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Abstract: Statistical analysis of the connectivity of real world networks have revealed interesting fea-
tures such as community structure, network motif and as on. Such discoveries tempt us to understand
the dynamics of a complex network system by studying those of its subnetworks. This approach is
feasible only if the dynamics of the subnetwork systems can somehow be preserved or partially pre-
served in the whole system. Most works studied the connectivity structures of networks while very few
considered the possibility of translating the dynamics of a subnetwork system to the whole system. In
this paper, we address this issue by focusing on considering the relations between cycles and fixed
points of a network system and those of its subnetworks based on Boolean framework. We proved that
at a condition we called agreeable, if X0 is a fixed point of the whole system, then X0 restricted to the
phase-space of one of the subnetwork systems must be a fixed point as well. An equivalent statement
on cycles follows from this result. In addition, we discussed the relations between the product of the
transition diagrams (a representation of trajectories) of subnetwork systems and the transition diagram
of the whole system.
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1. Introduction

Biological networks such as gene regulatory networks, neural networks, and metabolic networks
are generally complex even from the network topology point of view [17, 18]. However, the under-
standing of the dynamics of such network systems is crucial to identify mechanisms behind many
kinds of biological processes and diseases, and to decode the mysteries of life. Statistical studies on
the topology of real world networks revealed some very intriguing features [17] including power-law
degree distributions [3, 25, 35], local community structures [4, 11, 13] and network motifs [6, 14]. A
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community is defined to be a subnetwork within which the number of edges is much larger than the
expected number in an equivalent network with edges placed at random [17]. On the other hand, a
network motif is defined as a subnetwork that occurs more often in a complex network than in random
networks. The discoveries of community structures and network motifs lead us to wonder about the
possibility of using modular idea to study dynamics of network systems: the dynamics of a complex
network can be understood by studying its subnetwork systems. In order for this idea to work, the
dynamics of the subnetworks needs to be preserved or partially preserved in the original network. A
simple example where this is true is when a subnetwork does not receive any input from the rest of
the network. However, the situation becomes quite subtle when the subnetwork and its complementary
subnetwork have mutual interactions.

There is a large body of work devoted to identifying communities or motifs in biological networks
[6, 14, 17, 18, 22, 23, 34]. Interestingly, very few works focus on the relations between the dynamics of
subnetworks and that of the whole system. In this work, we address the issue based on the Boolean
network framework.

Mathematical models have proven to be indispensable tools for studying network systems. Among
various mathematical modeling frameworks, coupled differential equations and Boolean networks are
popular for modeling regulatory networks [1, 2, 5, 7, 10, 12, 15, 16, 20, 21, 26, 28–31, 33]. Network
systems are often represented by directed graphs, wherein components are represented by nodes and
interactions by arrows. An n-node Boolean network system is a discrete dynamical system with the
form of

X(t + 1) = F(X(t)) (1.1)

where X = (x1, · · · , xn) and xi represents the state variable of the ith node, F = ( f1, · · · , fn) and fi is the
governing function of the ith node with its value being either 0 or 1. They can be set up in situations
where information on the detailed kinetic interactions is not available and can provide many valuable
insights [8, 9, 12, 19, 24, 27, 32].

In this work, we particularly consider networks formed by two subnetworks connected at a cutting
node, which we will define next. A node is called a cutting node of a connected network if the removal
of the node leads to two or more disjoint subnetworks. We introduce the notion of a network being
agreeable. Let G be the network of the whole system formed by G1 and G2 connected at a cutting node
c. Let xc(t, ∗) be the value of the cutting node in the system * (here * can be G1, G, or G2) at time t.
We say that G is agreeable if xc(t,G) = z0 whenever xc(t,G1) = xc(t,G2) = z0. We first show that if a
network is agreeable and its subnetworks have only cycles, then the whole system has only cycles. We
then prove that if X0 is a fixed point of G, then X0 restricted to the phase-space of one of the subnetwork
systems must be a fixed point of that system. In addition, we discuss the relations between the product
of the transition diagrams (a representation of trajectories) of the subnetwork systems and that of the
whole system.

