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Abstract: In this paper, a system of parabolic type initial-boundary value problems are considered.
The system (S)ν is based on the non-isothermal model of grain boundary motion by [38], which was
derived as an extending version of the “Kobayashi–Warren–Carter model” of grain boundary motion
by [23]. Under suitable assumptions, the existence theorem of L2-based solutions is concluded, as a
versatile mathematical theory to analyze various Kobayashi–Warren–Carter type models.
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1. Introduction

Let 0 < T < ∞ be a constant of time, and let N ∈ N be a constant of spatial dimension such that
1 ≤ N ≤ 3. Let Ω ⊂ RN be a bounded domain such that Γ := ∂Ω is smooth when N > 1. Besides, let
us denote by Q := (0,T ) × Ω the product space of the time-interval (0,T ) and the spatial domain Ω,
and similarly, let us set Σ := (0,T ) × Γ.

In this paper, we fix a constant ν ≥ 0, and consider the following system of initial-boundary value
problems of parabolic types, denoted by (S)ν.

(S)ν: 
[u − λ(w)]t − ∆u = f in Q,

Du · nΓ + n0(u − fΓ) = 0 on Σ,

u(0, x) = u0(x), x ∈ Ω;

(1.1)
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wt − ∆w + ∂γ(w) + gw(w, η) + λ′(w)u

+αw(w, η)|Dθ| + ν2βw(w, η)|Dθ|2 ∋ 0 in Q,

Dw · nΓ = 0 on Σ,

w(0, x) = w0(x), x ∈ Ω;

(1.2)


ηt − ∆η + gη(w, η) + αη(w, η)|Dθ| + ν2βη(w, η)|Dθ|2 = 0 in Q,

Dη · nΓ = 0 on Σ,

η(0, x) = η0(x), x ∈ Ω;

(1.3)


α0(w, η)θt − div

(
α(w, η)

Dθ
|Dθ| + 2ν2β(w, η)Dθ

)
= 0 in Q,(

α(w, η) Dθ
|Dθ| + 2ν2β(w, η)Dθ

) · nΓ = 0 on Σ,

θ(0, x) = θ0(x), x ∈ Ω.

(1.4)

Here, Du, Dw, Dη and Dθ denote, respectively, the (distributional) gradients of the unknowns u, w, η
and θ on Ω. f = f (t, x) is the source term on Q, fΓ = fΓ(t, x) is the boundary source on Σ. u0 = u0(x),
w0 = w0(x), η0 = η0(x) and θ0 = θ0(x) are given initial data on Ω. ∂γ is the subdifferential of a
proper lower semi-continuous (l.s.c.) and convex function γ = γ(w) on R. λ = λ(w), g = g(w, η),
α0 = α0(w, η), α = α(w, η) and β = β(w, η) are given real-valued functions, and the scripts “ ′ ”, “w” and
“η” denote differentials with respect to the corresponding variables. n0 is a given positive constant, and
nΓ is the unit outer normal on Γ.

The system (S)ν is based on the non-isothermal model of grain boundary motion by Warren et al.
[36], which was derived as an extending version of the “Kobayashi–Warren–Carter model” of grain
boundary motion by Kobayashi et al. [22, 23]. Hence, the study of this paper is based on the previous
works related to the Kobayashi–Warren–Carter model (e.g., [13, 15, 16, 17, 20, 21, 22, 23, 25, 26, 28,
29, 30, 31, 32, 36, 37, 39]).

According to the modeling method of [36], the system (S)ν is roughly configured as a coupled
system of the heat equation in (1.1), and a gradient system {(1.2)–(1.4)} of the following governing
energy, called free-energy:

Eν(u,w, η, θ) :=
1
2

∫
Ω

|Dw|2 dx +
∫
Ω

γ(w) dx +
∫
Ω

uλ(w) dx

+
1
2

∫
Ω

|Dη|2 dx +
∫
Ω

g(w, η) dx +
∫
Ω

α(w, η) d|Dθ| +
∫
Ω

β(w, η)|D(νθ)|2 dx,

for [u,w, η, θ] ∈ L2(Ω) × H1(Ω) × H1(Ω) × BV(Ω) with νθ ∈ H1(Ω).

(1.5)

In this context, the unknown u = u(t, x) is the relative temperature with the critical degree 0, and the
unknown w = w(t, x) is an order parameter to indicate the solidification order of the polycrystal. The
term u − λ(w) in (1.1) is the so-called enthalpy, and then the term λ(w) corresponds to the effect of the
latent heat. The unknowns η = η(t, x) and θ = θ(t, x) are components of the vector field

(t, x) ∈ Q 7→ η(t, x)
[

cos θ(t, x), sin θ(t, x)
]
∈ R2,
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which was adopted in [22, 23] as a vectorial phase field to reproduce the crystalline orientation in Q.
Here, the components η and θ are order parameters to indicate, respectively, the orientation order and
angle of the grain. In particular, w and η are taken to satisfy the constraints 0 ≤ w, η ≤ 1 in Q, and the
cases [w, η] ≈ [1, 1] and [w, η] ≈ [0, 0] are respectively assigned to “the solidified-oriented phase” and
“the liquefied-disoriented phase” which correspond to two stable phases in physical.

In view of these, we suppose that

(g0) the function w ∈ [0, 1] 7→ λ(w) ∈ R is increasing, and if the temperature u is closed to the critical
value, i.e. u ≈ 0, then the function

[u,w, η] ∈ R2 7→ γ(w) + g(w, η) − λ(w)u ∈ (−∞,∞]

has two minimums, around [1, 1] and [0, 0].

Besides, referring to the previous works on phase transitions (e.g., [7, 8, 14, 18, 19, 34, 35]), we can
exemplify the following settings as possible expressions of the functions λ, γ and g in the above (g0):

(g1) (constrained setting by logarithmic function; cf. [14, 34, 35])
λ(w) = Lw, γ(w) :=

1
2

(
w log w + (1 − w) log(1 − w)

)
with γ(0) = γ(1) := 1,

g(w, η) := −L
2

(
w − 1

2

)2

+
c
2

(w − η)2,

for w, η ∈ R,

(g2) (setting with non-smooth constraint; cf. [7, 8, 18, 19, 35])
λ(w) = Lw, γ(w) := I[0,1](w),

g(w, η) := −L
2

(
w − 1

2

)2

+
c
2

(w − η)2,
for w, η ∈ R.

Here, L and c are positive constants, and I[0,1] : R → {0,∞} is the indicator function on the compact
interval [0, 1].

Now, the objective of this study is to generalize the line of recent results [25, 26, 28, 29, 30, 31, 32,
37, 39], and to obtain an enhanced theory which enables the versatile analysis for Kobayashi–Warren–
Carter type systems, under various situations. To this end, we set the goal of this paper to specify
the assumptions, which can cover the settings as in (g1)–(g2), and can guarantee the validity of the
following Main Theorem.

Main Theorem: the existence theorem of the solution [u,w, η, θ] to the systems (S)ν, for any ν ≥ 0,
which behaves in the range of C([0,T ]; L2(Ω)4), with the L2-based sources f ∈ L2(0,T ; L2(Ω))
and fΓ ∈ L2(0,T ; L2(Γ)).

The main theorem is somehow to enhance the results [25, 31, 32] concerned with qualitative properties
of isothermal/non-isothermal Kobayashi–Warren–Carter type systems.
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2. Preliminaries

First we elaborate the notations which is used throughout this paper.

Notation 1 (Real analysis). For arbitrary a0, b0 ∈ [−∞,∞], we define

a0 ∨ b0 := max{a0, b0} and a0 ∧ b0 := min{a0, b0}.

Fix d ∈ N as a constant of dimension. Then, we denote by |x| and x · y the Euclidean norm of x ∈ Rd

and the standard scalar product of x, y ∈ Rd, respectively, as usual, i.e.:

|x| :=
√

x2
1 + · · · + x2

d and x · y := x1y1 + · · · + xdyd

for all x = [x1, . . . , xd], y = [y1, . . . , yd] ∈ Rd.

The d-dimensional Lebesgue measure is denoted by L d, and unless otherwise specified, the mea-
sure theoretical phrases, such as “a.e.”, “dt”, “dx”, and so on, are with respect to the Lebesgue
measure in each corresponding dimension. Also, in the observations on a smooth surface S ⊂ Rd, the
phrase “a.e.” is with respect to the Hausdorff measure in each corresponding Hausdorff dimension,
and the area element on S is denoted by dS .

For a (Lebesgue) measurable function f : B → [−∞,∞] on a Borel subset B ⊂ Rd, we denote by
[ f ]+ and [ f ]−, respectively, the positive and negative parts of f , i.e.,

[ f ]+(x) := f (x) ∨ 0 and [ f ]−(x) := −( f (x) ∧ 0), a.e. x ∈ B.

Notation 2 (Abstract functional analysis). For an abstract Banach space X, we denote by | · |X the
norm of X, and when X is a Hilbert space, we denote by ( · , · )X its inner product. For a subset A of a
Banach space X, we denote by int(A) and A the interior and the closure of A, respectively.

Fix 1 < d ∈ N. Then, for a Banach space X, the topology of the product Banach space Xd is
endowed with the norm:

|z|Xd :=
d∑

k=1

|zk|X, for z = [z1, . . . , zd] ∈ Xd.

However, if X is a Hilbert space, then the topology of the product Hilbert space Xd is endowed with the
inner product:

(z, z̃)Xd :=
d∑

k=1

(zk, z̃k)X, for z = [z1, . . . , zd] ∈ Xd and z̃ = [z̃1, . . . , z̃d] ∈ Xd,

and hence, the norm in this case is provided by

|z|Xd :=
√

(z, z)Xd =

( d∑
k=1

|zk|2X
)1/2

, for z = [z1, . . . , zd] ∈ Xd.

For a Banach space X, we denote the dual space by X∗. For a single-valued operator A : X → X∗, we
write

A z = [A z1, . . . ,A zd] ∈ [X∗]d for any z = [z1, . . . , zd] ∈ Xd.
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For any proper lower semi-continuous (l.s.c. hereafter) and convex function Ψ defined on a Hilbert
space X, we denote by D(Ψ) its effective domain, and denote by ∂Ψ its subdifferential. The subdifferen-
tial ∂Ψ is a set-valued map corresponding to a weak differential of Ψ, and it has a maximal monotone
graph in the product Hilbert space X2. More precisely, for each z0 ∈ X, the value ∂Ψ(z0) is defined as
the set of all elements z∗0 ∈ X that satisfy the variational inequality

(z∗0, z − z0)X ≤ Ψ(z) − Ψ(z0) for any z ∈ D(Ψ),

and the set D(∂Ψ) := {z ∈ X | ∂Ψ(z) , ∅} is called the domain of ∂Ψ. We often use the notation
“[z0, z∗0] ∈ ∂Ψ in X2 ” to mean “z∗0 ∈ ∂Ψ(z0) in X with z0 ∈ D(∂Ψ)” by identifying the operator ∂Ψ with
its graph in X2.

Notation 3 (Basic elliptic operators). Let V = H1(Ω) be a Hilbert space endowed with the inner
product:

(w, z)V :=
∫
Ω

∇w · ∇zdx + n0

∫
Γ

wz dΓ, for [w, z] ∈ V2,

and let CV > 0 be the embedding constant of V ⊂ L2(Ω).
Let ⟨ ·, · ⟩ be the duality pairing between V and the dual space V∗, and let F: V → V∗ be the duality

mapping defined by
⟨Fw, z⟩ := (w, z)V , for [w, z] ∈ V2.

Note that V∗ forms a Hilbert space endowed with the inner product:

(w∗, z∗)V∗ := ⟨w∗, F−1z∗⟩, for [w∗, z∗] ∈ (V∗)2.

For any ϱ ∈ L2(Ω) and any ϱΓ ∈ L2(Γ), we can regard the vectorial function ϱ∗ := [ϱ, ϱΓ] ∈
L2(Ω) × L2(Γ) as an element of V∗, via the following variational form:

⟨ϱ∗, z⟩ := (ϱ, z)L2(Ω) + n0(ϱΓ, z)L2(Γ) for z ∈ V. (2.1)

Note that for any ϱ∗ = [ϱ, ϱΓ] ∈ L2(Ω) × L2(Γ), the variational form (2.1) enables the following
identification:

Fω = ϱ∗ in V∗, iff. ω ∈ H2(Ω) and
{
−∆ω = ϱ in L2(Ω),
Dω · nΓ + n0(ω − ϱΓ) = 0 in L2(Γ).

On this basis, the product space L2(Ω)×L2(Γ) can be regarded as a subspace of V∗, and the restriction
F|H2(Ω) : H2(Ω) → L2(Ω) × L2(Γ) can be regarded as a bijective linear operator associated with the
Laplacian, subject to Robin type boundary condition (cf. [24]).

