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1. Introduction

During the past decades, the exact solutions of nonlinear partial differential equations have been
investigated by many authors. Meanwhile, many powerful methods have been proposed by them,
such as Backlund transformation method [1], multiple exp-function method [2], homogeneous balance
principle [3], tanh-sech method [4], G’ /G-expansion method [5-7], the first integral method [8,9] and
SO on.

The G’/G-expansion method was first presented by Wang [5] which can be used to deal with all
types of nonlinear evolution equations. The first integral method was first proposed by Feng [8] for ob-
taining the exact solutions of Burgers-KdV equation which is based on the ring theory of commutative
algebra. The basic idea of the first integral method is to construct a first integral with polynomial coef-
ficients of an explicit form to an equivalent autonomous planer system by using the division theorem.
Both the G’/G-expansion method and the first integral method are powerful methods for computing
the exact solutions of nonlinear partial differential equations. They are direct, elementary and effective
algebraic methods.
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In this paper, we consider the following generalized (2+1)-dimensional BKP equation [10]

W+ (W) xxx + W)y + a(uw), + Blvw)y = 0,
1y = wi, (1.1)

Ve = Wy,

where a, § are arbitrary constants and a + # 0, m, n are integers and m,n > 2. In [10], authors studied
traveling wave solutions in the parameter space of this system by bifurcation theory of dynamical sys-
tems and they obtained some exact explicit parametric representations of periodic cusp wave solutions,
solitary wave solutions and compacton solutions. In this paper, we continue to consider the problem of
solving system (1.1) by using the G’/G-expansion method and the first integral method and we obtain
the rational function solutions, periodic function solutions and the hyperbolic function solutions of
(1.1) under some parametric conditions and the values of m, n in several cases.
Specially, whenm = 1,n = 1,a = 8 = 6, (1.1) becomes

Wi+ Wi + Wy + 6(uw), + 6(vw), = 0,
Uy = Wy,

Ve = Wy

It is the famous (2+1)-dimensional BKP equation which was introduced by Date et al. [11] and de-
scribes the processes of interaction of exponentially localized structures. It is one of a hierarchy of
integrable systems emerging from a bilinear identity related to a Clifford algebra which is generated
by two neutral fermion fields [12]. This equation has been studied by using many methods, such as the
sine-cosine method [13], the G’/G-expansion method [6], the improved G’ /G-expansion method [14]
and so on.

The aim of this paper is to extract the exact solutions of the generalized (2+1)-dimensional BKP
equation by using the G’ /G-expansion method and the first integral method. The paper is arranged as
follows: In section 2, we apply the G’ /G-expansion method to this equation. In section 3, we apply the
first integral method to solve this equation. In section 4, we give the conclusion of the paper.

2. Application of the G’ /G-expansion method to the generalized (2+1)-dimensional BKP
equation

We suppose the wave transformations

W(X,y’ t) = W(f)a M(X, Y, t) = M(é‘:), V(X, Vs t) = V(f), é: = klx + lly + /llt (21)

where k;,[;, A, are constants. By using the wave transformations (2.1), (1.1) can be converted into
ODEs

WY + (k5 + BYW™Y” + aki(W'w + uw’) + BL(Vw + vw') = 0,
hu' =kw', (2.2)

’r_ ’
klv —l]W,
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where is the derivative with respect to £. Integrating the second and third equation of (2.2) and
neglecting integral constants, we obtain

lll/t = kl w,

k1V = llw.

Substituting the above equations into the first equation of (2.2) and integrating it, then it becomes

3 3 17 alk% l% 2
AW + (k) + [)Hw™)” + (l_ + k—)w =g, (2.3)
1 1
where g is an integral constant. We assume that (2.3) has the following formal solutions [7, 15]:

’

W(E) = D(%)N, D#0, 2.4)

where D is a constant to be determined later. N is determined by balancing the linear term of the
highest order derivatives with the highest order nonlinear term in (2.3) and G satisfies a second order
constant coefficient ODE which is

G"(&) + AG' (&) + uG(¢) = 0, (2.5)
where A, u are constants and will be determined later. Next, we will obtain the exact solutions of (1.1)
by considering the values of m and n in several cases.

