
http://www.aimspress.com/journal/Math

AIMS Mathematics, 2(2): 230-243
DOI:10.3934/Math.2017.2.230
Received: 11 February 2017
Accepted: 28 March 2017
Published: 13 April 2017

Research article

Monotonicity of eigenvalues of Witten-Laplace operator along the
Ricci-Bourguignon flow

Shahroud Azami

Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin,
Iran.

∗ Correspondence: azami@sci.ikiu.ac.ir

Abstract: In this article we will investigate monotonicity for the first eigenvalue problem of the
Witten-Laplace operator acting on the space of functions along the Ricci-Bourguignon flow on closed
manifolds. We find the first variation formula for the eigenvalues of Witten-Laplacian on a closed
manifold evolving by the Ricci-Bourguignoni flow and construct various monotonic quantities. At the
end we find some applications in 2-dimensional and 3-dimensional manifolds and give an example.
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1. Introduction

Let (M, g(t)) be a closed Riemannian manifold. Studying the eigenvalues of geometric operators is
a very powerful tool for the understanding Riemannian manifolds. It is well known that the spectrum
of p-Laplacian and other geometric operators on a compact Riemannian manifold M is an important
analytic invariant and has important geometric meanings. There are many mathematicians who inves-
tigate properties of the spectrum of geometric operators and estimate the spectrum in terms of the other
geometric quantities of M. In [12], Perelman showed that the functional

F =

∫
M

(R + |∇ f |2)e− f dν

is nondecreasing along the Ricci flow coupled to a backward heat-type equation, where R is the scalar
curvature with respect to the metric g(t) and dν denotes the volume form of the metric g = g(t).
The nondecreasing of the functional F implies that the lowest eigenvalue of the geometric operator
−4∆ + R is nondecreasing along the Ricci flow. As an application, Perelman shown that there are no
nontrivial steady or expanding breathers on compact manifolds. Then, Li [11] and Cao [3] extended
the geometric operator −4∆ + R to the operator −∆ + cR and both them proved that the first eigenvalue
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of the geometric operator −∆+ cR for c ≥ 1
4 is nondecreasing along the Ricci flow. Zeng and et ’al [15]

studied the monotonicity of eigenvalues of the operator −∆ + cR along the Ricci-Bourguignon flow.
In [8] and [13] have been studied the evolution for the first eigenvalue of geometric operator −∆φ + R

2
under the Yamabe flow and Ricci flow, respectively, where −∆φ is the Witten-Laplacian operator,
φ ∈ C2(M), and constructed some monotonic quantities under this flow. For the other recent research
in this direction, see [5, 6, 7, 9, 10, 14].
Also, over the last few years the Ricci flow and other geometric flows as the Ricci-Bourguignon
flow have been a topic of active research interest in both mathematics and physics. A geometric
flow is an evolution of a geometric structure under a differential equation related to a functional on a
manifold, usually associated with some curvature. They are all related to dynamical systems in the
infinite-dimensional space of all metrics on a given manifold.
Let M be an n-dimensional manifold with a Riemannian metric g0, the family g(t) of Riemannian
metrics on M is called a Ricci-Bourguignon flow when it satisfies the equations

d
dt

g(t) = −2Ric(g(t)) + 2ρR(g(t))g(t) = −2(Ric − ρRg), g(0) = g0 (1.1)

where Ric is the Ricci tensor of g(t), R is the scalar curvature and ρ is a real constant. In fact the Ricci-
Bourguignon flow is a system of partial differential equations which was introduced by Bourguignon
for the first time in 1981 (see [2]). Short time existence and uniqueness for solution to the Ricci-
Bourguignon flow on [0,T ) have been shown by Catino and et ’al in [4] for ρ < 1

2(n−1) . When ρ = 0,
the Ricci-Bourguignon flow is the Ricci flow.
Motivated by the above works, in this paper we will study the first eigenvalue of the Witten-Laplacian
operator whose metric satisfies the Ricci-Bourguignon flow (1.1).

