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Abstract: In this note, a regularity criterion of weak solutions to the 3D-Boussinesq equations with
respect to Serrin type condition under the framework of Besov space

.
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for 0 < r < 1. This result improves some previous works.
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1. Introduction and main result

In this work, we consider the Cauchy problem of 3D viscous incompressible Boussinesq equations
[17]: 

∂tu + u · ∇u − ∆u + ∇π = θe3,

∂tθ + u · ∇θ − ∆θ = 0,
∇ · u = 0,
(u, θ)(x, 0) = (u0, θ0)(x), x ∈ R3,

(1.1)
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where u = u(x, t) and θ = θ(x, t) denote the unknown velocity vector field and the scalar function
temperature, while u0, θ0 with ∇·u0 = 0 in the sense of distribution are given initial data. e3 = (0, 0, 1)T .
π = π(x, t) the pressure of fluid at the point (x, t) ∈ R3 × (0,∞). There are a huge literatures on the
incompressible Boussinesq equations such as [1, 3–5, 7, 9–11, 22, 24–27] and the references therein.

When θ = 0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many
results are available. Since Leray [16] and Hopf [12] constructed the so-called well-known Leray-
Hopf weak solution u(x, t) of the incompressible Navier-Stokes equation for arbitrary u0 ∈ L2(R3)
with ∇ · u0(x) = 0 in last century, the problem on the uniqueness and regularity of the Leray-Hopf
weak solutions is one of the most challenging problem of the mathematical community. There are two
approaches to tackle this problem : The first is to study the partial regularity of suitable weak solutions
to Navier-Stokes equation which was initiated by L. Caffarelli, R. Kohn and L. Nirenberg [2]. The other
way is to propose different criteria to guarantee the regularity of the weak solutions which was studied
by G. Prodi [19], J. Serrin [20], Struwe [21], etc. However, similar to the Navier-Stokes equations,
the question of global regularity of the weak solutions of the 3D Boussinesq equations still remains a
big open problem. This paper is concerned with the second approach and is devoted to presenting an
improved regularity criterion of weak solutions for the 3D Boussinesq equations in the Besov space.

There has been a lot of work on the regularity theory of Boussinesq equations [6,22,24,25,27,28].
In particular, Fan and Ozawa [6] showed that the weak solution becomes regular if the velocity satisfies

T∫
0

‖u(·, t)‖2.
B

0
∞,∞

dt < ∞.

Before stating our main result, let us first recall the definition of the homogeneous Besov space (see
e.g. [23]).

Definition 1.1. Let
{
ϕ j

}
j∈Z

be the Littlewood-Paley dyadic decomposition of unity that satisfies ϕ̂ ∈

C∞0
(
B2\B 1

2

)
, ϕ̂ j(ξ) = ϕ̂

(
2− jξ

)
and ∑

j∈Z

ϕ̂ j(ξ) = 1 for any ξ , 0,

where BR is the ball in R3 centered at the origin with radius R > 0. The homogeneous Besov spaces
Ḃs

p,q(R3) are defined to be

Ḃs
p,q(R3) =

{
f ∈ S′(R3)/P(R3) : ‖ f ‖Ḃs

p,q
< ∞

}
where

‖ f ‖Ḃs
p,q

=


(∑

j∈Z

∥∥∥2 jsϕ j ∗ f
∥∥∥q

Lp

) 1
q

if 1 < q < ∞,

sup
j∈Z

2 js
∥∥∥ϕ j ∗ f

∥∥∥
Lp if q = ∞,

for s ∈ R, 1 ≤ p, q ≤ ∞, where S′ is the space of tempered distributions and P is the space of
polynomials.

To aid the introduction of our main result, we recall the definition of weak solutions.

AIMS Mathematics Volume 2, Issue 3, 451-457



453

Definition 1.2. Let (u0, θ0) ∈ L2(R3) with div u0 = 0 in the sense of distributions. A measurable pair
(u, θ) is said to be a weak solution of (1.1) on (0,T ), provided that

a) (u, θ) ∈ L∞(0,T ; L2(R3)) ∩ L2(0,T ; H1(R3));

b) (1.1)1,2,3 are satisfied in the sense of distributions;

c) the strong energy inequality

‖u(·, t)‖2L2 + ‖θ(·, t)‖2L2 + 2
∫ t

ε

(‖∇u(·, τ)‖2L2 + ‖∇θ(·, τ)‖2L2)dτ ≤ ‖u(·, ε)‖2L2 + ‖θ(·, ε)‖2L2 ,

for all 0 ≤ ε ≤ t ≤ T.

