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Abstract: We provide a new proof of the upper-semicontinuity property for the global attractors
admitted by the solution operators associated with some strongly damped wave equations. In particular,
we demonstrate an explicit control over semidistances between trajectories in the weak energy phase
space in terms of the perturbation parameter. This result strengthens the recent work by Y. Wang and
C. Zhong [7].
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1. Introduction

In this short article, we revisit the recent work of [7] who examine the upper-semicontinuity prop-
erties of the family of global attractors associated with the strong damping perturbation of weakly
damped wave equations. Such equations are used in modeling non-Hookean viscoelastic materials.
Here, the strong damping term −ε∆ut present in such equations indicates that we are accounting for
the strain rate in the material, in addition to other forces. The upper-semicontinuity result in [7] shows
that the global attractors do not “blow-up” as the perturbation parameter vanishes. Hence, the asymp-
totic behavior of the solutions is stable. What we offer here improves this result by communicating
that the difference of trajectories corresponding to the perturbation problem and the limit problem, e-
manating from the same initial data, can be estimated in terms of the perturbation parameter ε in the
topology associated with the weak energy phase space of the model problems.

Let Ω be a bounded domain in R3 with boundary ∂Ω of class C2. We consider the semilinear
strongly damped wave equation,

utt − ε∆ut + ut − ∆u + f (u) = 0 in (0,∞) ×Ω, (1.1)

where 0 ≤ ε ≤ 1 represents the diffusivity of the momentum. The equation is endowed with Dirichlet
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boundary condition,
u|∂Ω = 0 on (0,∞) × ∂Ω, (1.2)

and with the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x) at {0} ×Ω. (1.3)

For the nonlinear term, we assume f ∈ C2(R) satisfies the sign condition

lim inf
|s|→∞

f ′(s) > −λ1, (1.4)

where λ1 > 0 denotes the first eigenvalue of the Dirichlet–Laplacian, and we assume the growth
assumption holds, for all s ∈ R,

| f ′′(s)| ≤ ` (1 + |s|) , (1.5)

for some positive constant `. We will refer to equations (1.1)–(1.3) under assumptions (1.4)–(1.5) as
Problem Pε, for ε ∈ [0, 1].

It is now well-known that the model problems admit globally defined weak-solutions in the (weak)
energy phase space

H0 := H1
0(Ω) × L2(Ω)

and, for each ε ∈ [0, 1], a global attractorAε is compact inH0 and bounded in

H1 :=
(
H2(Ω) ∩ H1

0(Ω)
)
× L2(Ω).

Furthermore, when ε > 0, the operator associated with the linear part of the abstract Cauchy problem
generates an analytic semigroup onH0. On these results we mention the following references [1–5].

The main result in this paper is the following:

Theorem 1.1. The family of global attractors {Aε}ε∈[0,1] is upper-semicontinuous in the topology ofH0

in the following explicit sense: there is a constant C > 0 independent of ε in which

distH0(Aε,A0) := sup
a∈Aε

inf
b∈A0
‖a − b‖H0 ≤ C

√
ε.

A word about notation: we will often drop the dependence on x and even t from the unknown u(x, t)
writing only u instead. The norm in the space Lp(Ω) is denoted ‖ · ‖p except in the common occurrence
when p = 2 where we simply write the L2(Ω) norm as ‖ · ‖. The L2(Ω) product is simply denoted
(·, ·). Other Sobolev norms are denoted by occurrence; in particular, since we are working with the
homogeneous Dirichlet boundary conditions (1.2), in H1

0(Ω), we will use the equivalent norm

‖u‖H1
0

= ‖∇u‖.

Given a subset B of a Banach space X, denote by ‖B‖X the quantity supx∈B ‖x‖X. In many calculations
C denotes a generic positive constant which may or may not depend on several of the parameters
involved in the formulation of the problem. Finally, for each ε ∈ [0, 1], and t ≥ 0, we denote by S ε(t)
the semigroup of solution operators acting onH0 defined through the weak solution,

S ε(t)(u0(x), u1(x)) := (uε(t, x; u0, u1), ∂tuε(t, x; u0, u1)),

where uε here denotes the weak solution to Problem Pε.
The next section contains a proof of Theorem 1.1.
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2. Continuity properties of the global attractors

Following [6, Section 10.8], the type of perturbation examined in this article is called regular be-
cause both classes of Problem Pε (ε > 0 and ε = 0) lie in the same phase space; in particular, the family
of global attractors, {Aε}ε∈[0,1], lies inH0. Hence, we will utilize [6, Theorem 10.16].