The paper is structured as follows: In Section 2, we introduce terminology related to Boolean
network systems and prove a property of such network systems. Section 3 defines agreeable networks
and gives an example of updating scheme for the cutting node that guarantees a network system to be
agreeable. In Section 4, we prove results on the relations between cycles and fixed points of whole
network system and its subnetworks. In Section 5, we discuss the relations between the transition
diagram of a network system and the product diagram of its subnetworks. Finally, in Section 6, we
introduce an algorithm to construct the transition diagram of the whole network from the transition
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diagram of the product system.

2. Boolean network systems

In this section, we will introduce several basic terminologies for Boolean network systems and give
a general property (Proposition 2.1) for deterministic Boolean network systems. We use the standard
gene regulatory network topological representation for a Boolean network - the species are represented
by nodes and interactions between species by arrows. We also allow two types of arrows from the tail
node to the head node: one representing activation (→) and the other representing inhibition (a). For
example, in Fig. 1(a) the inhibition from node 2 to node 1 is represented by an arrow a from node 2 to
node 1.

The dynamics of a Boolean network system can be represented by a transition diagram, which we
represent by X0 → X1 if F(X0) = X1, where F is a Boolean map. For example, suppose the Boolean
map associated to the network in Fig. 1(a) is as shown in the table in Fig. 1. In that case, the state (0, 0)
transits to (1, 0), (1,0) to (1,1) and so on. So, the transition diagram of the system can be set up as the
one in Fig. 1(c). If X0 → X1 occur in the transition diagram, we say that X0 → X1 is a transition of the
network system.

The trajectory of a given state X0 is defined to be the sequence {Fn(X0)}∞n=0. X0 is called a fixed
point if F(X0) = X0 and a trajectory of X0 is called a cycle with length n > 0 if Fk+n(X0) = Fk(X0)
for any nonnegative integer k and Fk+m(X0) , Fk(X0) for some k if m < n. Finally, for a deterministic
dynamical system, the trajectory of a given state is unique.

1 2S

(a) Network

(x1, x2) F(x1, x2)
(0, 0) (1, 0)
(1, 0) (1, 1)
(1, 1) (0, 1)
(0, 1) (0, 0)

(b) Boolean map

00

01

10

11

(c) Transition diagram

Figure 1. (a) A two-node network system, where S represents an external signal; (b)
The Boolean map associated to the network in (a); (c) The transition diagram of the
network system.

Proposition 2.1. The transition diagram of a given Boolean network system consists of a set of disjoint
connected sub-diagrams, in which the trajectory of any state in the same connected sub-diagram ends
at the same steady-state: either a fixed point or a cycle.

Proof. First note that there are only a finite number of states, the trajectory starting from any state will
either end up in a cycle or a fixed point. Also note that for any two states, say X1 and X2, in the same
connected sub-diagram, there must exist integers n1 ≥ 0 and n2 ≥ 0, so that Fn1(X1) = Fn2(X2). The
reason is as follows. Suppose the trajectories of X1 and X2 are in the same connected diagram. There
then exists a state X∗ and two integers m1 > 0, m2 > 0, such that X∗ = Fm1(X1) = Fm1(X2).

Let Fn1(X1) = Fn2(X2) = Y0. Since there are only a finite number of states, the trajectory starting
from Y0 will either end up in a cycle or a fixed point.

^
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3. Agreeable networks

We first introduce the definition of an agreeable network system. Then we present an updating
scheme for the cutting node that guarantees that the network G is agreeable. We would like to point
out that there is no restriction on the updating schemes for the rest of the nodes in the network. Also
note that the update scheme in this section is just an example. The results we present later on, except
for the example in Section 6, are valid even if the scheme is not satisfied.

Let G be a network formed by two subnetworks G1 and G2, connected via a cutting node. For
example, the network in Fig. 2 can be formed by two subnetworks in Fig. 3, which are connected at
node 2. i.e. node 2 is a cutting node..

