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1. Introduction

Let A, denote the class of p-valent functions f which are analytic in the regions U =
{z € C: |zl < 1} and normalized by

f@ =2+, apuz’™ (1.1

We note that A; = A. Also let N (@) and M(«@) denote the usual classes of starlike and convex functions
of reciprocal order @, @ > 1, and are defined by

N(a) = {f(z) eA: Rezﬁg) <a, (z€ U)}, (1.2)
M(a) = {f(z)eﬂ: 1 +ReZ]J:;$) <a, (zeU)}. (1.3)

These classes were introduced by Uralegaddi et.al [21] in 1994 and then studied by the authors in [12].
After that Nunokawa and his coauthors [11] proved that for f € N(a), 0 < a < 1 if and only if the

2’
following inequality holds
f (@ 1 1
-—|<=—, (z€).
@ 2al “2a0 ©€D
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In 2002, Owa and Srivastava [13] generalized this idea for the classes of p-valent starlike and p-
valent convex functions of reciprocal order @ with @ > p, and further investigated by Polatoglu et.al
[14]. Recently in 2011, Uyanik et.al [22] extended this idea to the classes of p-valently spirallike and
p-valently Robertson functions and discussed coefficient inequalities and sufficient conditions for the
functions of these classes.

The convolution (Hadamard product) of functions f, g € A, is defined by

(f*g)@=2"+ Z an+pbk+pzn+p, z€U,
n=1

where f is given by (1.1) and

g(z) =2 + Z bpip?"?, z€U.
n=1
The incomplete beta function ¢, defined by

bpac=+ Y %z"ﬂ’, (@eR, ceRN(0,-1,..), z€D),
o n

where (@), is the pochhamer symbol defined in terms of Gamma function by

_Tl@+n) [ a@+1).(@a+n-1), ifneN
@ ==Fre T 1 ifn=0.

With the help of incomplete beta function ¢, and concepts of convolution, Saitoh in [18, 19] introduced
the operator £, : A, — A, and is defined by

Ly(a,0)f(2)

¢p(a, c;z) * f(2),

= £+ Z on(a) aysp 77P1.4 (1.4)
n=1
witha > —p and
B I'(a + n)I'(c)
el@) =TT+ n) (1>

This operator is an extension of the familiar Carlson-Shaffer operator, which has been used widely
on the space of analytic and univalent functions in U, see [3, 20]. The following identity can be easily
derived

(L@, 0f () =aL,(@+1,0) f@) - (@— p)Ly(a.c)f(). (1.6)

Motivated from the above mentioned work, we now introduce a new subclass of multivalent func-
tions of reciprocal order using the operator defined in (1.4).
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An analytic multivalent function f of the form (1.1) belongs to the class SCf,(a, b, c,p), if and only

if .
» {2e’ﬂ (L,,(a +1,0)f(2)
e
b\ Ly(ao)f(2)
where b € C\{0}, A is real with |[1] < %, 8 > 1.
It is noticed that, by giving specific values to a,b,c, and A in SC;(a, b,c,[3), we obtain many
well-known as well as new subclasses of analytic, univalent and multivalent functions, for example;

(i). ForA=0,a =1 = c and b = 2, we obtain SC?,(I, 2,1,8) = M,(B) studied in [13] and further for
p = 1, we have the class M(B) introduced and studied in [7, 21].
(i1). Forp=c=b=1,4=0and a = 2, we have SC?(I,Z, 1,8) = N(B) studied in [7, 21].
(iii). Fora =1 = c and b = 2, we get the class SCf,(l,Z, 1,B) =S,(4,p)and fora=2,b=c=1,we
obtain SCf,(l, 2,1,B) = C,(4,p), introduced and studied in [22].
(iv). Fora=0,a=2,b = p =1, and ¢ = 2 — @, we obtain the class SC(I)(Z, 1,2 —a,B) = P.(B) [4].

- 1)} < (B—-1)cosA,

The g™ Hankel determinant H,(n),q > 1,n > 1, stated by Pommerenke [15] and furter investigated
by Noonan and Thomas [10] as

ay Ap+1 *° Qpigel

Apt1 L N ¢
H,(n) =

Apig-1 Apig -~ Qpy2g-2

This Hankel determinant is useful and has also been studied by several authors for details see [1, 2]. The
growth rate of Hankel determinant H,(n) as n — oo was investigated, respectively,when f is a member
of certain subclass of analytic functions, such as the class of p-valent functions [15, 10], the class of
starlike functions [15], the class of univalent functions [16], the class of close-to-convex functions [8]
, anew class V; [9]. It is well known that the Fekete-Szego functional is H,(1) = |a3 - a§|. Fekete
and Szego further generalized the estimate |a3 - ,ua§| where u is real and f € S, the class of univalent
functions. For our discussion in this paper we investigate the coeficient bound, the upper bounds of the
Hankel determinant H5(1) for a subclass of multivalent functions.

