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1. Introduction

G. Caginalp proposed in [3] and [4] two phase-field system, namely,

%—Au+f(u) =T, (1.1)
oT ou
— — AT = ——, 1.2
ot ot (1.2)
called nonconserved system, and
ou ,
E+A u—Af(u) = -AT, (1.3)
oT ou
— AT = —— 1.4
ot or’ (14)

called concerved system (in the sense that, when endowed with Neumann boundary conditions, the
spacial average of u is conserved). In this context, u is the order parameter, 7 is the relative temper-
ature (defined as T = T — Ty, where T is the absolute temperature and Ty is the equilibrium melting
temperature) and f is the derivative of a double-well potential F (a typical choice is F(s) = %(s2 - 1),
hence the usual cubic nonlinear term f(s) = s°> — s). Furthermore, we have set all physical parame-
ters equal to one. These systems have been introduced to model phase transition phenomena, such as
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melting-solidication phenomena, and have been much studied from a mathematical point of view. We
refer the reader to, e.g., [3,4, 5, 8,9, 10, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25].
Both systems are based on the (total Ginzburg-Landau) free energy

1 1
Yo, = f (IVul* + F(u) — uT - =T*)dx, (1.5)
o2 2

where (Q is the domain occupied by the system (we assume here that it is a bounded and regular domain
of R?, with boundary I'), and the enthalpy

H=u+T. (1.6)

As far as the evolution equations for the order parameter are concerned, one postulates the relaxation
dynamics (with relaxation parameter set equal to one)

ou D\PGL

- _ , 1.7
ou Du (L7
for the nonconserved model, and
ou DlPGL
—Z=A , 1.8
ou Du (1.8)

D
for the conserved one, where Du denotes a variational derivative with respect to u, which yields (1.1)
u
and (1.3), respectively. Then, we have the energy equation
OH

= ~diva, (1.9)

where ¢ is the heat flux. Assuming finally the usual Fourier law for heat conduction,
qg=-VT, (1.10)

we obtain (1.2).

In (1.5), the term |Vu|* models short-ranged interactions. It is however interesting to note that such
a term is obtained by truncation of higher-order ones; it can also be seen as a first- order approximation
of a nonlocal term accounting for long-ranged interactions [11].

G. Caginalp and Esenturk recently proposed in [6] (see also [20]) higher-order phase-field models
in order to account for anisotropic interfaces (see also [7] for other approaches which, however, do
not provide an explicit way to compute the anisotropy). More precisely, these autors proposed the
following modified (total) free energy

1 < 1
¥ = — 24+ F(u)—uT — =T? 1.11
HOGL L(zl;wzlz]iaﬁwﬂm +F) —ul = 5T)dx, keN, (1.11)
where, for 8 = (ky, k2, k3) € N U {0})°,
1Bl = ki + ko + k3
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and, for g8 # (0,0,0),
ob

= ki o ko o k3
0x,'0x570x,

(we agree that D00y = ),

A. Miranville studied in [17] the corresponding nonconserved higher-order phase-field system.

As far as the conserved case is concerned, the above generalized free energy yields, procceding as
above, the following evolution equation for the order parameter u:

oa

= (1.12)

Oou d . 5 Oa
- _ —1) By — = _A(— —
5 A iél( 1) le:i agD"u — Af(u) = —A( 5 A

In particular, for £ = 1 (anisotropic conserved Caginalp phase-field), we have an equation of the

form
2

ou 2 5 oa Oa
—+A i— — A =-A(— -A—
o1 Z Qg ~ A = A =A%)
and, for k = 2 (fourth-order anisotropic conserved Caginalp phase-field system), we have an equation
of the form

ou > 0*u 3 0*u oa o
— —-A i—— + A bi— — A = -A(— - A—).
or ,Zl o202 Z‘ gz~ MW =8 —AG)

L. Cherfils A. Miranville and S. Peng have studied in [8] the corresponding higher-order isotropic
equation (without the coupling with the temperature), namely, the equation

ou
5 AP(=ANu — Af(u) =0,

where
k

P(s)= ) as', @ >0, k>1,

i=1

endowed with the Dirichlet/Navier boundary conditions
u=Au=..=ANu=0 on T.