In the meantime, we denote by ∆N the Laplacian operator subject to the zero-Neumann boundary
condition, i.e.,

∆N : z ∈ WN :=
{

z ∈ H2(Ω) Dz · nΓ = 0 in L2(Γ)
}
⊂ L2(Ω) 7→ ∆z ∈ L2(Ω).

Remark 1. We here show some representative examples of the subdifferentials, which is intimately
related to our study.
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(Ex.1) The quadratic functional u ∈ L2(Ω) 7→ 1
2 |u|2L2(Ω) can be regarded as a proper l.s.c. and convex

function on V∗, via the standard ∞-extension, and then, the V∗-subdifferential of this function
coincides with the duality map F : V → V∗, i.e.:

[u, u∗] ∈ ∂[ 1
2 | · |2L2(Ω)

]
in [V∗]2, iff. u ∈ V and u∗ = Fu in V∗.

(Ex.2) Let d ∈ N, and let γ0 : Rd → R be a convex function defined as

y = [y1, . . . , yd] ∈ Rd 7→ γ0(y) := γ1(y1) + γ2(y2) + · · · + γd(yd),

by using proper l.s.c. and convex functions γk : R → (−∞,∞], for k = 1, . . . , d. Let Ψd
γ0

:
L2(Ω)d → (−∞,∞] be a proper l.s.c. and convex function defined as:

z ∈ L2(Ω)d 7→ Ψd
γ0

(z) :=


1
2

∫
Ω

|Dz|2
RN×d dx +

∫
Ω

γ0(z) dx,

if z ∈ H1(Ω)d,

∞, otherwise.

Then, with regard to the subdifferential ∂Ψd
γ0
⊂ [L2(Ω)d]2, it is known (see, e.g., [4, 6]) that

z ∈ L2(Ω)d 7→ ∂Ψd
γ0

(z) =


{

z∗ ∈ L2(Ω)d z∗ + ∆Nz ∈ ∂γ0(z) in
Rd, a.e. in Ω

}
,

if z ∈ Wd
N ,

∅, otherwise.

This fact is often summarized as ∂Ψd
γ0
= −∆N + ∂γ0 in [L2(Ω)d]2.

Notation 4 (BV theory; cf. [2, 3, 11, 12]). Let d ∈ N, and let U ⊂ Rd be an open set. We denote by
M(U) the space of all finite Radon measures on U. The spaceM(U) is known as the dual space of the
Banach space C0(U), i.e., M(U) = C0(U)∗, where C0(U) is the closure of the class of test functions
C∞c (U) in the topology of C(U).

A function z ∈ L1(U) is called a function of bounded variation on U, iff. its distributional gradient
Dz is a finite Radon measure on U, namely, Dz ∈ M(U)d. Here, for any z ∈ BV(U), the Radon measure
Dz is called the variation measure of z, and its total variation |Dz| is called the total variation measure
of z. Additionally, for any z ∈ BV(U), it holds that

|Dz|(U) = sup
{ ∫

U
z divφ dx φ ∈ C1

c (U)d and |φ| ≤ 1 on U
}
.

The space BV(U) is a Banach space, endowed with the norm

|z|BV(U) := |z|L1(U) + |Dz|(U) for any z ∈ BV(U),

and we say that zn → z weakly-∗ in BV(U), iff. z ∈ BV(U), {zn}∞n=1 ⊂ BV(U), zn → z in L1(U) and
Dzn → Dz weakly-∗ inM(U)d, as n→ ∞.
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The space BV(U) has another topology, called “strict topology”, which is provided by the following
distance (cf. [2, Definition 3.14]):

[φ, ψ] ∈ BV(U)2 7→ |φ − ψ|L1(U) +
∣∣∣|Dφ|(U) − |Dψ|(U)

∣∣∣.
In this regard, we say that zn → z strictly in BV(U) iff. z ∈ BV(U), {zn}∞n=1 ⊂ BV(U), zn → z in L1(U)
and |Dzn|(U)→ |Dz|(U), as n→ ∞.

Specifically, when the boundary ∂U is Lipschitz, the Banach space BV(U) is continuously embedded
into Ld/(d−1)(U) and compactly embedded into Lp(U) for any 1 ≤ p < d/(d− 1) (see, e.g., [2, Corollary
3.49] or [3, Theorems 10.1.3–10.1.4]). Furthermore, if 1 ≤ q < ∞, then the space C∞(U) is dense
in BV(U) ∩ Lq(U) for the intermediate convergence, i.e., for any z ∈ BV(U) ∩ Lq(U), there exists a
sequence {zn}∞n=1 ⊂ C∞(U) such that zn → z in Lq(U) and strictly in BV(U), as n → ∞ (see, e.g., [3,
Definition 10.1.3 and Theorem 10.1.2]).

Notation 5 (Weighted total variation; cf. [1, 2]). For any nonnegative ϱ ∈ H1(Ω) ∩ L∞(Ω) (i.e. any
0 ≤ ϱ ∈ H1(Ω) ∩ L∞(Ω)) and any z ∈ L2(Ω), we call the value Varϱ(z) ∈ [0,∞], defined as,

Varϱ(v) := sup
{ ∫

Ω

v divϖ dx ϖ ∈ L∞(Ω)N with a compact sup-
port, and |ϖ| ≤ ϱ a.e. in Ω

}
∈ [0,∞],

“the total variation of v weighted by ϱ”, or the “weighted total variation” in short.

Remark 2. Referring to the general theories (e.g., [1, 2, 5]), we can confirm the following facts asso-
ciated with the weighted total variations.

(Fact 1) (Cf. [5, Theorem 5]) For any 0 ≤ ϱ ∈ H1(Ω) ∩ L∞(Ω), the functional z ∈ L2(Ω) 7→ Varϱ(z) ∈
[0,∞] is a proper l.s.c. and convex function that coincides with the lower semi-continuous enve-
lope of

z ∈ W1,1(Ω) ∩ L2(Ω) 7→
∫
Ω

ϱ|Dz| dx ∈ [0,∞).

(Fact 2) (Cf. [1, Theorem 4.3] and [2, Proposition 5.48]) If 0 ≤ ϱ ∈ H1(Ω) ∩ L∞(Ω) and z ∈ BV(Ω) ∩
L2(Ω), then there exists a Radon measure |Dz|ϱ ∈ M(Ω) such that

|Dz|ϱ(Ω) =
∫
Ω

d|Dz|ϱ = Varϱ(z),

and 
|Dz|ϱ(A) ≤ |ϱ|L∞(Ω)|Dz|(A),

|Dz|ϱ(A) = inf

 lim inf
n→∞

∫
A
ϱ|Dz̃n| dx

{z̃n}∞n=1 ⊂ W1,1(A)∩L2(A) such
that z̃n → z in L2(A) as n →
∞

,
(2.2)

for any open set A ⊂ Ω.
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(Fact 3) If ϱ ∈ H1(Ω) ∩ L∞(Ω), cϱ := ess infx∈Ω ϱ > 0, and z ∈ BV(Ω) ∩ L2(Ω), then for any open set
A ⊂ Ω, it follows that

|Dz|ϱ(A) ≥ cϱ|Dz|(A) for any open set A ⊂ Ω,

D(Varϱ) = BV(Ω) ∩ L2(Ω), and

Varϱ(z) = sup


∫
Ω

z div (ϱϖ) dx
ϖ ∈ L∞(Ω)N with a
compact support, and
|ϖ| ≤ 1 a.e. in Ω

 .
(2.3)

Moreover, the following properties can be inferred from (2.2)–(2.3):

• |Dz|c = c|Dz| inM(Ω) for any constant c ≥ 0 and z ∈ BV(Ω) ∩ L2(Ω);
• |Dz|ϱ = ϱ|Dz|L N inM(Ω), if 0 ≤ ϱ ∈ H1(Ω) ∩ L∞(Ω) and z ∈ W1,1(Ω) ∩ L2(Ω).

Notation 6 (Generalized weighted total variation; cf. [25, Section 2]). For any
ϱ ∈ H1(Ω) ∩ L∞(Ω) and any z ∈ BV(Ω) ∩ L2(Ω), we define a real-valued Radon measure
[ϱ|Dz|] ∈ M(Ω), as follows:

[ϱ|Dz|](B) := |Dz|[ϱ]+(B) − |Dz|[ϱ]−(B) for any Borel set B ⊂ Ω.

Note that [ϱ|Dz|](Ω) can be configured as a generalized total variation of z ∈ BV(Ω) ∩ L2(Ω) by the
possibly sign-changing weight ϱ ∈ H1(Ω) ∩ L∞(Ω).

Remark 3. With regard to the generalized weighted total variations, the following facts are verified in
[25, Section 2].

(Fact 4) (Strict approximation) Let ϱ ∈ H1(Ω) ∩ L∞(Ω) and z ∈ BV(Ω) ∩ L2(Ω) be arbitrary fixed
functions, and let {zn}∞n=1 ⊂ C∞(Ω) be a sequence such that

zn → z in L2(Ω) and strictly in BV(Ω) as n→ ∞.

Then ∫
Ω

ϱ|Dzn| dx→
∫
Ω

d[ϱ|Dz|] as n→ ∞.

(Fact 5) For any z ∈ BV(Ω) ∩ L2(Ω), the mapping

ϱ ∈ H1(Ω) ∩ L∞(Ω) 7→
∫
Ω

d[ϱ|Dz|] ∈ R

is a linear functional, and moreover, if φ ∈ H1(Ω) ∩C(Ω) and ϱ ∈ H1(Ω) ∩ L∞(Ω), then∫
Ω

d[φϱ|Dz|] =
∫
Ω

φ d[ϱ|Dz|].

Finally, we mention the notion of functional convergences.

Definition 1 (Mosco convergence; cf. [27]). Let X be an abstract Hilbert space. Let Ψ : X → (−∞,∞]
be a proper l.s.c. and convex function, and let {Ψn}∞n=1 be a sequence of proper l.s.c. and convex func-
tions Ψn : X → (−∞,∞], n = 1, 2, 3, . . . . We say that Ψn → Ψ on X, in the sense of Mosco, as n→ ∞,
iff. the following two conditions are fulfilled.
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The condition of lower bound: lim inf
n→∞

Ψn(z◦n) ≥ Ψ(z◦), if z◦ ∈ X, {z◦n}∞n=1 ⊂ X, and z◦n → z◦ weakly in
X as n→ ∞.

The condition of optimality: for any z• ∈ D(Ψ), there exists a sequence {z•n}∞n=1 ⊂ X such that z•n → z•

in X and Ψn(z•n)→ Ψ(z•) as n→ ∞.

Definition 2 (Γ-convergence; cf. [9]). Let X be an abstract Hilbert space, Ψ : X → (−∞,∞] be a
proper functional, and {Ψn}∞n=1 be a sequence of proper functionals Ψn : X → (−∞,∞], n = 1, 2, 3, . . . .
We say that Ψn → Ψ on X, in the sense of Γ-convergence, as n → ∞, iff. the following two conditions
are fulfilled.

The condition of lower bound: lim inf
n→∞

Ψn(z◦n) ≥ Ψ(z◦), if z◦ ∈ X, {z◦n}∞n=1 ⊂ X, and z◦n → z◦ (strongly)
in X as n→ ∞.

The condition of optimality: for any z• ∈ D(Ψ), there exists a sequence {z•n}∞n=1 ⊂ X such that z•n → z•

in X and Ψn(z•n)→ Ψ(z•) as n→ ∞.

Remark 4. Note that if the functionals are convex, then Mosco convergence implies Γ-convergence,
i.e., the Γ-convergence of convex functions can be regarded as a weak version of Mosco convergence.
Additionally, in the Γ-convergence of convex functions, we can see the following:

(Fact 6) Let Ψ : X → (−∞,∞] and Ψn : X → (−∞,∞] be proper l.s.c. and convex functions on a
Hilbert space X such that Ψn → Ψ on X, in the sense of Γ-convergence, as n → ∞. If it holds
that:  [z, z∗] ∈ X2, [zn, z∗n] ∈ ∂Ψn in X2, n = 1, 2, 3, . . . ,

zn → z in X and z∗n → z∗ weakly in X, as n→ ∞,

then [z, z∗] ∈ ∂Ψ in X2 and Ψn(zn)→ Ψ(z) as n→ ∞.

3. Main Theorem and the demonstration scenario

Throughout the paper, we set the following assumptions.

(A1) Let f ∈ L2(0, T ; L2(Ω)) and fΓ ∈ L2(0,T ; L2(Γ)) be given functions, and let f ∗ := [ f , fΓ] ∈
L2(0,T ; L2(Ω) × L2(Γ)) be a time-dependent vectorial function which is regarded as f ∗ ∈
L2(0,T ; V∗), via (2.1) applied to ϱ∗ = f ∗(t) for a.e. t > 0.