2. Preliminaries

In this section, we will first give the definitions for the first eigenvalue of the Witten-Laplace op-
erator ∆φ then we will find the formula for the evolution of the first eigenvalue of the Witten-Laplace
operator under the Ricci-Bourguignon flow on a closed manifold. Let (M, g(t)) be a compact Rieman-
nian manifold, and (M, g(t)) be a smooth solution to the Ricci-Bourguignon flow (1.1) for t ∈ [0,T ).
Let ∇ be the Levi-Civita connection on (M, g(t)) and f : M → R be a smooth function on M or
f ∈ W1,2(M) where W1,2(M) is the Sobolev space. The Laplacian of f is defined as

∆ f = div(∇ f ) = gi j(∂i∂ j f − Γk
i j∂k f ). (2.1)

Assume that dν the Riemannian volume measure, and dµ the weight volume measure on (M, g(t))
related to function φ; i.e.

dµ = e−φ(x)dν (2.2)

where φ ∈ C2(M). The Witten-Laplacian is defined by

∆φ = ∆ − ∇φ.∇ (2.3)

which is a symmetric operator on L2(M, µ) and satisfies the following integration by part formula:∫
M
< ∇u,∇v > dµ = −

∫
M

v∆φu dµ = −

∫
M

u∆φv dµ ∀u, v ∈ C∞(M),
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The Witten-Laplacian is generalize of Laplacian operator, for example, when φ is a constant function,
the Witten-Laplacian operator is just the Laplace-Belterami operator.
We say that λ1(t) is an eigenvalue of the Witten-Laplace operator ∆φ at time t ∈ [0,T ) whenever for
some f ∈ W1,2(M),

− ∆φ f = λ1(t) f , (2.4)

or equivalently ∫
M
< ∇ f ,∇h > dµ = λ1

∫
M

f h dµ ∀h ∈ C∞(M), (2.5)

hence

λ1 =

∫
M
|∇ f |2dµ∫

M
f 2 dµ

,

the first eigenvalue of the Witten-Laplace operator defined as

λ = min
f,0

{∫
M
|∇ f |2dµ : f ∈ C∞(M),

∫
M

f 2dµ = 1
}
.

Lemma 2.1. If g1 and g2 are two metrics on Riemannian manifold M which satisfy

1
1 + ε

g1 ≤ g2 ≤ (1 + ε)g1,

then
λ(g2) − λ(g1) ≤

(
(1 + ε)

n
2 +1 − (1 + ε)−

n
2
)

(1 + ε)
n
2λ(g1).

In particular, λ is a continuous function respect to the C2-topology.

Proof. The proof is straightforward. We have

(1 + ε)−
n
2 dµg1 ≤ dµg2 ≤ (1 + ε)

n
2 dµg1 .

Let
G(g, f ) =

∫
M
|∇ f |2gdµg,

then ∫
M

f 2dµg1G(g2, f ) −
∫

M
f 2dµg2G(g1, f )

=

∫
M

f 2dµg1

∫
M
|∇ f |2g2

dµg2 −

∫
M

f 2dµg2

∫
M
|∇ f |2g1

dµg1

=

∫
M

f 2dµg1

(∫
M
|∇ f |2g2

dµg2 −

∫
M
|∇ f |2g1

dµg1

)
+

(∫
M

f 2dµg1 −

∫
M

f 2dµg2

) ∫
M
|∇ f |2g1

dµg1

≤
(
(1 + ε)

n
2 +1 − 1

) ∫
M

f 2dµg1

∫
M
|∇ f |2g1

dµg1

AIMS Mathematics Volume 2, Issue 2, 230-243



233

+
(
1 − (1 + ε)−

n
2
) ∫

M
f 2dµg1

∫
M
|∇ f |2g1

dµg1 ,

so that ∫
M

f 2dµg1

∫
M
|∇ f |2g1

dµg1

 G(g2, f )∫
M

f 2dµg2

−
G(g1, f )∫
M

f 2dµg1


≤

(
(1 + ε)

n
2 +1 − (1 + ε)−

n
2
) ∫

M
f 2dµg1

∫
M
|∇ f |2g1

dµg1 ,

it implie that
G(g2, f )∫
M

f 2dµg2

−
G(g1, f )∫
M

f 2dµg1

≤
(
(1 + ε)

n
2 +1 − (1 + ε)−

n
2
) ∫

M
|∇ f |2g1

dµg1∫
M

f 2dµg2

,

hence
λ(g2) − λ(g1) ≤

(
(1 + ε)

n
2 +1 − (1 + ε)−

n
2
)

