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Abstract: A higher order phase field free energy leads to higher order differential equations. The
surface tension involves L2 norms of higher order derivatives. An analysis of dimensionless variables
shows that the surface tension satisfies a Clairaut’s equation in terms of the coefficients of the higher
order phase field equations. The Clairaut’s equation can be solved by characteristics on a suitable sur-
face in the RN space of coefficients. This perspective may also be regarded as interpreting dimensional
analysis through Clairaut’s equation. The surface tension is shown to be a homogeneous function of
monomials of the coefficients.
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1. Introduction

A major challenge in many applied mathematical problems, such as those arising from materials
science, is the need to compute large systems of equations. When the problems are cast in terms of
ordinary differential equations (usually by imposing some symmetry), this is equivalent to studying
equations with higher order derivatives. If one could approximate these higher order differential equa-
tions by second order equations, it would be a considerable simplification. Many problems in applied
mathematics are associated with interfaces or moving boundaries, and surface tension often plays an
important role in those problems [11] as a stabilizing agent for interfaces that would otherwise be
highly unstable (e.g., dendritic behavior [2, 9, 4]). In a recent paper, quantum field theoretic renor-
malization methods were used to approximate higher order ODEs by second order counterparts [6]. A
related issue is whether one can approximate solutions of one higher order equation with those of an-
other with different, e.g., smaller coefficients, that can be used in conjunction with the renormalization
methods cited above.

In this paper, we consider a prototype free energy of the phase field type that has been studied in
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several papers including [5, 10], and the resulting differential equations that follow from minimization
of this free energy. In particular we show that the suface tension σ as a function of rescaled coefficients
satisfies Clairaut’s equation that can be solved by the method of charactertics. This means that if one
knows the surface tension for a suitable surface Γ in the coefficient space, then one can solve for σ for
all values of the parameters.

This methodology can be viewed as complementary to those of [6] involving reduction in the order
of the differential equation.

2. The Free Energy and Higher Order Phase Field Equations.

We consider the simplest free energy functional that has the necessary features (see [10, 5]). Let
φ ∈ CN (R) and let the jth derivative of φ in x by denoted by either D jφ or φ( j). Let φ satisfy the boundary
conditions

φ( j) (±∞) = 0 (2.1)

and define W as the standard double well potential with minima at φ := ±φ0, e.g.,

W (φ) :=
(
φ2 − 1

)2
.

A free energy, F
[
φ
]
, is defined by

F
[
φ
]

:=
∫
R

F
(
x, φ (x) , ...,DNφ (x)

)
dx (2.2)

F
[
x, φ (x) , ..., φ(N) (x)

]
=

1
2

N∑
j=1

(−1) j+1 c2 j

{
D jφ (x)

}2
+ W (φ (x)) .

This free energy arises from an averaging process in the statistical mechanics of a two state system,
where φ represents an order parameter that makes a transition from the lower energy phase (e.g., solid)
at −1 (more generally φ−) to +1 (more generally φ+).

The higher order phase field equations are obtained from this free energy. For a smooth test function
that also satisfies the same boundary conditions as φ, the functional derivative is evaluated as

∂

∂ε
F

[
φ + εη

]
|ε=0 =

∂

∂ε

∫
R

F
[
x, φ (x) + εη (x) , ..., φ(N) (x) + εη(N) (x)

]
dx|ε=0

=

∫
R

N∑
j=1

c2 j (−1) j+1 D jφ (x) D jη (x) + W ′ (φ (x)) η (x) dx.

Upon performing integration by parts and setting this expression to zero, one has

0 =
∂

∂ε
F

[
φ + εη

]
|ε=0 =

∫
R

− N∑
j=1

c2 jD2 jφ (x) + W ′ (φ (x))

 η (x) dx.

Since this is true for all test functions η, one has the ODE,

−

N∑
j=1

c2 jD2 jφ (x) + W ′ (φ (x)) = 0. (2.3)
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The surface tension in physical terms is usually described in (in arbitrary physical dimension) as the
difference in a small cylindrical volume along the surface, normalized by the cross-sectional area of
the cylinder. The difference between the free energy obtained by integrating over the cylinder minus
the average of the free energy of the two phases is normalized by the area. With Fcyl

[
φ
]

denoting this
free energy one can write (see e.g., [3] or [5])

σ ∼
Fcyl

[
φ
]
− 1

2

{
Fcyl

[
φ+

]
+ Fcyl

[
φ−

]}
Cross S ectional Area

. (2.4)

In the context of our one-dimensional analysis using a symmetric W, we note that the two terms in-
volving the pure phases vanish, and the integral over this cylinder can be regarded as one-dimensional
after the division.

Recalling the comment above that the W (φ±) terms vanish, it is evident that in one-dimension (or a
physical setting with this symmetry) the definition can be interpreted as the free energy of the transition
layer solution, φ. Thus we can write the mathematical definition as follows.

