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1. Introduction

In 1950, Erdös [1] conjectured for any positive integer n > 1, that the following diophantine equa-
tion

1
x
+

1
y
+

1
z
=

4
n

(1.1)

has positive integer solutions x, y, z. Later, Strauss [1] made a more powerful conjecture: let n > 2,
then diophantine equation (1.1) has positive integer solution x, y, z with x , y, x , z, y , z. He proved
that the conjecture is true with n < 5000. In 1964, Zhao Ke, Qi Sun and Xianjue Zhang [3] proved that
Strauss conjecture is equivalent to Erdös conjecture. In 1979, Ke and Sun [4] proved that Erdös-Strauss
conjecture is true with n < 4 ·105. In 1965, Yamamoto [10] proved that Erdös-Strauss conjecture is also
true with n < 107. In 1978, Franceschine [2] proved that Erdös-Strauss conjecture is true with n < 108.
Sierpiǹski made a similar conjecture: for any positive integer n > 1, that the following diophantine
equation

1
x
+

1
y
+

1
z
=

5
n

(1.2)

has the solutions x, y, z of positive integer. Palama [6, 7] proved that Sierpiǹski conjecture is true with
n < 922321. Stewart [9] also obtained above the result with n ≤ 105743881 and n . 1 (mod 278460).
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In 1984, Liu [5] obtained all the solution of positive integers of the following diophantine equation

1
x
+

1
y
+

1
z
=

5
121
. (1.3)

Write n = 12p in (1.1) or write n = 15p in (1.2), where p is an odd prime. We obtain diophantine
equation

1
x
+

1
y
+

1
z
=

1
3p
, x ≤ y ≤ z. (1.4)

One can easily get all the solutions of positive integer of (1.4) when p|x. If 3|x, p - x, then one lets

x = 3ax1, y = ay1, z = az1, a = gcd(x/3, y, z),

and so (1.4) is changed to
3p(y1 + z1)x1 = (ax1 − p)y1z1. (1.5)

Moreover, we write y1 = dy2, z1 = dz2, d = gcd(y1, z1). It is easy to see that gcd(d, x1) = 1.
If 3p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1 = y2z2. Write d

3p = d1, then (1.5) is
changed to

y2 + z2

d1
= ay2z2 − p, gcd(y2, z2) = 1, y2 ≤ z2.

If 3 - d, p|d and 3|y1, then we get that x1|y3z2 and y3z2|x1 where y2 = 3y3. It follows that x1 = y3z2.
Write d

p = d1, then (1.5) is changed to

3y3 + z2

d1
= ay3z2 − p, gcd(3y3, z2) = 1, 3y3 ≤ z2.

If 3 - d, p|d and 3|z1, then we get that x1|y2z3 and y2z3|x1 where z2 = 3z3. It follows that x1 = y2z3.
Write d

p = d1, then (1.5) is changed to

y2 + 3z3

d1
= ay2z3 − p, gcd(y2, 3z3) = 1.

If p - d, 3|d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2 = py3. It follows that x1 = y3z2.
Write d

3 = d1, then (1.5) is changed to

py3 + z2

d1
= ay3z2 − p, gcd(py3, z2) = 1, py3 ≤ z2.

If p - d, 3|d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2 = pz3. It follows that x1 = y2z3.
Write d

3 = d1, then (1.5) is changed to

y2 + pz3

d1
= ay2z3 − p, gcd(y2, pz3) = 1.

If 3p - d and 3|y1, p|z1, then we get that x1|y3z3 and y3z3|x1 where y2 = 3y3, z2 = pz3. It follows that
x1 = y3z3. Then (1.5) is changed to

3y3 + pz3

d
= ay3z3 − p, gcd(3y3, pz3) = 1.
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If 3p - d and p|y1, 3|z1, then we get that x1|y3z3 and y3z3|x1 where y2 = py3, z2 = 3z3. It follows that
x1 = y3z3. Then (1.5) is changed to

py3 + 3z3

d
= ay3z3 − p, gcd(py3, 3z3) = 1.

If 3 - y1z1, p - d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2 = py3. It follows that
x1 = y3z2. Then (1.5) is changed to

py3 + z2

d
=

ay3z2 − p
3

, gcd(py3, z2) = 1.

If 3 - y1z1, p - d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2 = pz3. It follows that
x1 = y2z3. Then (1.5) is changed to

y2 + pz3

d
=

ay2z3 − p
3

, gcd(y2, pz3) = 1.

If 3 - y1z1, p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1 = y2z2. Write d
p = d1, then

(1.5) is changed to
y2 + z2

d1
=

ay2z2 − p
3

, gcd(y2, z2) = 1.

Thus we have proved that solving the equation (1.5) is equivalent to solving the following diophan-
tine equations:

y + z
d
= ayz − p, gcd(y, z) = 1, y ≤ z, (1.6)

3y + z
d
= ayz − p, gcd(3y, z) = 1, (1.7)

py + z
d
= ayz − p, gcd(py, z) = 1, (1.8)

3y + pz
d

= ayz − p, gcd(3y, pz) = 1, (1.9)

py + z
d
=

ayz − p
3
, gcd(py, z) = 1, 3 - yz, (1.10)

y + z
d
=

ayz − p
3
, gcd(y, z) = 1, y ≤ z, 3 - yz. (1.11)

In this paper, we investigate the equations (1.6), (1.7) and (1.8) with p = 661. Actually, we get all
the solutions of positive integer of them. That is, we have the following results:

Theorem 1.1. If ayz − 661 ≥ 80, then all the solutions of positive integers of (1.6) are given by
(a, d, y, z) =

(1, 1, 2, 663), (1, 1, 3, 332), (1, 2, 1, 1323), (1, 2, 3, 265), (1, 3, 1, 992), (1, 3, 2, 397),

