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Abstract: It is well-known that a positive integer d is called a unitary divisor of an integer n if d|n and
gcd
(
d, n

d

)
= 1. Divisor function σ∗(n) denote the sum of all such unitary divisors of n. In this paper

we consider the maximum function U∗(n) = max{k ∈ N : σ∗(k)|n} and study the function U∗(n) for
n = pm, where p is a prime and m ≥ 1.
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1. Introduction

Any function whose domain of definition is the set of positive integers is said to be an arithmetic
function. Let f : N→ N be an arithmetic function with the property that for each n ∈ N there exists at
least one k ∈ N such that n| f (k). Let

F f (n) = min{k ∈ N : n| f (k)} (1.1)

This function generalizes some particular functions. If f (k) = k!, then one gets the well known
Smarandache function, while for f (k) = k(k+1)

2 one has the Pseudo Smarandache function [1, 5, 6]. The
dual of these two functions are defined by J. Sandor [5, 7]. If g is an arithmetic function having the
property that for each n ∈ N , there exists at least one k ∈ N such that g(k)|n, then the dual of F f (n) is
defined as

Gg(n) = max{k ∈ N : g(k)|n} (1.2)

The dual Smarandache function is obtained for g(k) = k! and for g(k) = k(k+1)
2 one gets the dual

Pseudo-Smarandache function. The Euler minimum function has been first studied by P. Moree and H.
Roskam [4] and it was independently studied by Sandor [11]. Sandor also studied the maximum and
minimum functions for the various arithmetic functions like unitary toitent function φ∗(n) [9], sum of
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divisors function σ(n), product of divisors function T (n) [10] , the exponential totient function φe(n)
[8].

2. Preliminary

A positive integer d is called a unitary divisor of n if d|n and gcd
(
d, n

d

)
= 1 . The notion of unitary

divisor related to arithmetical function was introduced by E.Cohen[3]. If the integer n > 1 has the
prime factorization n = pα1

1 pα2
2 .....p

αr
r ,then d is a unitary divisor of n if and only if d = pβ1

1 pβ2
2 .....p

βr
r

,where βi = 0 or βi = αi for every i ∈ {1, 2, 3....r} . The unitary divisor function, denoted by σ∗(n)
, is the sum of all positive unitary divisors of n. It is to noted that σ∗(n) is a multiplicative function.
Thus σ∗(n) satisfies the functional condition σ∗(nm) = σ∗(n)σ∗(m) for gcd(m, n) = 1. If n > 1
has the prime factorization n = pα1

1 pα2
2 .....p

αr
r , then we have σ∗(n) = σ∗(pα1

1 )σ∗(pα2
2 )...σ∗(pαr

r ) = (pα1
1 +

1)(pα2
2 +1)....(pαr

r +1) In this paper, we consider the case (1.2) for the unitary divisor function σ∗(n) and
investigate various characteristics of this function. In (1.2), taking g(k) = σ∗(k) we define maximum
function as follows

U∗(n) = max{k ∈ N : σ∗(k)|n}
First we discuss some preliminary results related to the function σ∗(n).
Lemma 2.1. Let n ≥ 2 be a positive integer and let r denote the number of distinct prime factors of

n. Then

σ∗(n) ≥ (1 + n
1
r )r ≥ 1 + n

Proof. Let n = pα1
1 pα2

2 .....p
αr
r be the prime factorization of the natural number n ≥ 2 , where pi are

distinct primes and αi ≥ 0 . For any positive numbers x1, x2, x3..., xr by Huyggens inequality,we have
((1 + x1)(1 + x2)(1 + xr))

1
r ≥ 1 + (x1x2..xr)

1
r For i = 1, 2, ..r, putting xi = pαi

i in the above inequality,
we obtain σ∗(n)

1
r ≥ 1 + n

1
r , giving σ∗(n) ≥ (1 + n

1
r )r . Again for any numbers a, b ≥ 0, r ≥ 1, from

binomial theory we have (a + b)r ≥ ar + br. Therefore we obtain σ∗(n) ≥ (1 + n
1
r )r ≥ 1 + n. Thus for

all n ≥ 2, we have σ∗(n) ≥ 1 + n. The equality holds only when n is a prime or n is power of a prime.
Remark 2.1. From the lemma 2.1,for all k ≥ 2 we have σ∗(k) ≥ k + 1 and from σ∗(k)|n it follows

that σ∗(k) ≤ n, so k + 1 ≤ n . Thus U∗(n) ≤ n − 1. Therefore the maximum function U∗(n) is finite and
well defined.

Lemma 2.2. Let p be a prime. The equation σ∗(x) = p has solution if and only if p is a Fermat
prime.