1 2 3S S

Figure 2. Network with one cutting node (node 2). The node ‘S’ represents an external
signal.

1 2S

(a)

2 3 S

(b)

Figure 3. Network in Fig. 2 can be formed by the two subnetworks that are connected
at node 2.

Let c be the cutting node, C1 be the set of the nodes in G1\{c} and C2 be the set of nodes in G2\{c}.
Let x be the state variables of C1, y be the state variables of C2, z be the state variable of c in G1 and z
be the state variable of c in G2. Suppose the governing equations of G1 are

x(t + 1) = h(x(t), z(t))

z(t + 1) = g1(x(t), z(t))
(3.1)

and those of G2 are 
z(t + 1) = g2(z(t), y(t))

y(t + 1) = f (z(t), y(t))
(3.2)

Since node c is the only node that connects the two subnetworks, the governing system of G can be
written in the form of 

x(t + 1) = h(x(t), z(t))

z(t + 1) = g(x(t), z(t), y(t))

y(t + 1) = f (z(t), h(t))

(3.3)

Definition 3.1. The network system of G is agreeable if

g1(x, z) = g2(z, y) implies g(x, z, y) = g1(x, z) = g2(z, y) (3.4)
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We will show next an updating scheme of the cutting node with which the network G is agreeable.
We will refer to the updating scheme as Axioms.

Updating schemes that guarantee network G to be agreeable

1. The effects of activators and inhibitors are never additive, but rather, inhibitors are dominant;
2. The activity of a node will be ‘on’ in the next time step if at least one of its activators is ‘on’ and

all inhibitors are ‘off’;
3. The activity of a node will be ‘off’ in the next time step if none of its activators are ‘on’.
4. If a node has an external/background activation, then we assume that the node has an activator

that is permanently ‘on’.

Let z be the state variable of the cutting node c. Define
B(z) = {Inhibitors in G1 that are on}
D(z) = {Inhibitors in G2 that are on},
A(z) = {activators in G1 that are on},
C(z) = {Activators in G2 that are on}.
Suppose the updating scheme for the cutting node satisfies the Axioms. Then the first three axioms

can be rewritten as

1. If at time t, B(z) ∪ D(z) , ∅, then z = 0 at time t + 1.
2. If at time t, B(z) ∪ D(z) = ∅ and A(z) ∪C(z) , ∅, then z = 1 at time t + 1
3. If A(z) ∪C(z) = ∅, then z = 0 at time t + 1.

Theorem 3.2. Suppose the updating scheme for the cutting node c follows Axioms, then G is agree-
able.

Proof. Suppose g1(z, x) = g2(z, y) = z′.

Case I z′ = 0. From G1 system, B(z) , ∅ or A(z) = ∅; From G2 system D(z) , ∅ or C(z) = ∅. This
implies that

B(z) ∪ D(z) , ∅ or A(z) ∪C(z) = ∅

Following the system of G, g(x, z, y) = 0. So g1(z, y) = g2(z, y) = g(x, z, y).

Case I z′ = 1. From G1 system, B(z) = ∅ and A(z) , ∅; From G2 system D(z) = ∅ and C(z) , ∅. This
implies that

B(z) ∪ D(z) = ∅ and A(z) ∪C(z) , ∅

Following the system of G, g(x, z, y) = 1. So g1(z, x) = g2(z, y) = g(x, z, y). Therefore G is agreeable.
^

Remark 3.3. The system ofG is not agreeable any more if g(x, z, y) = 1 only when both x = y = 1. That
is, when the activation of the cutting node requires inputs from both subnetworks, G is not agreeable.
Similarly, when deactivation of the cutting node requires inputs from both subnetworks, G is also
not agreeable. So the condition agreeable means the requirement on certain independency of the
subnetworks.
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4. Relations between Dynamics of G and its subnetworks

In this section, we present our results on the relations between fixed points and cycles of the net-
work system of G and those of its subnetwork systems G1 and G2. We prove that if the subnetwork
systems have only cycles, then the whole system also has only cycles; on the other hand, if the whole
network system has a fixed point, then the projection of the fixed point to the phase space of one of the
subnetwork systems is a fixed point of that network systems. In addition, we show an example that the
subnetwork systems have only fixed point(s) while the whole system has a cycle.

