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Abstract: In this paper, for a given matrix A = (ai j) ∈ Cn×n, in terms of ri and ci, where ri =
n∑

j=1, j,i

∣∣∣ai j

∣∣∣, ci =
n∑

j=1, j,i

∣∣∣a ji

∣∣∣, some new inclusion sets for singular values of a matrix are established. It is

proved that the new inclusion sets are tighter than the Geršgorin-type sets [1] and the Brauer-type sets
[2]. A numerical experiment show the efficiency of our new results.
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1. Introduction

Singular values and the singular value decomposition play an important role in numerical analysis
and many other applied fields[3, 4, 5, 6, 7, 8]. First, we will use the following notations and definitions.
Let N := {1, 2, . . . , n}, and assume n ≥ 2 throughout. For a given matrix A = (ai j) ∈ Cn×n, we define
ai = |aii|, si = max{ri, ci} for any i ∈ N and u+ = max{0, u}, where

ri :=
n∑

j=1, j,i

∣∣∣ai j

∣∣∣, ci :=
n∑

j=1, j,i

∣∣∣a ji

∣∣∣.
In terms of si, the Geršgorin-type, Brauer-type and Ky-Fan type inclusion sets of the matrix

singular values are given in [2, 1, 9, 10], we list the results as follows.

Theorem 1 If a matrix A = (ai j) ∈ Cn×n, then
(i) (Geršgorin-type, see [1]) all singular values of A are contained in

C(A) :=
n⋃

i=1

Ci with Ci = [(ai − si)+, (ai + si)] ∈ R. (1.1)
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(ii) (Brauer-type, see [2]) all singular values of A are contained in

D(A) :=
n⋃

i=1

n⋃
j=1, j,i

{z ≥ 0 : |z − ai||z − a j| ≤ sis j}. (1.2)

(iii) (Ky Fan-type, see [2]) Let B = (bi j) ∈ Rn×n be a nonnegative matrix satisfying bi j ≥ max|ai j|, |a ji|

for any i , j, then all singular values of A are contained in

E(A) :=
n⋃

i=1

{z ≥ 0 : |z − ai| ≤ ρ(B) − bii}.

We observe that, all the results in Theorem 1 are based on the values of si = max{ri, ci}, if ri � ci

or ri � ci, all these singular values localization sets in Theorem 1 become very crude. In this paper,
we give some new singular values localization sets which are based on the values of ri and ci. The
remainder of the paper is organized as follows. In Section 2, we give our main results. In Section 3,
some comparisons and illustrative example are given.

2. New inclusion sets for singular values.

Based on the idea of Li in [2], we give our main results as follows.

Theorem 2 If a matrix A = (ai j) ∈ Cn×n, then all singular values of A are contained in

Γ(A) := Γ1(A)
⋃

Γ2(A),

where

Γ1(A) :=
n⋃

i=1

{
σ ≥ 0 :

∣∣∣σ2 − |aii|
2
∣∣∣ ≤ |aii| ri(A) + σci(A)

}
,

and

Γ2(A) :=
n⋃

i=1

{
σ ≥ 0 :

∣∣∣σ2 − |aii|
2
∣∣∣ ≤ |aii| ci(A) + σri(A)

}
.

Proof. Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors x =

(x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t such that

σx = A∗y and σy = Ax. (2.1)

Denote
|xp| = max{|xi|, 1 ≤ i ≤ n}, |yq| = max{|yi|, 1 ≤ i ≤ n},

and xq is the q-th element in the vector x = (x1, x2, . . . , xn)t.
The q-th equations in (2.1) imply

σxq − aqqyq =

n∑
j=1, j,q

a jqy j, (2.2)
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σyq − aqqxq =

n∑
j=1, j,q

aq jx j. (2.3)

Solving for yq we can get

(
σ2 − aqqaqq

)
yq = aqq

n∑
j=1, j,q

a jqy j + σ

n∑
j=1, j,q

aq jx j. (2.4)

Taking the absolute value on both sides of the equation and using the triangle inequality yields

∣∣∣σ2 − |aqq|
2
∣∣∣ |yq| ≤ |aqq|

n∑
j=1, j,q

|a jq||y j| + σ

n∑
j=1, j,q

|aq j||x j|

≤ |aqq|

n∑
j=1, j,q

|a jq||yq| + σ

n∑
j=1, j,q

|aq j||xp|. (2.5)

If |xp| ≤ |yq|, we can get ∣∣∣σ2 − |aqq|
2
∣∣∣ ≤ |aqq|cq(A) + σrq(A).

Similarly, if |yq| ≤ |xp|, we can get∣∣∣σ2 − |app|
2
∣∣∣ ≤ ∣∣∣app

∣∣∣ rp(A) + σcp(A).

Thus, we complete the proof. �
Remark 1 Since

|aii| ri(A) + σci(A) ≤ (|aii| + σ) si,

and
|aii| ci(A) + σri(A) ≤ (|aii| + σ) si.

Therefore, the inclusion sets in Theorem 2 are always tighter than the inclusion sets in Theorem 1 (i).
That is to say, our results in Theorem 2 are always better than the results in Theorem 1 (i).

