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Abstract: In the present work we consider the question of preservation of the baseness property for
the system of vectors ¢ = {¢,},.,~ In the Sobolev-Liouville and Besov classes at small perturbations
with the purpose of the further application of obtained results to study decomposition on root vectors
of differential operators.
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1. Introduction

We say that a series ),c,~v 0, converges on rectangulars if there exists the limit of the partial sums

Sm = Zlnllsml ZanIsz ZlnNISmN Cn¥n a8 mlnmj — 0.
1<j<N

Let us remind that a system of elements ¢ = {¢,},.,~ 1s called a basis of the Banach space E at
summation on rectangulars if any vector x € E decomposes uniquely in the series

x= ) (1.1)

nezZN

which is convergent with respect to the norm of the space E at summation by rectangulars. Hence we
exclude from consideration Banach spaces which do not possess the property of approximation (see
[1] and [2]).

Factors ¢, in (1.1) are linear functionals:

cn = fu(x), nezV

and, according to the well known Banach theorem (see, for example, [3], [4]), there is a constant C,,
such that |
<|Ifull < Collull™ .

[rz
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A system of elements ¥ = {,},.,v from the Banach space is said to be w-linear independent at
summation by rectangulars if the equality },.,~ ¢ ¢, = 0 at summation on rectangulars is impossible
at

[s6]

2 2
E leal™ - 1 |17 > 0.
n=1

2. Main Results

Theorem 2.1. Let {¢,},.,n be a normed basis in the Banach space E at summation by rectangu-
lars. Further, let the system {y1,},.,v be w—linear independent at summation by rectangulars and
Dinezn lon = Wll < 00. Then {Y,},c,v is also a basis in E at summation by rectangulars.

Proof. Fix an N-dimensional vector 8 = (81, B2, ..., By) With nonnegative integer components
B1, B2, ..., By and define as,

= foon oas  Im| < B, |n2] £ B, iyl < By,
U = N
Yo as  or |m|> By, or |ny|>pa, ..., or |ny|>PBy, hereneZ".

Let us introduce the operator § : E — E which compares to each element

X = an(x)go,l: mir}irfll_l_m Z Z Z Ja() @n

nezZN 1<j<N [n1|€my |no|<my |nyl<my

to the element

Sx= ) [ (eu=).

nezZN

Obviously, for sufficiently large u = lm_ir}\/[)’, we have
<J<

ISxl< Colldl >° >0 D> Hlpw = wall < £l

or [m|>p1 or Im|>B2  or |nn>Bn

Hence, for the operator U defined by equality

Ux=x-Sx= an(x)ana

nezZN

there is an inverse linear operator U~!. Acting on both parts of the equality

Ulx = Z fn (U_lx) ©n

nezN

x= > f(U7%) g,

nezZN

with the operator U, we obtain
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which implies that the system {Zn} o forms a basis in E at summation on rectangulars, i.e. each
n

vector x € E is decomposed uniquely in the series

X = an(U_lx):/;n: mh}i”rlrjl_mo Z Z Z fn(U_lx)%

nezN 1<j<N [n1|<my nol<my  |nnl<my

which is convergent with respect to the norm of the space E at summation on rectangulars.
Since the system {lﬁn} ZNforms a basis in £ at summation on rectangulars, then

ne

i = Z Z Z fn(U_ll/’k)SDn‘F Z Z Z ﬁ(U_l¢k)¢n=X;i+xi,

[m<B1 [n2l<B2 [nN|<BNn or |ni|>py or |na|>p2 or |ny|>By
here k = (ky, ks, ..., ky) is a multi-index with components |k;| < By, |kz| < B2 ,..., lkn| < By, and

X > D m(UT ) e,

[n1|<B1 In2l<B2 InnI<BN

D, 2. 2, KU

or [m[>p1 or |na|>B2 or |ny|>pN

2
Xk

w-linear independence of {i/,},.,v at summation on rectangulars implies linear independence of {x,‘(}
As concepts of linear independence and baseness are equivalent in finite dimensional space,

