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1. Introduction

In financial mathematics and financial engineering, the classical Black-Scholes equation is a practi-
cal partial differential equation. In 1973, Black and Scholes derived the famous Black-Scholes Option
Pricing Model [1]. In [2], Sunday O. Edeki etc successfully calculated the European option valuation
using the Projected Differential Transformation Method. The results obtained converge faster to their
associated exact solutions. In [3], the author studied the Black-Scholes equation in stochastic volatility
model. In [4], the author considered to deal with the Black-Scholes equation in financial mathematics
by the volatility of a variable and the abstract boundary conditions.

In this paper, we consider to obtain the traveling wave solutions of a class of generalized Black-
Scholes equation by using the first integral method and the G′/G-expansion method. In 2002, Feng
first proposed the first integral method [5]. This method has been widely used to solve the exact solu-
tions of some partial differential equations. In [6], authors applied first integral method and functional
variable method to obtain optical solitons from the governing nonlinear Schrödinger equation with
spatio-temporal dispersion. In [7], the first integral method is applied for solving the system of nonlin-
ear partial differential equations which are (2 + 1)-dimensional Broer-Kaup-Kupershmidt system and
(3 + 1)-dimensional Burgers equations exactly. In [8], authors applied first integral method to construc-
t travelling wave solutions of modified Zakharov-Kuznetsov equation and ZK-MEW equation. This
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method can also be applied to other systems of nonlinear differential equations [9–12]. The advantage
of the first integral method is that the calculation is concise. A more accurate traveling wave solution
can be obtained by the first integral method. In 2008, Mingliang Wang et al introduced the G′/G-
expansion method in detail [13]. In [14], the G′/G-expansion method is applied to address the resonant
nonlinear Schrödinger equation with dual-power law nonlinearity. In [15], the author constructed the
traveling wave solutions involving parameters for some nonlinear evolution equations in mathematical
physics via the (2 + 1)-dimensional Painlevé integrable Burgers equations, the (2 + 1)-dimensional
Nizhnik-Novikov-Vesselov equations, the (2 + 1)-dimensional Boiti-Leon-Pempinelli equations and
the (2 + 1)-dimensional dispersive long wave equations by using the G′/G-expansion method. In [16],
a generalized G′/G-expansion method is proposed to seek exact solutions of the mKdV equation with
variable coefficients. The G′/G-expansion method has been proposed to construct more explicit trav-
elling wave solutions to many nonlinear evolution equations [17–19]. The performance of this method
is effective, simple, convenient and gives many new solutions.

The classical celebrated Black-Scholes option pricing model is as follows:

∂ f
∂τ

+
1
2

S 2δ2 ∂
2 f
∂S 2 + rS

∂ f
∂S
− r f = 0.

We consider the class of generalized Black-Scholes equation is as follows:

vt +
1
2

A2x2vxx + Bxvx −Cv + Dv3 = 0, (1)

where v = v(t, x), A, B,C,D , 0 are arbitrary constants, when D = 0, (1) changes to the classical
Black-Scholes equation.

Using the wave transformation v(t, x) = v(ξ), ξ = ln x − at, and a is wave velocity, we have the
following ordinary differential equation,

−
1
2

A2v′′ + (
1
2

A2 − B + a)v′ + Cv − Dv3 = 0. (2)

Letting w = v′, (2) is equivalent to the autonomous system,
v′ = w,

w′ =
A2 − 2B + 2a

A2 w +
2C
A2 v −

2D
A2 v3.

(3)

2. Traveling wave solutions of (1) by using the first integral method

In this section, we apply the first integral method to obtain the traveling wave solution to (1). We
assume that p(v,w) =

∑N
i=0 αi(v)wi is an irreducible polynomial in C[v,w], and p(v,w) =

∑N
i=0 αi(v)wi =

0 is a first integral of (3), such that,
dP
dξ

∣∣∣∣∣
(3)

= 0.

Owing to Division Theorem, there exists a polynomial g(v) + h(v)w in the complex domain C(v,w),
such that,

dP
dξ

=
∂P
∂v

dv
dξ

+
∂P
∂w

dw
dξ

= [g(v) + h(v)w]
N∑

i=0

αi(v)wi = 0. (4)
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Here, we mainly consider (4) in two cases: N = 1 and N = 2.