Theorem 3 If a matrix A = (ai j) ∈ Cn×n, then all singular values of A are contained in

∆(A) := ∆1(A)
⋃

∆2(A),

where

∆1(A) =

n⋃
i=1, j=1

{
σ ≥ 0 :

(∣∣∣σ2 − |aii|
2
∣∣∣ − |aii|ci(A)

) ∣∣∣σ2 − |a j j|
2
∣∣∣ ≤ σri(A)

(
σc j(A) + |a j j|r j(A)

)}
,

∆2(A) =

n⋃
i=1, j=1

{
σ ≥ 0 :

∣∣∣σ2 − |aii|
2
∣∣∣ (∣∣∣σ2 − |a j j|

2
∣∣∣ − |a j j|r j(A)

)
≤ σc j(A) (σri(A) + |aii|ci(A))

}
.

Proof. Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors x =

(x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t such that

σx = A∗y and σy = Ax. (2.6)
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Denote
|xp| = max{|xi|, 1 ≤ i ≤ n}, |yq| = max{|yi|, 1 ≤ i ≤ n}.

Similar to the proof of Theorem 2, the q-th equations in (2.6) imply∣∣∣σ2 − |aqq|
2
∣∣∣ |yq| ≤ |aqq|

n∑
j=1, j,q

|a jq||y j| + σ

n∑
j=1, j,q

|aq j||x j|

≤ |aqq|

n∑
j=1, j,q

|a jq||yq| + σ

n∑
j=1, j,q

|aq j||xp|. (2.7)

That is, ∣∣∣σ2 − |aqq|
2
∣∣∣ − |aqq|

n∑
j=1, j,q

|a jq|

 |yq| ≤ σ

n∑
j=1, j,q

|aq j||xp|. (2.8)

If |xp| ≤ |yq|, the p-th equations in (2.6) imply

0 ≤
∣∣∣σ2 − |app|

2
∣∣∣ |xp| ≤

σ n∑
j=1, j,p

|a jp| + |app|

n∑
j=1, j,p

|qp j|

 |yq|. (2.9)

Multiplying inequalities (2.8) with (2.9), we have(∣∣∣σ2 − |aqq|
2
∣∣∣ − |aqq|cq(A)

) ∣∣∣σ2 − |app|
2
∣∣∣ ≤ σrq(A)

(
σcp(A) + |app|rp(A)

)
.

Similarly, if |xp| ≥ |yq|, we can get∣∣∣σ2 − |aqq|
2
∣∣∣ (∣∣∣σ2 − |app|

2
∣∣∣ − |app|rp(A)

)
≤ σcp(A)

(
σrq(A) + |aqq|cq(A)

)
.

Thus, we complete the proof. �
We now establish comparison results between ∆(A) and Γ(A).
Theorem 4 If a matrix A = (ai j) ∈ Cn×n, then

σ(A) ∈ ∆(A) ⊆ Γ(A).

Proof. Let z be any point of ∆1(A). Then there are i, j ∈ N such that z ∈ ∆1(A) , i.e.,(∣∣∣z2 − |aii|
2
∣∣∣ − |aii|ci(A)

) ∣∣∣z2 − |a j j|
2
∣∣∣ ≤ zri(A)

(
zc j(A) + |a j j|r j(A)

)
. (2.10)

If zri(A)
(
zc j(A) + |a j j|r j(A)

)
= 0, then∣∣∣z2 − |aii|

2
∣∣∣ − |aii| ci(A) = 0,

or ∣∣∣z2 − |a j j|
2
∣∣∣ = 0.

Therefore, z ∈ Γ1(A)
⋃

Γ2(A). Moreover, If zri(A)
(
zc j(A) + |a j j|r j(A)

)
> 0, then from inequality (2.10),

we have ∣∣∣z2 −
∣∣∣a2

ii

∣∣∣∣∣∣ − |aii| ci(A)

zri(A)

∣∣∣z2 −
∣∣∣a2

j j

∣∣∣∣∣∣
zc j(A) + |a j j|r j(A)

≤ 1. (2.11)
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Hence, from inequality (2.11), we have that∣∣∣z2 −
∣∣∣a2

ii

∣∣∣∣∣∣ − |aii| ci(A)

zri(A)
≤ 1,

or ∣∣∣z2 −
∣∣∣a2

j j

∣∣∣∣∣∣
zc j(A) + |a j j|r j(A)

≤ 1.

That is, z ∈ Γ1(A) or z ∈ Γ2(A), i.e., z ∈ Γ(A). Similarly, if z be any point of ∆2(A), we can get z ∈ Γ(A).
Thus, we complete the proof. �
Example 1. Let [

1 4
0.1 0.5

]
.

The singular values of A are σ1 = 4.1544 and σ2 = 0.0241. The singular value inclusion sets C(A),
D(A), Γ(A) and the exact singular values are drawn in Figure 1. From Figure 1, we can say, all the
singular values are contained in the singular value inclusion sets C(A), D(A), Γ(A), but the inclusion
sets Γ(A) are more tighter than the inclusion sets C(A), D(A). That is to say, the results in Theorem 2
are better than the results in Theorem 1 for certain examples.

The singular value inclusion sets Γ(A), ∆(A) and the exact singular values are drawn in Figure 2.
From Figure 2, we can say, all the singular values are contained in the singular value inclusion sets
Γ(A), ∆(A), but the inclusion sets ∆(A) are more tighter than the inclusion sets Γ(A). That is to say, the
results in Theorem 3 are always better than the results in Theorem 2, which are shown in Theorem 4.
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Figure 1. Comparisons of Theorem 1 (i), Theorem 1 (ii) and Theorem 2 for example 1.
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Figure 2. Comparisons of Theorem 2 and Theorem 3 for example 1.

3. Conclusion

In this paper, some new inclusion sets for singular values are given, theoretical analysis and numer-
ical example show that these estimates are more efficient than recent corresponding results in some
cases.
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