Definition. Given a set of non-negative coefficients, let φ be a solution to (2.3) subject to boundary
conditions (2.1), the surface tension σ (c2, ..., c2N) is defined by

σ (c2, ..., c2N) = F
[
φ
]
. (2.5)

Proposition. The surface tension defined by (2.5) can be expressed as

σ (c2, ..., c2N) =

N∑
j=1

(−1) j+1 jc2 j

∥∥∥D jφ
∥∥∥2

L2(R) (2.6)

where ‖ f ‖L2(R) is the usual L2 norm, i.e., ‖ f ‖L2(R) :=
∫
R
| f |2 dx.

Remarks. Mathematically, the surface tension is well-defined so long as one has a solution to the
equation (2.3). The connection between the two definitions is easily understood (see [7, 5]) in light of
the calculations in the proof below, which was presented in [7].

Proof. First we derive an identity by muliplying (2.3) by Dφ and integrating over (−∞, x)∫ x

−∞

−

N∑
j=1

c2 j

{
D2 jφ (z)

}
{Dφ (z)} + Dφ (z) W ′ (φ (z)) dz = 0. (2.7)

The term involving W ′ is an exact differential, d
dzW (φ (z)) . Noting the identity [7]

D2 jφDφ = D

 (−1) j−1

2

(
D jφ

)2
+ (−1)

j−1∑
k=1

(−1)k−1 D2 j−kφDkφ


one observes that the left hand side is also an exact identity, yielding,

N∑
j=1

c2 j

 (−1) j−1

2

(
D jφ

)2
+ (−1)

j−1∑
k=1

(−1)k−1 D2 j−kφDkφ

 = W (φ) .

AIMS Mathematics Volume 2, Issue 2, 207-214



210

Note that all terms vanish at −∞ due to the boundary conditions.
Now we integrate this expression over (−∞,∞) and obtain after integrating by parts j − k times in

the second term on the left hand side

N∑
j=1

c2 j
(−1) j−1

2

∥∥∥D jφ
∥∥∥2

+ c2 j

j−1∑
k=1

(−1)k−1 (−1) j−k
∥∥∥D jφ

∥∥∥2


=

∫ ∞

−∞

W (φ (x)) dx.

Simplifying this expression yields

N∑
j=1

(
j −

1
2

)
(−1) j−1 c2 j

∥∥∥D jφ
∥∥∥2

=

∫ ∞

−∞

W (φ (x)) dx. (2.8)

Using this identity, the free energy (2.2) and the expression (2.5), σ can be written as

σ (c2, ..., c2N) =

∫ ∞

−∞

1
2

N∑
j=1

(−1) j+1 c2 j

{
D jφ (x)

}2
+ W (φ (x)) dx

=

N∑
j=1

(−1) j+1 jc2 j

∥∥∥D jφ
∥∥∥2
, (2.9)

where the last expression is obtained by substituting (2.8) for the W term. ///

3. Surface tension and dimensional analysis.

Within this mathematical setting we have been using reduced dimensional parameters. The order
parameter, φ, is assumed to be dimensionless, as usual. With x having units of length (we write x ∼ L),
the coefficients c2 j have units of L2 j as is clear from (2.3). The surface tension in the form (2.6) is
defined as having units of length (as is typical in the reduced units used in physics) since

c2 j

∥∥∥D jφ
∥∥∥2

L2(R) = c2 j

∫
R

∣∣∣D jφ
∣∣∣2 dx ∼ L2 jL−2 j+1 = L.

The variables with units of length are c1/(2n)
2n and σ. We define

z1 := c1/2
2 , ..., zN := c1/(2N)

2N

A set of dimensionless variables are

Π0 =
σ

z1
, Π1 =

z2

z1
, ...,ΠN−1 =

zN

z1
. (3.1)

The basic principle of dimensional analysis [1] is that a dimensionless quantity such as Π0 can only
depend on other dimensionless quantities, namely, Π1, ...,ΠN−1 through some function G :

Π0 = G (Π1, ...,ΠN−1) (3.2)
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Assuming a smooth solution φ to the phase field equation, (2.3), one can see from (2.5) or (2.6) that G
is differentiable in z1 so we can write

∂Π0

∂z1
=

N−1∑
j=1

∂G
∂Π j

∂Π j

∂z1
=

N−1∑
j=1

∂G
∂Π j

(
−

z j+1

z2
1

)
. (3.3)

For k ≥ 2, we have similarly
∂Π0

∂zk
=

∂G
∂Πk−1

∂Πk−1

∂zk
=

∂G
∂Πk−1

(
1
z1

)
(3.4)

Using (3.3) and (3.4) together, one obtains

∂Π0

∂z1
=

N−1∑
j=1

z1
∂Π0

∂z j+1

(
−

z j+1

z2
1

)
. (3.5)

At this point we regard σ as a function of the z j rather than the c2 j . In other words, we define
σ̃ (z1, ..., zN) = σ (c2, ..., c2N) and subsequently drop the tilda, as we will only use surface tension as a
function of the z j below. Also, by using the definition of Π0 we have for k ≥ 2, we use the identity
expressed by the definition of Π0 so Π0 = σ (z1, ..., zn) /z1 with derivatives

∂Π0

∂z1
=
∂
(
σ
z1

)
∂z1

= −
1
z2

1

σ +
1
z1

∂σ

∂z1
, (3.6)

∂Π0

∂zk
=
∂
(
σ
z1

)
∂zk

=
1
z1

∂σ

∂zk
.