We will need the following lemma’s for our work.

Lemma 1.2. [17]. If q is an analytic function with Req(z) > 0 and

q(z) =1+, du7", €, (1.7)
then forn > 1,
ld,| < 2.

Lemma 1.3. [6]. If q is of the form (1.7) with positive real part, then the following sharp estimate
holds
|d>-vd}| < 2max {1,]2v - 1]}, forall v € C.

Lemma 1.4. [5]. If q is of the form (1.7) with positive real part, then
2d, di + x(4 - d}).
4d; = di +2(4 - d)dix - di(4 - dD)x* + 2(4 - d}) (1 - 1) 2.

for some x, zwith |x| < 1 and |z] < 1.
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2. Main Results

Theorem 2.1. If f € SC;(a, b, c,p), then

and

b
|ap+1| < | |£7|C,

n-2
ept| < alb| Inl l—[(l L albl |7|), N3,
(n+p=2)pu-1(a) (p+J)

where ¢,_1(0) is given by (1.5) and

n=(1-pB)cosAd+isinA.

Proof. Let f € SC;(a, b,c,3). Then we have

{24’1 (£p(a +1L,o)f(2)
Re —

b\ Ly(a,c)f(2) 1)} <(B-1Dcosd, zeU.

Now let us define a function g by

I -—+

,,( 2 2L+ 1.0f@)
¢ b b La0f@

) =((1 =B)g(z) + B)cos A + isin A.

where ¢ is analytic in U with g(0) = 1 and Req(z) > 0, z € U. Then (2.3) can be written as

or equivalently

2 2La+1,0f(@) (1-p)cosd+isind
R Laor@ e 2,7

n=1

26" (Lyfa+ 1,0f@) - Ly(@.0f@) = bnLy(@.0f@) Y e,
n=1

where 7 is given by (2.2). From (2.4) and (1.6) we have

that is,

2 [z (L@, 0f@) - pLy(a, c>f<z>] = abnL,(a,0f@) ) e,

n=1

2e™ [Z(k + p = Do @ar 7" ] = abn [Zp + Z Sok(a)ak+pzk+p] (Z d”zn) '
k=1 k=1

k=1

Comparing the coefficients of z'*”~! on both sides, we obtain
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Taking absolute on both sides and then applying Lemma 1.1, we have

alb|n|

wip_1]| < 1 et @ b 2.6
s (Hp_zm_l(a){ +@1(@) |apa| + ... + ©12(@) |@nsp-al) (2.6)
We now apply mathematical induction on (2.6). So for n = 2
|a 1| bl Inl ¢
peil ="
which shows that the result is true for n = 2. Forn = 3
a bl Inl
— {1+ 2.7
jara] < (p + s (a){ #1(@) | @7
and using the bound of |ap+1| in (2.7), we have
ab||nl a|b||n|
ol 2y )
(p + Dea(a) p
Therefore (2.1) holds for n = 3.
Assume that (2.1) is true for n = k, that is,
. a bl | ﬁ( albl Inl)
1l =
Tkt p - D@ L (p+J)
Consider
b b b b
larey| < a bl |nl {(1+a| ||n|)+a| | 7] (1+a| IIUI)
(k+ p— Dei(a) p (p+1) p

* (pa-i-lbk| |illl) ] (1 " Elplb"l‘ljl)}
j=1
albllpl - 1 ( albl Inl)
| | 1 )
(k+p = Depw@ *_| T+

Therefore, the result is true for n = k + 1 and hence by using mathematical induction, (2.1) holds
true for all n > 3. O

The following corollaries which were proved by owa and Nishawski [12] comes as a special case
from Theorem 2.1 by varying the parameter a, b, ¢, p and A.
Corollary 2.2. If f € M(B), then

(l+2B-4)
|a,,| 51:2 W, for all n > 2.
Corollary 2.3. If f € N(B), then
[+2B—4
a <, 2P a2,
n!
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Theorem 2.4. Let f € A, and satisfies

o0
n=1

Then f € SC)(a,b,c,p).