By a strong solution we mean that a weak solution (u, θ) of the Boussinesq equations (1.1) satisfies

(u, θ) ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; H2(R3)).

It is well known that the strong solution is regular and unique.
The main result on the regularity criterion of the weak solutions now reads :

Theorem 1.3. Suppose (u0, θ0) ∈ L2(R3) with div u0 = 0 in the sense of distributions. Assume that
(u(x, t), θ(x, t)) is a weak solution of (1.1) on R3 × (0,T ) and satisfies the strong energy inequality. If u
satisfies

T∫
0

‖u(·, t)‖
2

1+r
.
B

r
∞,∞

dt < ∞ with 0 < r < 1, (1.2)

then the weak solution (u, θ) becomes a regular solution on (0,T ].

Remark 1.1. If r > 0, we have

Br
∞,∞ = L∞ ∩

.

B
r

∞,∞ and ‖ f ‖Br
∞,∞
≈ ‖ f ‖ .Br

∞,∞
+ ‖ f ‖L∞ .

Here Br
∞,∞ is the inhomogeneous Besov space. Definitions and basic properties of the inhomogeneous

Besov spaces can be find in [23]. For concision, we omit them here. So this result is an improvement
of the earlier regularity criterion.

In order to prove our main result, we need the following lemma.

Lemma 1.4. Let f : R+ → R+ be a function such that f (x) = ax1−r + bx−r, for all 0 < r < 1 and
a, b ∈ R+. Then there holds

f (x) ≤
[( r

1 − r

)1−r
+

(
1 − r

r

)r]
arb1−r.

The proof of this lemma is straight forward and can be obtained by simple calculations.
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2. Proof of Theorem 1.3

Proof: Apply ∇ operator to the equation of (1.1)1 and (1.1)2, then taking the inner product with ∇u and
∇θ, respectively and using integration by parts, we get

1
2

d
dt

(‖∇u‖2L2 + ‖∇θ‖2L2) + ‖∆u‖2L2 + ‖∆θ‖2L2

= −

∫
R3
∇u · ∇u · ∇udx +

∫
R3
∇(θe3) · ∇udx −

∫
R3
∇u · ∇θ · ∇θdx

= I1 + I2 + I3. (2.1)

According to the homogeneous Littlewood-Paley decomposition, ∇u can be written as

∇u =

+∞∑
j=−∞

∆ j(∇u) =

N∑
j=−∞

∆ j(∇u) +

+∞∑
j=N+1

∆ j(∇u),

where N is a positive integer to be chosen later. We decompose I1 as follows

I1 = −

∫
R3

N∑
j=−∞

∆ j(∇u) · ∇u · ∇udx −
∫
R3

+∞∑
j=N+1

∆ j(∇u) · ∇u · ∇udx

≤

∣∣∣∣∣∣∣
∫
R3

N∑
j=−∞

∆ j(∇u) · ∇u · ∇udx

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫
R3

+∞∑
j=N+1

∆ j(∇u) · ∇u · ∇udx

∣∣∣∣∣∣∣
≤

N∑
j=−∞

∫
R3

∣∣∣∆ j(∇u)
∣∣∣ |∇u|2 dx + 2

N∑
j=−∞

∫
R3

∣∣∣∆ ju
∣∣∣ |∇u| |∆u| dx

= I11 + I12.

For I11, by Hölder inequality and the definition of Besov space, for 0 < r < 1, we derive that

I11 ≤

N∑
j=−∞

∥∥∥∆ j(∇u)
∥∥∥

L∞
‖∇u‖2L2

= ‖∇u‖2L2

N∑
j=−∞

2(−1+r) j
∥∥∥∆ j(∇u)

∥∥∥
L∞

2(1−r) j

≤ C

 N∑
j=−∞

2(1−r) j

 sup
j∈Z

(
2(−1+r) j

∥∥∥∆ j(∇u)
∥∥∥

L∞

)
‖∇u‖2L2

≤ C2(1−r)N ‖∇u‖ .
B
−1+r
∞,∞

‖∇u‖2L2

≤ C2(1−r)N ‖u‖ .Br
∞,∞
‖∇u‖2L2 . (2.2)