(2, 1, 1, 662), (2, 1, 2, 221), (2, 1, 4, 95), (2, 2, 1, 441), (3, 1, 1, 331),

(3, 1, 3, 83), (3, 3, 1, 248)(4, 2, 1, 189).
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Theorem 1.2. If ayz − 661 ≥ 90, then all the solutions of positive integers of (1.7) are given by
(a, d, y, z) =

(1, 1, 2, 667), (1, 1, 3, 335), (1, 1, 5, 169), (1, 1, 9, 86), (1, 1, 84, 11), (1, 1, 167, 7), (1, 1, 333, 5),

(1, 1, 665, 4), (1, 2, 1, 1325), (1, 4, 2645, 1), (1, 5, 1, 827), (1, 5, 1653, 1), (1, 7, 1157, 1), (1, 11, 909, 1),

(1, 19, 785, 1), (2, 1, 1, 664), (2, 1, 3, 134), (2, 1, 27, 14), (2, 1, 133, 4), (2, 1, 663, 2), (2, 2, 1323, 1),

(2, 4, 529, 1), (3, 1, 1, 332), (3, 1, 221, 2), (3, 2, 1, 265), (3, 2, 441, 1), (4, 1, 662, 1), (5, 1, 1, 166),

(5, 1, 331, 1), (5, 2, 189, 1), (6, 2, 147, 1), (8, 1, 51, 2), (10, 1, 39, 2), (12, 2, 63, 1).

Theorem 1.3. Each of the following is true:

1. If ayz − 661 < 80, then all the solutions of positive integers of (1.6) are given by (a, d, y, z) =

(1, 3, 5, 142), (1, 3, 17, 40), (1, 7, 6, 113), (1, 11, 18, 37), (1, 28, 17, 39), (1, 32, 13, 51),

(1, 67, 2, 333), (1, 112, 3, 221), (1, 332, 1, 663), (1, 333, 2, 331), (1, 663, 1, 662), (2, 1, 5, 74),

(2, 1, 11, 32), (2, 1, 14, 25), (2, 2, 11, 31), (2, 7, 1, 356), (2, 8, 5, 67), (2, 20, 1, 339), (2, 26, 1, 337),

(2, 29, 4, 83), (2, 112, 1, 332), (2, 332, 1, 331), (3, 1, 11, 21), (3, 14, 13, 17), (3, 28, 1, 223),

(3, 111, 1, 221), (4, 1, 6, 29), (4, 5, 1, 174), (4, 24, 1, 167), (5, 1, 4, 35), (5, 1, 6, 23), (5, 2, 1, 147),

(5, 15, 1, 134), (6, 4, 1, 115), (6, 8, 3, 37), (7, 1, 2, 51), (7, 6, 5, 19), (7, 24, 1, 95), (8, 28, 1, 83),

(9, 1, 2, 39), (9, 1, 4, 19), (9, 2, 3, 25), (9, 15, 1, 74), (11, 2, 1, 63), (11, 3, 1, 62), (13, 10, 3, 17),

(13, 26, 1, 51), (14, 2, 1, 49), (15, 1, 5, 9), (17, 8, 3, 13), (17, 20, 1, 39), (19, 3, 5, 7), (19, 9, 1, 35),

(20, 1, 2, 17), (21, 3, 1, 32), (23, 5, 1, 29), (24, 1, 4, 7), (25, 2, 1, 27), (26, 1, 2, 13), (28, 1, 3, 8),

(29, 4, 1, 23), (32, 2, 1, 21), (35, 5, 1, 19), (39, 9, 1, 17), (51, 7, 1, 13), (74, 2, 1, 9), (83, 3, 1, 8),

(95, 2, 1, 7), (111, 1, 2, 3), (221, 2, 1, 3), (331, 3, 1, 2), (332, 1, 1, 2), (662, 2, 1, 1), (663, 1, 1, 1).

2. If ayz − 661 < 90, then all the solutions of positive integers of (1.7) are given by (a, d, y, z) =

(1, 9, 1, 744), (1, 29, 3, 223), (1, 31, 35, 19), (1, 37, 5, 133), (1, 67, 39, 17), (1, 73, 95, 7),

(1, 83, 51, 13), (1, 101, 133, 5), (1, 115, 3, 221), (1, 127, 677, 1), (1, 167, 1, 665), (1, 333, 1, 663),

(1, 337, 2, 331), (1, 665, 1, 662), (1, 995, 331, 2), (1, 995, 663, 1), (1, 1987, 662, 1), (2, 1, 13, 28),

(2, 2, 3, 121), (2, 200, 333, 1), (2, 334, 1, 331), (2, 994, 331, 1), (3, 2, 4, 58), (3, 7, 2, 113),

(3, 11, 6, 37), (3, 28, 13, 17), (3, 32, 17, 13), (3, 67, 111, 2), (3, 112, 1, 221), (3, 332, 221, 1),

(4, 2, 9, 19), (5, 10, 7, 19), (5, 16, 19, 7), (5, 34, 1, 133), (5, 100, 133, 1), (6, 5, 16, 7), (6, 20, 113, 1),

(8, 1, 18, 5), (8, 23, 84, 1), (9, 1, 1, 83), (9, 1, 7, 11), (12, 1, 2, 29), (12, 5, 58, 1), (13, 2, 1, 53),

(13, 13, 3, 17), (15, 1, 2, 23), (15, 2, 49, 1), (17, 11, 3, 13), (17, 59, 39, 1), (18, 8, 1, 37), (26, 2, 27, 1),

(27, 1, 13, 2), (27, 2, 1, 25), (33, 2, 21, 1), (34, 1, 5, 4), (37, 11, 18, 5), (39, 10, 1, 17), (39, 26, 17, 1),

(45, 1, 3, 5), (51, 8, 1, 13), (51, 20, 13, 1), (75, 2, 9, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2),