Proof. If x is a composite number with at least two distinct prime factors, then σ∗(x) is also a
composite number. Therefore, for any composite number x with at least two distinct prime factors,
σ∗(x) , p, a prime. So x must be of the form x = qα for some prime q. Thus x = qα gives σ∗(x) =
qα + 1 = p if and only if qα = p − 1. If p = 2, then q = 1 and α = 1 , which is impossible , so p must
be an odd prime . If p ≥ 3, then p − 1 is even, so we must have q = 2, i.e., p = 2α + 1. It is clear that
such prime exists when α is a power of 2 giving thereby that p is Fermat prime (see [2], page-236).

Lemma 2.3. Let p be a prime. The equation σ∗(x) = p2 only has the following two solutions:
x = 3, p = 2 and x = 8, p = 3.

Proof. Let x = pα1
1 pα2

2 .....p
αr
r be solution of σ∗(x) = p2, then (1 + pα1

1 )(1 + pα2
2 )....(1 + pαr

r ) = p2 if
and only if
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(a) pα1
1 + 1 = p2

(b)pα1
1 + 1 = 1, pα2

2 + 1 = p2

(c)pα1
1 + 1 = 1, pα2

2 + 1 = p , pα3
3 + 1 = p

(d)pα1
1 + 1 = p, pα2

2 + 1 = p
Since pi are distinct primes, so the cases (b), (c) and (d) are impossible. Therefore only possible

case is (a). If x is odd, then from the case (a) we must have only p = 2. In this case we have p1 = 3,
α1 = 1, so x = 3. If x is even then only possibility is p1 = 2, so from the case (a),we have 2α1 = p2 − 1
, then 2α1 = (p − 1)(p + 1), giving the equations 2a = p − 1, 2b = p + 1, where a + b = α1. Solving we
get 2b = 2(1+ 2a−1) and p = 2a−1 + 2b−1. Since 2b = 2(1+ 2a−1) is possible only when b = 2 and a = 1,
therefore p = 2a−1 + 2b−1 gives p = 3. Thus α1 = 3 and hence x = 8.

Lemma 2.4. Let p be a prime. The equation σ∗(x) = p3 has a unique solution: x = 7, p = 2.
Proof. Proceeding as the lemma 2.3, we are to find the solution of the equation pα1

1 +1 = p3. If p1 is
odd, then only possible value of p is 2 and in that case the solution is x = 7. If p1 is even, then p1 = 2
and 2α1 = p3 − 1 . In that case p , 2 and hence p is an odd prime. Since p3 − 1 = (p − 1)(p2 + p + 1)
and p2 + p + 1 is odd for any prime p, hence 2α1 , p3 − 1 .

Lemma 2.5. Let k > 1 be an integer. The equation σ∗(x) = 2k is always solvable and its solutions
are of the form x =Mersenne prime or x = a product of distinct Mersenne primes.

Proof. Let x = pα1
1 pα2

2 .....p
αr
r , then (1 + pα1

1 )(1 + pα2
2 )....(1 + pαr

r ) = 2k , which gives (1 + pα1
1 ) = 2k1 ,

(1+ pα2
2 ) = 2k2 , ....(1+ pαr

r ) = 2kr , where k1 + k2 + ...+ kr = k. Clearly each pi is odd. Now we consider
the equation pα = 2a − 1 ,(a > 1) .

If α = 2m is an even and p ≥ 3, then p must be of the form 4h ± 1 and p2 = 16h ± 8h + 1 =
8h(2h±1)+1 = 8 j+1. Therefore p2m+1 = (8 j+1)m+1 = (8r+1)+1 = 2(4r+1) , 2a. If α = 2m+1,
(m ≥ 0), then p2m+1+1 = (p+1)(p2m− p2m−1+ ...− p+1). Clearly the expression p2m− p2m−1+ ...− p+1
is odd. Thus pα + 1 , 2a, when α = 2m + 1,(m > 0) . If m = 0, then p = 2a − 1, a prime. Any prime of
the form p = 2a − 1 is always a Mersenne prime. Thus each pi is Mersenne prime. Hence the lemma
is proved.

Lemma 2.6. Let p be a prime and k > 2 be an integer. The equation σ∗(x) = pk has solution only
for p = 2.

Proof. Let x = pα1
1 pα2

2 .....p
αr
r .Then proceeding as the lemma 2.5,we have to solve the equation of

the form qα + 1 = pk, where q is a prime. If q is odd , then qα = pk − 1 must be odd. This is possible
only when p = 2 and α = 1. In that case σ∗(x) = 2k and by the lemma 2.5, this equation is solvable.
If q is even, then only possibility is q = 2 and 2α = pk − 1 .One can easily show that this equation
has no solution for k > 2 . It is clear that p is an odd prime. If k = 2m + 1, (m > 0) is an odd, then
p2m+1 − 1 = (p − 1)(p2m + p2m−1 + ... + p + 1).Since the expression p2m + p2m−1 + ... + p + 1 gives an
odd number, so in that case p2m+1 − 1 , 2α . If k = 2m + 2, (m > 0) is an even (since k > 2), then
p2m+2 − 1 = 2α. This equation gives pm+1 − 1 = 2a and pm+1 + 1 = 2b,where a + b = α. Solving we
obtain 2b − 2a = 2. The last equation has only solution a = 1,b = 2. Therefore we get α = 3. For
α = 3, the equation p2m+2 − 1 = 2α strictly implies that m = 0. But by our assumption k > 2. Hence
the lemma is proved.

