x
ps0 +1

2 = x and x
ps0 +3

2 = x2 since s0 is an even. Therefore

f8(x) = 5x(x + 2)

for any x ∈ F∗p. Then f8(0) = f8(−2) = 0. So f8(x) is not a PP of Fp. Also f8(x) is not a PP of Fpe since
f8(Fp) ⊆ Fp.
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Case 2. k = 2. Then
f8(x) = 2x

ps−1
2 + 12x

ps+1
2 + 2x

ps+3
2 + 8x.

subcase 2-1. p = 3. Then f8(x) = 2x
ps−1

2 + 2x
ps+3

2 + 2x. So f8(x) = 2x2 + 2x + 2 when s = 0, which
then follows that f8(0) = f8(2) = 2. If s > 0, we have easily that f8(0) = f8(1) = 0. Thus f8(x) is not a
PP of F3e whenever.
subcase 2-2. p > 3. Then

f8(x) ≡ 2x
ps0−1

2 + 12x
ps0 +1

2 + 2x
ps0 +3

2 + 8x (mod xpe
− x).

If s0 is even, then f8(x) = 2x2 + 20x + 2 for any x ∈ F∗p. This implies that f8(−4) = f8(−6), which then
follows that f8(x) is not a PP of Fp. Note that f8(Fp) ⊆ Fp. So f8(x) is not a PP of Fq when s0 is even.
If s0 is odd, then f8(x) = 2x

p−1
2 + 12x

p+1
2 + 2x

p+3
2 + 8x for any x ∈ F∗p. We then deduces that

( f8(x))2 ≡ 4xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f8(x) is not a PP of Fp. We note that f8(Fp) ⊆ Fp. Therefore f8(x)
is not a PP of Fpe when s0 is odd.

Thus Dps+4,2(1, x) is not a PP of Fpe for any nonnegative integer s and odd prime p.
Case 3. k = 6, s > 0. Then p ≥ 7 and

f8(x) = 6x
ps−1

2 + 20x
ps+1

2 − 10x
ps+3

2 − 4x2.

If s > 0 and s0 is even, then f8(x) = −14x2+20x+6 for any x ∈ F∗p. This implies that f8(0) = f8(−1) = 0
if p = 7, or f8(4

7 ) = f8( 6
7 ) if p > 7. This means that f8(x) is not a PP of Fp. Note that f8(Fp) ⊆ Fp. So

f8(x) is not a PP of Fq when s0 is even. If s > 0 and s0 is odd, then f8(x) = 6x
p−1

2 +20x
p+1

2 −10x
p+3

2 −4x2

for any x ∈ F∗p, which implies that

( f8(x))2 ≡ 36xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f8(x) is not a PP of Fp. We note that f8(Fp) ⊆ Fp. Therefore f8(x)
is not a PP of Fpe when s0 is odd.

Thus Dps+4,6(1, x) is not a PP of Fpe when s > 0.
Case 4. k = p − 4, s > 0. Then p ≥ 5 and

f8(x) = (p − 4)x
ps−1

2 + (20 − 3p)x
ps+3

2 + (20 − 2p)x + (6 − p)x2.

If s > 0, s0 is even, then f8(x) = 26x2 + 20x − 4 for any x ∈ F∗p. This implies that f8(0) = f8( 1
5 ) = 0 if

p = 13, or f8(−4
13 ) = f8(−6

13 ) if p , 13. This means that f8(x) is not a PP of Fp. Note that f8(Fp) ⊆ Fp. So
f8(x) is not a PP of Fq when s0 is even. If s > 0, s0 is odd, then f8(x) = −4x

p−1
2 + 20x

p+3
2 + 20x + 6x2 for

any x ∈ F∗p, which implies that

( f8(x))2 ≡ 16xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f8(x) is not a PP of Fp. We note that f8(Fp) ⊆ Fp. Therefore f8(x)
is not a PP of Fpe when s0 is odd.
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Thus Dps+4,p−4(1, x) is not a PP of Fpe when s > 0.
Case 5. p | (3k − 8), s > 0. Then p ≥ 5, p - (2 − k) and

f8(x) = kx
ps−1

2 + (8 + 2k)x
ps+1

2 + (12 − 2k)x + (2 − k)x2.

If s > 0, s0 is even, then f8(x) = (2−k)x2+20x+k for any x ∈ F∗p. This implies that f8(−11
2−k ) = f8( −9

2−k ) = 0.
This means that f8(x) is not a PP of Fp. Note that f8(Fp) ⊆ Fp. So f8(x) is not a PP of Fq when s0 is
even. If s > 0, s0 is odd, then f8(x) = kx

p−1
2 + (8 + 2k)x

p+1
2 + (12− 2k)x + (2− k)x2 for any x ∈ F∗p, which

implies that

( f8(x))2 ≡ k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f8(x) is not a PP of Fp. We note that f8(Fp) ⊆ Fp. Therefore f8(x)
is not a PP of Fpe when s0 is odd.