Op = Z Z Z WX,

lk1|<B1 lk2l<B2  [knI<Bw

is a multi-index with components |n;| < 81, |2l < B2, ..., |ny| < By forn = (ny, ny, ..., ny) € ZV.
Hence we have

R S D S A (/o PR SR SN S A (T

)
)

[n1|<B1  n2|<B2 InNI<Bn or [m|[>py or |n2|>B2 or Iny|>Bn
S RCT RN D Y ST P
ki1<B1 |k2|<B2 [kn|<Bn or |ni|>B1 or |n2|>p> or |ny|>Bn
YN e Y S Y
ki1<B1  k2]<B2 lkn1<Bn or |s1|>B1 or |s2|>p2 or |sn|>Bn
- -1
DI YRCYISTA NS S S A
kil<B1  k2l<B2 [kn1<Bn or [m|>By or |n2|>Ba or |nn|>Bn

Here ,

T = Z Z Z f,,(U_lx)ank

[ni1<B1 In2l<Bz InnI<Bn

It means that the system {¢,,},.,~ 1s a basis in the Banach space E at summation on rectangulars. Hence,
Theorem (2.1) is proved. O
When N = 1 Theorem (2.1) was proved in [6]
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Remark 1. At absence of w-linear independence of the system {i,},.,~ at summation on rectangulars,
one states that the system {i,,},.,~ 1s a basis (probably, overfilling) with the finite defect in the Banch
space E.

A function f(x) € L, (TN ) belongs to the space W, (TN ) , if all its partial derivatives D f (in the

sense of the theory of distributions) of the order |a| = s belong to L, (TN ), i.e. the norm
sy = Il oy + 1D Fl )
lal=s

where 1 < p <oo,s=0, 1, 2, ..., is finite.
In the case of N = 1 belonging of a function f(x) to the class w; (TN ) it means that f(x) has s — 1
continuous derivatives, f¢(x) is absolutely continuous, and f*(x) belongs to L,(T) .

-1
Corollary 1. Let y,(x) = (27)7 - (1+ Siopes 1n°1) - exp (i2,%) + @y (x), where A, # A, as n # m, be
an w-linear independent system of functions satisfying the following conditions:

1. ZneZN |/ln - I’ll < 09;
2. Yinezv ”a'n(x)llW[g(TN) < o0,

Then the system of functions {{,},e v forms at summation on rectangulars a basis in W (TN )
l<p<oos=0,1, 2, ...

Theorem 2.2. Let

=

Un(x) = (2m)" % - [1 + ) |n“|2] - exp (id,x) + (),

lal=s

where A, + A, as n # m, be an w-linear independent system of functions satisfying the following
conditions:

n 1+Z\(t|:,v|na|2

a2 n_n(y2
]. k — Jsup92+2|a|=x(92|ﬂn| +A, I ) < 1’ hel"e 0 — exp(MNﬂ.) _ 1’

2. Bz a0y vy < 0.

/lnj —njl,

M = supsup
j .

nj

Then the system of functions {,(x)},c,~ forms the Riesz basis in the space W) (TN )

1

2

Proof. 1t is known that the system of functions ¢,(x) = Qr)? - (1 + Dloj=s |n“|2)_ - exp(inx) forms

an orthonormal basis in the space W; (TN ) The norm in this space is introduced in such a way at

following :
AR oy = I +§ D £112
w3(TV) Ly(TV) Ly(T) *
lal=s
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Let

Ja(x) = @m) 7% - [1 £y |n“|2] - explid, ),

lal=s

where A, # A, as n # m, be an w-linear independent system of functions satisfying the condition:

6% + Zlal=s (92 A3 ’ + |2)
k= 4|su <1,
np 1+ X ne|*

here 6 = exp(MNn) -1, M = " —nj|.