2.1. N=1

At present,
P(v,w) = α0(v) + α1(v)w = 0.

From (4), we have

dP
dξ

=
dα0

dv
w +

dα1

dv
w2 + α1(v)(

A2 − 2B + 2a
A2 w +

2C
A2 v −

2D
A2 v3)

= g(v)α0(v) + [g(v)α1(v) + h(v)α0(v)]w + h(v)α1(v)w2. (5)

By observing the coefficients of wi(i = 0, 1) of the two sides of (5), obviously, we have

dα1

dv
= h(v)α1(v),

dα0

dv
= g(v)α1(v) + h(v)α0(v) −

A2 − 2B + 2a
A2 α1(v),

α0(v)g(v) = α1(v)(
2C
A2 v −

2D
A2 v3).

(6)

Since αi(v)(i = 0, 1) are polynomials, then from the first equation of (6), we deduce that α1(v) is
constant and h(v) = 0. For simplification, taking α1(v) = 1. In order to keep balancing the degree of
g(v), α1(v) and α0(v) in the second and the third equations of (6), one can conclude that deg g(v) = 1.
Suppose that g(v) = g0v + d0, where g0 and d0 are arbitrary constants. By solving the above equations,
one can obtain 

α1(v) = 1,

α0(v) =
1
2

g0v2 + (d0 −
A2 − 2B + 2a

A2 )v + d1,

where d1 is an integration constant. Substituting g(v), α1(v) and α0(v) into the third equation of (6) and
setting all the coefficients of vi(i = 0, 1, 2, 3) to be zeros, then one can get

1
2

g2
0 = −

2D
A2 ,

3
2

g0d0 − g0
A2 − 2B + 2a

A2 = 0,

g0d1 + d2
0 − d0

A2 − 2B + 2a
A2 =

2C
A2 ,

d0d1 = 0.

(7)
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From the last equation of (7), we consider to solve (7) in two cases d0 = 0 or d0 , 0.

Case 1: d0 = 0

By solving (7), we have 

g0 = ±2

√
−D
A2 ,

d0 = 0,

d1 = ±
C
A2

√
A2

−D
,

and D < 0, A2 − 2B + 2a = 0, such that,
α0(v) = ±

√
−D
A2 v2 ±

C
A2

√
A2

−D
,

α1(v) = 1.

So,

P(v,w) = ±

√
−D
A2 v2 ±

C
A2

√
A2

−D
+ w = 0.

One can obtain the following one order ordinary differential equation,

w =
dv
dξ

= ∓

√
−D
A2 v2 ∓

C
A2

√
A2

−D
. (8)

Integrating (8) once with respect to ξ, we can get the following results.

I: C
D > 0, we have

v(ξ) =

√
C
D (1 + ξ0e∓2

√
−D
A2 ξ)

1 − ξ0e∓2
√
−D
A2 ξ

,

where ξ0 is an integration constant.
The traveling wave solution to (1) can be got as follows:

v(t, x) =

√
C
D (1 + ξ0e∓2

√
−D
A2 (ln x−at))

1 − ξ0e∓2
√
−D
A2 (ln x−at)

.

II: C
D < 0, we have

v(ξ) =

√
C
−D

tan[∓

√
C
A2 ξ + ξ1],
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where ξ1 is an arbitrary integration constant.
The traveling wave solution to (1) can be got as follows:

v(t, x) =

√
C
−D

tan[∓

√
C
A2 (ln x − at) + ξ1].

Case 2: d0 , 0

From (7), we have 

g0 = ±2

√
−D
A2 ,

d0 =
2(A2 − 2B + 2a)

3A2 ,

d1 = 0,

and D < 0, 6C + (A2 − 2B + 2a) = 0, such that,
α0(v) = ±

√
−D
A2 v2 −

A2 − 2B + 2a
3A2 v,

α1(v) = 1.

So,

P(v,w) = ±

√
−D
A2 v2 −

A2 − 2B + 2a
3A2 v + w = 0.