Thus Dps+4,k(1, x) is not a PP of Fpe when p | (3k − 8) and s > 0.
Case 6. k , 0, 2, 6, p − 4, s > 0 and p - (3k − 8). Then

f8(x) = kx
ps−1

2 + (8 + 2k)x
ps+1

2 + (8 − 3k)x
ps+3

2 + (12 − 2k)x + (2 − k)x2.

If s > 0, s0 is even, then f8(x) = (10 − 4k)x2 + 20x + k for any x ∈ F∗p. If p | (2k − 5), then p , 5 and
f8(x) = 20x+k,∀x ∈ F∗p. It implies that f8(0) = f8(−k

20 ) = 0. So f8(x) is not a PP of Fp when p | (2k−5).
If p - (2k−5), then f8( 4

2k−5 ) = f8( 6
2k−5 ), which means that f8(x) is not a PP of Fp when p - (2k−5). Thus

f8(x) is not a PP of Fp when s > 0, s0 is even. Note that f8(Fp) ⊆ Fp. So f8(x) is not a PP of Fq when s0

is even. If s > 0, s0 is odd, then f8(x) = kx
p−1

2 + (8+2k)x
p+1

2 + (8−3k)x
p+3

2 + (12−2k)x+ (2−k)x2 for any
x ∈ F∗p. If p = 3, then k = 1. In this case f8(x) = 2x + 2x2 + 2x3, which implies that f8(0) = f8(1) = 0.
It then follows that f8(x) is not a PP of F3. If p > 3, then

( f8(x))2 ≡ k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Then by Lemma 2.7, we know that f8(x) is not a PP of Fp. Thus f8(x) is not a PP of Fp when s0 is odd.
We note that f8(Fp) ⊆ Fp. Therefore f8(x) is not a PP of Fpe when s0 is odd.

Thus Dps+4,k(1, x) is not a PP of Fpe when k , 0, 2, 6, p − 4, s > 0 and p - (3k − 8). Combining all
of the above cases, we have the desired result. Therefore Theorem 3.5 is proved. �

Corollary 3.6. Let q = pe with p being an odd prime and e being a positive integer. Let s and k be
nonnegative integers with 0 < k < p. Then Dps+4,k(1, x) is a PP of Fq if and only if s = 0 and p | (2k−5).

Proof. The desired result follows immediately from the proof of Theorem 3.5. �

4. Reversed Dickson polynomials Dps+pt+`,k(1, x)

In this section, we present an explicit formula for Dn,k(1, x) when n = ps + pt + ` with ≤ s < t and
0 ≤ ` < p. Then we characterize Dn,k(1, x) to be a PP of Fq in this case.

Theorem 4.1. Let p = char(Fq) be an odd prime. Let s and t be integers such that 0 ≤ s < t. Then

Dps+pt ,k(1, x) =
k
4
(
(1 − 4x)

ps−1
2 + (1 − 4x)

pt−1
2

)
−

k − 2
4

(
1 + (1 − 4x)

ps+pt
2

)
.
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Proof. We consider the following two cases.
Case 1. x , 1

4 . For this case, putting x = y(1 − y) in the second identity of Lemma 2.3 gives us that

Dps+pt ,k(1, x) =Dps+pt ,k(1, y(1 − y))

=

(
k − 1 − (k − 2)y

)
yps+pt

−
(
1 + (k − 2)y

)
(1 − y)ps+pt

2y − 1

=

k+(2−k)u
2

(u+1
2

)ps+pt

−
k+(k−2)u

2

(1−u
2

)ps+pt

u

=
k
4

(ups−1 + upt−1) −
k − 2

4
(1 + ups+pt

)

=
k
4
(
(u2)

ps−1
2 + (u2)

pt−1
2

)
−

k − 2
4

(1 + (u2)
ps+pt

2 ),

where u = 2y − 1 and u2 = 1 − 4x. So we obtain that

Dps+pt ,k(1, x) =
k
4
(
(1 − 4x)

ps−1
2 + (1 − 4x)

pt−1
2

)
−

k − 2
4

(
1 + (1 − 4x)

ps+pt
2

)
as desired.

Case 2. x = 1
4 . By the first identity of Lemma 2.3, one has

Dps+pt ,k
(
1,

1
4
)

=
k(ps + pt) − k + 2

2ps+pt =
−k + 2

4
.

Besides,

k
4
(
(1 − 4 ×

1
4

)
ps−1

2 + (1 − 4 ×
1
4

)
pt−1

2
)
−

k − 2
4

(
1 + (1 − 4 ×

1
4

)
ps+pt

2
)

=
−k + 2

4
.

Thus the required result follows. So Theorem 4.1 is proved. �

Theorem 4.2. Let q = pe with p being an odd prime and e being a positive integer. Let s and t be
positive integers with s < t. Then each of following is true.

(i). If k = 0, then Dps+pt ,k(1, x) is a PP of Fq if and only if either p ≡ 1 (mod 4) and v2(t− s) ≥ v2(e),
or p ≡ 3 (mod 4) and v2(t − s) ≥ max{v2(e), 1}.