(A2) Let λ ∈ W2,∞
loc (R) be a function, and let A∗ > 0 be a constant which is defined as:

A∗ :=
1

4(1 +C2
V |λ|2W2,∞(0,1))

,

by using the embedding constant CV > 0 of V ⊂ L2(Ω).

(A3) Let α0 ∈ W1,∞
loc (R2) and α, β ∈ C2(R2) be functions, such that:

• α and β are convex on R2;

• δ∗ := inf
[
α0(R2) ∪ α(R2) ∪ β(R2)

]
> 0;
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• αη(w, 0) ≤ 0, βη(w, 0) ≤ 0, αη(w, 1) ≥ 0, and βη(w, 1) ≥ 0, for any w ∈ [0, 1].

(A4) Let γ : R→ (−∞,∞] be a proper l.s.c. and convex function, such that D(γ) = [0, 1].

(A5) Let g ∈ C2(R2) be a function such that

gη(w, 0) ≤ 0 and gη(w, 1) ≥ 0, for any w ∈ [0, 1].

(A6) There exists a constant c∗ such that γ(w) + g(v) ≥ c∗, for any v = [w, η] ∈ R2.

(A7) Let [u0, v0, θ0] = [u0,w0, η0, θ0] is a quartet of initial data, such that:

[u0,w0, η0, θ0] ∈



D0 :=

 [ũ, w̃, η̃, θ̃]
ũ ∈ L2(Ω), w̃, η̃ ∈ H1(Ω),
θ̃ ∈ BV(Ω) ∩ L∞(Ω), and
0 ≤ w̃, η̃ ≤ 1 a.e. in Ω

 ,
if ν = 0,

D1 := D0 ∩ [L2(Ω) × H1(Ω) × H1(Ω) × H1(Ω)],
if ν > 0.

Now, for simplicity of description, we prepare the following notations:
G(u; v) = G(u; w, η) := g(w, η) + uλ(w),

[∇g](v) = [∇g](w, η) := [gw(w, η), gη(w, η)],

[∇G](u; v) = [∇G](u; w, η) := [gw(w, η) + uλ′(w), gη(w, η)],

and  [∇α](v) = [∇α](w, η) := [αw(w, η), αη(w, η)],

[∇β](v) = [∇β](w, η) := [βw(w, η), βη(w, η)],

for u ∈ R and v = [w, η] ∈ R2.

For any ν ≥ 0 and any v = [w, η] ∈ [H1(Ω) ∩ L∞(Ω)]2, we define a proper l.s.c. and convex function
Φν(v; · ) on L2(Ω) by letting:

θ ∈ L2(Ω) 7→ Φν(v; θ) = Φν(w, η; θ) :=



∫
Ω

d[α(v)|Dθ|] +
∫
Ω

β(v)|D(νθ)|2 dx,

if θ ∈ BV(Ω) and νθ ∈ H1(Ω),

∞, otherwise.

Additionally, we set:

B∗ :=
1 + A∗

2
, by using the constant A∗ as in (A2), (3.1)

and define a functional Fν on L2(Ω)4 by letting:

[u, v, θ] = [u,w, η, θ] ∈ L2(Ω)4 7→ Fν(u, v, θ) = Fν(u,w, η, θ)

:= B∗|u|2L2(Ω) + Ψ
2
γ(v) +

∫
Ω

(
g(v) − c∗

)
dx + Φν(v; θ),

(3.2)

AIMS Mathematics Volume 2, Issue 1, 161-194



171

where Ψ2
γ is the convex function Ψd

γ0
in Remark 1 in the case when d = 2 and γ0 = γ. The above

functional Fν is a modified version of the free-energy as in (1.5), and the assumptions (A3)–(A6)
guarantee the non-negativity of this functional, i.e. Fν ≥ 0 on L2(Ω)4.

Based on these, we define the solutions to the systems (S)ν, for ν ≥ 0, as follows.

Definition 3. For any ν ≥ 0, a quartet [u, v, θ] = [u,w, η, θ] ∈ L2(0,T ; L2(Ω)4) with v = [w, η] is called
a solution to (S )ν, iff. [u, v, θ] fulfills the following (S1)–(S6).

(S1) u ∈ W1,2(0,T ; V∗) ∩ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; V) ⊂ C([0,T ]; L2(Ω)).

(S2) v = [w, η] ∈ W1,2(0, T ; L2(Ω)2) ∩ L∞(0,T ; H1(Ω)2), and
0 ≤ w(t, x) ≤ 1 and 0 ≤ η(t, x) ≤ 1, a.e. (t, x) ∈ Q.

(S3) θ ∈ W1,2(0, T ; L2(Ω)) ∩ L∞(Q), |Dθ( · )|(Ω) ∈ L∞(0,T ), νθ ∈ L∞(0,T ; H1(Ω)), and |θ| ≤ |θ0|L∞(Ω)

a.e. in Q.

(S4) u satisfies the following variational form:

⟨[u − λ(w)]t(t), z⟩ + (Du(t),Dz)L2(Ω)N + n0(u(t), z)L2(Γ)

= ( f (t), z)L2(Ω) + n0( fΓ(t), z)L2(Γ), for any z ∈ V, and a.e. t ∈ (0,T ),

with the initial condition u(0) = u0 in L2(Ω).

(S5) v = [w, η] satisfies the following two variational forms:(
wt(t) + gw(v)(t) + u(t)λ′(w(t)),w(t) − φ)L2(Ω) + (Dw(t),D(w(t) − φ))L2(Ω)N

+

∫
Ω

d[(w(t) − φ)αw(v(t))|Dθ(t)|] +
∫
Ω

(w(t) − φ)βw(v(t))|D(νθ)(t)|2 dx

+

∫
Ω

γ(w(t)) dx ≤
∫
Ω

γ(φ)dx, for any φ ∈ H1(Ω) ∩ L∞(Ω) and a.e. t ∈ (0,T ),

and (
ηt(t) + gη(v)(t), ψ

)
L2(Ω)
+ (Dη(t),Dψ)L2(Ω)N

+

∫
Ω

d
[
ψαη(v(t))|Dθ(t)|] + ∫

Ω

ψβη(v(t))|D(νθ)(t)|2 dx = 0,

for any ψ ∈ H1(Ω) ∩ L∞(Ω) and a.e. t ∈ (0, T ),

with the initial condition v(0) = [w(0), η(0)] = v0 = [w0, η0] in L2(Ω)2.

(S6) θ satisfies the following variational form:

(α0(v(t))θt(t), θ(t) − ω)L2(Ω) + Φν(v(t); θ(t)) ≤ Φν(v(t);ω),

for any ω ∈ D(Φν(v(t); · )) and a.e. t ∈ (0,T ),

with the initial condition θ(0) = θ0 in L2(Ω).
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Remark 5. The variational identity in the above (S4) can be reformulated as:

[u − λ(w)]t(t) + Fu(t) = f ∗(t) in V∗, for a.e. t ∈ (0,T ). (3.3)

Also, two variational forms in (S5) can be reduced to:

(vt(t) + [∇G](u; v(t)), v(t) −ϖ)L2(Ω)2

+(Dv(t),D(v(t) −ϖ))L2(Ω)N×2

+

∫
Ω

d
[|Dθ(t)|(v(t) −ϖ) · [∇α](v(t))

]
+

∫
Ω

|D(νθ)(t)|2(v(t) −ϖ) · [∇β](v(t)) dx

+

∫
Ω

γ(v(t)) dx ≤
∫
Ω

γ(ϖ) dx,

for anyϖ = [φ, ψ] ∈ [H1(Ω) ∩ L∞(Ω)]2 and a.e. t ∈ (0,T ),

(3.4)

by using the identification
γ(ṽ) := γ(w̃), for all ṽ = [w̃, η̃] ∈ R2,

and by using the abbreviation:∫
Ω

d
[|Dθ̃|ϖ · ṽ] :=

∫
Ω

d
[
φw̃|Dθ̃|] + ∫

Ω

d
[
ψη̃|Dθ̃|],

for ṽ = [w̃, η̃], ϖ = [φ, ψ] ∈ [H1(Ω) ∩ L∞(Ω)]2 and θ̃ ∈ BV(Ω) ∩ L2(Ω).
(3.5)

Furthermore, the variational form in (S6) is equivalent to the following evolution equation:

α0(v(t))θt(t) + ∂Φν(v(t); θ(t)) ∋ 0 in L2(Ω), a.e. t ∈ (0, T ), (3.6)

governed by the subdifferential ∂Φν(v(t); · ) ⊂ L2(Ω)2 of the time-dependent convex function Φν(v(t); · ),
for t ∈ (0,T ).

Now, our Main Theorem is stated as follows.

Main Theorem Let ν ≥ 0 be a fixed constant. Then, under (A1)-(A7), the system (S )ν admits at least
one solution [u, v, θ] = [u,w, η, θ] ∈ L2(0,T ; L2(Ω)4) with v = [w, η].

Remark 6. Note that the presence of mobilities α0 = α0(w, η), α = α(w, η) and β = β(w, η) makes
the uniqueness problems for the systems (S)ν, ν ≥ 0, be quite tough. In fact, even if we overview the
kindred works to this study, we can find only two cases [15, Theorem 2.2] and [40, Theorem 2.2] that
obtained the uniqueness results under some restricted situations.

Finally, we devote the remaining part of this Section to show the sketch of the demonstration sce-
nario, since the proof of the Main Theorem is going to be extended.
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In this paper, the Main Theorem will be obtained as a consequence of some approximating ap-
proaches, and then, the approximating problems will be associated with the time-discretization ver-
sions of (3.3)–(3.6), under positive setting of the constant ν. Hence, when we consider the approxi-
mating problems, we suppose ν > 0, and fix the constant of time-step h ∈ (0, 1]. Also, we denote by
[ f ]ex

0 ∈ L2(R; L2(Ω)), [ fΓ]ex
0 ∈ L2(R; L2(Γ)) and [ f ∗]ex

0 ∈ L2(R; V∗) the zero-extensions of f , fΓ and f ∗

(= [ f , fΓ]), respectively.

On this basis, the approximating problem for our system (S)ν is denoted by (AP)νh, and stated as
follows.

(AP)νh: to find a sequence {[uνi , vνi , θνi ]}∞i=1 ⊂ D1 with {vνi }∞i=1 = {[wν
i , η

ν
i ]}∞i=1, which fulfills that

uνi − uνi−1

h
− λ′(wν

i )
wν

i − wν
i−1

h
+ Fuνi = [ f ∗i ]h in V∗, (3.7)

1
h

(vνi − vνi−1, v
ν
i −ϖ)L2(Ω)2 + (Dvνi ,D(vνi −ϖ))L2(Ω)N×2

+([∇G](uνi ; vνi ), v
ν
i −ϖ)L2(Ω)2 +

∫
Ω

γ(vνi ) dx

+

∫
Ω

(vνi −ϖ) · (|Dθνi−1|[∇α](vνi ) + ν
2|Dθνi−1|2[∇β](vνi )

)
dx

≤
∫
Ω

γ(ϖ) dx, for anyϖ ∈ [H1(Ω) ∩ L∞(Ω)]2,

(3.8)

α0(vνi )
θνi − θνi−1

h
+ ∂Φν(vνi ; θ

ν
i ) ∋ 0 in L2(Ω), (3.9)

for i = 1, 2, 3, . . . , starting from the initial data:

[uν0, v
ν
0, θ

ν
0] ∈ D1 with vν0 = [wν

0, η
ν
0].

In the context, for any i ∈ N, [ f ∗i ]h = [ f h
i , f h

Γ,i] ∈ L2(Ω) × L2(Γ) (⊂ V∗), consists of the components:

f h
i :=

1
h

∫ ih

(i−1)h
[ f ]ex

0 (τ) dτ in L2(Ω) and f h
Γ,i :=

1
h

∫ ih

(i−1)h
[ fΓ]ex

0 (τ) dτ in L2(Γ).

Hence, before the proof of Main Theorem, it will be needed to verify the following theorem.

Theorem 1 (Solvability of the approximating problem). There exists a small constant h◦1 ∈ (0, 1]
such that if ν > 0 and h ∈ (0, h◦1], then the approximating problem (AP)νh admits a unique solution
{[uνi , vνi , θνi ]}∞i=1 ⊂ D1, and moreover,

A∗
2h
|uνi − uνi−1|2V∗ +

1
2h
|vνi − vνi−1|2L2(Ω)2 +

1
h
|
√
α0(vνi )(θ

ν
i − θνi−1)|2L2(Ω) +

h
2
|uνi |2V

+Fν(uνi , v
ν
i , θ

ν
i ) ≤ Fν(uνi−1, v

ν
i−1, θ

ν
i−1) + h|[ f ∗i ]h|2V∗ , for i = 1, 2, 3, . . . ,

(3.10)

where A∗ is the constant as in (A2).
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However, due to the presence of L1-terms ν2|Dθi−1|2[∇β](vνi ) ∈ L1(Ω)2, i = 1, 2, 3, . . . , in (3.8), the
above Theorem 1 will not be a straightforward consequence of standard variational method, and in fact,
this theorem will be obtained via further approximating approach by means of some relaxed systems
for (AP)νh.