J J
Further, let {a,} be a finite system of complex numbers. Then

2 2 2
Z a, (Jn - ‘prz) = Z a, ("Z;n - ‘7071) + Z [Z ()On)) =
n ws(TV) n Ly(TN)  lal=s Ly(TV)
! 2
= (27r)N[ Z [[1 + Z |n?| ] (exp (id,x) — exp(inx))] +
n lal=s Lz(TN)
! 2
+ Z D" Z a - [1 + Z n°| J - (exp (id,x) — exp(inx))
lal=s la|=s LZ(TN)
As we have, 1
a, - (1 + Z [n®| ] 2 - (exp (id,x) — exp(inx)) <
la|=s LZ(TN)
i kl Zan [1 + Z [n? ] 2 [i (4, — n) x]* - exp(inx)
=1 lal=s LZ(TN)
Further,
a, - [1 + Z |n?| ) 2 [i (A, —n)x]*- - exp(inx) =
lal=s Ly(TV)
= H donln - (1 + Z|a’|=s |nw|2)_% (Zﬁl+ﬂ2+...+,81v=k m
. 1‘[1}’:1 (/l,,j - nj)ﬂf i lef) - exp(inx) o) =
v -4
= A a, |1+ |na|2]
31 +B2+...+8n=k ﬁl 'ﬁZ 1]2_1[ [Zn: [ I;::s
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N
j k!
. l_[ (/lnj — nj)'B . exp(iﬂx)) < Z W . k.
J=1 La(TV)  BriBrroBy=h 12PN
<

Z a, - [1 + Z |n"|2]_2 . ﬁ (/l,,j - nj)ﬁj - exp(inx)
=1

lal=s

Ly(T)

~

n

1
2

28/
Ay, — 1 f-(zn)N} <

k! o
Z kﬁ—l!ﬁz!mﬁm-nk-(ZIanlz-(l+Zln“|2] 1—[

Bi+Ba+..+BNn=

—-1\2
N k!
semt 2 w—ﬁM[le[l W] ] -

Bi+Ba+..ABn=

=

-1
N k!
- (271-)7 . ﬂ-k ' Mk ’ |an|2 : 1 + |I’la'|2 . _— =
; Z ﬁl+ﬂ2;f‘ﬁ1v:k B1!62!...Bxn!

lal=s

Dl (1 ) |n“|2}1]; ,

n lal=s

:(271)%.7Tk.Mk.Nk.

where summation is carried out on all integer nonnegative 31, 5,, ..., By such that 8y + 5, + ... + By = k,

/l,,j - nj| , we get

M = supsup
Jjoonj
Z ay - (1 + Z |n“|2] - (exp (id,x) — exp(inx)) <
n lal=s Lz(TN)
S “1\2
< m? -Zﬁ-ﬂk-M"-N"- Z|an|2-[1 +Z|n“|2] ] =
k=1 " n lal=s
~1\3
= 2m)? (exp(MNn) — 1) - {Z il - (1 + Z |n“|2] .
n lal=s
Further,
Z D" [Z Ay - (1 + Z In“lz] - (exp (id,x) — eXp(inx))] =
" Ly(TV)

lal=s lal=s

Z a, - (1 + Z |n“|2] - D (exp (id,x) — exp(inx))

lal=s LZ(TN)

n
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Therefore,

> an (¥ - 1)

n

< (exp (MNm) — 1)* [Z lanl?- [1 + le] ]+

lal=s

2. [1 £ |n“2]1] +

lal=s

-1
2 —nl. (1 £ |n"|2] ]

lal=s

w3(r™)

+ Z ((eXp (MNm) - 1) - [Z lal” -
|ar|=s n
> Nl -

4,

Hence, we have
1
2

> a (0 - 1)

n

<k- [Z |an|2]
Wy

__Since k < 1, then by theorem by R. Paly and N. Winner ([5], p.224) the system of functions
{wn(x)}nezN forms a basis in the space W) (TN ) On the other hand, the theorem by N.K. Bary (see [3],
p. 382) implies that the w-linear system of functions {,,(x)},.,~, quadratically close to the Riesz basis
{:,[/n(x)}nezN in W (TN ), is a Riesz basis in W} (TN ) Hence, Theorem (2.2) is proved. ]
Theorem 2.3. Let ¥, (x) = (27r)_% . (1 + |n|2)_§ - exp (id,x) + a,(x), n € ZV,where A, # A,,, asn # m,
w be an linear independent system of functions at summation on rectangles that satisfies the following
conditions:

1. ZneZN

2. ZneZN ”a,n(x)”L;(TN) < 00.

< 00,
Ly (1)

2\ 5 sin(A,, ;—kj)w .
ZkeZN (}:mz)z ( Y M - 6nk) : exp(lkx)

s=1 (’I”.i_kf)”

Then, the summation on rectangles system functions (Y}~ forms a basis L, (TN ), l<p<oo.