(ii). Let k = 2. If p > 3, then Dps+pt ,k(1, x) is not a PP of Fpe . If p = 3 and st is even, then
Dps+pt ,k(1, x) is not a PP of Fpe .

(iii). If k , 0, 2, then Dps+pt ,k(1, x) is not a PP of Fq.

Proof. By Theorem 4.1, we have that Dps+pt ,k(1, x) is a PP of Fq if and only if

k
(
x

ps−1
2 + x

pt−1
2

)
− (k − 2)x

ps+pt
2

is a PP of Fq.

(i). Let k = 0. Then Dps+pt ,k(1, x) is a PP of Fq if and only if x
ps+pt

2 is a PP of Fq if and only if

gcd
( ps + pt

2
, pe − 1

)
= 1.
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Additionally, gcd
( ps+pt

2 , pe − 1
)

= gcd
( pt−s+1

2 , pe − 1
)
. Then the desired result follows from the same

way as proving Part (i) of Theorem 3.2.
(ii). Let k = 2. Then Dps+pt ,k(1, x) is a PP of Fq if and only if x

ps−1
2 + x

pt−1
2 is a PP of Fq. Let

g1(x) := x
ps−1

2 + x
pt−1

2 .

So
g1(x) ≡ x

ps0−1
2 + x

pt0−1
2 (mod xpe

− x).

Then the following cases are considered.
Case 1. s > 0 and both s0 and t0 are even. Then g1(x) = 2 for any x ∈ F∗p. So g1(x) is not a PP of

Fp. One also notices that g1(Fp) ⊆ Fp. Thus g1(x) is not a PP of Fq.
Case 2. s > 0 and one of s0 and t0 is even, the other is odd. Then g1(x) = x

p−1
2 + 1 for any x ∈ F∗p.

If p = 3, then ∀x ∈ F∗p, g1(x) = x + 1, which implies g1(0) = g1(−1) = 0. So g1(x) is not a PP of F3. If
p > 3, then

(g1(x))2 ≡ xp−1 + 2x
p−1

2 + 1 (mod xp − x).

It follows from Lemma 2.7 that g1(x) is not a PP of Fp when p > 3. Therefore g1(x) is not a PP of Fp.
Obviously, g1(Fp) ⊆ Fp. Hence g1(x) is not a PP of Fq in this case.

Case 3. s > 0, p > 3 and both s0 and t0 are odd. Then g1(x) = 2x
p−1

2 for any x ∈ Fp. But
gcd( p−1

2 , p − 1) =
p−1

2 > 1. Therefore g1(x) is not a PP of Fp. Note that g1(Fp) ⊆ Fp. Hence g1(x) is not
a PP of Fq in this case.

Combining the above cases, we know that part (ii) is true.
(iii). Let k , 0 and k , 2. Let

g2(x) := k
(
x

ps−1
2 + x

pt−1
2

)
− (k − 2)x

ps+pt
2 .

Then
g2(x) ≡ k

(
x

ps0−1
2 + x

pt0−1
2

)
− (k − 2)x

ps0 +pt0
2 (mod xq − x).

Then we divide the proof into the following three cases.
Case 1. Both s0 and t0 are even. Then g2(x) = 2k − (k − 2)x for any x ∈ F∗p. So g2(x) is not a PP of

Fp since g2(0) = g2( 2k
k−2 ). One also notices that g2(Fp) ⊆ Fp. Thus g2(x) is not a PP of Fq.

Case 2. One of s0 and t0 is even, the other is odd. Then g2(x) = k+kx
p−1

2 − (k−2)x
p+1

2 for any x ∈ F∗p.
If p = 3, then k = 1 and so g2(0) = g2(1) = 0, which implies g2(x) is not a PP of F3. If p > 3, then

(g2(x))2 ≡ k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

It follows from Lemma 2.7 that g2(x) is not a PP of Fp when p > 3. Therefore g2(x) is not a PP of Fp.
Obviously, g2(Fp) ⊆ Fp. Hence g2(x) is not a PP of Fq in this case.

Case 3. Both s0 and t0 are odd. Then g2(x) = 2kx
p−1

2 − (k − 2)x for any x ∈ F∗p. If p = 3, then k = 1
and so g2(x) = 0,∀x ∈ Fp, which implies g2(x) is not a PP of F3. If p > 3, then

(g2(x))2 ≡ 4k2xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

Since 4k2 ∈ F∗p, it then follows from Lemma 2.7 that g2(x) is not a PP of Fp when p > 3. Therefore
g2(x) is not a PP of Fp. Obviously, g2(Fp) ⊆ Fp. Hence g2(x) is not a PP of Fq in this case.