In the observation of the relaxed system, we first fix a large constant M > (N + 2)/2, and fix a small
constant ε ∈ (0, 1] as the relaxation index. Besides, we define

DM := D1 ∩ [L2(Ω) × H1(Ω) × H1(Ω) × HM(Ω)],

and for any ṽ ∈ L2(Ω)2, we define a relaxed functional Φνε(ṽ; · ) for Φν(ṽ; · ), by letting:

θ ∈ L2(Ω) 7→ Φνε(ṽ; θ) :=

 Φν(ṽ; θ) +
ε2

2
|θ|2HM(Ω), if θ ∈ HM(Ω),

∞, otherwise.

Note that for any ṽ ∈ L2(Ω)2, the functional Φνε(ṽ; · ) is proper l.s.c. and convex on L2(Ω), such that:

D(Φνε(ṽ; · )) = HM(Ω) ⊂ W1,∞(Ω),

and hence, the L2-subdifferential ∂Φνε(ṽ; · ) is a maximal monotone graph in L2(Ω)2.
On this basis, we denote by (RX)ε the relaxed system for (AP)νh, and prescribe the system (RX)ε as

follows.

(RX)ε: to find a sequence {[uνε,i, vνε,i, θνε,i]}∞i=1 ⊂ DM with {vνε,i}∞i=1 = {[wν
ε,i, η

ν
ε,i]}∞i=1, which fulfills that

uνε,i − uνε,i−1

h
− λ′(wν

ε,i)
wν
ε,i − wν

ε,i−1

h
+ Fuνε,i = [ f ∗i ]h in V∗, (3.11)

vνε,i − vνε,i−1

h
− ∆Nvνε,i + ∂γ(vνε,i) + [∇G](uνε,i; vνε,i)

+|Dθνε,i−1|[∇α](vνε,i) + ν
2|Dθνε,i−1|2[∇β](vνε,i) ∋ 0 in L2(Ω)2,

(3.12)

α0(vνε,i)
θνε,i − θνε,i−1

h
+ ∂Φνε(v

ν
ε,i; θ

ν
ε,i) ∋ 0 in L2(Ω), (3.13)

for i = 1, 2, 3, . . . , starting from the initial data:

[uνε,0, v
ν
ε,0, θ

ν
ε,0] ∈ DM with vνε,0 = [wν

ε,0, η
ν
ε,0].

Then, we can see that

|Dθνε,i−1| ∈ L∞(Ω) and ν2|Dθνε,i−1|2[∇β](vνε,i) ∈ L∞(Ω)2, i = 1, 2, 3, . . . .

It implies that the general theories of L2-subdifferentials will be available for the relaxed system (RX)ε.
Thus, it will be needed to verify the following proposition, as the first task to proving the Main

Theorem.

Proposition 1. There exists a small constant h◦0 ∈ (0, 1], such that if h ∈ (0, h◦0],
then the system (RX)ε admits a unique solution {[uνε,i, vνε,i, θνε,i]}∞i=1 ⊂ DM with {vνε,i}∞i=1 =

{[wν
ε,i, ηε,i]

ν}∞i=1.

In view of these, we set the demonstration scenario of the Main Theorem, by assigning the proofs
of Proposition 1, Theorem 1 and Main Theorem to Sections 4, 5 and 6, respectively.
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4. Proof of Proposition 1

Before we start the proof, we need to show some lemmas.

Lemma 1. Let us put ∆• := [0, 1] × [−1, 2] ⊂ R2, and let us assume

0 < h ≤ h◦2 :=
1

2(1 + |g|C2(∆◦) + 5|λ|2
W2,∞(0,1))

. (4.1)

Let us fix f ∗0 ∈ V∗, [u◦0, η
◦
0,w

◦
0, θ
◦
0] ∈ L2(Ω) × H1(Ω) × H1(Ω) × W1,∞(Ω) and w◦ ∈ H1(Ω), and let us

assume that 0 ≤ w◦0,w
◦ ≤ 1 a.e. in Ω. Then, the following auxiliary system:

u − u◦0
h
− λ′(w◦)

w − w◦0
h
+ Fu = f ∗0 in V∗, (4.2)

w − w◦0
h
− ∆Nw + ∂γ(w) + gw(w, η)

+αw(w, η)|Dθ◦0| + ν2βw(w, η)|Dθ◦0|2 ∋ −λ′(w◦)u in L2(Ω),
(4.3)

η − η◦0
h
− ∆Nη + ∂I[−1,2](η) + gη(w, η)

+αη(w, η)|Dθ◦0| + ν2βη(w, η)|Dθ◦0|2 = 0 in L2(Ω),
(4.4)

admits a unique solution [u,w, η] ∈ V × H1(Ω)2, where ∂I[−1,2] is the subdifferential of the indicator
function I[−1,2] : R→ {0,∞} on the compact interval [−1, 2], and this is an additional term to guarantee
the boundedness of the range η(Ω) for the component η.

Proof. First, we put:

e := u − λ′(w◦)w, e◦0 := u◦0 − λ′(w◦)w◦0, and v◦0 = [w◦0, η
◦
0],

[w̃, η̃] ∈ R 7→ γ•(w̃, η̃) := γ(w̃) + I[−1,2](η̃),

and reformulate the system {(4.2)–(4.4)} as follows:

e − e◦0
h
+ F(e + λ′(w◦)w) = f ∗0 in V∗, (4.5)

v − v◦0
h
+ ∂Ψ2

γ•(v) + [∇g](w, η)

+|Dθ◦0|[∇α](v) + ν2|Dθ◦0|2[∇β](v) ∋
[
−λ′(w◦)(e + λ′(w◦)w)

0

]
in L2(Ω)2,

(4.6)

where Ψ2
γ• is the functional Ψd

γ0
as in Remark 1 (Ex.2), in the case when d = 2 and γ0 = γ• on R2,

and ∂Ψ2
γ• is the subdifferential of Ψ2

γ• in L2(Ω)2. Then, in the light of Remark 1, we can associate the
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auxiliary system {(4.2)–(4.4)} with a minimization problem for the following functional:

[e, v] = [e,w, η] ∈ V∗ × L2(Ω)2 7→ Ψ•0(w◦; e, v) = Ψ•0(w◦; e,w, η)

:=



1
2h
|e − e◦0|2V∗ +

1
2h
|v − v◦0|2L2(Ω)2 +

1
2
|e + λ′(w◦)w|2L2(Ω)

+Ψ2
γ•(v) +

∫
Ω

(
α(v)|Dθ◦0| + ν2β(v)|Dθ◦0|2

)
dx

+

∫
Ω

g(v) dx − ( f ∗0 , e)V∗ ,

if [e, v] = [e,w, η] ∈ L2(Ω) × D(Ψ2
γ•),

∞, otherwise,

(4.7)

via its stationary system {(4.5)–(4.6)}. Then, taking into account (A2)–(A6), (4.1) and (4.7), we find a
positive constant C◦0, independent of the variables [e, v] = [e,w, η] and w◦, such that:

Ψ•0(w◦; e, v) ≥ C◦0
(|e|2L2(Ω) + |v|

2
H1(Ω)2 − 1

)
, for all [e, v] ∈ D(Ψ•0(w◦; · )). (4.8)

Now, the above coercivity enables us to apply the standard minimization argument to Ψ•0 (cf. [3,
10]), and to obtain the solution [u,w, η] = [e+λ′(w◦)w,w, η] to {(4.2)–(4.4)}, via the minimizer [e, v] =
[e,w, η] ∈ V × H1(Ω)2 of Ψ•0(w◦; · ), with v = [w, η] ∈ D(Ψ2

γ•).
In the meantime, the uniqueness can be seen by using the standard method, i.e. by taking the

difference of two solutions [ek, vk] = [ek,wk, ηk] ∈ V∗ × L2(Ω)2 with vk = [wk, ηk] ∈ D(Ψ2
γ), k = 1, 2,

to the stationary system {(4.5)–(4.6)}. In fact, multiplying the both sides of the subtraction of (4.5) by
e1 − e2 in V∗, multiplying the both sides of the subtraction of (4.6) by v1 − v2 in L2(Ω)2, and using
(A2)–(A5), (4.8) and Schwartz’s inequality, we have:

1
h
|e1 − e2|2V∗ +

1
h

(
1 − h|[∇g]|W1,∞(∆•)2

)
|v1 − v2|2L2(Ω)2

+|D(v1 − v2)|2L2(Ω)N×2 + |(e1 − e2) + λ′(w◦)(w1 − w2)|2L2(Ω) ≤ 0.
(4.9)

Since the assumption (4.1) implies
(
1 − h|[∇g]|W1,∞(∆•)2

) ≥ 1
2 , we can deduce from (4.9) the uniqueness

for the system {(4.2)–(4.4)}. 2 �

Lemma 2. Let w◦ ∈ H1(Ω) be the function as in Lemma 1, and let Ψ•0(w◦; · ) be the functional on
V∗ × L2(Ω)2 given in (4.7). Also, let us take a sequence {w◦n}∞n=1 ⊂ H1(Ω) such that 0 ≤ w◦n ≤ 1 a.e.
in Ω, for n = 1, 2, 3, . . . , and let us define a sequence {Ψ•0(w◦n; · )}∞n=1 of functionals on V∗ × L2(Ω)2, by
putting w◦ = w◦n in (4.7), for n = 1, 2, 3, . . . . Besides, let us assume that:

w◦n → w◦ in the pointwise sense a.e. in Ω, as n→ ∞. (4.10)

Then, Ψ•0(w◦n; · )→ Ψ•0(w◦; · ) on V∗ × L2(Ω)2, in the sense of Γ-convergence, as n→ ∞.

Proof. The condition of lower-bound will be seen, immediately, from the lower semi-continuity of the
following functional (of 4-variables):

[w◦, e, v] ∈ L2(Ω) × V∗ × L2(Ω)2 7→ Ψ•0(w◦; e, v) ∈ (−∞,∞].

The condition of optimality will be verified by taking the singleton {[e, v]} for any [e, v] ∈ D(Ψ•0(w◦; · ))
= D(Ψ•0(w◦n; · )) for all n ≥ 1 as the sequence corresponding to {z•n}∞n=1 in Definition 2. 2 �
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Lemma 3. Under the assumptions as in the previous Lemmas 1–2, let us take the solution [e, v] =
[e,w, η] ∈ V × H1(Ω)2 to the stationary system {(4.5)–(4.6)} with v = [w, η], and for any n ∈ N, let
us denote by [en, vn] = [en,wn, ηn] ∈ V × H1(Ω)2 the solution to {(4.5)–(4.6)} with vn = [wn, ηn], when
w◦ = w◦n. Then, the assumption (4.10) implies that:

[en, vn] = [en,wn, ηn]→ [e, v] = [e,w, η] in V∗ × L2(Ω)2,

and weakly in L2(Ω) × H1(Ω)2, as n→ ∞.
(4.11)

Proof. In the light of Lemma 1 (including the proof), we can see that:

Ψ•0(w̃◦; ẽ, ṽ) = Ψ•0(w̃◦; ẽ, w̃, η̃) ≤ Ψ•0(w̃◦; 0, 0, 0)

≤ C◦1 :=
1

2h
(|e◦0|2V∗ + |v◦0|2L2(Ω)2

)
+L N(Ω)

(|γ(0)| + |g(0, 0)|)
+α(0, 0)|θ◦0|W1,1(Ω) + ν

2β(0, 0)|θ◦0|2H1(Ω),

for any w̃◦ ∈ H1(Ω) with 0 ≤ w̃◦ ≤ 1 a.e. in Ω, and
any solution [ẽ, ṽ] = [ẽ, w̃, η̃] to {(4.5)–(4.6)} with ṽ = [w̃, η̃] when w◦ = w̃◦.

(4.12)

Since the constant C◦1 is independent of the choice of w̃◦, the convergence (4.11) will be observed by
taking into account (4.8), (4.12) and the uniqueness for {(4.5)–(4.6)}, and by applying Lemma 2, and
the general theories of the compact embeddings (cf. [3, 11]) and the Γ convergence (cf. [9]). 2 �

Lemma 4. Let h◦2 be the constant as in (4.1). Let f ∗0 ∈ V∗, u◦0 ∈ L2(Ω), v◦0 = [w◦0, η
◦
0] ∈ H1(Ω)2 and

θ◦0 ∈ W1,∞(Ω) be the functions as in Lemma 1. Then, for any h ∈ (0, h◦2], the following system:

u − u◦0
h
− λ′(w)

w − w◦0
h
+ Fu = f ∗0 in V∗, (4.13)

v − v◦0
h
− ∆Nv +

[
∂γ(w)

0

]
+ [∇g](v)

+|Dθ◦0|[∇α](v) + ν2|Dθ◦0|2[∇β](v) ∋
[
−λ′(w)u

0

]
in L2(Ω)2,

(4.14)

admits at least one solution [u, v] = [u,w, η] ∈ V × H1(Ω)2 with v = [w, η].