(133, 2, 1, 5), (167, 1, 1, 4), (221, 5, 3, 1), (222, 2, 3, 1), (331, 5, 1, 2), (331, 7, 2, 1), (333, 1, 1, 2),

(334, 1, 2, 1), (662, 4, 1, 1), (663, 2, 1, 1), (665, 1, 1, 1).
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Theorem 1.4. All the solutions of positive integers of (1.8) with py ≤ z are given by (a, d, y, z) =

(1, 1, 2, 1983), (1, 2, 1, 1983), (1, 3, 1, 1322), (1, 3, 2, 661), (1, 331, 2, 333), (1, 662, 1, 663),

(1, 1323, 1, 662), (1, 1653, 2, 331), (2, 1, 1, 1322), (2, 2, 1, 661), (2, 331, 1, 332), (2, 992, 1, 331).

We organize this paper as follows. In Section 2, we present some lemmas which are needed in the
proof of our main results. Consequently, in Sections 3 to 6, we give the proofs of Theorem 1.1 to 1.4
respectively.

2. Some lemmas

To prove the main theorems, we need the following lemmas.

Lemma 2.1. Let 661 + b = p, where p is an odd prime. If one of the following conditions is satisfied

p ≡ 1 (mod q), q = 3, 5 or 11 or p ≡ 3 (mod 7),

or p ≡ 23 (mod 29), or p ≡ 5 (mod 41),

then both equation (1.6) and equation (1.7) have no solution (a, d, y, z) of positive integers with ayz −
661 = b.

Proof. We only prove the case p ≡ 23 (mod 29). The proofs of other cases are similarly. By the
assumption we have b ≡ p − 661 ≡ 0 (mod 29). Assume either (1.6) or (1.7) has a positive integer
solution (a, d, y, z) with ayz − 661 = b. It follows (y, z) ∈ {(1, 1), (1, p), (p, 1)} and either

y + z ≡ 0 (mod 29) (2.1)

or
3y + z ≡ 0 (mod 29). (2.2)

One can easily to see neither (2.1) nor (2.2) is satisfied for any element (y, z) ∈ {(1, 1), (1, p), (p, 1)}.
This completes the proof of Lemma 2.1. �

Lemma 2.2. Let 661 + b = pq, where p, q are prime numbers.
(i)If one of the following conditions is satisfied

p ≡ q ≡ 1 (mod 3), or p ≡ q ≡ 1 (mod 5), or p ≡ 1 (mod 7), q ≡ 3 (mod 7),

or p ≡ 3 (mod 13), q ≡ −5 (mod 13), or p ≡ 3 (mod 17), q ≡ 5 (mod 17),

or p ≡ 3 (mod 19), q ≡ 5 (mod 19), or p ≡ 3 (mod 20), q ≡ 7 (mod 20),

or p ≡ 7 (mod 23), q ≡ 9 (mod 23), or p ≡ 3 (mod 31), q ≡ −7 (mod 31),

or p ≡ 2 (mod 37), q ≡ 14 (mod 37), or p ≡ 23 (mod 52), q ≡ 31 (mod 52),

or p ≡ 3 (mod 56), q ≡ 15 (mod 56), or p ≡ 2 (mod 57), q ≡ 17 (mod 57),

or p ≡ q ≡ 2 (mod 73), or p ≡ 2 (mod 85), q ≡ 33 (mod 85),
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or p ≡ 7 (mod 88), q ≡ 19 (mod 88),

then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz−661 =
b.

(ii). If one of the following conditions is satisfied

p ≡ q ≡ 1 (mod 4), or p ≡ q ≡ ±2 (mod 9),

or p ≡ 2 (mod 11), q ≡ 6 (mod 11),

then equation (1.6) has no positive integer solution (a, d, y, z) with ayz − 661 = b.

Proof. (i)We only prove the case p ≡ 7 (mod 23), q ≡ 9 (mod 23). The proofs of other cases
are similarly. By the assumption we have b ≡ pq − 661 ≡ 0 (mod 23). Assume either
(1.6) or (1.7) has a positive integer solution (a, d, y, z) with ayz − 661 = b. It follows (y, z) ∈
{(1, puqv), (p, qv), (q, pu), (pq, 1), u, v = 0, 1} and either

y + z ≡ 0 (mod 23) (2.3)

or
3y + z ≡ 0 (mod 23). (2.4)

One can easily to see neither (2.3) nor (2.4) is satisfied for any element (y, z) ∈
{(1, puqv), (p, qv), (q, pu), (pq, 1), u, v = 0, 1}. This completes the proof of part (i) of Lemma 2.2.

The proof of part (ii) is similar. �

Lemma 2.3. Let 661 + b = pqr, where p, q, r are prime. If one of the following conditions is satisfied

p ≡ q ≡ 3 (mod 11), r ≡ 5 (mod 11), or p ≡ q ≡ 3 (mod 25), r ≡ 4 (mod 25),

or p ≡ q ≡ 2 (mod 31), r ≡ 18 (mod 31), or p ≡ q ≡ 2 (mod 55), r ≡ 14 (mod 55),

or p ≡ q ≡ 19 (mod 61), r ≡ 2 (mod 61), or p ≡ q ≡ 5 (mod 64), r ≡ 29 (mod 64),

or p ≡ 3 (mod 80), q ≡ 13 (mod 80), r ≡ 19 (mod 80),

then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz−661 =
b.