21. m#+nm>2,n>?2

Balancing (w™)"” with w" of (2.3), we have mN + 2 = nN, 1.e., N = 2/(n — m). Thus, we assume

2

G’ \rn
W@ =D(Z)" D0 2.6)
where D, is a constant to be determined later. Then, we have
n n G’ '%" G’ ﬁ
wo= oi(g) w=nig) "
2 2 G'\t2 4 G’ \iit!
wny = L pm| L, 1)(—) (s l)ﬁ(—)
n—m n—m G n—m G
2m G\ 4m G’ ™!
+ —(2 +/12(—) + —1/1(—)
n_m(u )G (n_m ),UG
2m G\
()
(n_m M G

Substituting the above formulas into (2.3) and collecting all terms with the same order of G’ /G together,
we can convert the left-hand side of (2.3) into a polynomial in G’/G. Then, setting each coeflicient of
each polynomial to zero, we can derive a set of algebraic equation for A, u and D :

2m 2m
(kf+z§)(n_m + )——D"+ D] =0, (2.7)
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QIQ

24 q
n—-m
) coeff:

(

4 2
&+ By (— + )L apr = o.
n—m n—m

Here, we need to consider the value of 4/(n — m) in the following cases:

Casel. -+ =2 _
o n—-m n—-m
G \"" .
( G ) coeft:

(k + 13)( ) Qu+ A*)D" =

2m -1

)n " coeff:

QIQ

(

4m 2m k2 12
(k3 + B)( -1 AuDT + (— +-)p? =
n—m n—m [ ky

QIQ

o2
) coeff:

(

2m 2m
(k3 + li’)(n — - D— m,ﬂD’f = 0.

Solving the set of (2.7)-(2.11), we obtain

ak2 ﬁlz (k? + li)(Z_m + 1)\ 1/(=m)
A=u=0, g=0, —1 ~ 0, D:(— o ’") .
K § ll kl ! /ll
Case2. - =2 _
2m
G, n—-m
(E) coeff’

(ki + 13 )( ) Qu+ DY =

4 2
(B + BY(—— - )—auD™ = 0,
n—m n—m

2 2 k2 12
& + By (—— - 1)—== WD+ (T + —)D2
n—m n-— L

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Solving the set of (2.7)-(2.8) and (2.13)-(2.15), we get the same results as those of Case 1.
Case 3. n%iz—’"—l andﬁiZ—’”—Z

o m n—m n—m
G n—m .
(5) coeft:
3, 3y 2m 2\ ym
(k] + EY——)*Qu + D} = 0, (2.16)
|
(%) coeff’
4 2
(& + BY(—— — )" quD" = 0, (2.17)
n—m n—m
2m -2
G n—m
(5) coeff’
2m 2m
(k3 + lf)(n — - D— WD =0, (2.18)
=
(%) coeft:
K pe
LBy (2.19)
Lk

Solving the set of (2.7)-(2.8) and (2.16)-(2.19), we obtain the same results as those of former cases.
Substituting (2.12) into (2.5) and (2.6), then, we can get the rational function solutions

(5 + DG + D2 5 ¢ &
w(x,y,t) = (_ A ) (Cl(k1x+lly+/ht)+cz) ,
vt - 1_1(_(k?+l?)(,f_—mm+1)f_—mm)"-l'"( € )2'"
3 A, Citkix + Ly + 411) + C,
ki DG+ D2 G o
uto 1) = Z(_ A ) (Cl(k1x+lly+/11t)+c2) ’

where Cy, C, are arbitrary constants and ak; + 5 = 0.

22. m=2,n>2
(2.3) becomes

ak?> B
W+ (K + B)W)” + (=g (2.20)
1 1

Balancing (w?)” with w”, we have N = 2/(n — 2). Thus, (2.20) has the following formal solutions

’

w(é) = Dz(%)"zz, D, # 0, (2.21)
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where D, is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of

algebraic equations:

4
, aat2
(%) coeff:

4 4 .
(k) + D— + D——D3 + 1D} = 0,
, ﬁﬂ
(%) coeff:
8 4
ki +h 1)——AD% =0
(1+1)(7’l—2+ )I’l—2 2 s
4
o "2
(5) coeff:
4 ak?  BP
() + —)" (2 + 4D + (Tl + k_ll)pg -0,
I. The case g = 0
4
G’ n-2
(5) coefl:
8 4
ki + 0 -1 AuD2 =0
(1+1)(n—2 )n—2’u s