Combining the above cases, we deduce that g2(x) is not a PP of Fq in the condition of k , 0, 2. Thus
Dps+pt ,k(1, x) is not a PP of Fq. The proof of Theorem 4.2 is completed. �
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Theorem 4.3. Let q = pe with p being an odd prime and e being a positive integer. Let s and t be
positive integers with s < t. Then

Dps+pt+1,k(1, x) =
1
4

(1 − 4x)
ps+pt

2 +
1
4

+
1
8
(
(1 − 4x)

ps−1
2 + (1 − 4x)

pt−1
2

)
−

k − 2
8

(
(1 − 4x)

ps+1
2 + (1 − 4x)

pt+1
2

)
. (4.1)

Furthermore, Dps+pt+1,k(1, x) is not a PP of Fq.

Proof. We consider the following two cases.
Case 1. x , 1

4 . For this case, putting x = y(1 − y) in the second identity of Lemma 2.3 gives us that

Dps+pt+1,k(1, x) = Dps+pt+1,k(1, y(1 − y))

=

(
k − 1 − (k − 2)y

)
yps+pt+1 −

(
1 + (k − 2)y

)
(1 − y)ps+pt+1

2y − 1

=

k+(2−k)u
2

(u+1
2

)ps+pt+1
−

k+(k−2)u
2

(1−u
2

)ps+pt+1

u

=
k
8

(1 + ups−1 + upt−1 + ups+pt
) −

k − 2
8

(1 + ups+1 + upt+1 + ups+pt
)

=
1
4

ups+pt
+

1
4

+
k
8

(ups−1 + upt−1) −
k − 2

8
(ups+1 + upt+1),

where u = 2y − 1 and u2 = 1 − 4x. Then we have that

Dps+pt+1,k(1, x) =
1
4

(1 − 4x)
ps+pt

2 +
1
4

+
1
8
(
(1 − 4x)

ps−1
2 + (1 − 4x)

pt−1
2

)
−

k − 2
8

(
(1 − 4x)

ps+1
2 + (1 − 4x)

pt+1
2

)
as desired.

Case 2. x = 1
4 . On the one hand, by the first identity of Lemma 2.3, one has

Dps+pt+1,k
(
1,

1
4
)

=
k(ps + pt + 1) − k + 2

2ps+pt =
1
4
.

On the other hand,

1
4

(1− 4×
1
4

)
ps+pt

2 +
1
4

+
1
8
(
(1− 4×

1
4

)
ps−1

2 + (1− 4×
1
4

)
pt−1

2
)
−

k − 2
8

(
(1− 4×

1
4

)
ps+1

2 + (1− 4×
1
4

)
pt+1

2
)

=
1
4
.

Combing Case 1 and Case 2, we know that (4.1) always holds. So Dps+pt+1,k(1, x) is a PP of Fq if and
only if the polynomial

g3(x) := 2x
ps+pt

2 + 2
(
x

ps−1
2 + x

pt−1
2

)
− (k − 2)

(
x

ps+1
2 + x

pt+1
2

)
is a PP of Fq.
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In what follows, we show that g3(x) is not a PP of Fq. Now let s ≡ s0 (mod 2e) and t ≡ t0 (mod 2e)
with 0 ≤ s0 ≤ 2e − 1, 0 ≤ t0 ≤ 2e − 1. Then

g3(x) ≡ 2x
ps0 +pt0

2 + 2
(
x

ps0−1
2 + x

pt0−1
2

)
− (k − 2)

(
x

ps0 +1
2 + x

pt0 +1
2

)
(mod xq − x).

First we let k = 2. In this case we have

g3(x) ≡ 2x
ps0 +pt0

2 + 2x
ps0−1

2 + 2x
pt0−1

2 (mod xq − x).

If both s0 and t0 are even, then ∀x ∈ F∗p, g3(x) = 2x + 4. It follows that g3(x) is not a PP of Fp since
g3(0) = g3(−2) = 0.

If exactly one of s0 and t0 is even, then g3(x) = 2x
p−1

2 + 2x
p+1

2 + 2 for any x ∈ F∗p. In this case if
p = 3, then g3(0) = g3(1) = 0, which implies g3(x) is not a PP of F3. If p > 3, then

(g3(x))2 ≡ 4xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

It follows from Lemma 2.7 that g3(x) is not a PP of Fp when p > 3. Therefore g3(x) is not a PP of Fp.
If both s0 and t0 are odd, then g3(x) = 2x + 4x

p−1
2 for any x ∈ F∗p. If p = 3, then g3(x) = 0,∀x ∈ F∗p,

which implies g3(x) is not a PP of F3. If p > 3, then

(g3(x))2 ≡ 4xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

It follows from Lemma 2.7 that g3(x) is not a PP of Fp when p > 3. Therefore g3(x) is not a PP of Fp.
Combining the above discussions, we derive that g3(x) is not a PP of Fp. Note that g3(Fp) ⊆ Fp. So

g3(x) is not a PP of Fq when k = 2.
Now let k , 2. The following cases are considered.
If both s0 and t0 are even, then ∀x ∈ F∗p, g3(x) = (6 − 2k)x + 4. Clearly, if k = 3, then g3(x) is not a

PP of Fp. If k , 3, then g3(0) = g3( 2
k−3 ) = 0. This implies that g3(x) is not a PP of Fp.