Proof. We only prove the case p ≡ q ≡ 19 (mod 61), r ≡ 2 (mod 61). The proofs of other cases are
similarly. By the assumption we have b ≡ pqr − 661 ≡ 0 (mod 61). Assume either (1.6) or (1.7) has a
positive integer solution (a, d, y, z) with ayz − 661 = b. It follows

(y, z) ∈ {(1, puqvrt), (p, qvrt), (q, purt), (r, puqv), (pq, rt), (pr, qv), (qr, pt), (pqr, 1), u, v, t = 0, 1}

and either
y + z ≡ 0 (mod 61) (2.5)

or
3y + z ≡ 0 (mod 23). (2.6)

One can easily to see neither (2.5) nor (2.6) is satisfied for any element (y, z) ∈
{(1, puqvrt), (p, qvrt), (q, purt), (r, puqv), (pq, rt), (pr, qv), (qr, pt), (pqr, 1), u, v, t = 0, 1}. This completes
the proof of Lemma 2.3. �
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Lemma 2.4. If 3|b, then equation (1.7) has no positive integer solution (a, d, y, z) with ayz − 661 = b.

Proof. Assume (1.7) has a positive integer solution (a, d, y, z) with ayz − 661 = b. Then we get b|3y +
z. It implies that 3|z since 3|b, which contradicts with gcd(3, z) = 1. This completes the proof of
Lemma 2.4. �

Lemma 2.5. Let 661 + b = 2k p, where k is an integer more than 2 and p is an odd prime.
If 1 + 2u pv . 0 (mod b), p + 2u . 0 (mod b), and 2t + pv . 0 (mod b), where v ∈ {0, 1}, 0 ≤ u ≤

k, 1 ≤ t ≤ k, then equation (1.6) has no positive integer solution (a, d, y, z) with ayz − 661 = b.

Proof. Assume (1.6) has a positive integer solution (a, d, y, z) with ayz − 661 = b. It follows

(y, z) ∈ {(1, 2u pv), (p, 2u), (2t, pv), (2t p, 1), 0 ≤ u ≤ k, v = 0, 1, 1 ≤ t ≤ k}

and
y + z ≡ 0 (mod b), (2.7)

which contradicts the assumption of Lemma 2.5.
This completes the proof of Lemma 2.5. �

Lemma 2.6. Let (a, d, y, z) be a positive integer solution of equation (1.6) with ayz − 661 = b. If
b ≥ 80, ad ≥ 2, then y < 6.

Proof. We first prove that b ≤ 1322. Otherwise b > 1322, then we have z > y+z
2 ≥

1322
2 = 661.

If ay > 2, then from ayz − 661 = y+z
d ≤ 2z, we get z ≤ (ay − 2)z ≤ 661 which contradicts with

z > 661.
If a = y = d = 1,then we have 1 = −661 which is impossible.
If a = y = 1, d > 1, then we have

z =
661d + 1

d − 1
= 661 +

662
d − 1

≤ 661 + 662 = 1323,

which contradicts with z > 1322 + 661 = 1983.
If a = 1, y = 2, then we have

z =
661
2
+

665
2(2d − 1)

≤ 661 + 665
2

= 663,

which contradicts with z > 1322 + 661 = 1983.
If a = 2, y = 1, then we have

z =
661
2
+

663
2(2d − 1)

≤ 661 + 663
2

= 662,

which also contradicts with z > 1322 + 661 = 1983. Hence b ≤ 1322 as desired.
Assume now y ≥ 6.
If d ≥ 2, b ≥ 200, then y + z = db ≥ 400. Since quadratic function

f (y) = y(db − y), 0 < y ≤ db
2
,
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is increasing function, so we have

yz = f (y) ≥ f (6) = 6 · (db − 6) ≥ 6 · 394 = 2364,

which contradicts with ayz ≤ 1983. If d ≥ 2, 80 ≤ b < 200, then similarly we have

yz = f (y) ≥ f (6) = 6 · (db − 6) ≥ 6 · 154 = 924,

which contradicts with ayz ≤ 661 + 200 = 861.
If d = 1, then we have a ≥ 2. It follows that yz ≤ [ 1983

a ] ≤ [ 1983
2 ] = 991. If b ≥ 200, then similarly

we have
yz = f (y) ≥ f (6) = 6 · (b − 6) ≥ 6 · 194 = 1164,

which contradicts with yz ≤ 991. If 80 ≤ b < 200, then similarly we have

yz = f (y) ≥ f (6) = 6 · (b − 6) ≥ 6 · 74 = 444,

which contradicts with yz ≤ [ 861
a ] ≤ [861

2 ] = 430.
This completes the proof of Lemma 2.6. �

Lemma 2.7. Let (a, d, y, z) be a positive integer solution of equation (1.7) with ayz − 661 = b. If
80 ≤ b ≤ 2644, and a ≥ 5 or d ≥ 7, then we have either y < 6 or z < 6.

Proof. Since gcd(3y, z) = 1, so we have either 3y < z or 3y > z. We prove that y < 6 if 3y < z and
z < 6 if 3y > z.

We prove that z < 6 if 3y > z. Otherwise z ≤ 6.
Case 1: d ≥ 7. Then 3y + z = db, we get z ≤ (ay − 2)z ≤ 661 which contradicts with z > 661.
If b ≥ 300, then y + z = db ≥ 2100. Since quadratic function

g(z) = z(db − z), 0 < z ≤ db
2
,

is increasing function, so we have

yz =
g(z)

3
≥ g(6)

3
≥ 2 · 2094 = 4188,

which contradicts with ayz ≤ 3305.
If 90 ≤ b < 300, then similarly we have

yz =
g(z)

3
≥ g(6)

3
≥ 2 · 624 = 1248,

which contradicts with ayz ≤ 661 + 300 = 961.
Case 2:a ≥ 5, then we have yz ≤ [ 3305

a ] ≤ [ 3305
5 ] = 661.