4

4
) coeft:

QlQ

(

4
-1 D5 = 0.
5 )n_zlv‘ 2

4
(ki + I)(
n —
Solving that set of (2.22)-(2.26), we obtain

ki Bl
A=u=0, &yﬁ:o’ Dz:(
L Kk

R+ GS + 1)£)1/<n—2)
A '

Specially, when - — 1 = 0, i.e., n = 6, we obtain

ak? B2
A=0 u=- Tl k_ll D, = (_—Z(k? + li))l/4
’ 20 + By 4 '

Substituting (2.27) into (2.5) and (2.21), then, we can get the rational function solutions

LR+ + 1)%)( C; )

SV, =
W(xy ) ( A C3(k1.x+l]y+ﬂ1l)+C4

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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e = (G DR O )
ki A Ciy(kyx+ Ly +411) + Cy
k(6 + B + Dk c, &

utoy, 1) = 11( . ) (C3(k1x+lly+/llt)+C4) :

where C3, Cy are arbitrary constants and akf + ﬁl{’ = 0. Substituting (2.28) into (2.5) and (2.21), then,
we have

ak? ﬁﬂ
G// +( ll + kl )G _
3 3 -
2(k1 + ll)
ak% /312
Tt k1
Case 1. 26T >0

We obtain the hyperbolic function solutions

(@ 4 By
wx . 1) = (241(1& 15 )
ok PR 172 o2 g2y 1/2
Cs sinh (3t 13)) (o + 1y + A11) + C cosh 3 P)) (ox + Ly + i)
o4 AT\ 1/2 o4 BTN 12 ’
Cs cosh (3t 13)) (ki + Ly + 4i1) + C sinh (;(ksj,}‘)) (ex + Ly + )
(o By
vy 0 = k1(2/11(k3+l3)
aki 1/2 o R \1/2 1z
Cs sinh (W - ) (kyx+ iy + Ait) + Cocosh (£ j;)) (kix + Ly + )
AN oK LA\ 172 ’
Cs cosh (2’(,9 ) (ke + iy + i) + Cosinh (2’(',(?+j§)) (ki + Ly + 1)
(4 B2 1
uny,0 = ( NG 13 )
o} s\ 172 o4 B2 i
Cssinh (L) thyx-+ by + A1n) + Cocosh (Z8)  thyx+ Ly + 4y
ok BT 12 LN ’
Cscosh(L8) (v + hy + 1)+ Cosinh (Z25) (v + hy + Ay
where Cs, Cg are arbitrary constants.
o g
Case 2. 2’(11{3 1k3l <0

We obtain the hyperbolic function solutions

w(x,y, 1) = ( (11'““ ')2)1/4
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' _(zrk% /311) 172 _(ark% ,811) 172 1/2
—C7 SIH(W) (k1X+lly+/llf) +C8 CcOS (W) (k1x+lly+/11t)
(ﬂlk 12 ok &) 12 ’
C7 CcoS (W) (klx + lly + /llt) + Cg sin (W) (klx + lly + /lll‘)
G
v(x,y,t) = (—
2/11(](';’ + l%)
(wk2 12 ol B 12 12
- SIH(W) (k1x + lly + A1) + Cg cos (%) (kyx + lly + Ait)
(ak2 ﬁl,) 12 il /&) 12 ’
C; cos (W) (k1X+l]y+/11l)+Cg SIH(W) (k1x+lly+/11t)
ak? 2
(X, ;1) kl(_(Tl 1
ulx,y,t) =  —|=—5—07-
Y L\ 20,3 + B)
' _("k% /311) 1/2 ] /ﬂ) 1/2 12
—C7 Sln(w) (k1X+lly+/llf) +C8 CcOS (W) (k1x+lly+/11t)
gy (AN |
C;cos (W) (klx + lly + /llt) + Cg sin (W) (klx + lly + /llt)
where C7, Cy are arbitrary constants.
akz ,812
,—+
Case 3. szS = =0
We obtain the ratlonal function solutions
w(x,y, 1) = (_Z(kf + l?))l/4 Co 12
Y= A4 Cg(klx + lly + /lll‘) + C10 ’
= (2T ¢,
V(X,y, = - s
y k] A Cg(k]x+l]y+/l]l‘) +C]()
o= (A C,
5 9t = - )
Ly ll /11 Cg(k1x+lly+/11t)+C10
where Cy, Cy( are arbitrary constants.
IL. The case g # 0
When -5 -2 =0,i.e,n=4.
G .
(5) coeff:
3.3 2 _
6(ki + [{)AuD; = 0, (2.29)
A0
(%) coeff
2(k5 + BPD; = g. (2.30)
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Solving the set of (2.22)-(2.24) and (2.29)-(2.30), we obtain

