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Abstract: A generalization of the Laplacian for p-forms to arbitrary tensors due to Lichnerowicz
will be applied to a 2-tensor which has physical applications. It is natural to associate a divergence-
free symmetric 2-tensor to a critical point of a specific variational problem and it is this 2-tensor that
is studied. Numerous results are obtained for the stress-energy tensor, such as its divergence and
Laplacian. A remarkable integral formula involving a symmetric 2-tensor and a conformal vector field
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1. Introduction

Variational problems arise in various areas of mathematics and physics. Suppose (M, g) is a Rie-
mannian manifold with volume form dvM, it is the case that functionals of the form

I(ϕ, g) =

∫
M
σ(ϕ, g) dvM (1.1)

very often occur [1, 2]. Here ϕ could be a mapping between Riemannian manifolds of a vector bundle
valued differential form. Given a variational problem starting from (1.1), the stress-energy tensor S
can be derived by considering variations of the metric on M. If I has a critical point with respect to
variations of ϕ, then the stress-energy tensor is divergence free, and there are conservation laws.

To provide some motivation, let (M, g) and (N, h) be two smooth Riemannian manifolds which are
connected, compact, orientable and without boundary, and ϕ : (M, g) → (N, h) a smooth map. The
differential of ϕ which is dϕ can be thought of as a section of the bundle T ∗M ⊗ ϕ−1T N, with norm
|dϕ|. If {xi} and {ua} constitute local coordinate systems around x and ϕ(x), respectively, then in terms
of coordinates, we can write

|dϕ|2 = gi j hab(ϕ)
∂ϕa

∂xi

∂ϕb

∂x j , (1.2)
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where (∂ϕa/∂xi) is the local representation of dϕ. Then the energy density of ϕ can be defined as e(ϕ) =

1/2|dϕ|2 and the energy density of the field is given by the positive functional E(ϕ) =
∫

M
e(ϕ) dvM.

A large class of maps which come up in physics, especially in gravity, are called harmonic. A
mapping ϕ : M → N is harmonic if and only if it is an extremal of the energy. Consequently, it is the
case that a map ϕ is harmonic if and only if it satisifes the Euler-Lagrange equation

τ(ϕ) = −d∗d ϕ = tr∇ dϕ.

This defines the tension field of ϕ, and may be expressed in local coordinates on M and N as follows

∇∂i(dϕ) = (
∂ϕa

j

∂xi ) dx j ∂

∂ua + ϕa
j(∇∂i dx j)

∂

∂ua + ϕa
j dx j ∇∂i

∂

∂ua

= ϕa
i j −

MΓk
i jϕ

a
k + NΓb

bγϕ
γ
j . (1.3)

The tension field is the trace of (1.3),

τ(ϕ)a = gi j(∇ dϕ)a
i j = −∆ϕa + NΓa

bγϕ
b
i ϕ

γ
j g

i j. (1.4)

Thus (1.4) is a semilinear, elliptic, second-order system. If N is the space R, a harmonic map is called
a harmonic function [4, 7, 8].

2. Energy Functional and Critical Point

Now let us extend this idea to another object which may be defined on a manifold. Let M be a
Riemannian manifold and E a Riemannian vector bundle over M, where each fiber carries a positive
definite inner product denoted by 〈·, ·〉E. Let Ωp(E) be the space of smooth p-forms which have values
in E, where it is assumed throughout that p ≥ 1. For ω ∈ Ωp(E), define the energy functional

I(ω, g) =

∫
M
〈ω(ei1 , . . . , eip), ω(ei1 , . . . , eip)〉

E dvm. (2.1)

where {ei} is an orthonormal basis on M and repeated indices are summed for 1 ≤ i1, . . . , ip ≤ m and
m = dim M. With respect to a local coordinate system {xi} on M and local frame {sa} of E, the norm of
ω, which is the integrand of (2.1) can be written

|ω|2 = 〈ω(ei1 , . . . , eip), ω(ei1 , . . . , eip)〉 = gi1 j1 · · · gip jpωa
i1···ip

ωb
j1··· jp

hab. (2.2)

Suppose M is compact, then vary the integral (2.1) with respect to metric g. If g(u) is a smooth,
one-parameter family of metrics such that g(0) = g, then the variation δg = ∂g/∂u|u=0 is a smooth
symmetric tensor on M.