If exactly one of s0 and t0 is even then g3(x) = (4 − k)x
p+1

2 + 2x
p−1

2 − (k − 2)x + 2 for any x ∈ F∗p.
If p = 3, then k = 0 or k = 1. And g3(0) = 0, g3(1) = k + 2, g3(−1) = 2. So in this case, either
g3(1) = g3(−1) = 2 if k = 0, or g3(1) = g3(0) = 0 if k = 1, which implies g3(x) is not a PP of F3. If
p > 3, then

(g3(x))2 ≡ 4xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

It follows from Lemma 2.7 that g3(x) is not a PP of Fp when p > 3. Therefore g3(x) is not a PP of Fp.
If both s0 and t0 are odd then g3(x) = 2xp + 4x

p−1
2 − 2(k − 2)x

p+1
2 for any x ∈ F∗p. If p = 3, then

g3(1) = g3(−1) = k − 2, which implies g3(x) is not a PP of F3. If p > 3, then

(g3(x))2 ≡ 16xp−1 + the terms of x with the degree less than p − 1 (mod xp − x).

It follows from Lemma 2.7 that g3(x) is not a PP of Fp when p > 3. Therefore g3(x) is not a PP of Fp.
From them, we derive that g3(x) is not a PP of Fp when k , 2. Note that g3(Fp) ⊆ Fp. So g3(x) is

not a PP of Fq when k , 2. Hence g3(x) is not a PP of Fq. Thus Dps+pt+1,k(1, x) is not a PP of Fq. �

By Lemma 2.4 , Theorem 4.1 and Theorem 4.3, we have the following general result.
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Theorem 4.4. Let q = pe with p being an odd prime and e being a positive integer. Let s and t be
positive integers with s < t. Then

Dps+pt+2,k(1, x) =
2 − k

16
(1 − 4x)

ps+pt+2
2 +

2 + k
16

(1 − 4x)
ps+pt

2 +
4 − k

16

(
(1 − 4x)

ps+1
2 + (1 − 4x)

pt+1
2

)
+

2 − k
16

(
(1 − 4x)

ps−1
2 + (1 − 4x)

pt11
2
)

+
2 − k

16
(1 − 4x) +

2 − k
16

. (4.2)

Consequently, Dps+pt+2,k(1, x) is a PP of Fq if and only if the polynomial

(2 − k)(x
ps+pt+2

2 + x
ps−1

2 + x
pt−1

2 ) + (2 + k)x
ps+pt

2 + (4 − k)(x
ps+1

2 + x
pt+1

2 )

is a PP of Fq. Furthermore, let ` ≥ 0 be an integer. Then

Dps+pt+2`,k(1, x) =
∑̀
i=0

B2`,ps+pt+2i(1 − 4x)
ps+pt+2i

2 +
∑̀
j=0

B2`,2 j(1 − 4x) j

+
∑̀
i=0

B2`,ps+2i−1
(
(1 − 4x)

ps+2i−1
2 + (1 − 4x)

pt+2i−1
2

)
, 0 ≤ ` ≤

p − 1
2

,

and

Dps+pt+2`+1,k(1, x) =
∑̀
i=0

B2`+1,ps+pt+2i(1 − 4x)
ps+pt+2i

2 +
∑̀
j=0

B2`+1,2 j(1 − 4x) j

+

`+1∑
i=0

B2`+1,ps+2i−1
(
(1 − 4x)

ps+2i−1
2 + (1 − 4x)

pt+2i−1
2

)
, 0 ≤ ` <

p − 1
2

,

where all the coefficients Bi, j are given as follows:

B0,ps+pt =
2 − k

4
, B0,ps−1 =

k
4
, B0,0 =

2 − k
4

,

B1,ps+pt =
1
4
, B1,ps+1 =

2 − k
8

, B1,ps−1 =
1
8
, B1,0 =

1
4
,

and 

B2m+2,ps+pt+2m+2 = 1
4 B2m,ps+pt+2m, if m ≥ 0

B2m+2,ps+pt+2i = B2m+1,ps+2i −
1
4 B2m,ps+pt+2i + 1

4 B2m,ps+2i−2, if 1 ≤ i ≤ m
B2m+2,ps+pt = B2m+1,ps+pt − 1

4 B2m,ps+pt , if m ≥ 0
B2m+2,ps+2m+1 = B2m+1,ps+2m+1 + 1

4 B2m,ps+2m−1, if m ≥ 0
B2m+2,ps+2i−1 = B2m+1,ps+2i−1 −

1
4 B2m,ps+2i−1 + 1

4 B2m,ps+2i−3, if 1 ≤ i ≤ m
B2m+2,ps−1 = B2m+1,ps−1 −

1
4 B2m,ps−1, if m ≥ 0

B2m+2,0 = B2m+1,0 −
1
4 B2m,0, if m ≥ 0

B2m+2,2 j = B2m+1,2 j −
1
4 B2m,2 j + 1

4 B2m,2 j−2, if 1 ≤ j ≤ m
B2m+2,2m+2 = 1

4 B2m,2m, if m ≥ 0

(4.3)
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as well as 

B2m+1,ps+pt+2m = B2m,ps+pt+2m + 1
4 B2m−1,ps+pt+2m−2, if m ≥ 0

B2m+1,ps+pt+2i = B2m,ps+2i −
1
4 B2m−1,ps+pt+2i + 1

4 B2m−1,ps+2i−2, if 1 ≤ i ≤ m − 1
B2m+1,ps+pt = B2m,ps+pt − 1

4 B2m−1,ps+pt , if m ≥ 0
B2m+1,ps+2m+1 = 1

4 B2m−1,ps+2m−1, if m ≥ 0
B2m+1,ps+2i−1 = B2m,ps+2i−1 −

1
4 B2m−1,ps+2i−1 + 1

4 B2m−1,ps+2i−3, if 1 ≤ i ≤ m
B2m+1,ps−1 = B2m,ps−1 −

1
4 B2m−1,ps−1, if m ≥ 0

B2m+1,0 = B2m,0 −
1
4 B2m−1,0, if m ≥ 0

B2m+1,2 j = B2m,2 j −
1
4 B2m−1,2 j + 1

4 B2m−1,2 j−2, if 1 ≤ j ≤ m − 1
B2m+1,2m = B2m,2m + 1

4 B2m−1,2m−2, if m ≥ 0

(4.4)

Proof. The identity immediately follows from Lemma 2.4 , Theorem 4.1 and Theorem 4.3. Moreover
we readily find that there exists coefficients Bi, j ∈ Fq such that

Dps+pt+2`,k(1, x) =
∑̀
i=0

B2`,ps+pt+2iups+pt+2i +
∑̀
j=0

B2`,2 ju2 j

+

`+1∑
i=0

B2`,ps+2i−1
(
ups+2i−1 + upt+2i−1), 0 ≤ ` <

p − 1
2

, (4.5)

and

Dps+pt+2`−1,k(1, x) =
∑̀
i=0

B2`−1,ps+pt+2iups+pt+2i +
∑̀
j=0

B2`−1,2 ju2 j

+

`+1∑
i=0

B2`−1,ps+2i−1
(
ups+2i−1 + upt+2i−1), 0 ≤ ` <

p − 1
2

, (4.6)

where u2 = 1 − 4x. Now let’s determine all the coefficients Bi, j. On the one hand, by (4.5) and (4.6),
one then has

Dps+pt+2`,k(1, x) − xDps+pt+2`−1,k(1, x) = Dps+pt+2`,k(1, x) −
1 − u2

4
Dps+pt+2`−1,k(1, x)

=
∑̀
i=0

B2`,ps+pt+2iups+pt+2i +
∑̀
i=0

B2`,ps+2i−1
(
ups+2i−1 + upt+2i−1) +

∑̀
j=0

B2`,2 ju2 j

−
1
4

`−1∑
i=0

B2`−1,ps+pt+2iups+pt+2i −
1
4

∑̀
j=0

B2`−1,ps+2i−1
(
ups+2i−1 + upt+2i−1)

−
1
4

`−1∑
j=0

B2`−1,2 ju2 j +
1
4

`−1∑
j=0

B2`−1,ps+pt+2iups+pt+2i+2

+
1
4

∑̀
j=0

B2`−1,ps+2i−1
(
ups+2i+1 + upt+2i+1) +

1
4

`−1∑
j=0

B2`−1,2 ju2 j+2
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=
(
B2`,ps+pt+2l +

1
4
)
ups+pt+2` +

`−1∑
i=1

(
B2`,ps+pt+2i −

1
4

B2`−1,ps+pt+2i +
1
4

B2`−1,ps+pt+2i−2
)
ups+pt+2i

+
(
B2`,ps+pt −

1
4

B2`−1,ps+pt
)
ups+pt

+
1
4

B2`−1,ps+2`−1
(
ups+2`+1 + upt+2`+1)

+
∑̀
i=1

(
B2`,ps+2i−1 −

1
4

B2`−1,ps+2i−1 +
1
4

B2`−1,ps+2i−3
)(

ups+2i−1 + upt+2i−1)
+

(
B2`,ps−1 −

1
4

B2`−1,ps−1
)(

ups−1 + upt−1) +
(
B2`,2` +

1
4

B2`−1,2`−2
)
u2`

+

`−1∑
j=1

(
B2`2 j −

1
4

B2`−1,2 j +
1
4

B2`−1,2 j−2
)
u2 j + B2`,0 −

1
4

B2`−1,0. (4.7)

On the other hand, Lemma 2.4 tells us that

Dps+pt+2`+1,k(1, x) = Dps+pt+2`,k(1, x) − xDps+pt+2`−1,k(1, x).