3. Results

In this section we discuss our main results.
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Following result follows from the definition of U∗(n)
Theorem 3.1. For all n ≥ 1, σ∗(U∗(n)) ≤ n.
Theorem 3.2. For all n ≥ 2, U∗(n) ≤ n − 1
Proof. From the lemma 2.1,for all k ≥ 2 ,we have σ∗(k) ≥ k + 1 . Putting k = U∗(n), one can get

σ∗(U∗(n)) ≥ U∗(n) + 1 . Using the theorem 3.1,we obtain n ≥ σ∗(U∗(n)) ≥ 1 + U∗(n), for all n ≥ 2 .
Theorem 3.3. If p is a prime and α ≥ 1 , then U∗(pα + 1) = pα

Proof. Since for any prime power pα , we have σ∗(pα) = pα + 1 , so we can write σ∗(pα)|pα + 1.
Therefore from the definition of U∗(n), we get pα ≤ U∗(pα + 1) ,for all α ≥ 1 .Putting n = pα + 1 in the
inequality of the theorem 3.2, we get U∗(pα + 1) ≤ pα .

Theorem 3.4. For i = 1, 2, ....r, let pi be distinct primes . If n be a positive integer such that
(1 + pα1

1 )(1 + pα2
2 )....(1 + pαr

r )|n , where αi ≥ 1 ,then U∗(n) ≥ pα1
1 pα2

2 ...p
αr
r

Proof. Since σ∗(pα1
1 pα2

2 ...p
αr
r ) = (1 + pα1

1 )(1 + pα2
2 )....(1 + pαr

r )|n, so from the definition of U∗(n), the
result follows.

Theorem 3.5.
U∗(p) =

{
2m, if p = 2m + 1 is Fermat prime,
1, if p = 2 or p is not Fermat prime

Proof. We have σ∗(k)|p, when σ∗(k) = p or σ∗(k) = 1 . Thus from the lemma 2.2 and the definition
of U∗(n) the result follows.

Theorem 3.6.

U∗(p2) =


3, if p = 2,
8, if p = 3
2m, if p = 2m + 1 > 3 is Fermat prime,
1, if p is not Fermat prime

Proof. The result follows from the lemma 2.3 and the definition of U∗(n).
Theorem 3.7.

U∗(p3) =


7, if p = 2,
8, if p = 3
2m, if p = 2m + 1 > 3 is Fermat prime,
1, if p is not Fermat prime

Proof. The result follows from the lemma 2.4 and the definition of U∗(n).
Theorem 3.8. U∗(2t) = g, where g is the greatest product (2p1 − 1)(2p2 − 1)...(2pr − 1) of Mersenne

primes, where p1 + p2 + ... + pr ≤ t .
Proof. Let σ∗(k)|2t,then σ∗(k) = 2a, where 0 ≤ a ≤ t .From the definition of U∗(n) and the lemma

2.5, the greatest value of such k is k = g, where g = (2p1−1)(2p2−1)...(2pr−1), with p1+ p2+ ...+ pr ≤ t
.

Example 3.1. For n = 28, p1 + p2 + ... + pr = 8 , so we get p1 = 3, p2 = 5. Therefore g =
(2p1 − 1)(2p2 − 1) = 217, i.e. U∗(28) = 217 .

Theorem 3.9. For k > 3,

U∗(pk) =


g, if p = 2, where g is given in the theorem 3.8,
8, if p = 3,
2m, if p = 2m + 1 > 3 is Fermat prime,
1, if p is not Fermat prime
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Proof. The result follows from the lemma 2.6 and the definition of U∗(n).
Corollary 3.10. For any a ≥ 1, U∗(7a) = 1,U∗(11a) = 1, U∗(13a) = 1,U∗(19a) = 1 etc.
Theorem 3.11. For a ≥ 1,any number of the form n = (2m + 1)(2p − 1)a, U∗(n) = 2l for some l,

where 2m + 1 is Fermat prime and 2p − 1 is Mersenne prime.
Proof. Since 3 is the only prime which is both Mersenne and Fermat prime, so in that case for a ≥ 1,

n = 3a+1 from the theorem 3.9, it follows that U∗(n) = 23. For n , 3a+1, if σ∗(k)|n = (2m + 1)(2p − 1)a,
then the only possibility is σ∗(k)|2m + 1. Therefore the result follows from the lemma 2.2.

Example 3.2. U∗(35) = 22, U∗(51) = 24, U∗(7967) = 28.

4. Conclusion

We study the maximum function U∗(n) in detail and determine the exact value of U∗(n) if n is prime
power. There is also a scope for the study of the function U∗(n) for other values of n.
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