Our aim in this paper is to study the model consisting of the higher-order anisotropic equation (1.12)
and the temperature equation

2 2
o0« o0~«a Aa—a—Aa: ou

— -A— - -—. 1.1
or? or? ot ot (1.13)

In particular, we obtain the existence and uniqueness of solutions.
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2. Setting of the problem

We consider the following initial and boundary value problem, for k € N, k > 2 (the case k = 1 can
be treated as in the original conserved system; see, e.g., [23]):

ou d ‘ o O
——A ) (1) Pu— A = -A(— - A—), 2.1
o Zl< )L&Z:iaw u=Af() = ~Alo- — A=) 2.1)
Pa Pa o ou
— - A— -A— - = - 2.2
or "o T CYT Tar 22)
DPu=a=0 on T, 1Bl < k, (2.3)
oa
Uli—o = up, ali=o = o, 6—|z:0 = a;. (2.4)
t
We assume that
ag >0, |Bl=k, (2.5)
and we introduce the elliptic operator A; defined by
(A, W@ = ), as(DPv, DPw)), (2.6)

IBi=k

where H*(Q) is the topological dual of H(Q). Furthermore, ((,.)) denotes the usual L*-scalar product,
with associated norm ||.||. More generally, we denote by ||.||x the norm on the Banach space X; we
also set ||.||-1 = ||(—A)‘%.||, where (—A)~! denotes the inverse minus Laplace operator associated with
Dirichlet boudary conditions. We can note that

(v,w) € HY(Q)? = ) ag((DPv, DPw))
1BI=k

is bilinear, symmetric, continuous and coercive, so that
Ay HY(Q) — H*(Q)

is indeed well defined. It then follows from elliptic regularity results for linear elliptic operators of
order 2k (see [1] and [2]) that A, is a strictly positive, selfadjoint and unbounded linear operator with
compact inverse, with domain
D(Ay) = H*(Q) N Hy(Q),
where, for v € D(Ay),
A = (=1 ) agD%v.
1BI=k

1 1
We further note that D(A?) = H5(Q) and, for (v,w) € D(A})?,

(Al Alw) = Y as(DPv, DPw)).
1BI=k
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1
We finally note that (see, e.g., [24]) ||A¢.|| (resp., [|A].]]) is equivalent to the usual H*-norm (resp.,
1
H*-norm) on D(Ay) (resp., D(A})).
Similarly, we can define the linear operator A, = —AA;

A HPN(Q) —» H(Q)

which is a strictly positive, selfadjoint and unbounded linear operator with compact inverse, with do-
main
D(A,) = H**(Q) n Hg™ (),
where, for v € D(Ay),
A = (=AY agDy.
1BlI=k

1 _1
Furthermore, D(A}) = H’g“(Q) and, for (v,w) € D(A}),

(A Aiw) = > as(VDPv, VD).
=k

_ 1 _

Besides ||A.|| (resp., |[A7.]) is equivalent to the usual H**?-norm (resp., H**'-norm) on D(A) (resp.,
1

D(A?)). )
We finally consider the operator A; = (—A)~'A;, where

Ay HEY(Q) —» H(Q);
note that, as —A and A, commute, then the same holds for (—A)~! and A, so that A, = Ay(—-A)~".
We have the (see [17])

Lemme 2.1. The operator A, is a strictly positive, selfadjoint and unbounded linear operator with
compact inverse, with domain

D(Ay) = H*2(Q) n Hy ' (Q),

where, for v € D(A)

A = (1" Y agD¥(-A) v,
1Bl=k

1 1
Furthermore, D(A}) = Hy"'(Q) and, for (v,w) € D(A}),

(Ahv,Abw) = 3 ap(DP0) v, DP=8) )
1BI=k

_ 1 s

Besides ||Ai.|| (resp., A} .\|) is equivalent to the usual H*~-norm (resp., H*"'-norm) on D(Ay) (resp.,
~1

D(A?)).
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Proof. We first note that A, clearly is linear and unbounded. Then, since (—A)™! and A; commute, it
easily follows that A; is selfadjoint.
Next, the domain of A; is defined by

D(Ay) = (v e Hy (Q), A € LX(Q)}.

Noting that A,y = £, f € L*(Q), v € D(Ay), is equivalent to Ay = —Af, where —Af € H>(Q), it follows
from the elliptic regularity results of [1] and [2] that v € H*"(Q), so that D(A;) = H*2(Q)NH: ().
Noting then that A;' maps L*(Q) onto H*7*(Q) and recalling that k > 2, we deduce that A; has
compact inverse.
We now note that, considering the spectral properties of —A and A (see, e.g., [24]) and recalling
that these two operators commute, —A and A, have a spectral basis formed of common eigenvectors.
This yields that, Vs, s, € R, (-=A)* and Af commute.