Proposition 2.1. Assume that for ε ∈ [0, ε0) the semigroups S ε each admit a global attractor Aε and
that there exists a bounded set X such that ⋃

ε∈[0,ε0)

Aε ⊂ X.

If in addition the semigroup S ε converges to S 0 in the sense that, for each t > 0, S ε(t)x → S 0(t)x
uniformly on bounded subsets Y of the phase space H, i.e.,

sup
x∈Y
‖S ε(t)x − S 0(t)x‖H → 0 as ε→ 0,

then
dist(Aε,A0)→ 0 as ε→ 0.

We now arrive at our first result.

Lemma 2.2. Let T > 0. There exists a constant C = C(‖Aε‖H1 ,T ) > 0 such that for all ζ0 ∈ Aε and
for all t ∈ [0,T ], there holds, for all ε ∈ (0, 1],

‖S ε(t)ζ0 − S 0(t)ζ0‖H0 ≤ C
√
ε. (2.1)

Proof. Let B be a bounded set onH0 and T > 0. Let ζ0 = (u0, u1) ∈ Aε. For t > 0, let

ζ+(t) = (u+(t), u+
t (t)) and ζ0(t) = (u0(t), u0

t (t)),

denote the corresponding global solutions of Problem Pε and Problem P0, respectively, on [0,T ], both
with the (same) initial data ζ0. For all t ∈ (0,T ], set

ζ̄(t) := ζ+(t) − ζ0(t)

=
(
u+(t), u+

t (t)
)
−

(
u0(t), u0

t (t)
)

=: (ū(t), ūt(t)) .

Then ζ̄ and ū satisfy the equations
ūtt − ε∆ūt + ūt − ∆ū + f (u+) − f (u0) = −ε∆u0

t in (0,∞) ×Ω

ū|∂Ω = 0 on (0,∞) × ∂Ω

ζ̄(0) = 0 at {0} ×Ω.

(2.2)

After multiplying the equation (2.2)1 by 2ūt in L2(Ω), we estimate the new product to arrive at the
differential inequality,

d
dt

{
‖ūt‖

2 + ‖∇ū‖2
}

+ 2ε‖∇ūt‖
2 + 2‖ūt‖

2
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= −2( f (u1) − f (u0), ūt) − 2ε(∇u0
t ,∇ūt)

≤ C‖∇ū‖2 + ‖ūt‖
2 + ε‖∇u0

t ‖
2 + ε‖∇ūt‖

2. (2.3)

The constant C = C(L,Ω) > 0 is due to the local Lipschitz condition of f : H1
0 → L2 following

assumptions (1.4) and (1.5), as well as the embedding H1
0 ↪→ L2.

It suffices to find an appropriate bound for ‖∇u0
t (t)‖2. Indeed, since the global attractor for Problem

P0 consists of strong solutions (A0 is bounded in H1), we are allowed to test/multiply the weakly
damped wave equation in L2(Ω) by −2∆u0

t (t). To this end we obtain,

d
dt

{
‖∇u0

t ‖
2 + ‖∆u0‖2

}
+ 2‖∇u0

t ‖
2 ≤ 2|( f ′(u0)∇u0,∇u0

t )|

≤ ‖ f ′(u0)∇u0‖2 + ‖∇u0
t ‖

2

≤ ‖ f ′(u0)‖2L3‖∇u0‖2L6 + ‖∇u0
t ‖

2

≤ ‖u0‖4H1‖u0‖2H2 + ‖∇u0
t ‖

2.

Integrating this inequality over [0,T ] yields the desired bound,∫ t

0
‖∇u0

t (s)‖2ds ≤ C, (2.4)

where the constant C = C(‖A0‖H1 ,T ) > 0, depends on the bound on A0 in H1 (through the initial
condition) and on T > 0.

Now returning to inequality (2.3), we integrate

d
dt

{
‖ūt‖

2 + ‖∇ū‖2
}
≤ ‖ūt‖

2 + C‖∇ū‖2 + ε‖∇u0
t ‖

2 (2.5)

over [0,T ] and apply the bound (2.4) to the last term on the right-hand side to produce the claim (2.1).
This completes the proof. �

Remark 2.3. The above result (2.1) establishes that, on compact time intervals, the difference between
trajectories of Problem Pε, ε ∈ (0, 1], and Problem P0, originating from the same initial data on Aε ⊂

H1, can be controlled, explicitly, in terms of the perturbation parameter ε in the topology ofH0.

The well-known upper-semicontinuity result in Proposition 2.1 now follows for our family of global
attractors.
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