We assume throughout this section that the systems associated to G1, G2 and G are (3.1), (3.2) and
(3.3) respectively.

Theorem 4.1. Suppose the system of G is agreeable, and suppose both subnetwork systems, G1 and
G2, have only cycles, then G system also has only cycles.

Proof. Let the associated system of G1, G2 and G be of the form of equations (3.1), (3.2) and (3.3)
respectively. Then we only need to prove that

(h(x, z), g(x, z, y), f (z, y)) , (x, z, y) (4.1)

for any state (x, z, y) since any synchronous Boolean system has only a finite number of states, any state
will repeat itself in a finite number of steps.

Let (x0, z0, y0) be an initial state. First we show that

(h(x0, z0), g(x0, z0, y0), f (z0, y0)) , (x0, z0, y0) (4.2)

Note that if (h(x0, z0), g(x0, z0, y0), f (z0, y0)) = (x1, 1 − z0, y1), then we are done. Otherwise, if
(h(x0, z0), g(x0, z0, y0), f (z0, y0)) = (x1, z0, y1), we claim that either x1 , x0 or y1 , y0. We can show this
by using contradiction. Suppose x1 = x0 and y1 = y0. i.e. h(x0, z0) = x1 = x0 and f (z0, y0) = y1 = y0.
Then, because the subnetwork systems G1 and G2 have only cycles, we have

(h(x0, z0), g1(x0, z0)) = (x0, 1 − z0)

and
(g2(z0, y0), f (z0, y0) = (1 − z0, y0)

By the condition G being agreeable, (h(x0, z0), g(x0, z0, y0), f (z0, y0)) = (x0, 1 − z0, y0) which contra-
dicts with the assumption G(x0, z0, y0) = (x1, z0, y1). Hence, either x1 , x0 or y1 , y0. Therefore,
(h(x0, z0), g(x0, z0, y0), f (z0, y0)) , (x0, z0, y0). It follows that the system of G has no fixed point. i.e. it
only has cycles.

^

Corollary 4.2. Suppose the network system of G is agreeable. If the system of G has a fixed point, then
G1 or G2 must have a fixed point.

Proof. This Corollary follows directly from Theorem 4.1.

Corollary 4.3. Suppose the network system of G is agreeable.
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1. If the system of G1 and G2 have fixed points (x0, z0) and (z0, y0) respectively, then (x0, z0, y0) is a
fixed point of G.

2. If (x0, y0, z0) is a fixed point of the system of G, then either (x0, y0) is a fixed point of the system of
G1 or (y0, z0) is a fixed point of the system of G2.

Proof. 1. By Theorem 3.2, z0 = g1(x0, z0) = g2(z0, y0) implies g(x0, z0, y0) = z0. Also because (x0, z0)
and (z0, y0) are the fixed points of G1 and G2, f (x0, z0) = x0 and h(z0, y0) = y0. Therefore, (x, z, y)
is a fixed point of G.

2. If (x0, y0, z0) is a fixed point of the system of G, then g(x0, z0, y0) = z0. Note that g1(x0, z0) = z0 or
1 − z0 and g2(z0, y0) = z0 or 1 − z0. Because the system G is agreeable, either g1(x0, z0) = z0 or
g2(z0, y0) = z0.

^

Corollary 4.3 implies that when G is agreeable, the fixed points of whole network system can be
obtained by first looking at the fixed points of the subnetwork systems.

Next, we show an example that both subnetwork systems have only fixed points while the whole
network system has cycles. We consider the network in Fig. 4. Suppose the associate Boolean system
satisfies the Axioms. Then a straightforward calculation shows that the system of network in Fig. 4 has
a cycle (010) → (011) → (111) → (110) → (010) while its two subnetwork systems shown in Fig. 5
have only fixed points.