One can obtain the following one order ordinary differential equation,

w =
dv
dξ

= ∓

√
−D
A2 v2 +

A2 − 2B + 2a
3A2 v. (9)

Integrating equation (9) once with respect to ξ, we can get the following results,

v(ξ) =

A2−2B+2a
3A2 ξ2e

A2−2B+2a
3A2 ξ

1 ±
√
−D
A2 ξ2e

A2−2B+2a
3A2 ξ

,

where ξ2 is an integration constant.
The exact traveling wave solution to (1) can be got as follows:

v(t, x) =

A2−2B+2a
3A2 ξ2e

A2−2B+2a
3A2 (ln x−at)

1 ±
√
−D
A2 ξ2e

A2−2B+2a
3A2 (ln x−at)

.
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2.2. N = 2

At present,
P(v,w) = α0(v) + α1(v)w + α2(v)w2 = 0. (10)

From (4), we have

dP
dξ

=
dα0

dv
w +

dα1

dv
w2 + α1(v)(

A2 − 2B + 2a
A2 w +

2C
A2 v −

2D
A2 v3)

+
dα2

dv
w3 + 2α2(v)w(

A2 − 2B + 2a
A2 w +

2C
A2 v −

2D
A2 v3)

= g(v)α0(v) + [g(v)α1(v) + h(v)α0(v)]w + [g(v)α2(v) + h(v)α1(v)]w2 + h(v)α2(v)w3. (11)

By observing the coefficients of wi(i = 0, 1, 2, 3) of the two sides of (11), obviously, we have

dα2

dv
= h(v)α2(v),

dα1

dv
= g(v)α2(v) + h(v)α1(v) − 2

A2 − 2B + 2a
A2 α2(v),

dα0

dv
= g(v)α1(v) + h(v)α0(v) −

A2 − 2B + 2a
A2 α1(v) − 2α2(v)(

2C
A2 v −

2D
A2 v3),

α0(v)g(v) = α1(v)(
2C
A2 v −

2D
A2 v3).

(12)

Similarly, from the first equation of (12), we deduce that α2(v) is constant and h(v) = 0. From the
second and the third equations of (12), we assume that deg g(v) = k, then deg α1(v) = k + 1 and deg
α0(v) = 2k + 2. By the last equation of (12), we have the degree of the polynomial α1(v)( 2C

A2 v − 2D
A2 v3)

is k + 4, and the degree of the polynomial α0(v)g(v) is 3k + 2. By balancing the degree of the last
equation of (12), we have k + 4 = 3k + 2, obviously, k = 1. Specially, we conclude that deg g(v) = 0,
then deg α1(v) = 1. The degree on both sides of the last equation of (12) is still true.

Case 1: deg g(v) = 0

Assume g(v) = g1. From (12), we have

α0(v) =
D
A2 v4 + (

1
2

g2
1 −

3
2

g1
A2 − 2B + 2a

A2 +
(A2 − 2B + 2a)2

A4 −
2C
A2 )v2

+d2(g1 −
A2 − 2B + 2a

A2 )v + d3,

α1(v) = (g1 − 2
A2 − 2B + 2a

A2 )v + d2,

α2(v) = 1,

(13)
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where d2, d3 are integration constants. From the last one of equation (12), we have

g1
D
A2 = −

2D
A2 (g1 − 2

A2 − 2B + 2a
A2 ),

−d2
2D
A2 = 0,

g1(
1
2

g2
1 −

3
2

g1
A2 − 2B + 2a

A2 +
(A2 − 2B + 2a)2

A4 −
2C
A2 ) =

2C
A2 (g1 − 2

A2 − 2B + 2a
A2 ),

g1d2(g1 −
A2 − 2B + 2a

A2 ) = d2
2C
A2 ,

g1d3 = 0.

(14)

Solving (14), we have 

g1 =
4(A2 − 2B + 2a)

3A2 ,

9CA2 + (A2 − 2B + 2a)2 = 0,

d2 = 0,

d3 = 0.

(15)

Then from (15), (13) and (10), one can obtain the following equation,

P(v,w) =
D
A2 v4 +

(A2 − 2B + 2a)2

9A4 v2 −
2(A2 − 2B + 2a)

3A2 vw + w2 = 0.