(1 + ε)
n
2λ(g1),

this completes the proof of lemma. �

If λ =
∫

M
|∇ f |2dµ then f is eigenfunction corresponding to λ. Normalized eigenfuctions are defined

as
∫

M
f 2dµ = 1. At time t0 ∈ [0,T ), we first let f0 = f (t0) be the eigenfunction for the eigenvalue λ(t0)

of Witten-Laplacian. We consider the following smooth function

h(t) = f0

[
det(gi j(t0))
det(gi j(t))

] 1
2

along the Ricci-Bourguignon flow. We assume that

f (t) =
h(t)(∫

M
(h(t))2dµ

) 1
2

which f (t) is smooth function under the Ricci-Bourguignon flow, satisfies
∫

M
f 2dµ = 1 and at time t0,

f is the eigenfunction for λ of Witten-Laplacian. Now we define a smooth eigenvalue function

λ( f , t) :=
∫

M
|∇ f |2dµ (2.6)

where λ( f (t0), t0) = λ(t0), f is smooth function and satisfies∫
M

f 2 dµ = 1. (2.7)

3. Variation of λ(t)

In this section, we will give some useful evolution formulas for λ(t) under the Ricci-Bourguignon
flow. Now, we give a useful proposition about the variation of eigenvalues of Witten-Laplacian under
the Ricci-Bourguignon flow.
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Proposition 3.1. Let (Mn, g(t)) be a solution of the Ricci-Bourguignon flow on the smooth closed
manifold (Mn, g0) for ρ < 1

2(n−1) . If λ(t) denotes the evolution of the first eigenvalue under the Ricci-
Bourguignon flow, then

d
dt
λ( f , t)|t=t0 = (1 − nρ)λ(t0)

∫
M

R f 2dµ + ((n − 2)ρ − 1)
∫

M
R|∇ f |2dµ + 2

∫
M

Ric(∇ f ,∇ f )dµ. (3.1)

Proof. λ( f , t) is a smooth function and by derivating (2.6) we have

d
dt
λ( f , t) =

∫
M

d
dt

(|∇ f |2)dµ +

∫
M
|∇ f |2

d
dt

(dµ). (3.2)

On the other hand, we have
d
dt

(dµt) =
1
2

trg(
∂g
∂t

)dµ, (3.3)

and

d
dt

(
|∇ f |2

)
=

d
dt

(
gi j∇i f∇ j f

)
=
∂

∂t
(gi j)∇i f∇ j f + 2gi j∇i f ′∇ j f (3.4)

= −gilg jk ∂

∂t
(glk)∇i f∇ j f + 2 < ∇ f ′,∇ f > .

Replace (3.3) and (3.4) in (3.2), then

d
dt
λ( f , t) =

∫
M

{
−gilg jk ∂

∂t
(glk)∇i f∇ j f + 2 < ∇ f ′,∇ f >

}
dµ (3.5)

+

∫
M
|∇ f |2

1
2

trg(
∂g
∂t

)dµ.

From (1.1), we can then write

d
dt
λ( f , t) = 2

∫
M

{
−gilg jk(−Riclk + ρRglk)∇i f∇ j f + < ∇ f ′,∇ f >

}
dµ (3.6)

+

∫
M
|∇ f |2(nρ − 1)Rdµ

= 2
∫

M
Ric(∇ f ,∇ f )dµ + 2

∫
M
< ∇ f ′,∇ f >}dµ

+((n − 2)ρ − 1)
∫

M
|∇ f |2Rdµ.

Now, using (2.7), from the condition ∫
M

f 2dµ = 1,

and the time derivative, we can get

2
∫

M
f ′ f dµ = (1 − nρ)

∫
M

f 2Rdµ, (3.7)
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(2.5) and (3.7) imply that∫
M
< ∇ f ′,∇ f > dµ = λ(t0)

∫
M

f ′ f dµ =
λ(t0)

2
(1 − nρ)

∫
M

f 2Rdµ. (3.8)

Replacing (3.8) in (3.6), we obtain

d
dt
λ( f , t)|t=t0 = (1 − nρ)λ(t0)

∫
M

R f 2dµ + ((n − 2)ρ − 1)
∫

M
R|∇ f |2dµ + 2

∫
M

Ric(∇ f ,∇ f )dµ.