0(@) |ansp| < [Beos A= e"). (2.8)

2 .
(1 + —n)e" —Bcos A
ab

yl

Proof. To prove that f belongs to SC),(a, b, ¢, f) we need to prove that
irf1_ 2, 2L@rlof@) _

(1= 3+ i)~

(1 _ 2, 2L@rlof@Y B
el (1 2 42 L,,(a,c)f@) (2Bcos A —1)

<1 (2.9)

For this consider the left hand side of (2.9), we have

irf1 _ 2 4 2Lp@+rlof@Y _
e (1 bt L@ore ) I

eid (1 ~24 %%) —(2BcosA—1)
(1 1) 52 (04 2) "~ oy

(beit = 2bBcos A+ b) + T (b + ) et = 2bB cos A + b) 0,(@)ay. 2

‘(e“ - 1)‘ + 3%, (1 + i—z)e” -1

RBeos A— e — 1= T2, (1 + 2)eit — 2pcos A + 1

LHS =

en(a)

an+p|

an+p|

en(a)
The last expression is bounded above by 1 if

2n\ .
1+ =] -1
(b)

(o)

|e“—1|+Z

n=1

©(@) |ansp| < |2Bcos 1 — e - 1]

— Z (l + _n) et —2Bcos A + 1|, (a) an+p|
— ab
which is equivalent to the condition (2.8) and so f € S(Jf,(a, b,c,p). m|

Ifwesetp=1,4=0,a=1,b=2and c = 1, in above Theorem we have the following result by
[12].
Corollary 2.5. If f € A satisfies

D=1 +1n=28+ 1} la) <28-1)
n=2
for some B(B > 1), then f € M(B).
Corollary 2.6. [4]. A function f € P,(B) if and only if

(o)

Z T(n+ DIQ - @)
Tn+1-a)

(n=p)lay| < (B -1).

n=2
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The result is sharp.

Theorem 2.7. Let f € SC?,(a, b, c,B) and of the form (1.1). Then

bl c(c + D)1 =)

2
vz =l < =5

max {1, [2v — 1|}, (2.10)

where

= Hbcla+ D(p+ DA -p) ab(1-p) 2.11)
2p*(c+ 1) 2p

Proof. Let f € SC?,(a, b, c,). Then from (2.5) with A = 0, we have

_ be(1-p)
= =% d,

_ be(c+ 1)(1-p) ab( = p) »
W2 T G r D+ ) {d2+ 2p d‘}'

For any complex number u, we have

Ap+

bee+ DA =P [ b1=p) fue@+ Dp+ 1) | o
2a+D(p+1) |77 2p plc+1) !
be(e + (1 = B)

T 2@+ D)p+ D) [ - vati],

2 —
Ap+2 —HA, =

where v is given by (2.11)

Taking modulus on both sides and applying Lemma 1.2, we have

be(e + 1)(1 = B)

2
|ap+2 - ﬂap+l |

2
2@+ H(p+ 1) [dz = v
bl c(c + 1)(1 = B)
@+ D+ 1) max {1, [2v —1]}.

This proves the required result.

O
Taking u = 1, we obtain the following result.
Corollary 2.8. Let f € ch(a, b, c,B) and of the form (1.1). Then
ble(c+ 1)1 -B)
—a* l< | 1,2v -1
o @i+ D max {1, 2v - 1]},
where
_bcla+D(p+ DA -B) ab(l-p)
V= 2p%(c+ 1) 2p
Theorem 2.9. Let f € SC;(a, b,c,B). Then
4lble(c+ D1 =P
2
|ap1apis — a5 < peDasD |- (2.12)
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Proof. Let f € SC;(a,b,c,). Then from (2.5) we have

L ai-p),
LT 2pgia@)
4, = ab(1 - p) {d2+ab(1 ﬁ) }
P 2(p+ Dga(a) 2p
_ab(1-p) ab(1-pB) , lab(1-p)* , ab(1 — ,3)
W3 T S Dena) {d3+ o D2 e DRt T }

From (2.13), (2.14) and (2.15) we obtain

{ab(1 - B)}
4p(p + 2)p1(a)ps(a)
ab(1-p) , {ab(1 - p)Y > ab(1-p) ,
{d3 + 2+ D) —d; + —4p(p+ D did, + —2p dl}

2
|ap+lap+3 - ap+2|

2 2
~ {ab(1 - p)} {d2+ {ab(1 - B)} d?+ab(1 ﬁ)dzdz}_

4(p + D*¢5(a) 4p?