Solving the above algebraic equation with respect to the variable w, we have

w =
dv
dξ

= ±

√
−D
A2 v2 +

A2 − 2B + 2a
3A2 v. (16)

Integrating (16) once with respect to ξ, then we have

v(ξ) =

A2−2B+2a
3A2 ξ3e

A2−2B+2a
3A2 ξ

1 ∓
√
−D
A2 ξ3e

A2−2B+2a
3A2 ξ

,

where ξ3 is an integration constant.
The exact traveling wave solution to (1) can be got as follows:

v(t, x) =

A2−2B+2a
3A2 ξ3e

A2−2B+2a
3A2 (ln x−at)

1 ∓
√
−D
A2 ξ3e

A2−2B+2a
3A2 (ln x−at)

.

AIMS Mathematics Volume 2, Issue 3, 385-399



392

Case 2: deg g(v) = 1

Assume g(v) = g2v + d4. From (12), we have

α0(v) =
1
4

(
1
2

g2
2 +

4D
A2 )v4 +

1
3

(
3
2

g2d4 −
5
2

g2
A2 − 2B + 2a

A2 )v3 + (d4d5 − d5
A2 − 2B + 2a

A2 )v

+
1
2

(g2d5 + d2
4 − 3d4

A2 − 2B + 2a
A2 + 2

(A2 − 2B + 2a)2

A4 −
4C
A2 )v2 + d6,

α1(v) =
1
2

g2v2 + (d4 − 2
A2 − 2B + 2a

A2 )v + d5,

α2(v) = 1,

where d5, d6 are integration constants.

From the last equation of (12), we have

−g2
D
A2 =

1
8

g3
2 + g2

D
A2 ,

−
2D
A2 (d4 − 2

A2 − 2B + 2a
A2 ) =

5
8

g2
2d4 −

5
6

g2
2
A2 − 2B + 2a

A2 + d4
D
A2 ,

g2
C
A2 − d5

2D
A2 = g2d2

4 −
7
3

g2d4
A2 − 2B + 2a

A2 +
1
2

g2
2d5 + g2

(A2 − 2B + 2a)2

A4 − g2
2C
A2 ,

−4C(A2 − 2B + 2a)
3A4 =

3
2

g2d4d5 +
1
2

d3
4 −

3(A2 − 2B + 2a)
2A2 d2

4

+d4(
(A2 − 2B + 2a)2

A4 −
2C
A2 ) − g2d5

A2 − 2B + 2a
A2 ,

d5
2C
A2 = g2d6 + d2

4d5 − d4d5
A2 − 2B + 2a

A2 ,

d4d6 = 0.

(17)

From the last equation of (17), we need to discuss (17) in two cases d4 = 0 or d4 , 0.

Case I: d4 = 0

Solving (17), we have 

g2 = ±4

√
−D
A2 ,

d4 = 0,

d5 = ∓2

√
−D
A2

C
D
,

d6 = −
C2

A2D
,
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and D < 0, A2 − 2B + 2a = 0, such that,

α0(v) =
−D
A2 v4 +

2C
A2 v2 −

C2

A2D
,

α1(v) = ±2

√
−D
A2 v2 ∓ 2

√
−D
A2

C
D
,

α2(v) = 1.

So,

P(v,w) =
−D
A2 v4 +

2C
A2 v2 −

C2

A2D
+ (±2

√
−D
A2 v2 ∓ 2

√
−D
A2

C
D

)w + w2 = 0.

Solving the above algebraic equation with respect to the variable w, we have

w =
dv
dξ

= ∓

√
−D
A2 v2 ±

√
−D
A2

C
D
. (18)

Integrating (18) once with respect to ξ, we can get the following results.
I: C

D > 0.

v(ξ) =

√
C
D (1 + ξ4e∓2

√
−C
A2 ξ)

1 − ξ4e∓2
√
−C
A2 ξ

,

where ξ4 is an integration constant.
The traveling wave solution to (1) can be got as follows:

v(t, x) =

√
C
D (1 + ξ4e∓2

√
−C
A2 (ln x−at))

1 − ξ4e∓2
√
−C
A2 (ln x−at)

.

II: C
D < 0.

v(ξ) =

√
C
−D

tan[∓

√
C
A2 ξ + ξ5],

where ξ5 is an integration constant.
The traveling wave solution to (1) can be got as follows:

v(t, x) =

√
C
−D

tan[∓

√
C
A2 (ln x − at) + ξ5].
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Case II: d4 , 0

By solving (17), we have 

g2 = ±4

√
−D
A2 ,

d4 =
4(A2 − 2B + 2a)

3A2 ,

C = −
(A2 − 2B + 2a)2

9A2 ,

d5 = 0,
d6 = 0.