Theorem 1. For ω ∈ Ωp(E) and p ≥ 1,

dI
du
|u=0 =

∫
M
〈S (ω),

∂g
∂u
|u=0〉 dvM, (2.3)

where S (ω) is the symmetric two-tensor defined by

S (ω) =
1
2
|ω|2g − p

∑
i2,··· ,ip

〈ω(·, ei2 , . . . , eip), ω(·, ei2 , . . . , eip)〉
E. (2.4)
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where {ei} is an orthonormal basis on M.
Proof: Let {xi} be a local coordinate system on M, and {sa} a local frame for E,

dI(ω)
du
|u=0 =

∫
M

∂|ω|2

∂gi j
δgi j dvM +

∫
M
|ω|2

∂(dvM)
∂gi j

δgi j. (2.5)

The volume form on M is given by

dvM = (det g)1/2 dx1 ∧ . . . ∧ dxm,

where det g is the determinant of the metric tensor gi j and therefore,

∂

∂gi j
dvM =

1
2

(det g)−1/2 ∂

∂gi j
(det g) dx1 ∧ . . . ∧ dxm =

1
2

gi j dvM.

Differentiating the expression for the metric tensor gi jg jk = δi
k, the following relation holds

∂gis js

∂gi j
= −gisig js j.

The first term in (2.5) is
∂|ω|2

∂gi j
=

∂

∂gi j

(
gi1 j1 · · · gip jpωa

i1···ip
ωb

j1··· jp
hab

)
= −

p∑
s=1

gi1 j1 · · · gisig js j · · · gip jpωa
i1···is···ip

ωb
j1··· js··· jp

· hab.

Therefore,
∂|ω|2

∂gi j
gikg jl = −

p∑
s=1

gi1 j1 · · · δis
k δ

js
l · · · g

ip jpωa
i1···is···ip

ωb
j1··· js··· jp

hab

= −pgi2 j2 · · · gip jpωa
ki2···ip

ωb
l j2··· jp

· hab.

�
Definition 1. Let M be an arbitrary not necessarily compact Riemannian manifold, and let E be a

Riemannian vector bundle over M. Let ω ∈ Ωp(E) and define the stress-energy tensor of the form ω to
be the following symmetric 2-tensor

S (ω) =
1
2
|ω|2g − p

∑
j1,··· , jp

〈ω(·, e j2 , · · · , e jp), ω(·, e j2 , · · · , e jp)〉
E (2.6)

at each point x where there is an orthonormal basis {ei}.
Let the vector bundle E be endowed with a Riemannian connection denoted by ∇E so

X〈s, t〉E = 〈∇E
X s, t〉E + 〈s,∇E

Xt〉E, (2.7)

Theorem 2. Let ω ∈ Ωp(E) and S (ω) be the stress-energy tensor associated with ω, then for all
x ∈ M and each X ∈ TxM,

div S (ω)(X) = 〈ω, dωcX〉 + p〈d∗ω,ωcX〉 (2.8)
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where the contraction of a p-form with a vector field X is given by

(ωcX)(X1, . . . , Xp−1) = ω(X, X1, . . . , Xp−1).

Proof: Let {ei} be an orthonormal basis at x and extend objects to a neighborhood of x. Suppose
that ∇ei e j = 0 at x for all i, j. The tensorial property allows one to evaluate at X = ek without loss of
generality. Consequently,

divS (X) =
∑

j

(∇e jS )(e j, ek) =
∑

j

e jS (e j, ek) =
∑

j

e j{
1
2
|ω|g(e j, ek) − p〈ωce j, ωcek〉}

= 〈∇ekω,ω〉 − p
∑

j

〈∇e j(ωce j), ωcek〉 − p
∑

j

〈ωce j,∇e j(ωcek)〉. (2.9)

At x, it is the case that
d∗ω(e j1 , . . . , e jp−1) = −∇E

e j
(ω(e j, e j1 , . . . , e jp−1)),

and

dω(ek, ei1 , . . . , eip) = ∇E
ek

(ω(ei1 , . . . , eip)) +

p∑
k=1

(−1)k∇E
eik

(ω(ek, ei1 , . . . , êik , . . . , eip)).

Solving for ∇E
ek

and substituting it into the divergence, we get

divS (X) = 〈dωcek, ω〉

−
∑

i1,··· ,ip

p∑
k=1

(−1)k〈∇E
eik

(ω(ek, ei1 , . . . , êik , . . . , eip)), ω(ei1 , . . . , eip)〉
E

+p〈d∗ω,ωcX〉 − p
∑

j

〈ωce j,∇e j(ωcek)〉.