If b ≥ 400, then similarly we have

yz =
g(z)

3
≥ g(6)

3
≥ 2 · 394 = 788,

which contradicts with yz ≤ 661.
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If 150 ≤ b < 400, then similarly we have

yz =
g(z)

3
≥ g(6)

3
≥ 2 · 144 = 288,

which contradicts with yz ≤ [ 1061
a ] ≤ [ 1061

5 ] = 212.
If 90 ≤ b < 150, then similarly we have

yz =
g(z)

3
≥ g(6)

3
≥ 2 · 84 = 168,

which contradicts with yz ≤ [ 811
a ] ≤ [811

5 ] = 162.
Similarly we can prove that y < 6 if 3y < z.
This completes the proof of Lemma 2.7. �

3. Proof of Theorem 1.1

Assume that (a, d, y, z) is a positive integer solution of equation (1.6) with ayz−661 = b ≥ 80. Then
we have y ≤ 5 by Lemma 2.6. We divide the proof into four cases.

Case 1: d = 1. From equation (1.6), we get

(ay − 1)z = 661 + y. (3.1)

Replacing y by 1, 2, 3, 4, 5 in (3.1) respectively, we obtain

(a − 1)z = 2 · 331, (2a − 1)z = 3 · 13 · 17, (3a − 1)z = 8 · 83, (4a − 1)z = 5 · 7 · 19, (5a − 1)z = 2 · 9 · 37.

Thus we get

(a, y, z) = (2, 1, 662), (3, 1, 331), (2, 2, 221), (3, 3, 83), (2, 4, 95).

Case 2: d = 2. From equation (1.6), we get

(2ay − 1)z = 1322 + y. (3.2)

Replacing y by 1, 2, 3, 4, 5 in (3.2) respectively, we obtain

(2a − 1)z = 9 · 49, (4a − 1)z = 4 · 331, (6a − 1)z = 25 · 53, (8a − 1)z = 6 · 13 · 17, (10a − 1)z = 1327.

Thus we get
(a, y, z) = (1, 1, 1323), (2, 1, 441), (4, 1, 189), (1, 3, 265).

Case 3: d = 3. From equation (1.6), we get

(3ay − 1)z = 1983 + y. (3.3)

Replacing y by 1, 2, 3, 4, 5 in (3.3) respectively, we obtain

(3a − 1)z = 43 · 31, (6a − 1)z = 5 · 397, (9a − 1)z = 6 · 331, (12a − 1)z = 1987, (15a − 1)z = 4 · 7 · 71.
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Thus we get
(a, y, z) = (1, 1, 992), (3, 1, 248), (1, 2, 397).

Case 4: d ≥ 4. If b ≥ 100, then by the proof of Lemma 2.6 we know

yz = f (y) ≥ f (6) ≥ 6 · 394 = 2364,

which contradicts with ayz ≤ 1983. If 80 ≤ b < 100, then similarly we know

yz = f (y) ≥ f (6) ≥ 6 · 314 = 1884,

which contradicts with ayz ≤ 761.
So Theorem 1.1 is proved.

4. Proof of Theorem 1.2

Assume that (a, d, y, z) is a positive integer solution of equation (1.7) with ayz − 661 = b ≥ 90.We
divide the proof into three cases.

Case 1: b > 2644, assume that y > z. Then y > 3y+z
4 =

b
4 > 661. If az > 4, then from (1.7), we get

ayz − 661 = 3y+z
d < 4y. It implies that y ≤ (az − 4)y < 661, which contradicts with y > 661. Hence

az ≤ 4. On the other hand, we have (adz − 3)b = az2 + 1983 ≤ 16 + 1983 = 1999 which contradicts
with b > 2644. Similarly we can prove that y ≤ z is impossible.

Case 2: 90 ≤ b ≤ 2644, d < 7 and a < 5, then we have a ∈ {1, 2, 3, 4}, d ∈ {1, 2, 4, 5} since
d|3y + z, gcd(3y, z) = 1.

If a = 1, from equation (1.7), we get

(dy − 1)(dz − 3) = 661d2 + 3. (4.1)

Replacing d by 1, 2, 4, 5 in (4.1) respectively, we obtain

(y− 1)(z− 3) = 8 · 83, (2y− 1)(2z− 3) = 2647, (4y− 1)(4z− 3) = 71 · 149, (5y− 1)(5z− 3) = 16 · 1033.

Thus we get

(d, y, z) = (1, 2, 667), (1, 3, 335), (1, 5, 169), (1, 9, 86), (1, 84, 11), (1, 167, 7), (1, 333, 5),

(1, 665, 4), (2, 1, 1325), (2, 1324, 2), (4, 2645, 1), (5, 1, 827), (5, 1653, 1).

If a = 2, from equation (1.7), we get

(2dy − 1)(2dz − 3) = 1322d2 + 3. (4.2)

Replacing d by 1, 2, 4, 5 in (4.2) respectively, we obtain

(2y−1)(2z−3) = 25·53, (4y−1)(4z−3) = 11·13·17, (8y−1)(8z−3) = 5·4231, (5y−1)(5z−3) = 33053.

Thus we get

(d, y, z) = (1, 1, 664), (1, 3, 134), (1, 27, 14), (1, 133, 4), (1, 663, 2),
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(2, 1323, 1), (4, 529, 1).

If a = 3, from equation (1.7), we get

(3dy − 1)(dz − 1) = 661d2 + 1. (4.3)

Replacing d by 1, 2, 4, 5 in (4.3) respectively, we obtain

(3y−1)(z−1) = 2·331, (6y−1)(2z−1) = 5·232, (9y−1)(3z−1) = 2·52 ·7·17, (15y−1)(5z−1) = 2·8263.

By computing we get that

(d, y, z) = (1, 1, 332), (1, 221, 2), (2, 1, 265), (2, 441, 1).