(19)

Substituting (19) into (13), we have

α0(v) = −
D
A2 v4 ∓

2
3

√
−D
A2

A2 − 2B + 2a
A2 v3 +

(A2 − 2B + 2a)2

9A4 v2,

α1(v) = ±2

√
−D
A2 v2 −

2(A2 − 2B + 2a)
3A2 v,

α2(v) = 1.

So,

P(v,w) = −
D
A2 v4 ∓

2
3

√
−D
A2

A2 − 2B + 2a
A2 v3 +

(A2 − 2B + 2a)2

9A4 v2

+ (±2

√
−D
A2 v2 −

2(A2 − 2B + 2a)
3A2 v)w + w2 = 0.

Solving the above algebraic equation with respect to the variable w, we have

w =
dv
dξ

= ∓

√
−D
A2 v2 +

A2 − 2B + 2a
3A2 v. (20)

Integrating (20) once with respect to ξ, then we have

v(ξ) =

A2−2B+2a
3A2 ξ6e

A2−2B+2a
3A2 ξ

1 ±
√
−D
A2 ξ6e

A2−2B+2a
3A2 ξ

,

where ξ6 is an integration constant.
The traveling wave solution to (1) can be got as follows:

v(t, x) =

A2−2B+2a
3A2 ξ6e

A2−2B+2a
3A2 (ln x−at)

1 ±
√
−D
A2 ξ6e

A2−2B+2a
3A2 (ln x−at)

.
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3. Traveling wave solutions of (1) by the G′/G-expansion method

In this section, we get the traveling wave solutions to (1) using the G′/G-expansion method. Intro-
ducing the solution v(ξ) of equation (2) in a form of finite series:

v(ξ) =

N∑
l=0

al

(G′(ξ)
G(ξ)

)l

, (21)

where al are real constants with aN , 0 and N is a positive integer that needs to be determined. The
function G(ξ) is the solution of the auxiliary linear ODE

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (22)

where λ and µ are real constants to be determined. By balancing v′′ with v3 in the equation (2), we
have N + 2 = 3N, obviously, N = 1. Therefore, (21) is written as

v(ξ) = a0 + a1(
G′(ξ)
G(ξ)

). (23)

Correspondingly,

v′(ξ) = −a1λ
G′

G
− a1(

G′

G
)2 − a1µ, (24)

v′′(ξ) = (a1λ
2 + 2a1µ)

G′

G
+ 3a1λ(

G′

G
)2 + 2a1(

G′

G
)3 + aλµ. (25)

Substituting (23), (24), (25) and v3 into (2), we have

[−
1
2

A2(a1λ
2 + 2a1µ) − (

1
2

A2 − B + a)a1λ + Ca1 − 3Da2
0a1]

G′

G

− [
3
2

A2a1λ + (
1
2

A2 − B + a)a1 + 3Da0a2
1](

G′

G
)2

− (A2a1 + Da3
1)(

G′

G
)3 − [

1
2

A2a1λµ + (
1
2

A2 − B + a)a1µ −Ca0 + Da3
0] = 0.

Setting all the coefficients of (G′
G )i(i = 0, 1, 2, 3) to be zeros, we yield a set of algebraic equations for

a0, a1, λ and µ as follows:

−
1
2

A2(a1λ
2 + 2a1µ) − (

1
2

A2 − B + a)a1λ + Ca1 − 3Da2
0a1 = 0,

3
2

A2a1λ + (
1
2

A2 − B + a)a1 + 3Da0a2
1 = 0,

A2a1 + Da3
1 = 0,

1
2

A2a1λµ + (
1
2

A2 − B + a)a1µ −Ca0 + Da3
0.
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Solving the above algebraic equations, we have

a0 = ±(

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
),

a1 = ±

√
A2

−D
,

λ = −(
16( 1

2 A2 − B + a)3

27A4C
+

A2 − 2B + 2a
A2 ),

µ =
(A2 − 2B + 2a)6

729A8C2 +
(A2 − 2B + 2a)4

27A6C
+

5(A2 − 2B + 2a)2

12A4 +
C
A2 .