Proof. By Theorem Sokol-Sokolowski, the system functions ¢,(x) = (27r)_% exp (inx) forms a nor-
malized basis in L, (TN ) at summation on rectangles, i.e, for every f € L, (TN ), there is a single row

Ynezv fn €xp(inx) such that
Sm(x) = Z Z Z f, exp(inx)

lni|<my |n2l<ma |ny|<my
which partial sums converges (on rectangles) to function f(x) in L, (TN ) with respect to norm topology

,while min m; — oo.
1<j<N

Similarly, the system functions

0u(0) = @) - (1+1P) - exp (in)

forms a normalized basis in L ; (TN ) at summation on rectangles, ie, for every f € L IS, (TN ), there is a

single row _
Z ﬁl ) (pn(x)

nezZN
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such that
Sw@)= > D DL hea®
[ni|<my Inal<my  Iny|<my

which partial sums converges (on rectangles) to function f(x) in L, (TN ) with respect to norm topol-
ogy, while min m; — oo.
gy 1<j<N !

Consequently,

£ = Sl vy = ||Bnezv@m)F - - explinx)
- Zlnl\ﬁml Z|n2|$m2 ZlnNISmN(zﬂ)_% ' ﬁ : eXP(i”lx)

Ly

while min m; — co where p > 1, 5> 0, f, = (21)" 7 - (1+1P)" - [ f(x) - exp(=inx)dx, L+ 1 = 1.

1<j<N

We have

1
q

s

Ga0) = @y 7 (14 1P) 7 - explid,n)

where A4, # A, while n # m,\be an w - linear independent system of functions that satisfies the
following conditions:

S

1+|k|2) ¥ sin (4, — k) ) |
r;;\/ kezz;v(l + P [11:11 (/lnj—— kj)ﬂ' Onk | - €xp(ikx) o < o0,
as
on =l oy = || D (14 W) (0 = B0), - explik)
kezN LP(TN)
where

(on =), = @07 f e ~ @] - exp(-ikx)dx

T

are Fourier coefficients. Hence we get

(()Dn - Zn)k =Q2m)™N ny [gon(x) - Jn(x)] - exp(—ikx)dx
= @m) ™5 (1+1nP) 7 [, [exp(inx) — exp(id,x)] - exp(—ikx)dx

=Qm N (1+ |n|2)_% [ f exp (i (n — k) x) dx — f exp (i (A, — k) x) dx] =
TN TN

:(2n)-%(1 +|n|2)_5[5nk—(2n)-N f exp (i (1, — k) x) dx
TN
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s N Tt ]
:(2n)—ﬁ(1+|n|2)”[5nk—(2n)—N]—[ f exp (i (A, - kj) x;) dx; | =
Jj=1 Y )

/s

s N 8
=@y 7 (1+1nP) [m - Qo™ ﬂ ﬁ exp (i (A, — k) x;) ] -

j=1 /1nj - kj)ﬂ'
in this way,
_ v _s N sin(/ln. k])ﬂ'
_ — -7 AN _ /
(@0 =), = @) 7 (1 + InP) [(snk 1,_1[ ) }
hence

(" _Jn

ez 6 = Wlluy (1) = Znez 0w = 0w = an@)| . vy < T |

Ly (1)

+ > Nl vy =

nezN

N sin(/l,,j —k ~)7r

= DinezV || Likezv (}I—:ﬂi)i ) (27T)_% [5nk - H‘,‘:1 W] - exp(ikx)

Ly(TV)

+ 3 el vy < oo.

nezN

By Theorem (2.2) we have the proof of the Theorem (2.3).
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