�

Theorem 3.2. Let g(t), t ∈ [0,T ), be a solution of the Ricci-Bourguignon flow (1.1) on a closed
manifold Mn, ρ < 1

2(n−1) and λ(t) be the first eigenvalue of the Witten-Laplace operator of g(t). If
c = min

x∈M
R(0) and

Ri j −
1 − (n − 2)ρ

2
Rgi j ≥ 0 in Mn × [0,T )

then the quantity λ(t)(n − 2(1 − nρ)ct)
n
2 is strictly increasing along the Ricci-Bourguignon flow.

Proof. According to (3.1) of Proposition 3.1, we have

d
dt
λ(λ( f , t)|t=t0 = (1 − nρ)λ(t0)

∫
M

R f 2dµ +

∫
M

(2Ri j − (1 − (n − 2)ρ)Rgi j)∇i f∇ j f dµ

≥ (1 − nρ)λ(t0)
∫

M
R f 2dµ, (3.9)

on the other hand, the scalar curvature under the Ricci-Bourguignon flow evolve by

∂R
∂t

= (1 − 2(n − 1)ρ)∆R + 2|Ric|2 − 2ρR2

and inequality |Ric|2 ≥ R2

n yields

∂R
∂t
≥ (1 − 2(n − 1)ρ)∆R + 2(

1
n
− ρ)R2. (3.10)

Since the solution to the corresponding ODE y′ = 2( 1
n − ρ) with initial value c = min

x∈M
R(0) is

σ(t) =
nc

n − 2(1 − nρ)ct
on [0,T ).

using the maximum principle to (3.10), we get Rg(t) ≥ σ(t). Therefore (3.9) becomes d
dtλ( f , t)|t=t0 ≥

(1 − nρ)λ(t0)σ(t0), this results that in any sufficiently small neighborhood of t0 as I0, we get

d
dt
λ( f , t) ≥ (1 − nρ)λ( f , t)σ(t).

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ( f (t0), t0)
λ( f (t1), t1)

> ln(
n − 2(1 − nρ)ct1

n − 2(1 − nρ)ct0
)−

n
2 .
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Since λ( f (t0), t0) = λ(t0) and λ( f (t1), t1) ≥ λ(t1) we conclude that

ln
λ(t0)
λ(t1)

> ln(
n − 2(1 − nρ)ct1

n − 2(1 − nρ)ct0
)−

n
2 ,

that is the quantity λ(t)(n−2(1−nρ)ct)
n
2 is strictly increasing in any sufficiently small neighborhood of

t0. Since t0 is arbitrary, then λ(t)(n − 2(1 − nρ)ct)
n
2 is strictly increasing along the Ricci-Bourguignon

flow on [0,T ). �

Remark 3.3. If ρ < 0 and c > 0 then function (n−2(1−nρ)ct)
n
2 is decrasing in t-variable, thus Theorem

3.2, implies that λ(t) is strictly increasing along the Ricci-Bourguignon flow on [0,T ).

Corollary 3.4. Let g(t) and λ(t) be the same as in Theorem 3.2 where assume n = 3 and 1
6 < ρ <

1
4 . If

Ri j >
1 − ρ

2
Rgi j in Mn × {0}

then the conclusion of Theorem 3.2 is also true.

Proof. The pinching inequality Ri j >
1−ρ

2 Rgi j is preserved along the Ricci-Bourguignon flow, therefore,
for t ∈ [0,T ) we have Ri j −

1−ρ
2 Rgi j > 0, which Theorem 3.2 implies that the quantity λ(t)(3 − 2(1 −

3ρ)ct)
3
2 is strictly increasing. �

Theorem 3.5. Let g(t), t ∈ [0,T ), be a solution of the Ricci-Bourguignon flow (1.1) on a closed
manifold Mn and λ(t) be the first eigenvalue of the Witten-Laplace operator of g(t). If C = max

x∈M
R(0)

and
0 ≤ Ri j <

1 − (n − 2)ρ
2

Rgi j in Mn × [0,T )

then the quantity λ(t)(1 − CAt)
nρ−1

A is strictly decreasing along the Ricci-Bourguignon flow on [0,T ′)
where T ′ = min{T, 1

Cα } and A = 2
(
n( 1−(n−2)ρ

2 )2 − ρ
)
.