ok, Ah 3,13 2 2 aki | Bliyo
120, p=-l_"8 p —(_6(k1+ll))1/2 oki Bh Lo D2E RS L s
e T w ey Ty L TR T PP S

Similarly, we can obtain the hyperbolic function solutions and trigonometric function solutions
(rkz ,312

i
Case 1. 21(1k3 A > 0

weyn= |

(12

LAY R
Cy; sinh (21('](?_'_1;311)) (kix + lly + 41+ Cpp COSh(Z(ku;)) (kix + lly + A1)

IR NN (2.32)
Cy cosh (ﬁ) (klx + lly + 441+ Cyp 51nh(2(k?+%‘)) (klx + lly + A1)
ak? B2
= B k—“)‘”
V(X,Vy, = —
Y L\
Cyy sinh (m) (ix+ Ly +4t) + Cpy cosh(z(k3 l;)) (kx + Ly + i)
ak%+k71 1/2 ak% +,i12 1/2 ’
Ch cosh( - 13‘)) (ax + Ly + i) + Ciz smh(z(kuﬁ:)) (ox + Ly + 4uf)
aki | Bl
uCx,y,1) = &(‘“Tl * kT‘))”
> Vs ll /11
ak% 1/2 ak% +[;I% 1/2
Cll Slnh(2(kg+l3)) (k1X+lly+/11t) +C12COSh(2(k;+1;)) (k1X+lly+/llt)
o A\ 172 N1 ’
Cy cosh (2(k3+l3)) (kyx + lly + 441+ Cyp Slnh(Z(kHl’)) (kix + lly + A1)
where C,y, Cy, are arbitrary constants and A,(k; + [3) < 0.
ak% ,612
L+t
Case 2. 2(‘kg+ﬁ <0
WX, Yy, = _—
A
(oL 2\ 112 (L B\ 172
—C3 SIH(W) (k1x+lly+/11t)+C14cos (W) (k1x+lly+/11t)/
AN RN 9
C13 CcoS (ﬁ) (k1X+lly+/11l‘)+C14 Sln((—%) (k1x+lly+/llt)
B
s A(EE Ly iy
o AT
AIMS Mathematics
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WEINTE LA\ 12
—Ci3 sm((—?;) (k1X+lly+/11t)+C14COS (W) (k1X+lly+/llt)
LML AT 172 o A\ 172 ’
Cizcos ((—%) (k1x + lly + A11) + Ciy sm((—%) (k1x + lly + A11)
ak?
SRR Tl
ux,y, = ll 11
. (zrkz /311) 12 (zrkz /311) 12
—Ci3 Sln(w) (k1X+lly+/11t)+C14COS (W) (k1X+lly+/llt)
(nk 1/2 . (ak ﬁ/l) 1/2 ’
Ci3 cos (W) (kyx + lly + 441 + Ciy Sln(w) (kijx + lly + 441)
where Ci3, Cy4 are arbitrary constants and A;(k; + [3) < 0.
23. m>2,n=2
(2.3) becomes
ak? 12
(/11 + +i )w2 L+ WY = g. (2.34)
1 1

Balancing (w™)” with w?, we have N = 2/(2 — m). Thus, (2.34) has the following formal solution
2

w(¢) = Ds(%’)z_m, D; 0, (2.35)

where D3 is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of
algebraic equations:

o 242
(5) coeff:

3 3 m alk% ﬁlz
W+ 1 )(— 1)(—)D (41 Pt k_l)

4m 2m
B+ P +1 ADT =0,
(ki ‘)(2—m )2—m 3
G 221:171
(E) coeff
(k} + 13)( ) Qu+ A*)D7 =
o -1
(E) coeff

dm 2m
(K + )G = Dy —— Dy =0,
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2m 2m
(k3 + lf)(2 — — )— m,ﬁDg" = 0.