1 1 1 1
Having this, we see that A} = (—A)‘%A,f, so that D(A}) = Hi™'(Q), and for (v, w) € D(A})?,

(A v, Agw) = D ag(DP(=A) v, DA(=A) T w)).
1BI=k

Finally, as far as the equivalences of norms are concerned, we can note that, for instance, the norm

1 . _
lA; .|l is equivalent to the norm ||(—A)_%.||Hk(g) and, thus, to the norm ||(—A)%.|I.

O
Having this, we rewrite (2.1) as
ou o o
— —AAju— AByu— A = -A(— - A— 2.7
o KU wu — Af(u) (at at), (2.7)
where
k-1
By = (-1) ) agD%v.
i=1 Bi=i
As far as the nonlinear term f is concerned, we assume that
feC*®R), f(0)=0, (2.8)
f, = —Co, Co= 0, (29)
f)s=>cF(s)—c;2—-c3, ¢1>0, ¢, ¢320, seR, (2.10)
F(s)>cs*—cs, ¢4>0, ¢520, seR, (2.11)

where F(s) = fos f(r)dr. In particular, the usual cubic nonlinear term f(s) = s> — s satisfies these
assumptions.

Throughout the paper, the same letters ¢, ¢’ and ¢”” denote (generally positive) constants which may
vary from line to line. Similary, the same letter Q denotes (positive) monotone increasing (with respect
to each argument) and continuous functions which may vary from line to line.
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3. A priori estimates

0 0 0
We multiply (2.7) by (—A)‘la—btl and (2.2) by a_cty - Aa—?, sum the two resulting equalities and
integrate over Q and by parts. This gives

d 1 1 oa o
E(Ilz‘l,iull2 + B [u] +2 f F(u)dx + |[Vall* + [|[Aal* + ”E - AEIIZ)

Q

ou oa oa
+2l|=—|, +2[IV—|> + 2I[A=—]* = 0 3.1
IIatII_l | atll Il atll (3.1)
oa oa Ooa Oa oa
te indeed that ||—|? + 2||[V—|]> + |[A—|]* = ||— — A—|?), wh
(note indee allatll +2|| (%II + | at” ”at mll ), where
k-1
1
B lul= ) ) agllD’ul’ (3.2)
i=1 |B=i

1
(note that B} [u] is not necessarily nonnegative). We can note that, owing to the interpolation inequality

m

I=A)3v]l < c@N=A) v vl 7, (3.3)

ve H"(Q), ief{l,...m-1}, meN, m>2,

there holds {
1 1
|B; [u]] < EIIA,i ull® + cllull*. (3.4)

This yields, employing (2.11),

1 1 1 1
IAZull* + B [u] +2 f F(u)dx > §||A,§u||2 + f Fu)dx + cllulljs g, = ¢llullP* = ¢,
Q

whence

1 1
Az ull® + B} [u] + 2f

Q

F(u)dx > c(IIuIIHk(Q) fF(u)dx) -, ¢>0, (3.5)
Q
nothing that, owing to Young’s inequality,

||u|| e||u|| +c(e), VYe>O0. (3.6)

LA

We then multiply (2.7) by (=A)~'u and have, owing to (2.10) and the interpolation inequality (3.3),

d , da
—||u|| | +C(||M||Hk(g) fF(u)dX) <l + 1= % I” + IIA || )+
Q

hence, proceeding as above and employing, in particular, (2.11)
—||u|| + c(lullfpg + | Faodx) < (15 o 1P+ IIA || )+’ >0 (3.7)
Q
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Summing (3.1) and 6, times (3.7), where ¢; > 0 is small enough, we obtain a differential inegality
of the form

d ou , oa , ,
d_El + C(”u”Hk(Q) fQF(u)dx + ”E”_] + ||E||H2(Q)) <c ) c> 09 (38)

where
IR, pl 2 2 92 da 2
= [[Aull” + B [u]l +2 | F(wdx +[[Vall” + l|Aall” + ”E - AE” + 61 [lullZ,
Q

satisfies, owing to (3.5)