Proof. Let us set a compact set K•1 in L2(Ω), by letting:

K•1 :=

 w̃ ∈ H1(Ω)

0 ≤ w̃ ≤ 1 a.e. in Ω, and
1

2h
|w̃ − w◦0|2L2(Ω) +

1
2
|Dw̃|2L2(Ω)N

≤ C◦1 + |c∗|L N(Ω) +
1
2h
|e◦0|2V∗ + h| f ∗0 |2V∗

 ,
and let us consider an operator P•1 : K•1 → L2(Ω), which maps any w◦ ∈ K•1 to the component w of the
solution [u,w, η] ∈ V×H1(Ω)×H1(Ω) to {(4.2)–(4.4)}. Then, on account of (A3), (A6), Lemma 3, (4.7)
and (4.12), it will be seen that P•1K•1 ⊂ K•1 and P•1 is a continuous operator in the topology of L2(Ω).
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So, applying Schauder’s fixed point theorem, we find a fixed point w• ∈ K•1 for P•1, i.e. w• = P•1w• in
L2(Ω).

Now, let us denote by [u•,w•, η•] ∈ V × H1(Ω) × H1(Ω) the solution to {(4.2)–(4.4)}, involved in
the fixed point w•. Then, this triplet [u•,w•, η•] must be a special solution to {(4.2)–(4.4)} such that
w• = w◦. Hence, our remaining task will be to show that

0 ≤ η• ≤ 1 a.e. in Ω, (4.15)

namely, the subdifferential ∂I[−1,2] in (4.4) will not affect for η•. To this end, we check two inequalities:

0 − η◦0
h
+ gη(w•, 0) + |Dθ◦0|αη(w•, 0) + ν2|Dθ◦0|2βη(w•, 0) ≤ 0 in L2(Ω), (4.16)

1 − η◦0
h
+ gη(w•, 1) + |Dθ◦0|αη(w•, 1) + ν2|Dθ◦0|2βη(w•, 1) ≥ 0 in L2(Ω), (4.17)

with use of the assumptions (A3), (A5) and 0 ≤ η◦0 ≤ 1 a.e. in Ω.
On this basis, let us take the difference from (4.16) to (4.4) when η = η• and w = w◦ = w• (resp.

from (4.4) to (4.17) when η = η• and w = w◦ = w•), and multiply the both sides by [−η•]+ (resp. by
[η• − 1]+). Then, with the assumptions (A3), (A5) and ∂I[−1,2](0) = {0} (resp. ∂I[−1,2](1) = {0}) in mind,
it is inferred that:

1
h

(
1 − h|gηη|C(∆•)

)
|[−η•]+|2L2(Ω) + |D[−η•]+|2L2(Ω)N ≤ 0(

resp.
1
h

(
1 − h|gηη|C(∆•)

)
|[η• − 1]+|2L2(Ω) + |D[η• − 1]+|2L2(Ω)N ≤ 0

)
.

(4.18)

Since the assumption (4.1) implies 1 − h|gηη|C(∆•) ≥ 1
2 , we can deduce (4.15) from (4.18), and conclude

that the triplet [u•, v•] = [u•, η•,w•] with v• := [w•, η•] solves the system {(4.13)–(4.14)}. 2 �

Lemma 5. Let f ∗0 ∈ V∗ and θ◦0 ∈ HM(Ω) be fixed functions, and let [u, v] = [u,w, η] ∈ V × H1(Ω)2 be a
solution to the system {(4.13)–(4.14)} with v = [w, η]. Then, the inclusion

α0(v)
θ − θ◦0

h
+ ∂Φνε(v; θ) ∋ 0 in L2(Ω) (4.19)

admits a unique solution θ ∈ HM(Ω).

Proof. We omit the proof, because this lemma is obtained, immediately, just as a direct consequence
of [31, Lemma 3.4]. 2 �

Lemma 6. Under the assumption (4.1), let us take a quartet [u, v, θ] = [u,w, η, θ] ∈ DM with v =
[w, η] ∈ H1(Ω)2, which solves the coupled system {(4.13)–(4.14),(4.19)}. Then, the following energy-
inequality holds:

A∗
2h
|u − u◦0|2V∗ +

1
2h
|v − v◦0|2L2(Ω)2 +

1
h
|
√
α0(v)(θ − θ◦0)|2L2(Ω)

+
h
2
|u|2V +F ν

ε (u, v, θ) ≤ F ν
ε (u◦0, v

◦
0, θ
◦
0) + h| f ∗0 |2V∗ ,

(4.20)
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where A∗ > 0 is the constant as in (A2), and F ν
ε is the relaxed version of the functional Fν, defined as:

[u, v, θ] = [u,w, η, θ] ∈ L2(Ω)4 7→ F ν
ε (u, v, θ) = F ν

ε (u,w, η, θ)

= B∗|u|2L2(Ω) + Ψ
2
γ(v) +

∫
Ω

(
g(v) − c∗

)
dx + Φνε(v; θ),

(4.21)

with the constant B∗ = (1 + A∗)/2 as in (3.1).

Proof. First, let us rewrite the equation (4.13) as follows:

(u − u◦0, z)L2(Ω) + h⟨Fu, z⟩ = h⟨ f ∗0 , z⟩
+(λ′(w)(w − w◦0), z)L2(Ω), for any z ∈ V ,

(4.22)

and let us put z = u. Then, by using Schwarz’s inequality, we have:

1
2
|u|2L2(Ω) +

h
2
|u|2V ≤

1
2
|u◦0|2L2(Ω) +

h
2
| f ∗0 |2V∗ + (λ′(w)(w − w◦0), u)L2(Ω). (4.23)

Alternatively, if we rewrite the equation (4.13) to:

1
h

(u − u◦0, z
∗)V∗ + ⟨z∗, u⟩ = ( f ∗0 , z

∗)V∗ +
1
h

(λ′(w)(w − w◦0), z∗)V∗ ,

for any z∗ ∈ V∗,

and put z∗ = A∗(u − u◦0) ∈ V , then we also see that:

A∗
2h
|u − u◦0|2V∗ +

A∗
2
|u|2L2(Ω) ≤

A∗
2
|u◦0|2L2(Ω) + A∗h| f ∗0 |2V∗ +

1
4h
|w − w◦0|2L2(Ω). (4.24)

Next, let us multiply the both sides of the inclusion (4.14) by v− v◦0. Then, in the light of (A2)–(A5)
and Taylor’s theorem, we infer that:

1
h

(
1 − h

2
|g|C2([0,1]2)

)
|v − v◦0|2L2(Ω)2 +

1
2
|Dv|2L2(Ω)N×2 +

∫
Ω

γ(w) dx +
∫
Ω

g(v) dx

+

∫
Ω

α(v)|Dθ◦0| dx + ν2
∫
Ω

β(v)|Dθ◦0|2 dx

≤ 1
2
|Dv◦0|2L2(Ω)N×2 +

∫
Ω

γ(w◦0) dx +
∫
Ω

g(v◦0) dx

+

∫
Ω

α(v◦0)|Dθ◦0| dx + ν2
∫
Ω

β(v◦0)|Dθ◦0|2 dx − (λ′(w)(w − w◦0), u)L2(Ω).

(4.25)

Furthermore, applying the both sides of (4.19) by θ − θ◦0, it follows that:

1
h
|
√
α0(v)(θ − θ◦0)|2L2(Ω) + Φ

ν
ε(v; θ) ≤ Φνε(v; θ◦0). (4.26)

Now, since (4.1) implies 1− h
2 |g|C2([0,1]2)2 ≥ 3

4 , the energy-inequality (4.20) can be obtained by taking
the sum of (4.23)–(4.26) with (A2) in mind. 2 �

AIMS Mathematics Volume 2, Issue 1, 161-194



180

Lemma 7. By the restriction 1 ≤ N ≤ 3 of the spatial dimension, there exists a positive constant C◦2,
such that under the notations and assumptions as in Lemma 6, the condition:

C◦2h
1
3
(
1 + 2(F ν

ε (u◦0, v
◦
0, θ
◦
0) + h| f ∗0 |2V∗)

2
3
) ≤ 1

2
, and 0 < h ≤ h◦2, (4.27)

implies the uniqueness of the solution [u, v, θ] = [u,w, η, θ] ∈ DM to the system {(4.13)–(4.14), (4.19)}
with v = [w, η].

Proof. In the light of the uniqueness of θ as in Lemma 5, it is enough to focus only on the uniqueness
for the component [u, v] = [u,w, η] ∈ V × H1(Ω)2 with v = [w, η]. To this end, we take two triplets
[uk, vk] = [uk,wk, ηk] ∈ DM with vk = [wk, ηk], k = 1, 2, that fulfill (4.13)–(4.14).

First, with the equivalence of (4.13) and (4.22) in mind, we take the difference between two varia-
tional forms (4.22) for uk, k = 1, 2, and put z = u1 − u2 in V . Then:

|u1 − u2|2L2(Ω) + h|u1 − u2|2V = (λ′(w1)w1 − λ′(w2)w2, u1 − u2)L2(Ω)

−((λ′(w1) − λ′(w2))w◦0, u1 − u2)L2(Ω),

so that by using (A2) and Schwarz’s inequality, we have:

1
4
|u1 − u2|2L2(Ω) + h|u1 − u2|2V ≤ 3|λ′|2W1,∞(0,1)|w1 − w2|2L2(Ω). (4.28)

Secondly, let us take the difference between two inclusions (4.14) for vk = [wk, ηk], k = 1, 2, and
multiply the both sides by v1 − v2 in L2(Ω)2. Then, by using (A2)–(A5) and Schwarz’s inequality, it is
computed that:

1
h

(
1 − h|[∇g]|C1([0,1]2)2

)
|v1 − v2|2L2(Ω)2 + |D(v1 − v2)|2L2(Ω)N×2

≤ −(λ′(w1)u1 − λ′(w2)u2,w1 − w2)L2(Ω)

≤ |λ′|L∞(0,1)|u1 − u2|L2(Ω)|w1 − w2|L2(Ω) +
(
u1(λ′(w1) − λ′(w2)),w1 − w2

)
L2(Ω)

≤ 1
8
|u1 − u2|2L2(Ω) + 2|λ′|2L∞(0,1)|w1 − w2|2L2(Ω) + |λ

′′|L∞(0,1)

∫
Ω

|u1||w1 − w2|2 dx.

(4.29)

Here, the dimensional restriction 1 ≤ N ≤ 3 and the assumption (4.27) enable to apply the analytic
technique as in [19, Lemma 3.1], and to find a constant C◦2 > 0, independent of h and triplets [u◦0, v

◦
0]

and [uk, vk], k = 1, 2, such that:

|λ′′|L∞(0,1)

∫
Ω

|u1||w1 − w2|2dx ≤ 1
2
|D(w1 − w2)|2L2(Ω) +C◦2(1 + |u1|

4
3
V)|w1 − w2|2L2(Ω). (4.30)

Furthermore, under (4.27), the inequality (4.20) enables to derive that:

C◦2(1 + |u1|
4
3
V)|w1 − w2|2L2(Ω) = C◦2h

1
3 (h

2
3 + (h|u1|2V)

2
3 ) · 1

h
|w1 − w2|2L2(Ω)

≤ C◦2h
1
3
(
1 + 2(F ν

ε (u◦0, v
◦
0, θ
◦
0) + h| f ∗0 |2V∗)

2
3
) · 1

h
|w1 − w2|2L2(Ω)

≤ 1
2h
|w1 − w2|2L2(Ω).

(4.31)
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Now, taking sum of (4.28)–(4.29) with (4.30)–(4.31) in mind, we obtain that:

1
8
|u1 − u2|2L2(Ω) + h|u1 − u2|2V

+
1
h

(
1
2
− h

(
|g|C2([0,1]2) + 5|λ|2W2,∞(0,1)

))
|v1 − v2|2L2(Ω)2

+
1
2
|D(v1 − v2)|2L2(Ω)N×2 ≤ 0.

(4.32)

This implies the required uniqueness, because 1
2 − h(|g|C2([0,1]2)2 + 5|λ|2W2,∞(0,1)) > 0 follows from the

assumption (4.1) and (4.27). 2 �

Proof of Proposition 1. Let us take a positive constant h◦2 defined by (4.1). Let us set a positive
constant h◦0, so small to satisfy that:

C◦2(h◦0)
1
3
(
1 + 2(F ν

ε (u◦0, v
◦
0, θ
◦
0) + h◦0|[ f ∗]ex

0 |2L2(0,T ;V∗))
2
3
) ≤ 1

2
, and 0 < h◦0 ≤ h◦2.