The double sum in this can be simplified to the form

∑
i1,··· ,ip

p∑
k=1

(−1)k+1〈∇E
eik

(ω(ek, ei1 , . . . , êik , . . . , eip)), ω(e1, . . . , eip)〉

= p
n∑

j=1

〈∇e j(ωcek), ωce j〉.

The claim follows as a result of these

div S (ω) = 〈ω, dωcek〉 + p〈d∗ω,ωcek〉 + p
∑

j

〈∇e j(ωcek), ωce j〉 j〈ωce j,∇e j(ωcek)〉

= 〈ω, dωcek〉 + p〈d∗ω, , ωcek〉.

�
The form ω ∈ Ωp(E) is called harmonic if and only if dω = d∗ω = 0. Substituting these derivatives

into the right-hand side of (2.8), we prove the following result.
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Corollary 1. If ω ∈ Ωp(E) is a harmonic form, then div S (ω) = 0. �
Clearly, S is symmetric and so given a symmetric, divergence-free 2-tensor S , conservation laws

can be formulated by contracting with a Killing vector field. If X is a Killing vector field, then S cX
is also divergence free. However, the converse of Corollary 1 is not true. If div S (ω) = 0, it may not
be concluded that ω is harmonic. However, when ω is a differential of a submersive mapping, there is
equivalence.

Corollary 2. Let ϕ : M → N be a smooth mapping between Riemannian manifolds and let ω = dϕ
be the corresponding ϕ−1T N- valued one-form on M. Then for each vector field X,

divS (dϕ)(X) = 〈τ(ϕ), dϕ(X)〉. (2.10)

In (2.10), τ(ϕ) is called the tension field of ϕ and is defined as

τ(ϕ) = −d∗dϕ. (2.11)

If ϕ is a submersive almost everywhere, then τ(ϕ) = 0 if and only if divS (dϕ) = 0.
Proof: Substitute ω = dϕ into (2.8) and use the identity d(dϕ) = 0 to obtain,

div S (dϕ)(X) = 〈dϕ, ddϕcX〉 + 〈d∗dϕ, dϕcX〉 = −〈τ(ϕ), dϕcX〉. (2.12)

Clearly, if τ(ϕ) = 0, then the right side of (2.12) vanishes, divS (dϕ)(X) = 0, and conversely. �
The form ω is a critical form with respect to variations of the metric, so the conditions under which

the stress-energy tensor vanishes should be studied.
Definition 2. The form ω ∈ Ωp(E) is conformal if the map X → ωcX is conformal for each x ∈ X,

or equivalently, ω is conformal if and only if there is a real λ such that

〈ωcX, ωcY〉 = λ2 〈X,Y〉, X,Y ∈ TxM. (2.13)

To obtain an expression for λ2, evaluate S (ω) in (2.13) on the vectors X = Y = ei ∈ TxM and carry
out the trace on both sides

mλ2 = |ω|2. (2.14)

If ϕ : M → N is a smooth map between Riemannian manifolds, then dϕ ∈ Ω1(ϕ−1T N) is a conformal
form if and only if the map is conformal as well.

Lemma 1. For ω ∈ Ωp(E) which is not identically zero, the stress-energy tensor (2.6) vanishes
identically if and only if m = 2p and ω is conformal.

Proof: Evaluating S (ω) on the pair (ei, ei) we obtain,

S (ω)(ei, ei) =
1
2
|ω|2 − p〈ωcei, ωcei〉.

Tracing on both sides gives

tr S (ω) = (
m
2
− p)|ω|2.