Oa ,
El 2 C(”u”i]k(g) + fF(u)dx + ||a||H2(Q) ”E”iﬂ(g)) —-C, c> O (39)

Multiplying (2.2) by —Aa, we then obtain

0 0 0
—(||Aa|| - 2((— Aa)) + 2((A Aa))) AP <] 6”; P+ ||Va—0;||2 + ||Aa—‘:||2,
which yields, employing the interpolation inequality
MR < MV, v e HAQ), (3.10)

the differential inequality, with 0 < € << 1 is small enough

—(IIAall - 2((— Aa)) + 2((A— A))) + clledl;

H2(Q)
< 0 3.11
s C (”EH_l || ”Hl(Q) ||E||H2(Q))’ c>\. ( . )
We now differentiate (2.7) with respect to time to find, owing to (2.2),
0 Ou ou ou ou
—— —AA,— —AB,— - A ———AA— -—), 3.12
% 9 % % (f'(w—) ( Aa 8t) (3.12)
together with the boundary condition
ou
DB& =0 on I, |BI<k. (3.13)

0
We multiply (3.11) by (=A)™! a—l: and obtain, owing to (2.9) and the interpolation inequality (3.3),
ou , , o o 5 oa ,
d—IIEII | IIEIIHk(Q) <C(IIEII + [|Aa| +|IAEII ), ¢>0,

hence,owing to (3.10), the differential inequality

d Ou

oa
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Summing finally (3.8), 9, times (3.11) and 95 times (3.14), where 6,, 63 > 0 are small enough, we
find a differential inequality of the form

dE;
— LB+ || ||Hk(g)) <, >0, (3.15)

where 5 5 5
_ 2 _ 5 9% oa ou o
E, = Ey + 6(|[Aall” — 2(( o ,Aa)) + 2((A % ,A))) + 63| 6t”‘1'

Owing to the continuous embedding H**!(Q) c C(Q), we deduce that
| f F(ug)dx| < O(lluol| g2+ ()
Q
and since

1 8 1 1 1 1
(—A)_ia—Z(O) = =(=A)>Agup — (=A)2 Brug — (=A)2 f(uo) + (-A)2 (a1 — Aay),
_1 (914 2
we see that (—A)™2 E(O) € L7(Q) and

ou
”E(O)”_l < Olluollgox+1(ys llat | g3 @))- (3.16)

Furthermore E, satisfies

0

(04
E, c(||u||Hk(Q)+|| S|+ f Fupdx +llalls g, + 15 o) = ¢ ¢>0. (317)

It thus follows from (3.15), (3.16), (3.17) and Growall’s lemma that

2
_CtQ(”Mo”HZkH(g), llavoll 2y ||CYl||H*(Q)) +c, ¢>0, >0, (3.18)
and
I+r au
f ||Hk(Q)
<e Q(Iluo||H2k+1(g>, ol i) + (), ¢>0, >0, (3.19)
r > 0 given.

Multiplying next (2.7) by A.u, we find, owing to the interpolation inequality (3.3),

d , Oa Oa
IIAZMII2 + cllul g < Ul + 11F @I + IIEII2 + IIAEIIZ), c>0,

H2k (Q)

hence, since f and F are continuous and owing to (3.18),

2
”142 u” + C”uHHZk(Q)
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e’ tQ(”MOHH”‘“(Q)’ ||CYO||H2(Q), ||a'l||H3(Q)) +c”, ¢, d >0, t

Vv
=

(3.20)
Summing (3.15) and (3.22), we have a differential inequality of the form
E; ou
d + C(E3 + ”u”HZk(Q) ” (9t ”i]k(g))
e tQ(””OHH”‘“(Q)a ||C¥0||H2(Q), ||a'l||H3(Q)) +c”, >0, t>0, (3.21)
where .
Es = E» + ||Azull?
satisfies
ou Oa ,
Ex > e(lulpg, + 1P + f Fudx + e, + 15 ) = ¢ ¢>0. (3.22)
In particular, it follows from (3.21) — (3.22) that
I+r
f IIMIIsz(Q)dS e Qlluoll 1 @) loll s el @) + (1), >0, >0, (3.23)
t
r > 0 given.
We now multiply (2.7) by u and obtain, employing (2.9) and the interpolation inequality (3.3)
d oa
a,—llull2 + CllullHk+](Q) ¢ (IIMIIHl(Q) + 1= oy I? + IIA || ), ¢>0,
whence, proceeding as above,
dt”u” + C”u”ilkﬂ(g) < e_C/tQ(”LtOHHZ"”(Q)’ ”a'OHHZ(Q)’ ”a’1”H3(Q)) +c”, ¢, >0. (3.24)
) ou

We also multiply (2.7) by 5 and find

ou Oa Oa
(IIAzull + B2 [u]) + C||—|| CNAf@IP - 2((A—, — - A=),
ot ot ot
where

k—
= Z > gV ul.