Solving the above algebraic equations, we obtain

L ] EDGEL + D e
= (- )

k2 12
/l] il + — ﬁ

(2.36)

A:'u:(), g:O,

Substituting (2.36) into (2.5) and (2.35), then, when m # n = 2, we have the rational function solutions

( ) ( (E + (A + D)= ) 1 ( Cis )2_21
w(x,v,t) =
Y /11 + % akz +/3[2 C15(k1x+lly+/11t)+C1(,
b ’t = o 2
vx.y ki A+ f /ﬁ Cls(klx+ll)’+/11f)+clé

I

k (k3 + 13)( -+ 1)2 -
u('x’ y’ t) = _( akZ ,812 )
A+ + —

2

N‘

( ClS )27m
C15(k1x+11y+/11t)+C16 ’

k2
where Cs, Cy¢ are arbitrary constants and 4; + a—l + 7 A # 0.

24. m=n=2
Now, (2.3) can be converted into a second order ODE
2 2
aky  BL
1 2 3, B2V —
(/11 TP )w I+ DY = g. 2.37)
1 1
Obviously, the characteristic equation of (2.37) is r* + ( W) = (0, ris the characteristic value.
1 1
a2 g2
A1+ Ik +ﬁ[1l
Case 1. k3|—l3 <0
We can obtain the exact solution
okd g2 \1/2 okd B2 (172
A+ Tt T A+ 7 3
(—#) (ki x+1y+A11) —(—W) (ki x+1 y+111) g 1/2
Wy, 1) = (C17e i t Cige n : 2) (2.38)
A+ 2 B
Iy 3
ak? ﬁlz 172 ak? 512 12
l ( Al+]11 kl) (ki x+liy+A,1) ( ll+lll kl) (ki x+l1y+A11) g 1/2
1 T 3.3 N7 3.3
v(x,y,1) = —(Cne fh +Cige VN + ﬁ) ;
ki 1+ ak Bl
LT T
2 2 2 2
k ( i 01];1 ill )”2(k +11y+A11) ( A alliuilll)l/z(k +11y+A11) 1/2
1 I 1x+ly+4 0.7 1xhy+Aa
u(x,y,t) = —(Cj7e\ M* + Cyge i+h + % ,
L ak? Bl
i+
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where Cy7, Cig are arbitrary constants.

2 2
(tkl /311

A+ -+
Case 2. —=L1 >0
ki+l

We can obtain the periodic function solutions

aki Bl
A+ 55+ 712
Ww(x, v, 1) :(cww{( h ) mm+hy+@ﬂ
1
+CmﬁnK——7L7—L)(hx+hy+Mﬂ] —————7ﬁ), (2.39)
ki+1 A+
I, A+ "ZZ 12
V()C, v, t) = kl (C]g COS [(W) (klx + lly + ﬂ]t)]
A+ 2 2 172
+Cap sin [(%) (kyx + Ly + /llt)] + —2) ,
B+ Bl
A + +
ki A + Tl + "ZZ 12
u(x, y, t) = ll (C]g COS [(W) (klx + lly + /ht)]
A+ Bklz 12 ¢ 12
+Cy sin [(—%‘) (kyx + Ly + /llt)] —/312) ,
K+ A+ —‘ + L
where Cg, Cy are arbitrary constants.
/11+HIL%+/§:i
Case 3. W =0
1 1
We can obtain the rational function solutions
2 12
W@JJ)::(Zﬁ:7g&m+hy+ﬂﬂf+Cﬂ%m+hy+&ﬂ+6b) , (2.40)
T4
I, 2 ) 12
vix,y,t) = k—(m(/ﬂx +hy+ 4"+ Co(kix + Ly + A1) + sz) ,
1
kl 1/2
u(x,y,t) = (2(163—)(/61)6 + Ly + 41)° + Co(kyx + Ly + 4i1) + sz) ,

where C,;, C»; are arbitrary constants.