Then, from (4.20), it will be observed that:

C◦2h
1
3
(
1 + 2(F ν

ε (uνε,i−1, v
ν
ε,i−1, θ

ν
ε,i−1) + h|[ f ∗i ]h|2V∗)

2
3
)

≤ C◦2h
1
3
(
1 + 2(F ν

ε (uνε,i−2, v
ν
ε,i−2, θ

ν
ε,i−2) + h(|[ f ∗i ]h|2V∗ + |[ f ∗i−1]h|2V∗))

2
3
)

≤ · · · ≤ C◦2h
1
3
(
1 + 2(F ν

ε (uνε,0, v
ν
ε,0, θ

ν
ε,0) + |[ f ∗]ex

0 |2L2(0,T ;V∗))
2
3
)

≤ 1
2
, for all 0 < h ≤ h◦0 (≤ h◦2) and i = 1, 2, 3, . . . .

(4.33)

In view of this, the Proposition 1 will be concluded by means of the following algorithm.

(Step 0) Let h ∈ (0, h◦0], let i = 1, and let [uνε,0, v
ν
ε,0, θ

ν
ε,0] ∈ DM.

(Step 1) Obtain the quartet [uνε,i, v
ν
ε,i, θ

ν
ε,i] ∈ DM as the unique solution to the system {(4.13)–(4.14),

(4.19)}, by applying Lemmas 4–7 to the case when:

f ∗0 = [ f ∗i−1]h in V∗, u◦0 = uνε,i−1 in L2(Ω),

v◦0 = vνε,i−1 in H1(Ω)2 and θ◦0 = θ
ν
ε,i−1 in HM(Ω).

(Step 2) Iterate the value of i and return to (Step 1).

Note that (4.33) let the assumption h ∈ (0, h◦0] be a uniform condition to make sense (Step 1), for all
i = 1, 2, 3, . . . . 2

5. Proof of Theorem 1

Let us set h◦1 := h◦0 i.e. the constant as in Proposition 1, and let us fix ν > 0, h ∈ (0, h◦1] and the initial
value [uν0, v

ν
0, θ

ν
0] = [uν0,w

ν
0, η

ν
0, θ

ν
0] ∈ D1 with vν0 = [wν

0, η
ν
0]. Besides, we recall the following lemmas

obtained in [31].

AIMS Mathematics Volume 2, Issue 1, 161-194



182

Lemma 8. (cf. [31, Lemma 4.1]) Assume v◦ ∈ [H1(Ω) ∩ L∞(Ω)]2, {v◦ε}0<ε≤1 ⊂ [H1(Ω) ∩ L∞(Ω)]2, and{ v◦ε → v◦ in the pointwise sense a.e. in Ω as ε ↓ 0,

{v◦ε}0<ε≤1 is bounded in L∞(Ω)2.

Then, for the sequence of convex functions {Φνε(v◦ε; · )}0<ε≤1, it holds that Φνε(v◦ε; · )→ Φν(v◦; · ) on L2(Ω),
in the sense of Mosco, as ε ↓ 0.

Lemma 9. (cf. [31, Lemma 4.2]) Assume that
v◦ ∈ [H1(Ω) ∩ L∞(Ω)]2, {v◦ε}0<ε≤1 ⊂ [H1(Ω) ∩ L∞(Ω)]2,

{v◦ε}0<ε≤1 is bounded in L∞(Ω)2,

v◦ε → v◦ in the pointwise sense, a.e. in Ω, as ε ↓ 0,

and  θ◦ ∈ H1(Ω), {θ◦ε}0<ε≤1 ⊂ H1(Ω),

θ◦ε → θ◦ in L2(Ω) and Φνε(v◦ε; θ◦ε)→ Φν(v◦; θ◦), as ε ↓ 0.

Then, θ◦ε → θ◦ in H1(Ω) and εθ◦ε → 0 in HM(Ω), as ε ↓ 0.

Lemma 10. (cf. [31, Lemma 4.4]) Let v◦ ∈ [H1(Ω) ∩ L∞(Ω)]2 and θ̌◦0, θ̂
◦
0 ∈ H1(Ω) be fixed functions,

and let [θ̌, θ̌∗], [θ̂, θ̂∗] ∈ L2(Ω)2 be pairs of functions such that
[θ̌, θ̌∗] ∈ ∂Φν(v◦; ·) in L2(Ω)2 and

1
h
α0(v◦)(θ̌ − θ̌◦0) + θ̌∗ ≤ 0 a.e. in Ω,

[θ̂, θ̂∗] ∈ ∂Φν(v◦; ·) in L2(Ω)2 and
1
h
α0(v◦)(θ̂ − θ̂◦0) + θ̂∗ ≥ 0 a.e. in Ω,

(5.1)

respectively. Then, it follows that

|
√
α0(v◦)[θ̌ − θ̂]+|2L2(Ω) ≤ |

√
α0(v◦)[θ̌◦0 − θ̂◦0]+|2L2(Ω),

and therefore, if θ̌◦0 ≤ θ̂◦0 in Ω, then the inequality θ̌ ≤ θ̂ a.e. in Ω also follows from (A3).

Moreover, if the both inequalities in (5.1) hold as equalities, then:

|
√
α0(v◦)(θ̌ − θ̂)|2L2(Ω) ≤ |

√
α0(v◦)(θ̌◦0 − θ̂◦0)|2L2(Ω),

i.e. θ̌◦0 = θ̂
◦
0 implies θ̌ = θ̂ in L2(Ω).

Based on these, we divide the proof of Theorem 1 in two parts: the part of existence; the part of
uniqueness and energy inequality.

The part of existence. Let ν > 0 be a fixed constant. By Lemma 8, there exists a sequence {θ̃νε,0}0<ε≤1 ⊂
HM(Ω) such that

θ̃νε,0 → θν0 in H1(Ω) and Φνε(v
ν
0; θ̃νε,0)→ Φν(vν0; θν0) as ε ↓ 0.

So, by virtue of Proposition 1 we can take a class {[ũνε,i, ṽνε,i, θ̃νε,i] | i ∈ N, ε ∈ (0, 1]} consisting of solu-
tions {[ũνε,i, ṽνε,i, θ̃νε,i]}∞i=1 = {[ũνε,i, w̃ν

ε,i, η̃
ν
ε,i, θ̃

ν
ε,i]}∞i=1 ⊂ DM to (RX)ε with {ṽνε,i}∞i=1 = {[w̃ν

ε,i, η̃
ν
ε,i]}∞i=1, starting
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from the initial data [uνε,0, v
ν
ε,0, θ

ν
ε,0] = [uν0, v

ν
0, θ̃

ν
ε,0] for 0 < ε ≤ 1. Then, with Lemma 6 and the algorithm

(Step 0)–(Step 2) in mind, we remark the following energy-inequality:

A∗
2h
|ũνε,i − ũνε,i−1|2V∗ +

1
2h
|ṽνε,i − ṽνε,i−1|2L2(Ω)2 +

1
h
|
√
α0(ṽνε,i)(θ̃

ν
ε,i − θ̃νε,i−1)|2L2(Ω)

+
h
2
|ũνε,i|2V +F ν

ε (ũνε,i, ṽ
ν
ε,i, θ̃

ν
ε,i) ≤ F ν

ε (ũνε,i−1, ṽ
ν
ε,i−1, θ̃

ν
ε,i−1) + h|[ f ∗i ]h|2V∗ ,

for all 0 < ε ≤ 1 and i = 1, 2, 3, . . . .

(5.2)

In the light of (A3)–(A6), (4.21) and (5.2), the class {[ũνε,i, ṽνε,i, θ̃νε,i] | i ∈ N, ε ∈ (0, 1]} is bounded in
V × H1(Ω)3. Therefore, applying a diagonal argument and the general theories of compactness (cf.
[3, 11]), we find sequences {εn}∞n=1 ⊂ (0, 1], {[uνi , vνi , θνi ]}∞i=1 = {[uνi ,wν

i , η
ν
i , θ

ν
i ]}∞i=1 ⊂ V ×H1(Ω)2 ×H1(Ω),

with {vνi }∞i=1 = {[wν
i , η

ν
i ]}∞i=1, such that

1 ≥ ε1 > · · · > εn ↓ 0 as n→ ∞,
ũνi,n := ũνεn,i → uνi in L2(Ω), weakly in V as n→ ∞,

ṽνi,n := ṽνεn,i → vνi in L2(Ω)2, weakly in H1(Ω)2, weakly- ∗ in L∞(Ω)2,
and in the pointwise sense a.e. in Ω, as n→ ∞,

θ̃νi,n ≡ θ̃νεn,i → θνi in L2(Ω), weakly in H1(Ω)
and in the pointwise sense a.e. in Ω, as n→ ∞,

0 ≤ wν
i ≤ 1 and 0 ≤ ηνi ≤ 1 a.e. in Ω; for all i = 0, 1, 2, . . . .

(5.3)

Moreover, by (3.13), (5.3), Lemmas 8–9 and Remark 4 (Fact 6), we infer that
[
θνi ,−

1
h
α0(vνi )(θ

ν
i − θνi−1)

] ∈ ∂Φν(vνi ; ·) in L2(Ω)2,

Φνεn
(ṽνi,n; θ̃νi,n)→ Φν(vνi ; θνi ), θ̃νi,n → θνi in H1(Ω)

and εnθ̃
ν
i,n → 0 in HM(Ω), as n→ ∞,

for i = 0, 1, 2, . . . . (5.4)

Also, since
[c, 0] ∈ ∂Φν(vνi ; ·) in L2(Ω)2, for all c ∈ R and i = 0, 1, 2, . . . ,

it is observed that

θνi ≤ |θνi−1|L∞(Ω) (resp. θνi ≥ −|θνi−1|L∞(Ω)) a.e. in Ω, for any i ∈ N,

by applying Lemma 10 as the case when

v◦ = vνi ,

θ̌◦0 = θ
ν
i−1, θ̂

◦
0 = |θνi−1|L∞(Ω) (resp. θ̌◦0 = −|θνi−1|L∞(Ω), θ̂

◦
0 = θ

ν
i−1),

[θ̌, θ̌∗] = [θνi ,−
1
h
α0(vνi )(θ

ν
i − θνi−1)] (resp. [θ̌, θ̌∗] = [−|θνi−1|L∞(Ω), 0]),

[θ̂, θ̂∗] = [|θνi−1|L∞(Ω), 0]
(
resp. [θ̂, θ̂∗] =

[
θνi ,−

1
h
α0(vνi )(θ

ν
i − θνi−1)

])
.
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Having in mind (A2)–(A5), (3.11)–(3.12) and (5.3)–(5.4), we can see that

1
h

(uνi − uνi−1, z)L2(Ω) −
1
h

(λ′(wν
i )(w

ν
i − wν

i−1), z)L2(Ω) + (uνi , z)V

= lim
n→∞

[
1
h

(ũνi,n − ũνi−1,n, z)L2(Ω) −
1
h

(λ′(w̃ν
i,n)(w̃ν

i,n − w̃ν
i−1,n), z)L2(Ω) + (ũνi,n, z)V

]
= ⟨[ f ∗i ]h, z⟩, for any z ∈ V and i = 1, 2, 3, . . . ,

and

(Dvνi ,D(vνi −ϖ))L2(Ω)N×2 +

∫
Ω

γ(wν
i ) dx −

∫
Ω

γ(φ) dx

≤ lim inf
n→∞

(Dṽνi,n,D(ṽνi,n −ϖ))L2(Ω)N×2 + lim inf
n→∞

∫
Ω

γ(w̃ν
i,n)dx −

∫
Ω

γ(φ) dx

≤ lim sup
n→∞

(Dṽνi,n,D(ṽνi,n −ϖ))L2(Ω)N×2 + lim inf
n→∞

∫
Ω

γ(w̃ν
i,n)dx −

∫
Ω

γ(φ) dx

≤ − lim
n→∞

(
1
h

(ṽνi,n − ṽνi−1,n, ṽ
ν
i,n −ϖ)L2(Ω)2 +

∫
Ω

[∇G](ũνi,n; ṽνi,n) · (ṽνi,n −ϖ)dx
)

− lim
n→∞

∫
Ω

([∇α](ṽνi,n)|Dθ̃νi−1,n| + ν2[∇β](ṽνi,n)|Dθ̃νi−1,n|2) · (ṽνi,n −ϖ)dx

≤ −1
h

(vνi − vνi−1, v
ν
i −ϖ)L2(Ω)2 −

∫
Ω

[∇G](uνi ; vνi ) · (vνi −ϖ)dx

−
∫
Ω

([∇α](vνi )|Dθνi−1| + ν2[∇β](vνi )|Dθνi−1|2) · (vνi −ϖ)dx,

for anyϖ = [φ, ψ] ∈ [H1(Ω) ∩ L∞(Ω)]2, and i = 1, 2, 3, . . . .