=1 |B=i

k‘ N\._.

Since f is of class C?, it follows from the continuous embedding H*(Q) ¢ C(Q) that

IAf@IP < OUlullz),
hence, owing to (3.18),

_1 ou
(IIAQMII2 B! [u]) +CIIEII2

AIMS Mathematics
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o ou Oa oa ., ,
IQ(”uO”HZk”(Q)’ ”Cl'OHHZ(Q)’ ”alllH‘(Q)) - 2((A— o’ (9t AE)) +c”’, ¢, >0.
o o
Multiply next (2.2) by ~A( — AZY), we have
o "ot
d oa oa oa oa
—(|Aal)? + ||[VAa|]> + |[V— — VA—|] A—|> + |[VA—]]
dt(” all” + [[VAa||” + || o 6t”)+c(” c’)t” + | at”)
ou Oa Oa
<2(AZE, 22X _ A%y 0
Ag0 3 = 2% <>
0 o 0 o o
(note inde'ed that ||Va—‘;||2 + 2||A0—(:||2 + .||VA6—C:||2 = ||Va—‘: - VAa—‘:nZ).
Summing (3.25) and (3.26), we obtain
(||A2M|| +Bz [u] + [|Aa|* + [[VAall* +||V——VA—|| )+C(|| || +||A || ||VA

< Q(||M0||H2k+l(9), ||CV0||H2(Q), ||CYl||H3(Q)) +c”, ¢, >0.

Summing finally (3.21), (3.24) and (3.27), we find a differential inegality of the form

E,
—— + c(E3 + |lull;

dt Hk+1(Q) + ”I/l”

2
H2k(Q) + ”E” ” ”Hk(Q) ||E||H3(Q))

< e~ " Qluoll g2y llaollmzys laillms@) + ¢, ¢, >0, >0
where
GaHZ

_1 _1 oa
Ey=Es+ ull® + IAZull® + B; [u] + |Acl* + VA« + IIVE - VA oy

satisfies, owing to (2.11) and the interpolation inegality (3.3)

ou oa
2 72 2 o
Ey > el + 1512 + f Flu)dx + g, + 115 ) = ¢+ ¢ >0,

In particular, it follows from (3.28) — (3.29) that

o
()| g1 () + Nl(Oll 3 r) + ||—(f)||H3(Q)

_CtQ(HMOHHZ"”(Q)’ llaollm3 s il + ¢’ ¢>0, >0,
and
f <||—|| ||§,3(Q))ds
< e_CtQ(||uo||sz+1(Q), ||a'0||H3(Q)’ ”a'lllH3(Q)) +cd(r), ¢>0, t>0,
r given.

We finally rewrite (2.7) as an elliptic equation, for ¢ > 0 fixed,

oa

_,0u O
A = —(=4) 15 — By — f(u) + o AE’

DPu=0 on T, |B<k-

(3.25)

(3.26)

|| )
(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Multiplying (3.32) by A,u, we obtain, owing to the interpolation inequality (3.3),
ou Oa O
Al < 2 2 2 2 1 1AZE Ry,
AUl < cdlull™ + LGOI+ N1+ 521+ A1)

hence, since f is continuous and owing to (3.18)

2 !
Ol ) < €€ Qlllutollxs1 s 1ol 1 @) + ¢, ¢ >0 1> 0. (3.33)

4. Existence and uniqueness of solutions

We first have the following theorem.
Theorem 4.1. (i) We assume that (uy, ay, @) € HS(Q) x (H*(Q) N Hé (Q) x (H*(Q) N Hé(Q)), with