So by comparing the coefficient of the term ui in the right hand side of (4.6) and (4.7), one can get the
desired results as (4.4). Following the similar way, one also obtain the recursions of Bi, j as (4.3). So
the proof Theorem 4.4 is complete. �

5. Reversed Dickson polynomials Dpe1 +pe2 +···+pes +`,k(1, x)

Let s ≥ 1 be an integer. Let e1, e2, · · · , es, ` be integers with 0 ≤ e1 < e2 < · · · < es and 0 ≤ ` <
p. In this section, we present an explicit formula for Dn,k(1, x) presented by elementary symmetric
polynomials in terms of the power of (1 − 4x) when n = pe1 + pe2 + · · · + pes + `. Then we characterize
Dn,k(1, x) to be a PP of Fq in this case.

Let σi(x1, x2, · · · , xs) be the elementary polynomials in s variables x1, x2, · · · , xs which are defined
by

σ0(x1, x2, · · · , xs) = 1,

σ1(x1, x2, · · · , xs) =
∑

1≤ j≤n

x j,

σ2(x1, x2, · · · , xs) =
∑

1≤ j<k≤n

x jxk,

σ3(x1, x2, · · · , xs) =
∑

1≤ j<k<`≤n

x jxkx`,

and so forth, ending with
σs(x1, x2, · · · , xs) = x1x2 · · · xs.

Now we give the first result of this section.
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Theorem 5.1. Let q = pe with p being an odd prime and e being a positive integer. Let s be a positive
integer. Let e1, · · · , es be nonnegative integers with e1 < · · · < es. Then

Dpe1 +...+pes ,k(1, x) =
1
2s

(
(2 − k)

∑
1 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)

+ k
∑

1 ≤ i ≤ s
i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))
.

Consequently, Dpe1 +...+pes ,k(1, x) is a PP of Fq if and only if the polynomial

(2 − k)
∑

0 ≤ i ≤ s
i even

σi
(
x

pe1
2 , · · · , x

pes
2
)

+ k
∑

1 ≤ i ≤ s
i odd

σi
(
x

pe1−1/i
2 , · · · , x

pes−1/i
2

)
is a PP of Fq.

Proof. We divide the proof into the following two cases.
Case 1. x , 1

4 . For this case, putting x = y(1 − y) in the second identity of Lemma 2.3 gives us that

Dpe1 +...+pes ,k(1, x) = Dpe1 +...+pes ,k(1, y(1 − y))

=

(
k − 1 − (k − 2)y

)
ype1 +...+pes

−
(
1 + (k − 2)y

)
(1 − y)pe1 +...+pes

2y − 1

=

k+(2−k)u
2

(u+1
2

)pe1 +···+pes
−

k+(k−2)u
2

(1−u
2

)pe1 +···+pes

u

=
k + (2 − k)u
2pe1 +···+pes +1u

s∏
i=1

(upei
+ 1) −

k + (k − 2)u
2pe1 +···+pes +1u

s∏
i=1

(1 − upei )

=
1

2s+1u

(
(k + (2 − k)u)

∑
0≤i≤s

σi(upe1
, · · · , upes ) − (k + (k − 2)u)

∑
0≤i≤s

(−1)iσi(upe1
, · · · , upes )

)
=

1
2s

(
(2 − k)

∑
0 ≤ i ≤ s

i even

σi
(
upe1

, · · · , upes )
+ k

∑
1 ≤ i ≤ s

i odd

σi
(
upe1−1/i, · · · , upes−1/i)),

where u = 2y − 1 and u2 = 1 − 4x. Then we have that

Dpe1 +...+pes ,k(1, x) =
1
2s

(
(2 − k)

∑
0 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)

+ k
∑

1 ≤ i ≤ s
i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))
.

as desired.
Case 2. x = 1

4 . On the one hand, by the first identity of Lemma 2.3, one has

Dpe1 +...+pes ,k
(
1,

1
4
)

=
k(pe1 + · · · + pes) − k + 2

2pe1 +···+pes =
2 − k

2s .
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On the other hand,
1
2s

(
(2 − k)

∑
0 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)

+ k
∑

1 ≤ i ≤ s
i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))∣∣∣∣
x=1/4

=
2 − k

2s .

Thus the required result follows. So Theorem 5.1 is proved. �

Theorem 5.2. Let q = pe with p being an odd prime and e being a positive integer. Let s be a positive
integer. Let e1, · · · , es be nonnegative integers with e1 < · · · < es. Then

Dpe1 +...+pes +1,k(1, x) =
1

2s+1

(
2

∑
0 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)

+
(
(2 − k)(1 − 4x) + k

) ∑
1 ≤ i ≤ s

i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))
.

Consequently, Dpe1 +...+pes +1,k(1, x) is a PP of Fq if and only if the polynomial

2
∑

0 ≤ i ≤ s
i even

σi
(
x

pe1
2 , · · · , x

pes
2
)

+
(
(2 − k)x + k

) ∑
1 ≤ i ≤ s

i odd

σi
(
x

pe1−1/i
2 , · · · , x

pes−1/i
2

)
is a PP of Fq.