(5.5)

The above calculations imply that the limiting sequence {[uνi , vνi , θνi ]}∞i=1 is a solution to the approximat-
ing system (AP)νh. 2

The part of uniqueness and energy inequality. By putting ϖ = vνi in (5.5), for i ∈ N, one can see
from (5.3) that:

|Dvνi |2L2(Ω)N×2 ≤ lim inf
n→∞

|Dṽνi,n|2L2(Ω)N×2 ≤ lim sup
n→∞

|Dṽνi,n|2L2(Ω)N×2

≤ lim
n→∞

(Dṽνi,n,Dvνi )L2(Ω)N×2 +

∫
Ω

γ(wν
i ) dx − lim inf

n→∞

∫
Ω

γ(w̃ν
i,n) dx (5.6)

≤ |Dvνi |2L2(Ω)N×2 , for i = 1, 2, 3, . . . .

By the convergences (5.3) and (5.6), the uniform convexity of L2-based topologies enable to say:

ṽνi,n → vνi in H1(Ω)2 as n→ ∞, for i = 1, 2, 3, . . . . (5.7)

Hence, the energy-inequality (3.10) will be obtained, immediately, by putting ε = εn in (5.2), for n ∈ N,
and letting n→ ∞ with (5.3) and (5.7) in mind.
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In the meantime, we note that the condition (4.33) is still available in the proof of Theorem 1. Also,
the regularity θ◦0 ∈ HM(Ω) will not necessary in the calculations (4.29)–(4.32), and the line of these
calculations will work even if θ◦0 ∈ H1(Ω).

In view of these, the verification part of the uniqueness for (AP)νh will be a slight modification of
that as in (Step 1) in the previous section. Then, the principal modifications will be to replace the
application parts of Lemma 5 and the energy-inequality (4.20), by those of Lemma 10 and (3.10),
respectively. 2

6. Proof of Main Theorem

Let ν ≥ 0 be a fixed constant, and let h◦1 ∈ (0, 1] be the constant as in Theorem 1. Also, we refer to
[31] to recall the following lemma.

Lemma 11. (Γ-convergence; [31, Lemma 6.2]) Assume v• ∈ [H1(Ω) ∩ L∞(Ω)]2, {v•ν̃}ν̃>0 ⊂ [H1(Ω) ∩
L∞(Ω)]2, and { v•ν̃ → v• in the pointwise sense, a.e. in Ω, as ν̃ ↓ 0,

{v•ν̃}ν̃>0 is bounded in L∞(Ω)2.

Then, for the sequence of convex functions {Φν̃(v•ν̃; · )}ν̃>0, it holds that Φν̃(v•ν̃; · ) → Φ0(v•; · ) on L2(Ω),
in the sense of Γ-convergence, as ν̃ ↓ 0.

Based on Lemma 11 and [31, Remark 6.1], we take a sequence {ϑν̃0}ν̃>0 ⊂ H1(Ω), such that:

|θν̃0| ≤ |θ0|L∞(Ω) a.e. in Ω, for any ν̃ > 0,

and  ϑν̃0 → θ0 in L2(Ω) and Φν̃(v0;ϑν̃0)→ Φ0(v0; θ0), as ν̃ ↓ 0, if ν = 0,

ϑν̃0 = θ0 in H1(Ω) for ν̃ > 0, if ν > 0,

and for any h ∈ (0, h◦1] and any ν̃ ∈ (0, ν + 1], let us take the solution {[uν̃i , vν̃i , θν̃i ]}∞i=0 to (AP)ν̃h with
{vν̃i }∞i=1 = {[wν̃

i , η
ν̃
i ]}∞i=1, under the initial condition [uν̃0, v

ν̃
0, θ

ν̃
0] = [u0, v0, ϑ

ν̃
0] ∈ D1 with vν̃0 = [wν̃

0, η
ν̃
0] =

[w0, η0]. As is easily seen,

Fν
0 := sup

0<ν̃≤ν+1
Fν̃(u0, v0, ϑ

ν̃
0) < ∞.

For any h ∈ (0, h◦1] and any ν̃ ∈ (0, ν + 1], we define the following time-interpolations:

f ∗h (t) = [ fh(t), fΓ,h(t)] := [ f ∗i ]h = [ f h
i , f h

Γ,i] in V∗ (in L2(Ω) × L2(Γ)),

for all t ≥ 0 and 0 ≤ i ∈ Z satisfying t ∈ ((i − 1)h, ih],
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and 

[u ν̃
h (t), v ν̃h (t), θ

ν̃

h (t)] = [u ν̃
h (t),w ν̃

h (t), η ν̃h (t), θ
ν̃

h (t)] := [uν̃i , v
ν̃
i , θ

ν̃
i ] in L2(Ω)4,

for all t ≥ 0 and 0 ≤ i ∈ Z satisfying t ∈ ((i − 1)h, ih],

[uν̃h(t), vν̃h(t), θν̃h(t)] = [uν̃h(t),wν̃
h(t), ην̃

h
(t), θν̃h(t)] := [uν̃i−1, v

ν̃
i−1, θ

ν̃
i−1] in L2(Ω)4,

for all t ≥ 0 and 0 ≤ i ∈ Z satisfying t ∈ [(i − 1)h, ih),

[̂u ν̃
h (t), v̂ ν̃h (t), θ̂ ν̃h (t)] = [̂u ν̃

h (t), ŵ ν̃
h (t), η̂ ν̃h (t), θ̂ ν̃h (t)]

:=
ih − t

h
[uν̃i−1(t), vν̃i−1(t), θν̃i−1(t)] +

t − (i − 1)h
h

[uν̃i , v
ν̃
i , θ

ν̃
i ] in L2(Ω)4,

for all t ≥ 0 and 0 ≤ i ∈ Z satisfying t ∈ [(i − 1)h, ih).

(6.1)

Besides, we define:

Dν(θ0) :=


{

[ũ, ṽ, θ̃] ∈ D0 |θ̃|L∞(Ω) ≤ |θ0|L∞(Ω)

}
, if ν = 0,{

[ũ, ṽ, θ̃] ∈ D1 |θ̃|L∞(Ω) ≤ |θ0|L∞(Ω)

}
, if ν > 0,

and we note that: {
[u ν̃

h (t), v ν̃h (t), θ
ν̃

h (t)], [u ν̃
h(t), v ν̃h(t), θ ν̃h(t)], [̂u ν̃

h (t), v̂ ν̃h (t), θ̂ ν̃h (t)]
}

⊂ Dν(θ0), for all t ≥ 0, 0 < h ≤ h◦1 and 0 < ν̃ ≤ ν + 1.

Then, from the energy-inequality (3.10) in Theorem 1, it is checked that

A∗
2

∫ t

s
|(̂u ν̃

h )t|V∗ dτ +
1
2

∫ t

s
|(̂v ν̃h )t(τ)|2L2(Ω)2dτ +

∫ t

s
|
√
α0(v ν̃h )(̂θ ν̃h )t(τ)|2L2(Ω)dτ

+
1
2

∫ t

s
|u ν̃

h (τ)|2Vdτ +Fν̃(u
ν̃
h , v

ν̃
h , θ

ν̃

h )(t) ≤ Fν̃(uν̃h, v
ν̃
h, θ

ν̃
h)(s) +

∫ t

s
| f ∗h (τ)|2V∗dτ

for all 0 ≤ s ≤ t ≤ T , 0 < h ≤ h◦1 and 0 < ν̃ ≤ ν + 1,

and additionally, from (A1)–(A6) and (3.2), it follows that

B∗|u ν̃
h (t)|2L2(Ω) +

1
2
|Dv ν̃h (t)|2L2(Ω)N×2 + δ∗

(|Dθ ν̃h (t)|(Ω) + |D(ν̃θ
ν̃

h )(t)|2L2(Ω)N×2

)
≤ Fν̃(u

ν̃
h , v

ν̃
h , θ

ν̃

h )(t) ∨Fν̃(uν̃h, v
ν̃
h, θ

ν̃
h)(t)

≤ Fν
∗ := Fν

0 + | f ∗|2L2(0,T ;V∗), for all 0 ≤ t ≤ T and 0 < ν̃ ≤ ν + 1.

(6.2)

Based on these, one can see that:

(♯1) the class {̂u ν̃
h | h ∈ (0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded in the space W1,2(0,T ; V∗) ∩ C([0,T ]; L2(Ω))

∩L2(0,T ; V).

(♯2) the class {̂v ν̃h | h ∈ (0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded in the space W1,2(0,T ; L2(Ω)2) ∩ L∞(0,T ;
H1(Ω)2) ∩ L∞(Q)2.
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(♯3) the class {̂θ ν̃h | h ∈ (0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded in the space W1,2(0,T ; L2(Ω)) ∩ L∞(Q),
and {Φν̃(v ν̃h ; θ ν̃h ) | h ∈ (0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded in L∞(0,T ), i.e. {|Dθ ν̃h ( · )|(Ω) | h ∈
(0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded in L∞(0,T ), and {D(ν̃θ

ν̃

h ) | h ∈ (0, h◦1], ν̃ ∈ (0, ν + 1]} is bounded
in L∞(0,T ; L2(Ω)N).

Hence, by applying the general theories of compactness, as in [2, 3, 11, 33], we find a quartet of
functions [u, v, θ] = [u,w, η, θ] ∈ L2(0,T ; L2(Ω)4) with v = [w, η] and sequences {hn}∞n=1 ⊂ (0, h◦1] and
{νn}∞n=1 ⊂ (0, ν + 1], with the subsequences:

{[un, vn, θn]}∞n=1 = {[un,wn, ηn, θn]}∞n=1 := {[uνn
hn
, vνn

hn
, θ

νn

hn
]}∞n=1,

{[u n, v n, θ n]}∞n=1 = {[u n,w n, η n
, θ n]}∞n=1 := {[uνn

hn
, vνn

hn
, θνn

hn
]}∞n=1,

{[̂un, v̂n, θ̂n]}∞n=1 = {[̂un, ŵn, η̂n, θ̂n]}∞n=1 := {[̂uνn
hn
, v̂νn

hn
, θ̂νn

hn
]}∞n=1,

such that:
h◦1 ≥ h1 > h2 > · · · > hn ↓ 0 and νn → ν, as n→ ∞, (6.3)

u ∈ W1,2(0,T ; V∗) ∩ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; V) ⊂ C([0,T ]; L2(Ω)),

v ∈ W1,2(0, T ; L2(Ω)2) ∩ L∞(0,T ; H1(Ω)2) ∩ L∞(Q)2,

θ ∈ W1,2(0,T ; L2(Ω)) ∩ L∞(Q), Φν(v; θ) ∈ L∞(0,T ),

[u(t), v(t), θ(t)] ∈ Dν(θ0) for all t ≥ 0,

[u(0), v(0), θ(0)] = [u0, v0, θ0] in L2(Ω)4,

(6.4)



ûn → u in L2(I; L2(Ω)), weakly in W1,2(I; V∗),
weakly-∗ in L∞(I; V),

v̂n → v in C(I; L2(Ω)2), weakly in W1,2(I; L2(Ω)2),
weakly-∗ in L∞(I; H1(Ω)2) and weakly-∗ in L∞(Q)2,

θ̂n → θ in C(I; L2(Ω)), weakly in W1,2(I; L2(Ω)),
weakly-∗ in L∞(Q),

νn̂θn → νθ weakly in L2(I; H1(Ω)),

(6.5)

f ∗hn
→ f ∗ in L2(I; V∗) ([ fhn , fΓ,hn]→ [ f , fΓ] in L2(I; L2(Ω) × L2(Γ))), (6.6)

as n→ ∞, for any open interval I ⊂ (0,T ), and

un(t)→ u(t) and u n(t)→ u(t) in L2(Ω), weakly in V ,

vn(t)→ v(t) and v n(t)→ v(t) in L2(Ω)2, weakly in H1(Ω)2

and weakly-∗ in L∞(Ω)2,

θn(t)→ θ(t) in L2(Ω), weakly-∗ in BV(Ω),

νnθn(t)→ νθ(t) weakly in H1(Ω),

(6.7)

as n→ ∞ for a.e. t ∈ (0,T ).
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Now, we recall some lemmas which will act key-roles in the proof of Main Theorem.

Lemma 12. Let I ⊂ (0,T ) be an open interval, and let ν ≥ 0 and {νn}∞n=1 be the sequence as in (6.3).
Let ζ ∈ L2(I; L2(Ω)) be a function such that

|Dζ( · )|(Ω) ∈ L1(I) and νζ ∈ L2(I; H1(Ω)).

Then, there exists a sequence {ζ̃n}∞n=1 ⊂ C∞(Q), such that:

ζ̃n → ζ in L2(I; L2(Ω)),
∫

I

∣∣∣∣∣∫
Ω

|Dζ̃n(t)| dx −
∫
Ω

d|Dζ(t)|
∣∣∣∣∣ dt → 0,

and νnζ̃n → νζ in L2(I; H1(Ω)), as n→ ∞.