0
fQ F(up)dx < +oco. Then, (2.1) — (2.4) possesses at last one solution (u, «, 6—6:) such that, VT > 0,

oa
u(0) = up, a(0) = ay, E(O) =a,

u € L¥(R*; Hy(Q)) N L*(0, T; H*(Q) N Hy(Q)),

Z_b; € L(R*; H'(Q)) N L*(0, T; Hy(Q)),
E)_a/

o € L¥(R*; H*(Q) N Hy(Q))

a,
and
k
%((—A)‘lu, V) + Z] LBZ'] ai(Du, DPv)) + (f(w), v)) = %«(u, V) + (Y, V), Yy € C(Q),

Oa

d OJda
d_t(((E’w)) +((V e

in the sense of distributions.
(ii) If we futher assume that (ug, @o, @1) € (H'(Q) N HE(Q)) X (H*(Q) N Hy () X (H>(Q) N Hy(Q)),

Vw)) + (Va, Vw))) + (Va, Vw)) = —%((u, w)), Yw € C(Q),

then, YT > 0,
u € L*(RY; H*1(Q) N Hy(Q)) n LR H'(Q) N Hy(Q))
ou
— € L*(R*; LX(QY)),
o © (R"; L7(Q2))
a € L°(RY; H(Q) N Hy(Q))
and

Oa
ot

The proofs of existence and regularity in (i) and (ii) follow from the a priori estimates derived in
the previous section and, e.g., a standard Galerkin scheme.

€ L°(R*; H*(Q) N H(Q) N L*(0, T; H*(Q) N H)(Q))

We then have the following theorem.

AIMS Mathematics Volume 2, Issue 2, 215-229
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Theorem 4.2. The system (1.1) — (1.4) possesses a unique solution with the above regularity.

(1) 2)
Proof. Let (u(l),a(l),aat ) and (u@),a@),%) be two solutions to (2.1) — (2.3) with initial data

(uél), agl), a(ll)) and (ugz), agz), a(lz)), respectively. We set

@

6t)

oa Oa'V
— (D D (2)
u,q, =W, a"”, u,a
( 91‘) ( 5 ) —(

and

n @ 2) @ @
(o, @, 1) = (uy, @), &) = (U, @), @),

Ly, @, Ly,

Then, (u, @) satisfies

ou o o

- _ _ My _ DV) = A2 A

” AAju — ABu — A(f(u”’) — f(u™)) = —=A( Y A o ) 4.1)
Pa Pa o ou
W — AW - AE - Aa’ = —E, (42)
DPu=a=0 on T, |BI<k, 4.3)

o

Uli=o = o, ali=o = @, Elt:o =ag. 4.4)

Multiplying (4.1) by (—A)~'u and integrating over Q, we obtain

i 2 2 / 2 6_04_ a_a/ 2y _ My _ @
Py + el gy < Al + 112 = A=) = 2(f @) = f®, w).

HK(Q)

We note that
f) = f@?) = l(t)u,
with [ defined as

1
I(r) = f £ (su@) + (1 = )u®(1))ds.
0
Owing to (2.9), we have

=2((f @) = fu®, ) < 2collull?,
<

and we obtain owing to the intepolation inequalities (3.3) and (3.10),

d , Oa Oa
Ellullﬂ + Cllulli,k(g) < (lully + ”E - AEIIZ), c>0. 4.5)
o 4 oa oa
Next, multiplying (4.2) by (-A)™'(u + i AE)’ we find
d Oa oa oa oa
E(Ilall2 +IVell® + llu + i AE”%‘) + C(IIEII2 + IIEH@I(Q))
< (lulP + llalP). (4.6)

AIMS Mathematics Volume 2, Issue 2, 215-229



228

Summing then ¢, times (4.5) and (4.6), where 6, > 0 is small enough, we have, employing once
more the interpolation inequality (3.10), a differential inequality of the form

dEs
— < ckEs, 4.7
dr CLs 4.7)
where 5 5
Es = 6allull?, + e + 1IValP? + lu + 2= — AZ22
s = OgllullZ; + llall” + IVall” + [|u o o 1z,
satisfies 3 3
2 2 a a o
Es > c(lullZ; + llelly g, + ”E - AEII ),c>0. (4.8)

It follows from (4.7) — (4.8) and Gronwall’s lemma that

O ,
2 2 2 2 2 2
I, + 1Oy, + 15 O, < el + ol g + ol >0, 4.9)

hence the uniquess, as well as the continuous dependence with respect to the initial data in H~! x H' x
H'-norm. O
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