3. Application of the first integral method to the generalized (2+1)-dimensional BKP equation

31. m#n

For simplicity, we let g = 0 and propose a transformation w = cpﬁ. Then, (2.3) is converted to

ak% B_ZZ)ZZm

2m 2m 2m .
Lt + (ke + B)( -1 @Y+®+®——w¢+( en =0, (3.1
n—-m n—-m n—m I ki
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Letx=¢,y = %", thus (3.1) is equivalent to the two dimensional autonomous system

X =y,
[e7 2 2 m—
, Alx4+(lill+/zill)x2*2n-m4 3 +B)(Am 1) 2m )2 (3.2)
v ‘( (el 2 )
Making the transformation dn = ——% ___then, (3.2) becomes

(k3 +13) 2 x°

n-m

dx 3 3\ 2m
- = (k +1 )mxy,
{dr] 1 1 (33)

@ —(m“ (L 2 e (2 - 1),12_—mmy2).

Then, we will apply the Division Theorem to seek the first integral of system (3.3). Suppose that x =
x(n7),y = y(n) are the nontrivial solutions to (3.3), and p(x,y) = Zf‘;’o a;(x)y' is an irreducible polynomial
in C[x,y], where a;(x)(i = 0, 1..., M) are polynomials of x and a;(x) # 0. Let p(x(n), y(17)) = O be the
first integral to system (3.3). fl—ﬁ is a polynomial in x, y and ;’—Z| 33) = 0. According to the Division
Theorem, there exists a polynomial g(x) + h(x)y in C[x, y], such that

dp _ (61) dx N op dy)
dnlas) dxdn  dydn)las
l 2m
= D@y - ] + H——x]
i=0 n-m
2 2 2
| KRR, 2 2
= iyt + (G4 Plye-is o0+ )2 12y
par [ ki n—-m n—-m

M

Dy

i=0

[g(x) + A(x)y] : (3.4)

Here, let M = 1, thus, p(x,y) = ay(x) + a;(x)y. By comparing with the coefficients of y' of both sides
of (3.4), we have

(K + zf)z—mxa; (x) = h(x)a;(x) + (& + B)( 2m 2, (3.5)
n—m n—m n—m
2
(6 + )= xai(3) = g(0ar(x) + h(x)ao(), (3.6)
2 2
g(x)ap(x) = — (/11)64 + (alﬁ + ij)xz_%‘) a(x). (3.7)
1 1

Since a;(x)(i = 0, 1) are polynomials, then from (3.5), we deduce that h(x) = —(kf + l?)(i—mm - 1)nz_—’”m
and a;(x) is a constant. For simplicity, take a;(x) = 1. Balancing the degrees of g(x) and ay(x), we
conclude that deg(g(x)) = deg(ay(x)). Then, we derive deg(g(x)) = deg(ap(x)) = j,(j€ Z*,j = 2).

When 2 — 22=% = 4 (n = 2) and deg(g(x)) = deg(ap(x)) = 2, we suppose that

n—m

g(x) = Ag+Ax+Ax%
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apg(x) = Bo+ Bix+ Byx*, (Ay #0,B, #0), (3.8)
where A;, B;, (i = 0, 1, 2) are all constants to be determined. Substituting (3.8) into (3.6), we obtain

2m m

Bix+( 2
X
—m 2—-m

2m 2m
g(x) = (kK + zi)m [(m — DBy + 3 + 1)Bzx2] :
Substituting ay(x), a;(x) and g(x) into (3.7), and setting all the coefficients of powers x to be zero, we
can get a system of nonlinear algebraic equations. After solving it, we can get the following solutions

ak?  pP

A+ =+ 1/2
) (3.9)
=T

(I + B+ )2

B():Blz(), Bzzi'(

Using the conditions (3.9) in p(x,y) = ap(x) + a;(x)y = 0, we obtain

ak?  BI

/ll+l_]+k_ 1/2
yi( K )x2:o. (3.10)

(3 + D)2 4 1) 2

Combining (3.3) with (3.10), we find

ak? ,Bﬁ

d 2 A+ .+ + 1/2
dn n—m\ (kj+ G+ Dy
Thus, (3.10) can be reduced to
dy ( A+ # + ﬂkil% 2,
i m m ¥
d¢ ( + (2 + D2
Then, we have
AL + al—lf% + ’%F 172 -1
o == (- ) £+Ca
(k] + (G2 + 1)