Proof. The proof is similar to that of Theorem 3.2 with the difference that we need to estimate the
upper bound of the right hand (3.1). Note that Ri j <

1−(n−2)ρ
2 Rgi j implies that |Ric|2 < n( 1−(n−2)ρ

2 )2R2. So
the evolution of the scalar curvature under the Ricci-Bourguignon flow evolve by

∂R
∂t

= (1 − 2(n − 1)ρ)∆R + 2|Ric|2 − 2ρR2

yields
∂R
∂t
≤ (1 − 2(n − 1)ρ)∆R + 2

(
n(

1 − (n − 2)ρ
2

)2 − ρ
)
R2. (3.11)

Applying the maximum principle to (3.11) we have 0 ≤ Rg(t) ≤ γ(t) where

γ(t) =

[
C−1 − 2

(
n(

1 − (n − 2)ρ
2

)2 − ρ
)
t
]−1

=
C

1 −CAt
on [0,T ′).

Substituting 0 ≤ Rg(t) ≤ γ(t) and Ri j < 1−(n−1)
2 Rgi j into equation (3.1) we obtain d

dtλ( f (t), t) ≤
(1−nρ)C
1−CAt λ( f (t), t) in any sufficiently small neighborhood of t0, hence the quantity λ(t)(1 − CAt)

nρ−1
A is

strictly decreasing. �
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Theorem 3.6. Let (M, g(t)), t ∈ [0,T ) be a solution of the Ricci-Bourguignon flow (1.1) on a closed
manifold Mn and ρ < 1

2(n−1) . Let λ(t) be the first eigenvalue of the Witten-Laplace operator of the metric
g(t). If there is a non-negative constant a such that

Ri j −
1 − (n − 2)ρ

2
Rgi j ≥ −agi j in Mn × [0,T ) (3.12)

and
R ≥

2a
1 − nρ

in Mn × {0} (3.13)

then λ(t) is strictly monotone increasing along the Ricci-Bourguignon flow.

Proof. By Proposition 3.1, we have

d
dt
λ( f , t)|t=t0 = (1 − nρ)λ(t0)

∫
M

R f 2dµ +

∫
M

(2Ri j − (1 − (n − 2)ρ)Rgi j)∇i f∇ j f dµ (3.14)

combining (3.12), (3.13) and (3.14), we arrive at d
dtλ( f (t), t) > 0 in any sufficiently small neighborhood

of t0, then λ( f (t1), t1) < λ( f (t0), t0) on [t1, t0]. Since λ( f (t0), t0) = λ(t0) and λ( f (t1), t1) ≥ λ(t1) we
conclude that λ(t1) < λ(t0) which show that λ(t) is strictly monotone increasing in any sufficiently small
neighborhood of t0. Since t0 is arbitrary, then λ(t) is strictly increasing along the Ricci-Bourguignon
flow on [0,T ). �

Theorem 3.7. Let (Mn, g(t)), t ∈ [0,T ) be a solution of the Ricci-Bourguignon flow (1.1) on a closed
manifold Mn with positive curvature operator and ρ < 1

2(n−1) . Let λ(t) be the first nonzero eigenvalue of
the Witten-Laplace operator of the metric g(t). Then λ(t)→ +∞ in finite time, where Ri j +∇

2φ ≥ aRgi j

in Mn × [0,T ) and a is a constant positive real number.

Proof. In [1], Bakry and Emery proved that on a closed manifold Mn, for any smooth function f ,

1
2

∆φ|∇ f |2− < ∇ f ,∇∆φ f >= |∇2 f |2 + (Ric + ∇2φ)(∇ f ,∇ f )

then by integration of both above equation, we obtain∫
M

(
(∆φ f )2 − |∇2 f |2

)
dµ =

∫
M

(Ric + ∇2φ)(∇ f ,∇ f )dµ. (3.15)

We easily get the following inequality

(∆ f )2 =
(
∆φ f + ∇φ.∇ f

)2
≥

(∆φ f )2

2
− |∇φ.∇ f |2. (3.16)

By Cauchy-Schwartz inequality, we obtain

|∇2 f |2 ≥
1
n

(∆ f )2 ≥
(∆φ f )2

2n
−
|∇φ.∇ f |2

n
, (3.17)

and |∇φ.∇ f |2 ≤ |∇φ|2|∇ f |2. On the other hand φ ∈ C2(M), then |∇φ|2 is uniformly bounded, we assume
that exist a constan real number b > 0 such that |∇φ|2 < b. Hence |∇φ.∇ f |2 ≤ b|∇ f |2, this yields

|∇2 f |2 ≥
(∆φ f )2

2n
−

b|∇ f |2

n
. (3.18)
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Recall that ∆φ f = −λ f , which implies∫
M