If a = 4, we contend d < 3. Otherwise d ≥ 4, we have 3y + z = db ≥ 4b. If b ≥ 300, then we have
yz ≥ 1197, which contradicts with yz ≤ [3305

4 ] = 826. If 90 ≤ b < 300, then we have yz ≥ 357, which
contradicts with yz ≤ [961

4 ] = 240. Hence d < 3 as desired. From equation (1.7), we get

(4dy − 1)(4dz − 3) = 2644d2 + 3. (4.4)

Replacing d by 1, 2 in (4.4) respectively, we obtain

(4y − 1)(4z − 3) = 2647, (8y − 1)(8z − 3) = 71 · 149.

Thus we get
(d, y, z) = (1, 662, 1).

Case 3: 90 ≤ b ≤ 2644, d ≥ 7 or a ≥ 5. Then we have either y ≤ 5 or z ≤ 5 by Lemma 2.7.

Subcase 1: d = 1, a ≥ 5, from equation (1.7), we get

(ay − 1)z = 661 + 3y (4.5)

and
(az − 3)y = 661 + z. (4.6)

Replacing y by 1, 2, 3, 4, 5 in (4.5) respectively, we obtain

(a − 1)z = 8 · 83, (2a − 1)z = 23 · 29, (3a − 1)z = 2 · 5 · 67, (4a − 1)z = 673, (5a − 1)z = 4 · 132.

Thus we get
(a, y, z) = (5, 1, 166).

Replacing z by 1, 2, 4, 5 in (4.6) respectively, we obtain

(a − 3)y = 2 · 331, (2a − 3)y = 3 · 13 · 17, (4a − 3)y = 5 · 7 · 19, (5a − 3)y = 2 · 32 · 37.

By computing we get
(a, y, z) = (5, 331, 1), (8, 51, 2), (10, 39, 2).
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Subcase 2: d = 2, a ≥ 5, from equation (1.7), we get

(2ay − 1)z = 1322 + 3y (4.7)

and
(2az − 3)y = 1322 + z. (4.8)

Replacing y by 1, 2, 3, 4, 5 in (4.7) respectively, we obtain

(2a − 1)z = 52 · 53, (4a − 1)z = 24 · 83, (6a − 1)z = 113, (8a − 1)z = 2 · 23 · 29, (10a − 1)z = 7 · 191.

By computing we know that the above equations have no positive integer solution (a, z) such that
a ≥ 5, b ≥ 90.

Replacing z by 1, 2, 4, 5 in (4.8) respectively, we obtain

(2a − 3)y = 33 · 72, (4a − 3)y = 22 · 331, (8a − 3)y = 2 · 3 · 13 · 17, (10a − 3)y = 1327.

By computing we get
(a, y, z) = (6, 147, 1), (12, 63, 1), (5, 189, 1).

Subcase 3: d ≥ 4, a ≥ 5, then we have 3y + z = db ≥ 4b. If b ≥ 200, then we get that yz ≥ 797
which contradicts with yz ≤ [3305

5 ] = 661. If 90 ≤ b < 200, then we get that yz ≥ 357 which contradicts
with yz ≤ [861

5 ] = 172.
Subcase 4: d ≥ 7, a < 5. We contend that a = 1. Otherwise a ≥ 2. If b ≥ 300, then we get that

yz ≥ 2097 which contradicts with yz ≤ [ 3305
2 ] = 1652. If 90 ≤ b < 300, then we get that yz ≥ 627

which contradicts with yz ≤ [ 861
2 ] = 430. Thus a = 1 as desired. From equation (1.7), we get

(dy − 1)(yz − 661) = 661 + 3y2 (4.9)

and
(dz − 3)(yz − 661) = 1983 + z2. (4.10)

Replacing y by 1, 2, 3, 4, 5 in (4.9) respectively, we obtain

(d−1)(z−661) = 8 ·83, (2d−1)(2z−661) = 673, (3d−1)(3z−661) = 42 ·43, (4d−1)(4z−661) = 709,

(5d − 1)(5z − 661) = 25 · 23.

By computing we know that the above equations have no positive integer solution (a, z) such that
d ≥ 7, b ≥ 90.

Replacing z by 1, 2, 4, 5 in (4.8) respectively, we obtain

(d−3)(y−661) = 26 ·31, (2d−3)(2y−661) = 1987, (4d−3)(4y−661) = 1999, (5d−3)(5y−661) = 8·251.

By computing we get that

(d, y, z) = (7, 1157, 1), (11, 909, 1), (19, 785, 1).

Therefore the proof of Theorem 1.2 is complete.
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5. Proof of Theorem 1.3

Since

661 + 12 = 673 ≡ 1 (mod 3), 661 + 22 = 683 ≡ 1 (mod 11), 661 + 30 = 691 ≡ 1 (mod 3),

661 + 40 = 701 ≡ 1 (mod 5), 661 + 48 = 709 ≡ 1 (mod 3), 661 + 58 = 719 ≡ 23 (mod 29),

661 + 66 = 727 ≡ 1 (mod 3), 661 + 72 = 733 ≡ 1 (mod 3), 661 + 78 = 739 ≡ 1 (mod 3),

661 + 82 = 743 ≡ 5 (mod 41),

so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz − 661 = b for b ∈
{12, 22, 30, 40, 48, 58, 66, 72, 78, 82} by Lemma 2.1.