This vanishes for ω , 0 when m = 2p. The definition of conformal form (2.13) gives equivalence. �
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3. Weizenböck Formulas and Applications to the Stress-Energy Tensor

Now consider the Laplacian of the tensor S (ω). The Laplacian on p-forms was extended to arbitrary
tensors on a Riemannian manifold by Lichnerowicz [5,6]. For a 2-tensor Q, the Laplacian on Q is given
by

∆ Q(X,Y) = −tr∇2Q(X,Y) + S (RicciM(X),Y) + S (X,RicciM(Y))

− 2
∑

i, j

〈RM(X, ei)Y, e j〉S (ei, e j). (3.1)

where {ei} is an orthonormal basis. The curvature tensor on M is represented by RM with sign conven-
tion

RM(X,Y)Z = −∇X∇YZ + ∇Y∇XZ + ∇[X,Y]Z. (3.2)

In (3.2), RicciM is the Ricci tensor defined by RicciM(X,Y) = tr(Z → RM(X,Z)Y).
The following theorem given first by Lichnorowicz [5, 6] is very useful and is presented without

proof.
Proposition 1. (Lichnerowicz) Let M be a Riemannian manifold with ∇RicciM = 0. Let Q be a

2-tensor on M, then the divergence commutes with the Laplacian

div(∆Q) = ∆(divQ), (3.3)

where the right-hand side is now the standard Laplacian on one-forms.
Define the symmetric 2-tensor L(Q) to be

L(Q) = Q(RicciM(X),Y) + Q(X,RicciM(Y)) − 2
∑

i, j

〈RM(X, ei)Y, e j〉Q(ei, e j). (3.4)

Suppose E → M is a vector bundle endowed with a metric and Riemannian connection and associated
curvature RE. The Ricci operator on a p-form ω written as Riccip = Ricci is defined to be

(Ricci(ω))(X1, . . . , Xp) =
∑
i,k

(Rp(ei, Xk)ω)(ei, X1, . . . , X̂k, . . . , Xp). (3.5)

In (3.5), Rp is the canonical curvature and is defined to be [4]

(Rp(X,Y)ω)(X1, . . . , Xp) = RE(X,Y)(ω(X1, . . . , Xp))

−
∑

k

ω(X1, . . . ,RM(X,Y)Xk, . . . , Xp). (3.6)

The following theorem is due to Weizenböck [3].
Proposition 2. (Weitzenböck) Let E → M be a Riemannian vector bundle over a Riemannian

manifold M. Then for any ω ∈ Ωp(E),

(i) ∆ω = −tr∇2ω + Ricci(ω).

(ii) 1
2∆|ω|2 = 〈∆ω,ω〉 − |∇ω|2 − 〈Ricci(ω), ω〉.

(3.7)
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Proof: Let us prove (ii) by using (i) for −tr∇2ω,

1
2

∆|ω|2 = −
1
2

tr∇ d|ω|2 = −tr∇〈∇ω,ω〉 = −tr〈∇∇ω,ω〉 − 〈∇ω,∇ω〉

= 〈∆ω,ω〉 − 〈Ricci(ω), ω〉 − |∇ω|2.

�
It is worth noting a few important applications of this proposition. If ω ∈ Ω0(E), then (3.7) reduces

to
∆ω = −tr∇dω,

1
2

∆|ω|2 = 〈∆ω,ω〉 − |∇ω|2. (3.8)

If ω ∈ Ω1(E) and X ∈ Γ(T M), then

∆ω(X) = −tr∇2ω(X) −
∑

s

RE(es, X)ω(es) +
∑

s

ω(RM(es, X)es), (3.9)

where {es} is an orthonormal basis for T M and

1
2

∆|ω|2 = 〈∆ω,ω〉 − |∇ω|2 +
∑

i, j

〈RE(ei, e j)ω(ei), ω(e j)〉 −
∑

k

〈ω(Ricci(ek)), ω(ek)〉. (3.10)

Theorem 3. Let X,Y ∈ Γ(T M), it holds that

(tr∇2〈ωy·, ωy·〉)(X,Y) = 〈(tr∇2ω)yX, ωyY〉 + 〈ωyX, (tr∇2ω)yY〉

+ 2
∑

i

〈(∇eiω)yX, (∇eiω)yY〉. (3.11)

Proof: Differentiating once gives,

∇e j〈ωy·, ωy·〉(X,Y) = 〈∇e jωyX, ωyY〉 + 〈ωyX,∇e jωyY〉.

Differentiating a second time gives

∇ei∇e j〈ωy·, ωy·〉(X,Y) = 〈∇ei∇e jωyX, ωyY〉 + 〈∇e jωyX,∇e jωyY〉 + 〈∇eiωyX,∇e jωyY〉

+〈ωyX,∇ei∇e jωyY〉.