2 13S

Figure 4. A network consists of two feedback loops with S as an external signal. The
system of the network has a cycle (010)→ (011)→ (111)→ (110).

2 3S

(a)

3 1

(b)

Figure 5. The system of subnetwork (a) has only one steady-state (x2, x3) = (1, 1) and
the system of subnetwork (b) has also only one steady-state (x1, x3) = (0, 0).

5. Relations between transition diagrams

In a Boolean network system, the transition diagram of the system represents the trajectory space of
the discrete dynamical system. That is, the transition diagram represents the dynamics of the system.
Note that if the dynamics of the subnetworks are all independent, then the dynamics of the whole
network is just the product of the subnetworks. However, when they are not independent, the relation
is not all that transparent. In this section, we explore the relations between the transition diagrams of a
network system and its subnetwork systems.
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Product network systems

Let the associated systems of G1 and G2 be of the form of (3.1) and (3.2) respectively. Then the
associated system of the product network G1 × G2 is defined to be

x(t + 1) = h(x(t), z(t))
z(t + 1) = g1(x(t), z(t))
z(t + 1) = g2(z(t), y(t))
y(t + 1)) = f (z(t), y(t))

(5.1)

That is, if (x0, z0) → (x1, z1) is a transition of the system of G1 and (z0, y0) → (z1, y1) is a transition of
the system of G2, then (x0, z0, z0, y0)→ (x1, z1, z1, y1) is a transition of the system of G1 × G2. This can
be represented by the diagram in Fig. 6, where peach-colored arrows represent transitions occurring
in G2 system, green arrows represent transitions occurring in G1 system, and the blue arrow is the
transition occurring in the product system.

(z0, y0) (z1, y1)

(x0, z0)

(x1, z1)

Figure 6. Peach-colored arrows represent transitions occurring in G2 system, green
arrows represent transitions occurring in G1 system, and the blue arrow represents the
transition occurring in the product system.

It is obvious that the phase space of the system of G can be embedded in the phase space of the
system of G1×G2 by the map J : {0, 1}3 → {0, 1}4 defined by J(x, z, y) = (x, z, z, y). In order to simplify
this notation, we identify point (x, z, y) in the phase space of G with the point (x, z, z, y) in the phase
space of G1 × G2. Now the question is: Does a transition such as (x0, z0, z0, y0) → (x1, z1, z1, y1) in the
system of G1 × G2 imply a transition of (x0, z0, y0)→ (x1, z1, y1) in the system of G? The answer is yes
provided G is agreeable.

Proposition 5.1. Suppose the network system of G is agreeable. Then, a transition in the system of the
product network G1 × G2 of the form (x0, z0, z0, y0) → (x1, z1, z1, y1) implies a transition (x0, z0, y0) →
(x1, z1, y1) in the network system G.

Proof. By definition of product system, saying that (x0, z0, z0, y0) → (x1, z1, z1, y1) is a transition of the
system of the product network G1 × G2 means that f (x0, z0) = x1, g1(x0, z0) = z1, g2(z0, y0) = z1 and
g(z0, y0) = y1. Because G is agreeable, g(x0, z0, y0) = z1. Hence, (x0, z0, y0) → (x1, z1, y1) is a transition
of the network system G ^

We would like to point out that the reverse of Proposition 5.1 does not hold. That is, (x0, z0, y0) →
(x1, z1, y1) in the system ofG does not imply (x0, z0, z0, y0)→ (x1, z1, z1, y1) of the product system. More
precisely, there exists a transition such as (x0, z0, z0, y0) → (x1, z1, z1, y1) with z1 , z1. We will see this
in the example introduced in the next section.
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Relation between transition diagrams

Next we will study relations between the transition diagram of G and that of the product system
of its subnetworks. We achieve this goal by exploring the possibility of constructing the transition
diagram of G from a product system.