After some simplification we have

A
A [Bd1d3+Cd1d2+

2 _
Ap+1Qp+3 — ap+2|

Ed)d, + Fd} - Gd; - Hd{ — Kd}d, |

where | |
A = ab(l - p), B= omeama@ €= momneoenana
E = A2 F=—A _ G=—1__
4p2(p+1)(p+2)p1(a)p3(a)’ 2p%(p+Dp1(@)¢3(a)° (p+17¢5(a)’
H= 4 K=_—_A
4p*(p+1)*¢3(a)’ p(p+1)203(a)”

Substituting the values of d, and d; frome Lemma 1.3 in (2.16) we have

|Bdyds + Cd\d5 + Ed}d, + Fd; — Gd; — Hd} — Kdid,)|

1
= 'ZBdl {d} +2d1(4 - d})x = dy(4 = d})x* + 2(4 = d}) (1 = |xP) 2]
1 1
+4Cd, {d} +2d}4 - dD)x + (4 - d})’ 2} + 5Edf {d} + @4 - dh)x)
1
+Fd} = 2G {df +2d}(4 - dD)x + (4 - d})’x*) - Hd}

—%de {df + @ - d)x|.

(2.13)

(2.14)

(2.15)

(2.16)
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Simple computation gives
4|Bd\d; + Cdid; + Ed}d, + Fd} — Gd; — Hd} — Kdidy| = |(C + 2E) d}+
(B-G - H = 2K)d} + Fd} + (2B + 2Cd, + 2Ed, - 2G - 2K)d} (4 - d}) x|

+2Bd; (4 - d}) (1= 1xP) 12l + {Cdy (4 - d}) - Bd} - G (4 - d})} (4 - d}) |x|2'

(2.17)
Applying triangle inequality and replacing |x| by p in (2.17) we have
4|Bd\d; + Cdid; + Ed}d, + Fd} — Gd — Hd! — Kdjdy| < (IC| + 2 |E)) d} + |F| dj+
(B-G + |H|+2|K))d] + (2B +2|C|d, +2|E|d, - 2G + 2|K|}df(4—df)p
+2Bd; (4 - d})(1-p?) +{ICld, (4 - d}) - Bd} - G (4 - d})} (4 - d} )
= F(d1,p). (2.18)

Taking partial derivative of F(d,, p) with respect to p, we have

aF(d17p)

i (2B +2|Cld, +2|E|d, - 2G + 2|F|}d} (4 - d}) - 4Bd, (4 - d}) p

+2{ICld\ (4 - d}) - Bdy - G (4 - d})} (4 - d} ) p

Clearly Mgﬂ > 0, for 0 < p < 1and 0 < d; < 2. Therefore, F(d,, p) is an increasing function of p.

Also for a fixed d; € [0, 2], we have

max F(dy,p) = F(dy,p) = J(d)).

Therefore by putting p = 1 in (2.18) we have

J(d)) = {IC|+2|El}d; +{B-G+|H|+2|K|}d +|F|d}
+{2B +2|Cld, + 2 |E|d) - 2G + 2K} d; (4 - d})

et (4 - ) - 5 - 6 4 )} (4 - )
Differentiating with respect to d;, we have

J'(d) = 5{C|+2|E|}d} +4{B-G+|H|+2|K|}d; +3|F|d;
+4{B-G +2|K|\d\ (4 - d}) - 4{B-G +2|K|}d;

+6{C1+ |ElVd? (4 - d2) = 4(C| + |El} ! + C1 d? (4 - &2
—~4|Cld} (4 - d}) - 2Bd, (4 - d}) + 2Bd; — 4Gd, (4 - d} )

Again differentiating with respect to d; we have

J'(d) = 20{C|+2|El}d; + 12{B-G +|H| +2|K|} d}
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+6|F|d; +4{B -G +2|K|}(4 - d}) - 8{B -G +2|Kl} d}
—12{B -G +2|Kl}d} + 126 {|C| + |E|} (4 - d}) - 126 {|C| + |El} d;
2 2
—16{C| + |El}d} +2|Cldi (4 - d}) - 4|C|d} (4 d}) = 8|Cld; (4 - d7)
+8|Cld} - 2B(4 - d}) + 4Bd} + 6Bd; - 4G (4 - d}) + 8Gd;.