Tracing on both sides of this equation yields (3.11). �
Theorem 4. Let ω ∈ Ωp(E) be a vector bundle valued p-form with stress-energy tensor S (ω). The

Laplacian of S (ω) can be written in the following way,

∆S (ω) = 2S (〈∆ωy·, ωy·〉) − 2S (
∑

j

〈∇e jωy·,∇e jωy·〉) − 2S (〈Ricci(ω)y·, ωy·〉) + L(S (ω)). (3.12)

where RicciM is the Ricci tensor and the symmetric 2-tensor L(S ) was introduced in (3.4). Substituting
Weitzenböck formula (3.7) (i) into (3.11), it follows that

tr∇2〈ωy·, ωy·〉(X,Y) = 〈(∆ω − Ricci(ω))yX, ωyY〉 + 〈ωyX, (∆ω − Ricci(ω))yY〉
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−2
∑

i

〈∇eiωyX,∇eiωyY〉

= 〈∆ωyX, ωyY〉 − 〈Ricci(ω)yX, ωyY〉 + 〈ωyX,∆ωyY〉 − 〈ωyX,Ricci(ω)yY〉

−2
∑

i

〈∇eiωyX,∇eiωyY〉. (3.13)

Substituting (3) into (3.12), it follows by symmetry and linearity that,

∆S (ω)(X,Y) = 2S (〈∆ωyX, ωyY〉) − 2S (
∑

i

〈∇eiωyX,∇eiωyY〉)

−2S (〈Ricci(ω)yX,Y〉) + L(S (ω))(X,Y).

This is the required result. �
For any 2-tensor Q ∈ Γ(⊗2T ∗M), define the p-th stress-energy tensor associated to Q to be the

2-tensor
Sp(Q) =

1
2

(trg Q)g − p sym Q, (3.14)

where trQ =
∑

i Q(ei, ei), and {ei} is orthonormal with respect to the metric g. Moreover, define

(sym Q)(X,Y) =
1
2

(Q(X,Y) + Q(Y, X)). (3.15)

Then sym Q in (3.15) is called the symmetrization of Q. For a p-form ω ∈ Ωp(E), this is simply

S (ω) = Sp(〈ωy·, ωy·〉). (3.16)

The previous result can be written in completely symmetric form in terms of Sp.
Corollary 3. Let ω ∈ Ωp(E) be a vector-bundle valued p-form with associated stress-energy tensor

S (ω). The Laplacian of S (ω) is given by

∆S (ω) = 2Sp(〈∆ωy·, ωy·〉) − 2Sp(
∑

i

〈∇eiωy · ∇eiωy·〉) − 2Sp(〈Ricci(ω)y·, ωy·〉) + L(S (ω)). (3.17)

�
It is also worth writing this out for the special case of a 1-form.
Corollary 4. Let ω ∈ Ω1(E) be a vector bundle valued 1-form, then (3.17) takes the form

∆S (ω) = 2S(〈∆ω,ω〉) − 2S(
∑

i

〈∇eiω,∇eiω〉) + 2S(
∑

i

〈RE(ω)y·, ωy·〉)

− 2S
(
〈ω

(
RicciM(·)

)
, ω〉

)
+ L(S (ω)). (3.18)

Moreover, for ω ∈ Ω1(E), a closed vector bundle valued 1-form,

∆S (ω) = 2S(〈∆ω,ω〉) − 2S (∇ω) + 2S(
∑

i

〈RE(ei, ·)ω(ei), ω(·)〉)

− 2S(〈ω(RicciM(·), ω〉) + L(S (ω)). (3.19)

where S (∇ω) denotes the stress-energy tensor of the T ∗M ⊗ E valued one-form ∇Xω.
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Proof: First (3.18) is a consequence of (3.17). For (3.19), since ω is closed, dω = 0, and it follows
that (∇eiω)(X) = (∇Xω)(ei), consequently

∑
i 〈∇eiω,∇eiω〉 = 〈∇ω,∇ω〉. �

Theorem 5. Let ϕ : (M, g) → (N, h) be a smooth map between Riemannian manifolds and let
dϕ ∈ Ω1(ϕ−1T N) be its exterior derivative.