Proposition 5.1 tells us that we can derive some transitions of G by simply translating
(x0, z0, z0, y0) → (x1, z1, z1, y1) in the system of of G1 × G2 to (x0, z0, y0) → (x1, z1, y1) in the system
of G. As pointed out earlier, there exists transition such as (x0, z0, z0, y0) → (x1, z1, z1, y1) with z1 , z1.
In this case, we can not derive to which state (x0, z0, y0) transits to based on the information of the
product space. However, by the definition of the product system, it is certain that (x0, z0, y0) transits to
(x1, z, y1) where x1 and y1 can be read off from the transition (x0, z0, z0, y0) → (x1, z1, z1, y1) while the
value of z needs to be determined by g evaluated at (x0, z0, y0).

Proposition 5.2. If (x0, z0, z0, y0) → (x1, z1, z1, y1) with z1 , z1 is a transition of the product system
G1 × G2, then (x0, z0, y0)→ (x0, 0, y0) or (x0, z0, y0)→ (x0, 1, y0) is a transition of the system of G.

Proof. By the definition of the product system (5.1), (x0, z0, z0, y0) → (x1, z1, z1, y1) means h(x0, z0) =

x1, g1(x0, z0) = z1, g2(z0, y0) = z1 and f (z0, y0) = y1. Following the definition of the system ofG (system
(3.3)), (x0, z0, y0) transits to (h(x0, z0), g(x0, z0, y0), f (z0, y0)) = (x1, g(x0, z0, y0), y1). Since g is a Boolean
function, g(x0, z0, y0) = 0 or g(x0, z0, y0) = 1. i.e. (x0, z0, y0)→ (x0, 0, y0) or (x0, z0, y0)→ (x0, 1, y0). ^

6. Construct transition diagram from that of sub-networks

In this section, by using an example, we discuss the construction of the transition diagram of a
network G from the transition diagram of the product system of its subnetworks G1 and G2.

Example. Consider the network in Fig. 2 that is formed by the two subnetworks in Fig. 3. Suppose
the updating scheme for all the nodes in the networks follow Axioms. Then, the transition diagrams of
the subnetworks in Fig. 3(a),(b) are shown in the Fig. 7(a),(b), respectively.

00

01

10

11

(a)

00

10

01

11

(b)

Figure 7. The transition diagrams from Fig. 3.

The product of the transition diagrams in Fig. 7 is shown in Fig. 8 (left). By the definition of product
network systems, the state (0, 0, 0, 0) transits to (1, 0, 0, 1) since h(0, 0) = 1, g1(0, 0) = 0, g2(0, 0) = 0
and f (0, 0) = 1; the state (1, 0, 0, 1) transit to (1, 1, 1, 1) since h(1, 0) = 1, g1(1, 0) = 1, g2(1, 0) = 1 and
f (1, 0) = 1 and so on. As a result, we can get the transition diagram of the product network system as
represented by the diagram with blue arrows on the right of Fig. 8.

Next we show how we can construct the transition diagram of the original three-node network
system based on the transition diagram of the product system. Since the phase space of a three-node

AIMS Mathematics Volume 2, Issue 3, 437-450



446

00 01 11 10

00

10

11

01

00 01 11 10

00

10

11

01

Figure 8. (Left) Product of transition diagrams in Figs. 7; (Right) The blue arrows
represent the transitions of the product network systems.

network system can be embedded in the phase space of the product system by the map J, we colored
those states of the form (x, z, z, y) in red and removed all arrows that are not from those nodes as shown
in Fig. 10 (left). We then identify states (x, z, y) of the three-node system with states (x, z, z, y) of
the product network system and consider where each state in red transits in the system of three-node
network system. By Proposition 5.1, (x0, z0, z0, y0) → (x1, z1, z1, y1) implies a transition (x0, z0, y0) →
(x1, z1, y1). That means the transitions in blue in Fig. 10 (right) are part of the transitions of the three-
node network system. Next we need to determine transitions for remaining red states. The state (1000)
transit to (1101) in the product network, see Fig. 10(left). However, (1101) is not a state of the three-
node network system. On the other hand, the transition (1000)→ (1101) in the product system implies
(100) → (1z1) in the three-node system. i.e. h(1, 0) = 1, g(1, 0, 0) = z and f (0, 0) = 1 where z
needs to be determined by g. Since g(1, 0, 0) = 1, (100) transit to (111) in the three-node system. We
mark a transition: (1000) transit to (1111) in the product space. Similarly, we find (0111) → (0110),
(1110)→ (0110) and (0001)→ (1111) as shown in Fig.10(right).