Proof. We consider the following two cases.
Case 1. x , 1

4 . For this case, putting x = y(1 − y) in the second identity of Lemma 2.3 gives us that

Dpe1 +...+pes +1,k(1, x) = Dpe1 +...+pes +1,k(1, y(1 − y))

=

(
k − 1 − (k − 2)y

)
ype1 +...+pes +1 −

(
1 + (k − 2)y

)
(1 − y)pe1 +...+pes +1

2y − 1

=

k+(2−k)u
2

(u+1
2

)pe1 +···+pes +1
−

k+(k−2)u
2

(1−u
2

)pe1 +···+pes +1

u

=
k + (2 − k)u
2pe1 +···+pes +2u

s∏
i=1

(upei
+ 1)(u + 1) −

k + (k − 2)u
2pe1 +···+pes +2u

s∏
i=1

(1 − upei )(1 − u)

=
1

2s+2u

(
(k + 2 + (2 − k)u2)

∑
0≤i≤s

σi(upe1
, · · · , upes ) − (2k + (4 − 2k)u2)

∑
0≤i≤s

(−1)iσi(upe1
, · · · , upes )

)
=

1
2s+1

(
2

∑
0 ≤ i ≤ s

i even

σi
(
upe1

, · · · , upes )
+

(
(2 − k)u2 + k

) ∑
1 ≤ i ≤ s

i odd

σi
(
upe1−1/i, · · · , upes−1/i)),

where u = 2y − 1 and u2 = 1 − 4x. Then we have

Dpe1 +...+pes +1,k(1, x) =
1

2s+1

(
2

∑
0 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)
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+
(
(2 − k)(1 − 4x) + k

) ∑
1 ≤ i ≤ s

i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))
.

as desired.
Case 2. x = 1

4 . On the one hand, by the first identity of Lemma 2.3, one has

Dpe1 +...+pes +1,k
(
1,

1
4
)

=
k(pe1 + · · · + pes + 1) − k + 2

2pe1 +···+pes +1 =
2

2s+1 .

On the other hand,
1

2s+1

(
2

∑
0 ≤ i ≤ s

i even

σi
(
(1 − 4x)

pe1
2 , · · · , (1 − 4x)

pes
2
)

+
(
(2 − k)(1 − 4x) + k

) ∑
1 ≤ i ≤ s

i odd

σi
(
(1 − 4x)

pe1−1/i
2 , · · · , (1 − 4x)

pes−1/i
2

))∣∣∣∣
x=1/4

=
2

2s+1 .

Thus the required result follows. So Theorem 5.3 is proved. �

Then Theorems 5.1-5.2 together with Lemma 2.4 show that the general result is true.

Theorem 5.3. Let q = pe with p being an odd prime and e being a positive integer. Let s be a positive
integer. Let e1, · · · , es be nonnegative integers with e1 < · · · < es. Then for any ` ≥ 0 each of the
identities is true.

Dpe1 +...+pes +2`,k(1, x) =
1

2s+2`

( ∑̀
j=0

C2`,2 ju2 j
∑
0≤i≤s
i even

σi
(
upe1

, · · · , upes )
+

∑̀
j=0

Q2`,2 ju2 j
∑
0≤i≤s
i odd

σi
(
upe1− 1

i , · · · , upes− 1
i
))
,

Dpe1 +...+pes +2`+1,k(1, x) =
1

2s+2`+1

( ∑̀
j=0

C2`+1,2 ju2 j
∑
0≤i≤s
i even

σi
(
upe1

, · · · , upes )
+

`+1∑
j=0

Q2`+1,2 ju2 j
∑
0≤i≤s
i odd

σi
(
upe1− 1

i , · · · , upes− 1
i
))
,

where u2 = 1 − 4x, and the coefficients Ca,2b and Qa,2b can be determined as follows:

C0,0 = 2 − k,Q0,0 = k,C1,0 = k,Q1,2 = 2 − k,

C2m+2,0 = 2C2m+1,0 −C2m,0, if m ≥ 0
C2m+2,2 j = 2C2m+1,2 j + C2m,2 j−2 −C2m,2 j, if 1 ≤ j ≤ m
C2m+2,2m+2 = C2m,2m, if m ≥ 0
Q2m+2,0 = 2Q2m+1,0 − Q2m,0, if m ≥ 0
Q2m+2,2 j = 2Q2m+1,2 j + Q2m,2 j−2 − Q2m,2 j, if 1 ≤ j ≤ m
Q2m+2,2m+2 = 2Q2m+1,2m+2 + Q2m,2m, if m ≥ 0

(5.1)

as well as 

C2m+1,0 = 2C2m,0 −C2m−1,0, if m ≥ 1
C2m+1,2 j = 2C2m,2 j + C2m−1,2 j−2 −C2m−1,2 j, if 1 ≤ j ≤ m − 1
C2m+1,2m = 2C2m,2m + C2m−1,2m−2, if m ≥ 1
Q2m+1,0 = 2Q2m,2 j − Q2m−1,0, if m ≥ 0
Q2m+1,2 j = 2Q2m,2 j + Q2m−1,2 j−2 − Q2m−1,2 j, if 1 ≤ j ≤ m
Q2m+1,2m+2 = 2Q2m−1,2m, if m ≥ 1

(5.2)
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