Thus, we can have the rational function solutions

A+ "l_ll‘% + '%% 1/2 2/(m=2)

w(x,y,t) = [+(_(k?+l?)(22_—mm+l)22_—mm) (k1x+lly+/11t)+C23] ,
L A + al—]f% + /‘Z—IF 1/2 2/(m=2)
v(x,y,t) = k—ll:i(— (k?+l?)(22_—mm+ 1)22__mm) (k1x+lly+/11t)+C23] s
k A + “l—/f% + ﬁkif 1/2 2/(m=2)
u(x,y,t) = Z[i(_ (kf+li’)(22_—’"m+ l)zz_—mm) (k1x+lly+/llt)+C23] ,

where C,;3 is an arbitrary constant and k? + li # 0.
Remark 1: When deg(g(x)) = deg(ap(x)) = 2 and 2 — 2,1"1—_,: =1i,(i € Z,i < 4), there is no solution for
them by using the method as that of 2 — % =4.

Remark 2: When deg(g(x)) = deg(ap(x)) = j,(j € Z, j > 2), there is no exact solution of (1.1) by using
the method as that of deg(g(x)) = deg(ap(x)) = 2.
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32. m=n

Similarly, we propose a transformation denoted by w = ¢ﬁ. Then, (2.3) can be converted to

ozk2 I 2 2
A+ (T + i o R DG D@ 4 0+ By — g 25 = 0. (.11
[ -m 2-m 2—-m
Letx=¢,y = d{_ , thus (3.11) is equivalent to the two dimensional autonomous system
X' =y,
, 41x2+($+%%)x o T (G +E) (R 1) 2y (3.12)
y B _( (k3+l"5)2 mx )'

Making the transformation dn = W’ then, (3.12) becomes

n-m

Z; (k3 + 13 32Xy, 2 G13)
Z—Z:—(/l]x P g (6 + B) (R - D 2) '
Similarly, let M = 1, we have
2m 2m 2m
(k6 + B)=——xd (x) = h(x)a;(x) + (k; + L)( -1 a(x), (3.14)
2—m 2—m 2—m
2m
(k7 + B)5——xay(x) = g()ar(x) + h(x)ao(), (3.15)
2 akf Bl il 2m
g(x)ap(x) = —(A;x" + (1_ — gx¥ T | ay(x). (3.16)
1 1

According to m # n, we have h(x) = —(k} + [)(Z2 — 1)522, a;(x) = 1 and deg(g(x)) = deg(ao(x)) =
J,(j € Z*,j = 2). Considering all cases, only when deg(g(x)) = deg(ap(x)) = 3,ie,2 -~ =6
(m = n = 4), there exist solutions of (1). We suppose that

gx) = ap+ax+ a2x2 + a3x3,
ao(x) = by +bix+byx* +byx>, (a3 #0,b; #0), (3.17)

where a;, b;, (i = 0, 1, 2, 3) are all constants to be determined. Substituting (3.17) into (3.15), we obtain
8(x) = 4(kj + 1}) (Sbo + 4by.x + 3by2” + 2b3x*).

Substituting ay(x), a;(x) and g(x) into (3.16), and setting all the coeflicients of powers x to be zero, we
have

aks  pE

by =by =0, 16(k; + L)b1 = -A,, 8(k; + )b = g, 24(k} + [})b,b3 = (5 + —).
1

Solving it, we find

bo=by=0, b L | —8 _ _o 2(“"2 ﬁlz) (3.18)
0="= L= 16(k3+l3 8(k3 By AT T '
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Using the conditions (3.18) in p(x,y) = ap(x) + a;(x)y = 0, we obtain

-4 8 3
y=x /—xi [——=——x". (3.19)
16(k? + l?) 8(k? + l?)

Then, (3.19) can be reduced to

2 - A _ 8

" m& mf ' (3.20)
2 1 [Zh, -1/2

9(6) = i[i \/? e e J
1

Thus, we can have the exact solution

Solving (3.20), we obtain

1/2

/
—2g +1 [ Ak xtly+ A )
w(x,y,t) = +|x ./ —= + Cype S ,
(x,y,1) ( \/ 1

l ) £l (A
v(x,y,1) = ik—l [i 5, Cpge VA ] ,
1

1/2

b

kl —2g i% ;/7113(](1X+11y+/111)
ux,y, 1) = t— |t/ —=24Cpne Vi
(x,y,1) L 1

where C,4 is an arbitrary constant and ok’ + BI5 # 0, 4(k; + 1) < 0.
4. Conclusion