Proof. When ν > 0, the standard C∞-approximation in L2(I; H1(Ω)) will correspond to the required
sequence. Meanwhile, when ν = 0, this lemma is verified by taking the C∞-approximation as in [25,
Lemma 5] and [29, Remark 2], and by applying the diagonal argument as in [25, Lemma 8]. 2 �

Lemma 13. Let I ⊂ (0,T ) be any open interval. Assume that
ϱ ∈ C(I; L2(Ω)) ∩ L∞(I; H1(Ω)), log ϱ ∈ L∞(I ×Ω),

ϱn ∈ C(I; L2(Ω)) ∩ L∞(I; H1(Ω)), log ϱn ∈ L∞(I ×Ω), for n = 1, 2, 3, . . . ,

ϱn(t)→ ϱ(t) in L2(Ω) and weakly in H1(Ω) as n→ ∞, for a.e. t ∈ I,

and 
ζ ∈ L2(I; L2(Ω)) with |Dζ( · )|(Ω) ∈ L1(I),

{ζn}∞n=1 ⊂ L2(I; L2(Ω)) with {|Dζn( · )|(Ω)}∞n=1 ⊂ L1(I),

ζn(t)→ ζ(t) in L2(Ω) as n→ ∞, a.e. t ∈ I.

Then the following items hold.

(I) The functions:

t ∈ I 7→
∫
Ω

d[ϱ(t)|Dζ(t)|] dt and t ∈ I 7→
∫
Ω

d[ϱn(t)|Dζn(t)|] dt, for n = 1, 2, 3, . . . ,

are integrable, and

lim inf
n→∞

∫
I

∫
Ω

d[ϱn(t)|Dζn(t)|] dt ≥
∫

I

∫
Ω

d[ϱ(t)|Dζ(t)|] dt.

(II) If: ∫
I

∫
Ω

d[ϱn(t)|Dζn(t)|] dt →
∫

I

∫
Ω

d[ϱ(t)|Dζ(t)|] dt as n→ ∞

and 
ω ∈ L∞(I; H1(Ω)) ∩ L∞(I ×Ω), {ωn}∞n=1 ⊂ L∞(I; H1(Ω)) ∩ L∞(I ×Ω),
{ωn}∞n=1 is a bounded sequence in L∞(I ×Ω),
ωn(t)→ ω(t) in L2(Ω) and weakly in H1(Ω) as n→ ∞, a.e. t ∈ I,

then ∫
I

∫
Ω

ωn(t)|Dζn(t)| dx dt →
∫

I

∫
Ω

d[ω(t)|Dζ(t)|] as n→ ∞.
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Proof. This lemma is verified, immediately, as a consequence of [26, Lemmas 4.2–4.4] (see also [25,
Section 2]). 2 �

Proof of Main Theorem. We show that the quartet [u, v, θ] = [u,w, η, θ] ∈ L2(0, T ; L2(Ω)4) as in (6.4)
fulfills the conditions (S1)–(S6) in Definition 3. Then, since (6.4) directly guarantees the conditions
(S1)–(S3), we focus on the verifications of remaining (S4)–(S6).

To this end, let us fix arbitrary open interval I ⊂ (0,T ), and let us review (3.7)–(3.9) and (6.1), to
check that: ∫

I
⟨(̂un)t(t), z⟩ dt +

∫
I
(un(t), z)V dt =

∫
I
(λ′(wn(t))(ŵn)t(t), z)L2(Ω) dt

+

∫
I
⟨ f ∗hn

(t), z⟩ dt, for any z ∈ V and n = 1, 2, 3, . . . ,
(6.8)

∫
I
((̂vn)t(t), vn(t) −ϖ)L2(Ω)2dt

+

∫
I
(Dvn(t),D(vn(t) −ϖ))L2(Ω)N×2 dt

+

∫
I
([∇G](un; vn)(t), vn(t) −ϖ)L2(Ω)2dt

+

∫
I

∫
Ω

[∇α](vn(t)) · (vn(t) −ϖ)|Dθ n(t)|dxdt

+ν2
n

∫
I

∫
Ω

[∇β](vn(t)) · (vn(t) −ϖ)|Dθ n(t)|2dxdt

+

∫
I

∫
Ω

γ(wn(t))dxdt ≤
∫

I

∫
Ω

γ(φ)dxdt,

for anyϖ = [φ, ψ] ∈ [H1(Ω) ∩ L∞(Ω)]2 and n = 1, 2, 3, . . . ,

(6.9)

and

∫
I
(α0(vn(t))(̂θn)t(t), θn(t) − ζ(t))L2(Ω)dt

+

∫
I

∫
Ω

α(vn(t))|Dθn(t)| dxdt + ν2
n

∫
I

∫
Ω

β(vn(t))|Dθn(t)|2 dxdt

≤
∫

I

∫
Ω

α(vn(t))|Dζ(t)| dxdt + ν2
n

∫
I

∫
Ω

β(vn(t))|Dζ(t)|2 dxdt

for any ζ ∈ L2(I; H1(Ω)) and n = 1, 2, 3, . . . .

(6.10)

Now, let us first take the limit of (6.10) as n → ∞. Then, from (A3), (♯2)–(♯3), (6.4)–(6.5), (6.7)
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and Lemma 13 (I), it is seen that∫
I
(α0(v(t))θt(t), θ(t) − ζ(t))L2(Ω)dt +

∫
I
Φν(v(t); θ(t)) dt

≤ lim
n→∞

∫
I
(α0(vn)(̂θn)t(t), θn(t) − ζ(t))L2(Ω) dt

+ lim inf
n→∞

[∫
I

∫
Ω

α(vn(t))|Dθn(t)| dxdt +
∫

I

∫
Ω

β(vn(t))|D(νnθn)(t)|2 dxdt
]

≤ lim
n→∞

[∫
I

∫
Ω

α(vn(t))|Dζ(t)| dxdt +
∫

I

∫
Ω

β(vn(t))|D(νnζ)(t)|2 dxdt
]

=

∫
I
Φν(v(t); ζ(t)) dt, for any ζ ∈ L2(I; H1(Ω)).

Since the open interval I ⊂ (0,T ) is arbitrary, the above inequality implies that

(α0(v(t))θt(t), θ(t) − ω)L2(Ω) + Φν(v(t); θ(t)) ≤ Φν(v(t);ω)

for any ω ∈ H1(Ω) and a.e. t ∈ (0,T ).

Additionally, in the light of Remark 3 (Fact 4), we can say the above inequality holds for ω ∈ BV(Ω)∩
L2(Ω). Thus, (S6) is verified.

Next, with (6.4) and Lemma 12 in mind, let us take a sequence {θ̃n}∞n=1 ⊂ C∞(I ×Ω) such that

θ̃n → θ in L2(I; L2(Ω)),
∫

I
|Dθ̃n| dxdt →

∫
I
d|Dθ(t)| dt,

νnθ̃n → νθ in L2(I; H1(Ω)), as n→ ∞.

Then, putting ζ = θ̃n in (6.10) and letting n → ∞, it is observed from (♯2)–(♯3), (6.4)–(6.5), (6.7) and
Lemma 13 that:∫

I

∫
Ω

d[α(v(t))|Dθ(t)|] dt +
∫

I

∫
Ω

β(v(t))|D(νθ)(t)|2 dxdt

≤ lim inf
n→∞

∫
I

∫
Ω

α(vn(t))|Dθn(t)| dxdt + lim inf
n→∞

∫
I

∫
Ω

β(vn(t))|D(νnθn)(t)|2 dxdt

≤ lim sup
n→∞

[∫
I

∫
Ω

α(vn(t))|Dθn(t)|dx dt +
∫

I

∫
Ω

β(vn(t))|D(νnθn)(t)|2 dxdt
]

≤ lim
n→∞

[∫
I

∫
Ω

α(vn(t))|Dθ̃n(t)|dx dt +
∫

I

∫
Ω

β(vn(t))|D(νnθ̃n)(t)|2 dxdt
]

− lim
n→∞

∫
I
(α0(vn)(̂θn)t(t), θn(t) − θ̃n(t))L2(Ω) dt

=

∫
I

∫
Ω

d[α(v(t))|Dθ(t)|] dt +
∫

I

∫
Ω

β(v(t))|D(νθ)(t)|2 dxdt.

The above inequality implies that:

lim
n→∞

∫
I

∫
Ω

α(vn(t))|Dθn(t)|dxdt =
∫

I

∫
Ω

d[α(v(t))|Dθ(t)|]dt, (6.11)
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and
lim
n→∞

∫
I

∫
Ω

β(vn(t))|D(νnθn)(t)|2dxdt =
∫

I

∫
Ω

β(v(t))|D(νθ)(t)|2 dt. (6.12)

By virtue of (♯2)–(♯3), (6.4)–(6.5), (6.7) and (6.11), we can apply Lemma 13 to see that:∫
I

∫
Ω

|Dθn(t)|dxdt →
∫

I

∫
Ω

d|Dθ(t)| dt, as n→ ∞.

Besides, (6.1)–(6.2) and (6.5) enable to check:∣∣∣∣∣∫
I

∫
Ω

|Dθn|dxdt −
∫

I

∫
Ω

|Dθ n|dxdt
∣∣∣∣∣ ≤ 2Fν

∗
δ∗

hn → 0, as n→ ∞,

and (6.5), (6.7) and the above convergence further enable to show that:

lim
n→∞

∫
I

∫
Ω

(vn(t) −ϖ) · [∇α](vn(t))|Dθ n(t)|dxdt

=

∫
I

∫
Ω

d[(vn(t) −ϖ) · [∇α](v(t))|Dθ(t)|]dt for anyϖ ∈ [H1(Ω) ∩ L∞(Ω)]2,
(6.13)

by applying Lemma 13 (II).
Similarly, from (6.12) and the uniform convexity of L2-based topology, one can see that

√
β(vn)D(νnθn)→

√
β(v)D(νθ) in L2(I; L2(Ω)N), and hence

D(νnθn)→ D(νθ) in L2(I; L2(Ω)N), as n→ ∞.

Besides, (6.1)–(6.2) and (6.5) enable to check:∣∣∣∣∣∫
I

∫
Ω

|D(νnθn)|2dxdt −
∫

I

∫
Ω

|D(νnθ n)|2 dxdt
∣∣∣∣∣ ≤ 2Fν

∗
δ∗

hn → 0, as n→ ∞,

and the above convergence further enables to show that:
D(νnθn)→ D(νθ) in L2(I; L2(Ω)N), and hence

(vn −ϖ) · [∇β](vn)D(νnθn)
→ (v −ϖ) · [∇β](v)D(νθ) in L2(I; L2(Ω)N),

for anyϖ ∈ [H1(Ω) ∩ L∞(Ω)]2, as n→ ∞.

(6.14)

With (A2)–(A5), (♯1)–(♯3), (6.4)–(6.5), (6.7), (6.13)–(6.14) and lower semi-continuity of L2-norm
in mind, letting n→ ∞ in (6.9) yields that:∫

I
(vt(t), v(t) −ϖ)L2(Ω)2dt +

∫
I
(Dv(t),D(v(t) −ϖ))L2(Ω)N×2dt

+

∫
I

∫
Ω

γ(w(t))dxdt +
∫

I
([∇G](u(t); v(t)), v(t) −ϖ)L2(Ω)2dt

+

∫
I

∫
Ω

d[(v(t) −ϖ) · [∇α](v(t))|Dθ(t)|]dt

+

∫
I

∫
Ω

[∇β](v(t)) · (v(t) −ϖ)|∇(νθ)|2dxdt

≤
∫

I

∫
Ω

γ(φ)dxdt, for anyϖ = [φ, ψ] ∈ [H1(Ω) ∩ L∞(Ω)]2.

(6.15)
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Finally, taking the limit of (6.8), and applying (6.5)–(6.7), one can see that:∫
I
⟨ut(t), z⟩ dt +

∫
I
(u(t), z)V dt =

∫
I
(λ′(w(t))wt(t), z)L2(Ω) dt

+

∫
I
⟨ f ∗(t), z⟩ dt, for any z ∈ V .

(6.16)

Since the open interval I ⊂ (0,T ) is arbitrary, the conditions (S4)–(S5) will be verified by taking
into account (6.4) and (6.15)–(6.16). 2
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21. R. Kobayashi, Y. Giga, Equations with singular diffusivity. J. Statist. Phys., 95 (1999), 1187–1220.

22. R. Kobayashi, J. A. Warren, W. C. Carter, A continuum model of grain boundary. Phys. D, 140
(2000), no. 1-2, 141–150.

23. R. Kobayashi, J. A. Warren, W. C. Carter, Grain boundary model and singular diffusivity. In: Free
Boundary Problems: Theory and Applications, pp. 283–294, GAKUTO Internat. Ser. Math. Sci.
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