For maximum value of J(d,), clearly J'(d;) = 0 ford; = 0 and J”(0) < 0, so J(d,) has maximum value
at d; = 0 hence

MHdC+DU—ﬁq2

2
[pnpes =] < [ (p+Da~+1)

3. Subordination Results for the Function Class SC;(a, b,c,p)

Given functions f,g € A, f is said to subordinate to g denoted by f < g, z € U, if there exist a
function w € V, where

V=weAd:w0)=0, wixI|<l1, z€U}

such that f(z) = g(w(2)).
Lemma 3.1. [18]. Let g(z) be convex in U and Re (u1q(z) + uo) > 0, where uy, u, € C\{0}, z € U.
If h(z) is analytic in U with q(0) = h(0) and

Zh ()
h(z) + m <q(), z€l,

then h(z) < q(2).
Lemma 3.2. A function f € SC?,(a, b,c,p), if and only if

afy 2, 2LMar 1.07G)
b b L@of@

<q(2), z€,

where

cosd —{2Bcosd+isind —cosAd}z

q(2) = 1 : (3.1
—Z

for some real A(|A| < %) and 8 > p.
The proof of above lemma is similier to that of Theorem 1 in [22] so we omit the proof.
Theorem 3.3. Let 8 > p, b € C\{0,—1}. Then

SCY(a+1,b,c,p) C SC(a,b+1,¢.8),
where

_bla+1) B b—a
Cab+ )T ab+ 1)

B

AIMS Mathematics Volume 2, Issue 2, 322-335
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Proof. Suppose f € ch(a + 1,b,c¢,B) and set

22 Lya+1,0f@
b+1 b+1 Lyac)fx

h(z), (3.2)

where £ is analytic in U and A(0) = 1.
Logarithmic differentiation of (3.2), gives

’

(Loa+1.9f@)  z(L@.0fR) b+ D)2 ()

Lya+1,0f() Ly(a,0f(x) b+ i) -1} +2

’

Using the identity(1.6) we have

2 2L)a+2,0f@ _ a b+1 a b+1 2 7h (2)

1-—+ =1- + h(z) + . 3.3
b bLya+1,0f(2) a+1 b a+1 b @ b(a+1)h(z)—1+ﬁ (3-3)
et b+l b+l
a + a +
1- h(z) = H(z),
i1 b Tav1 p MO=HE
where H is analytic in U and H(0) = 1. From (3.3) we have
+ 2, ’
- 2 N 2L)a+2,9/@) _ H) + zH (2) ,
b bLya+1,0f(2) uiH(Z) + po
where y; = @ and p, = 222 Since f(z) € VDY(a + 1,b, ¢, ), so from Lemma 3.2 we have
H 2 2L(a+2,
H) + M@ 22 Sa+2,0f() < 40
i H(2) + o b bLya+1,0f(2)
where ¢ is given by
1-28-1)z
q(z) = —lﬂ : (3.4)
-z
Applying Lemma 3.1 we have
H(z) < q(z)
or equivalently
1-26 -1
h(z) < 1-Gh — Dz )Z,
1-z2
where
B, = ba+1) b-a
"Tab+ ) ab+ 1y
This complete the proof. m|

Theorem 3.4. Let f € SCg(a,b, ¢,B). Then F € SC?,(a, b,c,B), where F is Bernardi integral
operator defined by

F(z) = pz—tl fo Z 7 fodt, ¢ > -1, (3.5)
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Proof. Suppose

2 2L,(a+2,0F(2)

L b L ar LoFe @

where £ is analytic in U and 2(0) = 1.
Now differentiating (3.5) we have

(c+p)fR) = cF2) +2F (2)
Applying the operator £,(a, c) we have
(c+p)Ly(a,0)f(2) =cLy(a,c)F(2) + Ly(a+1,0)F(2)
and
(c+pLya+1,0)f(x)=cLy(a+1,0)F(z) + L,(a+2,0)F(2)
From (3.7) and (3.8) we have

L@+1.0f() | Lp(a+2.0f@) Lyla+1,0f@)
Lya+1,0f(@) “Lworo T L@lofe L@ofG)

L(a,0)f(z) L,(a+1,0) ()
p(a,0)f(2) o+ Lok

Logarithmic differentiation of (3.6), totgether with (1.6) and (3.9) we have

J2, 25@HL0f@ o )
b b L@.0f@ Hsh(@) + s’

where 3 = 5 bandus =c+ p — “b

Since f € SCO(a b,c,p), so from Lemma 3.2 we have

W@ 2 2La+ 1.0fE)
MY @ +m - b h Laworo 1@

where q is given by (3.4)
Applying Lemma 3.1 we have
h(z) < q(2),

which implies that F € SC'(a, b, ¢, B).
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