(∆φ f )2dµ = λ2
∫

M
f 2dµ = λ2 (3.19)

Combinnig (3.18) and (3.19), we get∫
M

(
(∆φ f )2 − |∇2 f |2

)
dµ ≤

2n − 1
2n

λ2 +
b
n
λ. (3.20)

Putting (3.20) into (3.15) results that∫
M

(Ric + ∇2φ)(∇ f ,∇ f )dµ =

∫
M

(
(∆φ f )2 − |∇2 f |2

)
dµ ≤

2n − 1
2n

λ2 +
b
n
λ. (3.21)

The inequality Ri j + ∇2φ ≥ aRgi j leads to

2n − 1
2n

(λ(t))2 +
b
n
λ(t) ≥ a

∫
M

R|∇ f |2dµ ≥ aRmin(t)λ(t), (3.22)

then
λ(t) ≥

2n
2n − 1

aRmin(t) +
2b

2n − 1
. (3.23)

Since Rmin(t) → +∞ in finite time T0 = n
2(1−nρ)α where α = min

x∈M
R(0) (see [4], Proposition 4.1) then

λ(t)→ +∞ in finite time. �

3.1. Variation of λ(t) on a surface

Now, we write Proposition 3.1 in some remarkable particular cases.

Corollary 3.8. Let (M2, g(t)), t ∈ [0,T ) be a solution of the Ricci-Bourguignon flow on a closed
surface (M2, g0) for ρ < 1

2 . If λ(t) denotes the evolution of the first eigenvalue of the Witten-Laplace
operator under the Ricci-Bourguignon flow, then

d
dt
λ( f , t)|t=t0 = (1 − 2ρ)λ(t0)

∫
M

R f 2dµ. (3.24)

Proof. In dimension n = 2, we have Ric = 1
2Rg, then (3.1) implies that

d
dt
λ( f , t)|t=t0 = (1 − 2ρ)λ(t0)

∫
M

R f 2dµ −
∫

M
R|∇ f |2dµ +

∫
M

R|∇ f |2dµ

= (1 − 2ρ)λ(t0)
∫

M
R f 2dµ.

�

Lemma 3.9. Let (M2, g(t)), t ∈ [0,T ) be a solution of the Ricci-Bourguignon flow on a closed surface
(M2, g0) with nonnegative scalar curvature for ρ < 1

2 . If λ(t) denotes the evolution of the first eigenvalue
of the Witten-Laplace operator under the Ricci-Bourguignon flow, then

λ(0)
1 − c(1 − 2ρ)t

≤ λ(t)

on (0,T ′) where c = min
x∈M

R(0) and T ′ = min{T, 1
C(1−2ρ) }.
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Proof. In dimension two we have Ric = 1
2Rg, and the evolution of the scalar curvature R on a closed

surface M under the Ricci-Bourguignon flow is

∂R
∂t

= (1 − 2ρ)(∆R + R2). (3.25)

The minimum of R satisfies the differential inequality

d
dt

Rmin ≥ (1 − 2ρ)R2
min, c = min

x∈M
R(0) (3.26)

and this inequality yields Rmin ≥
c

1−c(1−2ρ)t . Therefore

c
1 − c(1 − 2ρ)t

≤ R, on [0,T ′) (3.27)

where T ′ = min{T, 1
C(1−2ρ) }. According to (3.24) and

∫
M

f 2dµ = 1 we have

c(1 − 2ρ)λ( f , t)
1 − c(1 − 2ρ)t

≤
d
dt
λ( f , t), (3.28)

in any sufficiently small neighborhood of t0. Integrating above inequality with respect to time t, we get

λ( f (0), 0)
1 − c(1 − 2ρ)t

≤ λ(t0).

Since λ( f (0), 0) ≥ λ(0), we have λ(0)
1−c(1−2ρ)t ≤ λ(t0). Since t0 is arbitrary, then λ(0)

1−c(1−2ρ)t ≤ λ(t) on
(0,T ′). �

Lemma 3.10. Let (M2, g0) be a closed surface with nonnegative scalar curvature, then the eigenvalues
of Witten-Laplacian are increasing under the Ricc-Bourguignoni flow for ρ < 1

2 .