∆S (dϕ) = −2S(〈∇τ(ϕ), dϕ〉) − 2S (∇dϕ) − 2S(〈dϕ(RicciM(·)), dϕ(·)〉)

− 2S(
∑

i

〈RN(dϕ(ei), dϕ(·)) dϕ(ei), dϕ(·)〉) + L(S (dϕ)), (3.20)

where τ(ϕ) = −d∗dϕ denotes the tension field of the map ϕ.
Proof: For the one-form ω, substitute ω = dϕ into (3.19). Since it follows that ∆dϕ = (d∗d +

dd∗)dϕ = −dτ(ϕ) = −∇τ(ϕ), and RN ◦ dϕ is the induced curvature in the bundle E = ϕ−1T N. �
Theorem 6. Let ϕ : (M2, g)→ (N2, h) be a harmonic map between surfaces where M2 has Gaussian

curvature cM, then the folowing holds,

∆S (dϕ) = −2S (∇dϕ) + 2cMS (dϕ). (3.21)

In particular, if M has constant curvature, then it follows that divS (∇dϕ) = 0.
Proof: If ϕ is harmonic, then ∇τ(ϕ) = 0, so the first term in (3.20) vanishes. Suppose σ(Q) =

1
2 (trQ)g − sym Q is a stress-energy tensor associated to the 2-tensor Q on M. Suppose z is an isother-
mal coordinate, then σ(Q) can be expressed in diagonal form σ(Q) = a dz ⊗ dz + ā dz̄ ⊗ dz̄ for some
function a = a(z, z̄). If σ(Q) is divergence free, then az̄ vanishes, so σ(Q) = a dz⊗dz defines a quadrat-
ic differential form on M2. When ϕ is a smooth map, then locally ϕ∗h can be diagonalized to the form
ϕ∗h = λ1 ω1⊗ω1+λ2ω2⊗ω2, where {ω1, ω2} is an orthonormal basis of 1-forms. If M and N have Gaus-
sian curvatures cM and cN , then letting {e1, e2} be the basis dual to {ω1, ω2}, summing on i = 1, 2 we have
〈RN(dϕ(ei), dϕ(·))dϕ(ei), dϕ(·)〉 = cNλ1λ2g, and consequently σ(〈RN(

dϕ(ei), dϕ(·)
)
dϕ(ei), dϕ(·)〉) = 0.

Moreover, L(S (ϕ)) = 4cMS (dϕ) and σ(〈dϕ(RicciM(·)), dϕ(·)〉) = cMS (dϕ), so substituting these calcu-
lations into (3.20), equation (3.21) is the result.

Recall that if ω ∈ Ωp(E) is harmonic, then div S (ω) = 0. If we use ω = dϕ ∈ Ω1(E), then
divS (dϕ) = 0. Take the divergence of both sides of (3.21) and note that cM is constant, then the result
follows since divergence and Laplacian commute be Proposition 1. �

Now τ(ϕ) defines an energy functional which is called the biharmonic energy functional

E2(ϕ) =
1
2

∫
M
|τ(ϕ)|2 dvM, (3.22)

and has the associated stress-energy tensor S 2(dϕ),

S 2(dϕ) =
1
2
|τ(ϕ)|2g + 2S(〈∇τ(ϕ), dϕ〉). (3.23)

Theorem 7. Let ϕ : (M, g) → (N, h) be a smooth map between Riemannian manifolds and let
dϕ ∈ Ω1(ϕ−1T N) be the derivative.

(i) The Laplacian of S (dϕ) is given as

∆S (dϕ) =
1
2
|τ(ϕ)|2g − S 2(dϕ) − 2S (∇dϕ) − 2S(〈dϕ(RicciM(·), dϕ(·)〉)
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+ 2S(
∑

i

〈RN(dϕ(ei), dϕ(·)) dϕ(ei), dϕ(·)〉T N) + L(S (dϕ)). (3.24)

(ii) If ϕ : M → N is an isometric immersion,

1
2
|τ(ϕ)|2g − S 2(dϕ) − 2S (∇dϕ) − 2S(RicciM)

+ 2S(
∑

i

〈RN(dϕ(ei), dϕ(·)) dϕ(ei), dϕ(·)〉) = 0. (3.25)

(iii) If N is a space form of constant curvature KN = −1, 0,+1,

1
2
|τ(ϕ)|2g − S 2(dϕ) − 2S(dγ) − 2S(RicciM) + 2(m − 1)KNS (dϕ) = 0. (3.26)

Proof: (i) Let ω = dϕ then solve for the second term in (3.23) and substitute it into the previous
result (3.21) which gives (3.24). (ii) If ϕ : (M, g)→ (N, h) is an isometric immersion, then

S (dϕ) =
1
2

(m − 2) g, (3.27)

hence the left-hand side of (3.24) as well as L(S dϕ)) both vanish. (iii) Finally, if we map into a space
form, the second fundamental form ∇dϕ can be identified with the derivative of the associated Gauss
map Γ and (3.26) follows. �

As an application of this theorem, suppose ϕ is a minimal immersion of a surface into Euclidean
space, then τ(ϕ) = 0, S 2(dϕ) = 0 and σ(RicciM) = 0. Then equation (3.26) implies that S (dγ) = 0.