Thus one obtains

−
1
z2

1

σ +
1
z1

∂σ

∂z1
= −

1
z1

N−1∑
j=1

z j+1
∂Π0

∂z j+1
= −

1
z1

N−1∑
j=1

z j+1
1
z1

∂σ

∂z j+1

= −
1
z2

1

N∑
j=2

z j
∂σ

∂z j
.

Rewriting this by multiplying by z2
1 we have

N∑
j=1

z j
∂σ

∂z j
= σ, or, z · ∇σ = σ (3.7)

Hence this is in the form of a Clairaut’s equation [8].

4. Solution to Clairaut’s equation for surface tension.

Clairaut’s equation, (3.7) is a first order nonlinear partial differential equation that can be solved by
the well-known method of characteristics (see e.g., [8]). In order to obtain a solution in RN (actually
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the portion of RN where each zi is non-negative) we will need to have a surface of ”initial conditions”
Γ described below.

Definition. An acceptable manifold Γ is a smooth surface in RN such that the tangent plane to Γ

at any point ~s ∈ Γ intersects at a nonzero angle with any ray ~v emanating from the origin and going
through an arbitrary point

(
z0

1, z
0
2, ..., z

0
N

)
such that z0

i ≥ 0.
We define the coordinates (r, s) with r ∈ R, s ∈ RN−1 that form a new coordinate system

(r (z1, .., zN) , s (z1, .., zN)) , σ̂ (r, s) = σ (z1, ..., zN) (4.1)

and use the chain rule to obtain,

∂σ̂

∂r
=
∂σ

∂z1

∂z1

∂r
+ ... +

∂σ

∂zN

∂zN

∂r
.

One has then, from the standard methods of characteristics,

dz1

dr
= z1 , so, z1 (r; s) = C1 (s) er,

... (4.3)
dzN

dr
= zN , so, zN (r; s) = CN (s) er,

dσ
dr

= σ, so, σ (r; s) = CN+1 (s) er.

Next, we need to satisfy the ”initial conditions” i.e., the values on the surface (z1, ..., zn) ∈ Γ ⊂ RN

where σ is specified. For the zi variables, we make the choice that when s ∈ Γ, we have r = 0. Hence,
we have σ (0, s) =: σ0 (s) as the conditions on the surface Γ, yielding the solutions

z1 (r; s) = C1 (s) er, ..., zN (r, s) = CN (s) er,

σ (r; s) = σ0 (s) er.

with characteristics defined by
z1 (r; s)
z2 (r; s)

=
C1 (s)
C2 (s)

, ....

This means that there is a fixed ratio of zi to z j for all i, j ∈ {1, ...,N}.
In summary, one can solve for all σ (z1, ..., zN) in the subset RN

+ ⊂ R
N for which all of the z j are

nonnegative provided we specify the values of σ (z1, ..., zN) on a surface Γ ⊂ RN
+ that is convex, and

each point of Γ intersects at a non-zero angle with each ray that emanates from the origin. If the surface
Γ is not convex, then the characteristics may intersect so that we obtain only local solutions.

5. Surface tension and homogeneous functions

We let Ω ⊂ RN
+ be an open cone, i.e., if z ∈ Ω is in the set then so is tz , where RN

+ :={
z ∈ RN : z j > 0

}
.
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Definition. For any scalar k a real-valued function f (z1, ..., zn) with (z1, ..., zn) ∈ Ω is homogeneous
of degree k if

f (tz1, ..., tzn) = tk f (z1, ..., zn) f or all t > 0. (5.1)

We recall two classical results.
Theorem. Let f be a C1 function on an open cone in Rn. If f is homogeneous of degree k then its

first order partial derivatives are homogeneous of degree k − 1.

Theorem. Let f : Ω → R be a continuously differentiable function. Then the following are
equivalent:

(1) f is a homogeneous function of degee k;
(2) f satisfies for z ∈ Ω, the equation

n∑
j=1

z j
∂ f (z)
∂z j

= k f (z) . (5.2)

We now apply these concepts to the surface tension. Since σ (z) satisfies (3.7), the theorem implies
that σ is homogeneous of degree 1. Hence, all of its partial derivatives are of degree 0. Hence we have
the relation, for any j ∈ {1, ..., n}

z1
∂

∂z1

(
∂σ

∂z j

)
+ ... + zn

∂

∂zn

(
∂σ

∂z j

)
= 0. (5.3)

Hence, each of the partial derivatives ∂σ/∂z j satisfies the homogeneous Clairot’s equation, ~z · ~∇σ = 0
. Stated differently, the fact that the derivatives are homogeneous of order 0 means that for any t > 0
one has

∂σ

∂z j
(tz1, ..., tzn) =

∂σ

∂z j
(z1, ..., zn) ,

i.e., the partial derivative is constant along the entire ray
{
tz : t > 0, z ∈ Rn

+

}
.

One can also obtain similar results for a particular subspace. For example, if n = 3, and we set
z2 = 0 then one has similar results on the z1z3 plane.
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