Proof. From [4], under the Ricci-Bourguignoni flow on a surface, we have

∂R
∂t

= (1 − 2ρ)(∆R + R2)

by the scalar maximum principle, the nonnegativity of the scalar curvature is preserved along the Ricci-
Bourguignoni flow. Then (3.24) implies that d

dtλ( f , t)|t=t0 > 0, this results that in any sufficiently small
neighborhood of t0 as I0, we get d

dtλ( f , t) > 0. On interval [t1, t0] ⊂ I0, we have λ( f (t1), t1) ≤ λ( f (t0), t0).
Since λ( f (t0), t0) = λ(t0) and λ( f (t1), t1) ≥ λ(t1) we conclude that λ(t1) ≤ λ(t0). that is the quantity λ(t)
is strictly increasing in any sufficiently small neighborhood of t0. Since t0 is arbitrary, then λ(t) is
strictly increasing along the Ricci-Bourguignon flow on [0,T ). �

3.2. Variation of λ(t) on homogeneous manifolds

In this section, we consider the behavior of the spectrum when we evolve an initial homogeneous
metric.
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Proposition 3.11. Let (Mn, g(t)) be a solution of the un-normalized Ricci flow on the smooth closed
homogeneous manifold (Mn, g0). If λ(t) denote the evaluation of an eigenvalue under the Ricci-
Bourguignoni flow, then

d
dt
λ( f , t)|t=t0 = 2

∫
M

Ric(∇ f ,∇ f )dµ − 2ρRλ(t0). (3.29)

Proof. Since the evolving metric remains homogeneous and a homogeneous manifold has constant
scalar curvature. Therefore (3.1) implies that

d
dt
λ( f , t)|t=t0 = (1 − nρ)λ(t0)R

∫
M

f 2dµ + ((n − 2)ρ − 1)R
∫

M
|∇ f |2dµ

+2
∫

M
Ric(∇ f ,∇ f )dµ = 2

∫
M

Ric(∇ f ,∇ f )dµ − 2ρRλ(t0).

�

3.3. Variation of λ(t) on 3-dimensional manifolds

In this section, we consider the behavior of λ(t) on 3-dimensional manifolds.

Proposition 3.12. Let (M3, g(t)) be a solution of the Ricci-Borguignon flow (1.1) on a closed manifold
M3 whose Ricci curvature is initially positive and there exists 0 ≤ ε ≤ 1

3 such that

Ric ≥ εRg

then the quantity e−
∫ t

0 A(τ)dτλ(t) is nondcreasing along the Ricci-Borguignon flow (1.1) on closed mani-
fold M3, where A(t) =

3β(1−3ρ)
3−2(1−3ρ)βt + (ρ − 1 + 2ε)

(
−2(1 − ρ)t + 1

α

)−1
, α = max

x∈M
R(0) and β = min

x∈M
R(0).

Proof. In [4] has been shown that the pinching inequality Ric ≥ εRg and nonnegative scalar curvature
are preserved along the Ricci-Borguignon flow (1.1) on closed manifold M3, then using (3.1) we obtain

d
dt
λ( f , t)|t=t0 ≥ (1 − 3ρ)λ(t0)

∫
M

R f 2dµ + (ρ − 1)
∫

M
R|∇ f |2dµ + 2ε

∫
M

R|∇ f |2dµ

= (1 − 3ρ)λ(t0)
∫

M
R f 2dµ + (ρ − 1 + 2ε)

∫
M

R|∇ f |2dµ,

on the other hand the scalar curvature under the Ricci-Bourguignon flow evolves by

∂R
∂t

= (1 − 4ρ)∆R + 2|Ric|2 − 2ρR2,

by |Ric|2 ≤ R2 we have
∂R
∂t
≤ (1 − 4ρ)∆R + 2(1 − ρ)R2.