If the divergence of both sides of (3.26) is worked out, since divS(RicciM) = 0 as a consequence of
the Bianchi identity, (3.26) implies that if ϕ : M → N is an isometric immersion into a space form, it
follows that

1
2

d|τ(ϕ)|2 − divS 2(dϕ) − 2div S (dγ) = 0. (3.28)

4. Further Results Including an Integral Theorem

Let us examine the influence of conformal vector fields to finish [3]. A monotonicity formula
describes the growth properties of extremals of the functional (2.1) and may be used to establish their
regularity in appropriate situations.

Let (M, g) be a Riemannian manifold of dimension m. A vector field X on M is called conformal if
it satisfies

LX g = ξg (4.1)

for some function ξ : M → R and L is the Lie derivative in the direction of X. Equivalently, X is
conformal if and only if

sym g(∇i) =
1
m

(divX)g, (4.2)

in which case, we have ξ = (2/m)divX.
Theorem 8. Let T be a symmetric 2-tensor, and let X be a conformal vector field, then

div(TyX) = (div T )(X) +
1
m

(divX) · trT. (4.3)
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Proof: Let {ei}
m
1 be a locally defined frame field. If X is a conformal vector field, the divergence can

be calculated as follows,

div(TyX) = ∇ei(TyX)(ei) = (∇eiT )(X, ei) + T (∇ei X, ei)

= (divT )(X) + T (〈∇ei X, e j〉e j, ei).

Since T is a symmetric 2-tensor, the definition of conformal implies that

div(TyX) = (divT )(X) +
1
2

(〈∇ei X, e j〉 + 〈∇e j X, ei〉)T (ei, e j)

= (divT )(X) +
1
m

divX g(ei, e j) T (ei, e j) = (divT ) +
1
m

divX tr T,

since we have trT = g(ei, e j) T (ei, e j).
Integrate (4.3) over a compact region, U, to obtain the monotonicity formula. The divergence

theorem permits us to write ∫
U

div(TyX) dvM =

∫
∂U

T (X,n) daM. (4.4)

where daM is the volume form on ∂U.
Theorem 9. Let (M, g) be an oriented Riemannian manifold and let X be a conformal vector field

on M. Suppose that U ⊂ M is a compact region with a smooth boundary ∂U. Then for any symmetric
2-tensor T on M, ∫

∂U
T (X,n) daM =

∫
U

(divT )(X) dvM +
1
m

∫
M

divX trT dvM, (4.5)

where dvM is the volume element on M and daM is the volume element on ∂U, n the outward pointing
normal on ∂U. �

This is a remarkable theorem as there are numerous applications of it, but only one will be presented
here. Let ϕ : Bm → (N, h) be a harmonic map from the Euclidean m-ball of radius R and S = e(ϕ)g−ϕ∗h
the corresponding stress-energy tensor. Clearly, divS = 0 and trS = e trg − trϕ∗h = e m − 2e =

(m − 2) e(ϕ). Take X to be the conformal vector field X = r∂r where r = |x|, x ∈ Rm. By direct
calculation, divX = m, hence substituting these facts into (4.5), the following result holds for r < R,∫

∂Bm
S (r∂r, ∂r) da =

∫
Bm

(m − 2) e(ϕ) dvM. (4.6)

Substituting for S yields

(m − 2)
∫

Bm
e(ϕ) dvM =

∫
∂Bm

r
{
e(ϕ) − h(

∂ϕ

∂r
,
∂ϕ

∂r
)
}
daM. (4.7)

The following conclusion can be drawn from (4.7). If m > 2 and ϕ|∂Bm
r = c for some r < R and constant

c, then ϕ must be constant, that is, for e(ϕ)|∂Bm = 1
2h(∂rϕ, ∂rϕ) gives the upper bound∫

Bm
e(ϕ) dvM ≤ 0,

which in turn implies that e(ϕ) ≡ 0.
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