For I12, in view of the definition of Besov space, it follows that

I12 ≤

+∞∑
j=N+1

∥∥∥∆ ju
∥∥∥

L∞
‖∇u‖L2 ‖∆u‖L2
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= ‖∇u‖L2 ‖∆u‖L2

+∞∑
j=N+1

2−r j
(
2r j

∥∥∥∆ ju
∥∥∥

L∞

)
≤ C

 +∞∑
j=N+1

2−r j

 (sup
j∈Z

2r j
∥∥∥∆ ju

∥∥∥
L∞

)
‖∇u‖L2 ‖∆u‖L2

≤ C2−Nr ‖u‖ .Br
∞,∞
‖∇u‖L2 ‖∆u‖L2 . (2.3)

It follows from (2.2)-(2.3) and Lemma 1.4 with x = 2N , a = ‖∇u‖L2 and b = ‖∆u‖L2 that

I1 ≤ C2(1−r)N ‖u‖ .Br
∞,∞
‖∇u‖2L2 + C2−Nr ‖u‖ .Br

∞,∞
‖∇u‖L2 ‖∆u‖L2

= C ‖u‖ .Br
∞,∞
‖∇u‖L2

(
2(1−r)N ‖∇u‖L2 + 2−rN ‖∆u‖L2

)
≤ C ‖u‖ .Br

∞,∞
‖∇u‖L2

[( r
1 − r

)1−r
+

(
1 − r

r

)r]
‖∇u‖rL2 ‖∆u‖1−r

L2

≤ C ‖u‖ .Br
∞,∞
‖∇u‖1+r

L2 ‖∆u‖1−r
L2 ,

by choosing

N =

[
1

ln 2
ln

(
r

1 − r
‖∆u‖L2

‖∇u‖L2

)]
.

By Young’s inequality, we get

I1 ≤
1
2
‖∆u‖2L2 + C ‖u‖

2
1+r
.
B

r
∞,∞

‖∇u‖2L2 .

We estimate I3 in the same way as I1. We decompose I3 as follows

I3 = −

∫
R3

N∑
j=−∞

∆ j(∇u) · ∇θ · ∇θdx −
∫
R3

+∞∑
j=N+1

∆ j(∇u) · ∇θ · ∇θdx

≤

N∑
j=−∞

∫
R3

∣∣∣∆ j(∇u)
∣∣∣ |∇θ|2 dx + 2

N∑
j=−∞

∫
R3

∣∣∣∆ ju
∣∣∣ |∇θ| |∆θ| dx

= I31 + I32.

Then, by using Lemma 1.4, I3 can be estimated as

I3 ≤ C2(1−r)N ‖u‖ .Br
∞,∞
‖∇θ‖2L2 + C2−Nr ‖u‖ .Br

∞,∞
‖∇θ‖L2 ‖∆θ‖L2

= C ‖u‖ .Br
∞,∞
‖∇θ‖L2

(
2(1−r)N ‖∇θ‖L2 + 2−rN ‖∆θ‖L2

)
≤ C ‖u‖ .Br

∞,∞
‖∇θ‖1+r

L2 ‖∆θ‖
1−r
L2

≤
1
2
‖∆θ‖2L2 + C ‖u‖

2
1+r
.
B

r
∞,∞

‖∇θ‖2L2

The term I2 can be estimated by Cauchy’s inequality as

I2 ≤ ‖∇u‖L2 ‖∇θ‖L2 ≤
1
2

(‖∇u‖2L2 + ‖∇θ‖2L2).
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Plugging all the estimates into (2.1) yields that

d
dt

(‖∇u‖2L2 + ‖∇θ‖2L2) + ‖∆u‖2L2 + ‖∆θ‖2L2 ≤ C(1 + ‖u‖
2

1+r
.
B

r
∞,∞

)(‖∇u‖2L2 + ‖∇θ‖2L2).

Applying Gronwall’s inequality, we get

(u, θ) ∈ L∞(0,T ; H1(R3)) ∩ L2(0,T ; H2(R3)).

Therefore, by the standard regularity arguments of weak solutions to drive high-order derivative bound-
s, which would imply

(u, θ) ∈ C∞(R3 × (0,T ))

by Sobolev imbedding theorems, as desired. The proof of Theorem 1.3 is completed. �
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