This paper considered the generalized (2+1)-dimensional BKP equation, by the aid of the G’ /G-
expansion method and the first integral method. Rational function solutions, periodic function solutions
and hyperbolic function solutions are obtained under some parametric conditions and the values of m
and n in several cases. In [10], authors gave some exact solutions of system (1.1) under some parametric
conditions by using the bifurcation theory of dynamical systems. Here, we make a simple comparison:

1. Whenm = 2,n = 3,g = 0, in [10], authors gave the exact solution (3.20) in P2443 under thezz
—20(k3+13) ( o )

parametric conditions @ + 8 < 0, ¢ < 0 and in this paper, we get w(x,y,t) = y TSR yYes

under the parametric condition ek} + Bl = 0.

2. Whenm = 2,n = 2(k+ 1),(k € Z*),g = 0, in [10], authors gave the solitary wave solutions
(3.9) in P2441 under the parametric conditions a + 8 < 0,c¢ < 0 and in this paper, we get w(x, y, ) =
( “2(k+2) (k3 +13) C

k2 Ci(ky x+Ly+211)+C>
3. Whenm = 3,n =4,g = 0, in [10], authors gave the compacton solution (3.23) in P2443 under the

4203 +13) ol 2
A C (ki x+liy+211)+C>

1k
) under the parametric condition ak; + Bl = 0.

parametric conditions @ + 8 < 0, ¢ < 0 and in this paper, we get w(x, y, ) =

under the parametric condition ak; + BI3 = 0.

AIMS Mathematics Volume 2, Issue 3, 562-579



578

4. Whenm = 3,n = 5,g = 0, in [10], authors gave the exact solution (3.27) in P2443 under the
parametric conditions ¢ < 0 and in this paper, we get w(x,y,1) = 4/ _12(;{?”?) & under the

1 C (ki x+lL1y+211)+C3

parametric condition ak’ + Bl = 0.
5. Whenm = 4,n = 6,g = 0, in [10], authors gave the periodic cusp wave solutions (3.6)
in P2441 under the parametric conditions @ + § < 0,c¢ < 0 and in this paper, we get w(x,y,t) =

R 3.3
\ ZO(Z‘ ) S +Z]Cy‘ c; under the parametric condition ak; + BI} = 0.
6. When m = 4,n = 2k + 1,(k € Z*),g = 0, in [10], authors gave the exact solutions (3.17)

and (3.18) in P2442 under the parametric conditions @ + 8 < 0,c¢ < 0 and in this paper, we get
2

1
[ -8Qk+5)(k3+1) \ 3 ¢
w(x, y,1) = (W T TFz e

7. Whenm = 2,n = 4,g # 0, in [10], authors gave the exact solutions (3.30) in P2443 under

the parametric conditions g < %,c > 0,g > 0,a+p8 >0, (3.33) in P2444 under the parametric

conditions g < “2 ¢ < 0,g>0,0+8>00rg> @ ¢ <0,g> 0,0+ < 0and (3.41), (3.43)

in P2445 under the parametric conditions g > (C’Z—ﬁ)z, c<0,g <0,a+p <0 and in this paper, we get

C

2k-3
) under the parametric condition ek} + Bl = 0.

ak% /ﬂ%
L Tk

203 +1)

(2.32) under the parametric conditions /ll(kf + l?) < 0, > 0 and (2.33) under the parametric

ak% /_ﬁ
conditions A;(k] + 3) < 0, 2'(1k3+§31) < 0.
8. Whenm =2,n =2,g # 0, in [10], authors gave the exact solutions (3.36) and (3.38) in P2444

under the parametric conditions @ + 8 —c¢ > 0, g > 0 and in this paper, we get the exact solutions (2.38)

2 2 2 L2
ok} pia ok} pia

. .. 1 e . . . 1 T
under the parametric conditions —z—- < 0, (2.39) under the parametric conditions —z—==- > 0
1771 1771

2 a2
ok} pia

A+l
and (2.40) under the parametric conditions % =0.
1771
In addition, when let m, n be other values, we have got other exact solutions of (1.1) under some
parametric conditions that haven’t been given in [10]. Certainly, system (1.1) should be studied further,

which will be left to a further discussion.
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