Since
661 + 10 = 671 = 11 · 61, 11 ≡ 61 ≡ 1 (mod 5),

661 + 20 = 681 = 3 · 227, 227 ≡ 7 (mod 20),

661 + 26 = 687 = 3 · 229, 229 ≡ −5 (mod 13),

661 + 28 = 689 = 13 · 53,

661 + 34 = 695 = 5 · 139, 139 ≡ 3 (mod 17),

661 + 37 = 698 = 2 · 347, 347 ≡ 14 (mod 37),

661 + 38 = 699 = 3 · 233, 233 ≡ 5 (mod 19),

661 + 46 = 707 = 7 · 101, 101 ≡ 9 (mod 23),

661 + 52 = 713 = 23 · 31,

661 + 56 = 717 = 3 · 239, 239 ≡ 1 (mod 7),

661 + 57 = 718 = 2 · 359, 359 ≡ 17 (mod 57),

661 + 60 = 721 = 7 · 103, 7 ≡ 103 ≡ 1 (mod 3),

661 + 62 = 723 = 3 · 241, 241 ≡ −7 (mod 31),

661 + 70 = 731 = 17 · 43, 17 ≡ 3 (mod 7), 43 ≡ 1 (mod 7),

661 + 56 = 717 = 3 · 239, 239 ≡ 15 (mod 56),

661 + 73 = 734 = 2 · 367, 367 ≡ 2 (mod 73),

661 + 76 = 737 = 11 · 67,

661 + 85 = 746 = 2 · 373, 373 ≡ 33 (mod 85),

661 + 88 = 749 = 7 · 107, 107 ≡ 19 (mod 88),

so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz − 661 = b for b ∈
{10, 20, 26, 28, 34, 37, 38, 46, 52, 56, 57, 60, 62, 70, 73, 76, 85, 88} by Lemma 2.2(i).

Since
661 + 31 = 692 = 22 · 173, 173 ≡ 18 (mod 31),
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661 + 44 = 705 = 3 · 5 · 47, 47 ≡ 3 (mod 11),

661 + 50 = 711 = 32 · 79, 79 ≡ 4 (mod 25),

661 + 55 = 716 = 22 · 179, 179 ≡ 14 (mod 55),

661 + 61 = 722 = 2 · 192,

661 + 64 = 725 = 52 · 29,

661 + 80 = 741 = 3 · 13 · 19,

so both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz − 661 = b for b ∈
{31, 44, 50, 55, 61, 64} by Lemma 2.3(i).

Since

661 + 47 = 708 = 22 · 3 · 59, 661 + 59 = 720 = 24 · 32 · 5, 661 + 68 = 729 = 36,

661 + 71 = 732 = 22 · 3 · 61, 661 + 77 = 738 = 2 · 32 · 41,

by computing we know both (1.6) and (1.7) have no positive integer solution (a, d, y, z) with ayz−661 =
b for b ∈ {47, 59, 68, 71, 77}.

Since 661 + 27 = 688 = 24 · 43, 27 - x, for any

x ∈ {1 + 2α43β, 43 + 2α, 2t + 43β},

where α ∈ {0, 1, 2, 3, 4}, β ∈ {0, 1, }, t ∈ {1, 2, 3, 4}.661 + 75 = 736 = 25 · 23, 75 - x, for any

x ∈ {1 + 2α23β, 23 + 2α, 2t + 23β},

where α ∈ {0, 1, 2, 3, 4, 5}, β ∈ {0, 1, }, t ∈ {1, 2, 3, 4, 5} so (1.6) has no positive integer solution (a, d, y, z)
with ayz − 661 = b for b ∈ {27, 75} by Lemma 2.5.

Since
661 + 18 = 679 = 7 · 97, 7 ≡ 97 ≡ −2 (mod 9),

661 + 24 = 685 = 5 · 137, 5 ≡ 137 ≡ 1 (mod 4),

661 + 33 = 694 = 2 · 347, 347 ≡ 6 (mod 11),

661 + 36 = 697 = 17 · 41, 17 ≡ 41 ≡ 1 (mod 4),

661 + 42 = 703 = 19 · 37, 19 ≡ 37 ≡ 1 (mod 3),

661 + 45 = 706 = 2 · 353, 353 ≡ 2 (mod 9),

so (1.6) has no positive integer solution (a, d, y, z) with ayz − 661 = b for b ∈ {18, 24, 33, 36, 42, 45} by
Lemma 2.2(ii).

For any b = 3t, 1 ≤ t < 29, (1.7) has no positive integer solution (a, d, y, z) with ayz − 661 = b by
Lemma 2.4.

Since

661 + 3 = 23 · 83, 661 + 6 = 2 · 32 · 37, 661 + 9 = 2 · 5 · 67, 661 + 15 = 22 · 132,
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661 + 21 = 2 · 11 · 31, 661 + 39 = 22 · 52 · 7, 661 + 51 = 23 · 89,

so by computing we get that (a, d, y, z) =

(2, 29, 4, 83), (2, 112, 1, 332), (8, 28, 1, 83), (83, 3, 1, 8), (332, 1, 1, 2), (23, 5, 1, 29),

(29, 4, 1, 23), (2, 8, 5, 67), (5, 15, 1, 134), (26, 1, 2, 13), (2, 2, 11, 31), (11, 3, 1, 62),

(2, 1, 14, 25), (5, 1, 4, 35), (2, 7, 1, 356),

are positive integer solutions of (1.6).
We are now in a position to discuss

b ∈ {1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 23, 25, 28, 29, 32, 35, 41, 43, 49, 53, 59, 65, 67, 74, 79}.