Let σ(t) be the solution to the ODE y′ = 2(1 − ρ)y2 with initial value α = max
x∈M

R(0). By the maximum
principle, we have

R(t) ≤ σ(t) =

(
−2(1 − ρ)t +

1
α

)−1

(3.30)
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on [0,T ′), where T ′ = min{T, 1
2(1−ρ)α }. Also, the inequality |Ric|2 ≥ R2

3 results that

∂R
∂t
≥ (1 − 4ρ)∆R + 2(

1
3
− ρ)R2.

we assume that γ(t) be the solution to the ODE y′ = 2(1
3 − ρ)y2 with initial value β = min

x∈M
R(0). Then

the maximum principle implies that

R(t) ≥ γ(t) =
3β

3 − 2(1 − 3ρ)βt
on [0,T ). (3.31)

Hence

d
dt
λ( f , t)|t=t0 ≥ (1 − 3ρ)λ(t0)

3β
3 − 2(1 − 3ρ)βt0

+ (ρ − 1 + 2ε)λ(t0)
(
−2(1 − ρ)t0 +

1
α

)−1

= λ(t0)A(t0)

this results that in any sufficiently small neighborhood of t0 as I0, we get

d
dt
λ( f , t) ≥ λ( f , t)A(t).

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ( f (t0), t0)
λ( f (t1), t1)

>

∫ t0

t1
A(τ)dτ.

Since λ( f (t0), t0) = λ(t0) and λ( f (t1), t1) ≥ λ(t1) we conclude that

ln
λ(t0)
λ(t1)

>

∫ t0

t1
A(τ)dτ.

that is the quantity λ(t)e−
∫ t

0 A(τ)dτ is strictly increasing in any sufficiently small neighborhood of t0. Since
t0 is arbitrary, then λ(t)e−

∫ t
0 A(τ)dτ is strictly increasing along the Ricci-Bourguignon flow on [0,T ). �

Proposition 3.13. Let (M3, g(t)) be a solution to the Ricci-Bourguignon flow for ρ < 0 on a closed
homogeneous 3-manifold whose Ricci curvature is initially nonnegative, then the eigenvalues of the
Witten-Laplacian are increasing.

Proof. In dimension three the nonnegativity of the Ricci curvature is preserved under the Ricci-
Bourguignon flow [4]. From (3.29), its implies that λ(t) is increasing. �

4. Example

In this section, we show that the variational formula is effective to derive some properties of the
evolving spectrum of the Witten-Laplace operator and then we find λ(t) for some of Riemannian man-
ifolds.
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Example 4.1. Let (Mn, g0) be an Einstein manifold i.e. there exists a constant a such that Ric(g0) = ag0.
Assume that we have a solution to the Ricci-Bourguignon flow which is of the form

g(t) = u(t)g0, u(0) = 1

where u(t) is a positive function. We compute

∂g
∂t

= u′(t)g0, Ric(g(t)) = Ric(g0) = ag0 =
a

u(t)
g(t), Rg(t) =

an
u(t)

,

for this to be a solution of the Ricci-Bourguignon flow, we require

u′(t)g0 = −2Ric(g(t)) + 2ρRg(t)g(t) = (−2a +
2ρan
u(t)

)g0

this shows that
u′(t) = −2a +

2ρan
u(t)

,

therefore satisfies

e2at+u(t)−1
(
u(t) − ρn
1 − ρn

)ρn

= 1,

so g(t) is an Einstein metric. Using equation (3.1), we obtain the following relation

d
dt
λ( f , t)|t=t0 = (1 − nρ)

an
u(t0)

λ(t0)
∫

M
f 2dµ + ((n − 2)ρ − 1)

an
u(t0)

∫
M
|∇ f |2dµ + 2

a
u(t0)

∫
M
|∇ f |2dµ.

or equivalently
d
dt
λ( f , t)|t=t0 =

2a(1 − nρ)λ(t0)
u(t0)

this results that in any sufficiently small neighborhood of t0 as I0, we get

d
dt
λ( f , t) =

2a(1 − nρ)λ( f , t)
u(t)

Integrating the last inequality with respect to t on [t1, t0] ⊂ I0, we have

ln
λ( f (t0), t0)
λ( f (t1), t1)

=

∫ t0

t1

2a(1 − nρ)
u(τ)

dτ

Since λ( f (t0), t0) = λ(t0) and λ( f (t1), t1) ≥ λ(t1) we conclude that

ln
λ(t0)
λ(t1)

>

∫ t0

t1

2a(1 − nρ)
u(τ)

dτ

that is the quantity λ(t)e−
∫ t

0
2a(1−nρ)

u(τ) dτ is strictly increasing along the Ricci-Bourguignon flow on [0,T ).
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