(26)

From equations (23) and (26), the solution of (2) can be written as the following equation,

V(ξ) = ∓(

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
) ±

√
A2

−D
(
G′

G
). (27)

By solving the second order linear ODE (22), then (27) gives three types traveling wave solutions.
Case 1: ∆ = λ2 − 4µ = −

2(A2−2B+2a)2

3A4 − 4C
A2 > 0, we obtain

G′

G
= −

λ

2
+

√
λ2 − 4u

2
C1e

√
λ2−4u

2 ξ −C2e−
√
λ2−4u

2 ξ

C1e
√
λ2−4u

2 ξ + C2e−
√
λ2−4u

2 ξ

,

where C1,C2 are integration constants. The traveling wave solution to (1) can be got as follows:

v(t, x) = ∓(

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
)±

√
A2

−D
{
(A2 − 2B + 2a)3

27A4C
+

A2 − 2B + 2a
2A2 +

1
2

√
−

2(A2 − 2B + 2a)2

3A4 −
4C
A2 [

C1eH1(ln x−at) −C2e−H1(ln x−at)

C1eH1(ln x−at) + C2e−H1(ln x−at) ]}.

where H1 = 1
2

√
−

2(A2−2B+2a)2

3A4 − 4C
A2 . Specially, when C1 = C2, we obtain traveling wave solution of (1)

as follows:

v(t, x) = ∓(

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
)±

√
A2

−D
{
(A2 − 2B + 2a)3

27A4C
+

A2 − 2B + 2a
2A2 +

1
2

√
−

2(A2 − 2B + 2a)2

3A4 −
4C
A2 tanh{

1
2

√
−

2(A2 − 2B + 2a)2

3A4 −
4C
A2 (ln x − at)}.
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Case 2: ∆ = λ2 − 4µ = −
2(A2−2B+2a)2

3A4 − 4C
A2 < 0, we obtain

G′

G
= −

λ

2
+

√
λ2 − 4u

2
C2 cos

√
λ2−4u

2 ξ −C1 sin
√
λ2−4u

2 ξ

C1 cos
√
λ2−4u

2 ξ + C2 sin
√
λ2−4u

2 ξ
,

where C1,C2 are integration constants. The traveling wave solution to (1) can be got as follows:

v(t, x) = ∓(

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
) ±

√
A2

−D
{
(A2 − 2B + 2a)3

27A4C

+
A2 − 2B + 2a

2A2 +
1
2

√
−

2(A2 − 2B + 2a)2

3A4 −
4C
A2 [

C2 cos H2(ln x − at) −C1 sin H2(ln x − at)
C1 cos H2(ln x − at) + C2 sin H2(ln x − at)

]}.

where H2 = 1
2

√
−

2(A2−2B+2a)2

3A4 − 4C
A2 .

Case 3: ∆ = λ2 − 4µ = −
2(A2−2B+2a)2

3A4 − 4C
A2 = 0, we obtain

G′

G
= −

λ

2
+

C2

C1 + C2ξ
,

where C1,C2 are integration constants. The traveling wave solution to (1) can be got as follows:

v(t, x) = ∓ (

√
A2

−D (A2 − 2B + 2a)

3A2 +

√
A2

−D (A2 − 2B + 2a)3

27A4C
)

±

√
A2

−D
{
(A2 − 2B + 2a)3

27A4C
+

A2 − 2B + 2a
2A2 +

C2

C1 + C2(ln x − at)
}.

4. Conclusion

We have obtained several traveling wave solutions of a class of generalized Black- Scholes equation
under certain parametric conditions by using the first integral method and the G′/G-expansion method.
From the above investigation, we see that the two methods are effective for obtaining the exact traveling
wave solutions of the class of generalized Black-Scholes equation. The first integral method is based
on the ring theory of commutative algebra, and supposes that (2) has rational first integrals of the
variables v and v′. The G′/G-expansion method is to obtain a special class of solutions of (2) based on
the balance principle. When D = 0, the class of generalized Black-Scholes equation is changed to the
classical Black-Scholes equation, that is, the classical Black-Scholes equation is a special case of (2).
The results obtained in this paper can provide some useful reference and help for the relevant financial
research.
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