Since

661 + 1 = 2 · 331, 661 + 2 = 3 · 13 · 17, 661 + 4 = 5 · 7 · 19, 661 + 5 = 2 · 32 · 37,

661 + 7 = 22 · 167, 661 + 8 = 3 · 223, 661 + 11 = 25 · 3 · 7, 661 + 13 = 2 · 337, 661 + 14 = 33 · 52

661 + 16 = 677, 661 + 17 = 2 · 3 · 113, 661 + 19 = 23 · 5 · 17, 661 + 23 = 22 · 32 · 19,

661 + 25 = 2 · 73, 661 + 28 = 13 · 53, 661 + 29 = 2 · 3 · 5 · 23, 661 + 32 = 32 · 7 · 11,

661 + 35 = 23 · 3 · 29, 661 + 41 = 2 · 33 · 13, 661 + 43 = 26 · 11, 661 + 49 = 2 · 5 · 71,

661 + 53 = 2 · 3 · 7 · 17, 661 + 59 = 24 · 5 · 32, 661 + 65 = 2 · 3 · 112,

661 + 67 = 23 · 7 · 13, 661 + 74 = 3 · 5 · 72, 661 + 79 = 22 · 5 · 37,

so by computing we get that (a, d, y, z) =

(662, 2, 1, 1), (1, 663, 1, 662), (1, 333, 2, 331), (2, 332, 1, 331), (331, 3, 1, 2), (663, 1, 1, 1),

(1, 332, 1, 663), (1, 112, 3, 221), (1, 32, 13, 51), (1, 28, 17, 39), (3, 111, 1, 221), (3, 14, 13, 17),

(13, 26, 1, 51), (13, 10, 3, 17), (17, 20, 1, 39), (17, 8, 3, 13), (39, 9, 1, 17), (51, 7, 1, 13),

(221, 2, 1, 3), (7, 6, 5, 19), (19, 3, 5, 7), (7, 24, 1, 95), (19, 9, 1, 35), (35, 5, 1, 19),

(95, 2, 1, 7), (1, 11, 18, 37), (1, 67, 2, 333), (9, 15, 1, 74), (74, 2, 1, 9), (6, 8, 3, 37),

(111, 1, 2, 3), (4, 24, 1, 167), (3, 28, 1, 223), (32, 2, 1, 21), (24, 1, 4, 7), (28, 1, 3, 8),

(21, 3, 1, 32), (2, 26, 1, 337), (15, 1, 5, 9), (9, 2, 3, 25), (25, 2, 1, 27), (1, 7, 6, 113),

(2, 20, 1, 339), (1, 3, 17, 40), (20, 1, 2, 17), (9, 1, 4, 19), (14, 2, 1, 49), (5, 1, 6, 23),

(6, 4, 1, 115), (11, 2, 1, 63), (3, 1, 11, 21), (4, 1, 6, 29), (4, 5, 1, 174), (9, 1, 2, 39),

(2, 1, 11, 32), (1, 3, 5, 142), (7, 1, 2, 51), (5, 2, 1, 147), (2, 1, 5, 74)

are the solutions of (1.6) and (a, d, y, z) =

(662, 4, 1, 1), (1, 337, 2, 331), (1, 665, 1, 662), (1, 1987, 662, 1), (1, 995, 331, 2), (2, 334, 1, 331),

AIMS Mathematics Volume 2, Issue 1, 111-127



126

(2, 994, 331, 1), (331, 5, 1, 2), (331, 7, 2, 1), (663, 2, 1, 1), (1, 333, 1, 663), (1, 995, 663, 1),

(1, 115, 3, 221), (1, 83, 51, 13), (1, 67, 39, 17), (3, 112, 1, 221), (3, 332, 221, 1), (3, 28, 13, 17),

(3, 32, 17, 13), (13, 13, 3, 17), (17, 59, 39, 1), (17, 11, 3, 13), (39, 10, 1, 17), (39, 26, 17, 1),

(51, 8, 1, 13), (51, 20, 13, 1), (221, 5, 3, 1), (1, 167, 1, 665), (665, 1, 1, 1), (1, 37, 5, 133),

(1, 101, 133, 5), (1, 31, 35, 19), (1, 73, 95, 7), (5, 34, 1, 133), (5, 10, 7, 19), (5, 16, 19, 7),

(133, 2, 1, 5), (5, 100, 133, 1), (333, 1, 1, 2), (18, 8, 1, 37), (222, 2, 3, 1), (3, 11, 6, 37),

(3, 67, 111, 2), (37, 11, 18, 5), (2, 200, 333, 1), (334, 1, 2, 1), (167, 1, 1, 4), (1, 29, 3, 223),

(6, 5, 16, 7), (8, 23, 84, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2), (45, 1, 3, 5),

(27, 2, 1, 25), (75, 2, 9, 1), (1, 127, 677, 1), (3, 7, 2, 113), (6, 20, 113, 1), (34, 1, 5, 4),

(4, 2, 9, 19), (13, 2, 1, 53), (15, 1, 2, 23), (9, 1, 7, 11), (33, 2, 21, 1), (12, 1, 2, 29),

(12, 5, 58, 1), (3, 2, 4, 58), (27, 1, 13, 2), (26, 2, 27, 1), (8, 1, 18, 5), (2, 2, 3, 121),

(2, 1, 13, 28), (15, 2, 49, 1)

are the solutions of (1.7).
We are now in a position to discuss b ∈ {83, 86, 89}.
Since 661 + 83 = 23 · 3 · 31,661 + 86 = 32 · 83 so by computing we get that (a, d, y, z) =

(1, 9, 1, 744), (9, 1, 1, 83) are solutions of (1.7).
Since 661 + 89 = 2 · 3 · 53, so by computing we get that (1.7) has no positive integer solution.
This finishes the proof of Theorem 1.3.

6. Proof of Theorem 1.4

If ay > 2, then from ayz− 661 = 661y+z
d < 2z, we get that z ≤ (ay− 2)z < 661 which contradicts with

z > 661y. Hence a = y = 1 or a = 1, y = 2 or a = 2, y = 1.
a = y = 1 implies that (d − 1)(z − 661) = 2 · 661. So

(d, z) = (2, 1983), (3, 1322), (662, 663), (1323, 662).

a = 1, y = 2 implies that (2d − 1)(2z − 661) = 5 · 661. So

(d, z) = (1, 1983), (3, 661), (331, 333), (1653, 331).

a = 2, y = 1 implies that (2d − 1)(2z − 661) = 3 · 661. So

(d, z) = (1, 1322), (2, 661), (331, 332), (992, 331).

This concludes the proof of Theorem 1.4.
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