Now we have found the transitions for all the red states. The diagram that consists of only the red
nodes and the arrows is the transition diagram of the three-node system – which is identical to the
transition diagram we obtained directly using the rule for the three-node network system (Fig. 2) as
shown in Fig.10(right).

Algorithm of constructing transition diagram. We summarize how to construct the transition dia-
gram of the whole network from the product systems of its subnetworks as follows.

Suppose G is agreeable at the cutting node.

1. Let T1 be the set of all transitions of the system of G1 and expressed by

T1 =

{
(x0, z0)→ (x1, z1)

∣∣∣∣∣∣ xi ∈ {0, 1}k, zi ∈ {0, 1}, i = 0, 1
h(x0, z0) = x1, g1(x0, z0) = z1

}
and let T2 be the set of all transitions of the system of G2 and expressed by

T2 =

{
(z0, y0)→ (z1, y1)

∣∣∣∣∣∣ yi ∈ {0, 1}m, zi ∈ {0, 1}, i = 0, 1
g2(z0, y0) = z1, f (z0, y0) = y1

}
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Figure 9. (Left) Part of transition diagram that involves states of the form (x, z, z, y)
– colored in red; (Right) The transition diagram corresponds to three-node network
system.

(x, z, y) G(x, z, y)
(0, 0, 0) (1, 0, 1)
(1, 0, 1) (1, 1, 1)
(1, 1, 1) (0, 1, 0)
(0, 1, 0) (0, 0, 0)
(0, 1, 1) (0, 1, 0)
(1, 1, 0) (0, 1, 0)
(0, 0, 1) (1, 1, 1)
(1, 0, 0) (1, 1, 1)

100

111 010010001 011

110

000101

Figure 10. The truth table and transition diagram of the three-node network in Fig. 10.
(Left) Truth table; (Right) Transition diagram

Then the set Q of all transitions of the product system is

Q =

(x0, z0, z0, y0)→ (x1, z1, z1, y1)

∣∣∣∣∣∣∣∣∣∣∣
xi ∈ {0, 1}k, zi ∈ {0, 1}, yi ∈ {0, 1}m,
zi ∈ {0, 1}, i = 0, 1
h(x0, z0) = x1, g1(x0, z0) = z1

g2(z0, y0) = z1, f (z0, y0) = y1


Set the set of all transition of the system of G be T .

2. Find all the states of the form of (x, z, z, y) and their transitions in the product system.
3. If (x0, z0, z0, y0) → (x1, z1, z1, y1) ∈ Q, then add (x0, z0, y0) → (x1, z1, y1) to the set T . If

(x0, z0, z0, y0) → (x1, z1, z1, y1) ∈ Q with z1 , z1, then add (x0, z0, y0) → (x1, g(x0, z0, y0), y1) to
T .

Remark 6.1. The transitions on the diagonal of the product network are always transitions of the whole
network.

Remark 6.2. The algorithm is rather straight forward. However, it can be very useful when the sub-
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networks are large and their transition diagrams are ready to use. Also note that even though we
add the condition agreeable on the system of G, we can easily modify it to the case that the con-
dition fail. We just need to change the step 3 to If (x0, z0, z0, y0) → (x1, z1, z1, y1) ∈ Q, then add
(x0, z0, y0)→ (x1, g(x0, z0, y0), y1) to T . On the other hand, the algorithm provide a rather clear view on
the relations between the dynamics of the whole network and that of its subnetworks.
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