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Abstract: This paper deals with the initial-value problem for the linearized equations of coupled
sound and heat flow, in a bounded domain  in R", with homogeneous Dirichlet boundary conditions.
Existence and uniqueness of solutions to the problem are established by using the Hille—Yosida theo-

rem. This paper gives a simpler proof than one by Carasso (1975). Moreover, regularity of solutions is
established.
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1. Introduction and results

We consider the following initial-boundary value problem:

Wy, = CCAw — 2 Ae + mPw, xeQ, t>0,
e, =olAe—(y— 1w, xeQ, t>0,
(L.1)
e=w=0, xel', t>0,
W(x’ 0) = WO(x)’ Wl‘(x’ O) = VO(x)’ e(x’ O) = eO(x)’ X € Q9

where ¢ > 0,0 > 0, m € R and y > 1 are constants. We assume that Q is a fixed domain in R" and that
the boundary I' := 9Q is bounded and smooth. This problem originates from the following linearized
equations of coupled sound and heat flow (cf. [3, 4]):

8w_

- =V, (1.2)
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?9—;1 =cVw — Ve, (1.3)
P
a—j — 0Ae - (y — eV -, (1.4)

As stated in [4, Section 1.4], these three equations appear in the flow of a compressible fluid. In such
flow there are often considerable differences of temperature from one point to another, and the transfer
of energy by thermal conduction may have a significant effect on the motion. The parabolic equation
of heat flow is then coupled to the hyperbolic equations of fluid dynamics and the two phenomena
must be calculated concurrently. This effect occurs also for infinitesimal or acoustic vibrations and
is responsible for absorption of ultrasonic waves. Taking the divergence of both sides in (1.3) and
eliminating V - u from the resulting system, we obtain two equations for the unknown scalar fields
w(x, t) and e(x, 1), namely, (1.2), (1.3), (1.4) are reduced to the two equations in (1.1) with m = 0.

Carasso [2] constructed and analyzed a least-squares procedure for approximately solving the prob-
lem (1.1) with m = 0. As a consequence existence and uniqueness of solutions were established.

The purpose of this paper is to give a simple proof of existence and uniqueness of solutions to (1.1)
of Klein—Gordon type with m € R by applying the Hille-Yosida theorem.

The first main result reads as follows.

Theorem 1.1 (existence and uniqueness). Assume that wy € H*(Q) N H)(Q), vo € H)(Q) and ¢, €
H*(Q)N Hé (Q). Then there exists a unique solution (w, e) of (1.1) satisfying

w € C([0, 00); HA(Q) N Hy(Q)) N C'([0, 00); Hy(€2)) N C*([0, 00); LA(Q)), (1.5)
e € C([0, 00); H*(Q) N Hy(Q)) N C'([0, 00); Hy(Q)) N C*([0, 00); L*()). (1.6)

Moreover, for some « > 0, the following estimates hold:
WO + C—lzuv(t)niz(g) " ﬁnewﬁ,l(m
< (nwOni,l(Q) + énvonim ¥ y—flueoni,l(m V120, (1.7)
VO g + %nczAw(r) — AAet) + MWDl + ﬁn(rAe@ — (= VO e

< 620’(||v0||12,11(9) + é”czAWQ —*Aey + mZWOHiZ(Q) + )%IHO'AeO —(y- 1)v0||§11(g)) Vi>0. (1.8)
The second main result reads as follows.
Theorem 1.2 (regularity). Assume that the initial data wy, v, ey satisfy
wo € HY(Q), vo € HY(Q), eg € H'(Q)  VkeN,
and the compatibility conditions

ANwy=0 onl VY j>0, jinteger,
Avg=0 onT Vj>0, jinteger,
Ney=0 onT Vj>0, jinteger.

Then the solution (w, e) of (1.1) belongs to C*(Q x [0, 0)) X C=(Q % [0, 00)).
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This paper is organized as follows. In the following section we will rewrite the initial-boundary
value problem (1.1) as the Cauchy problem for a single abstract evolution equation dU/dt + AU = 0,
where A is a matrix of operators. We will also collect theorems in the Hille—Yosida theory which will
be used in this paper. Section 3 is devoted to the proof of Theorem 1.1. In Section 4 we will give the
proof of Theorem 1.2.

2. Abstract formulation toward the Hille-Yosida theory

Putting v := w,, we rewrite equations in (1.1) as
Wt = V,
v, = CAw — c*Ae + m*w, 2.1)

e, =0Ae—(y— 1),

W, v
v |=| (A +m?Dw - ?Ae

so that (2.1) becomes

e —(y=1v+oAe
0 1 0 w
=| A +m*l 0 —2A v
0 -(y-1DI oA e
0 -1 0 w
=—| A —m?I 0 A v .
0 (y—-DI —-oA e
Setting
0 -1 0 w
A= —*A-—m?I 0 A |, U:==|v |, (2.2)
0 (y-DI -oA e
we rewrite (1.1) as
d
W o au=0, t>0,
dt (2.3)
U(0) = Uy,
where
Wo
U() = Vo |.
€o
We also note that
-V
AU = [ —*Aw + *Ae — m*w . (2.4)
—oAe+ (y—1)v

The following definition plays an important role in the Hille—Yosida theory.
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Definition 2.1. An unbounded linear operator A : D(A) ¢ H — H is said to be monotone if it satisfies
(Av,v) >0 VYveDA).
It is said to be maximal monotone if, in addition, R(/ + A) = H, i.e.,
V feHdue D(A)such that u + Au = f.

We next introduce two useful theorems (for the proof see [1, Chapter 7]).

Theorem 2.1 (Hille-Yosida). Let A be a maximal monotone operator in a Hilbert space H. Then,
given any uy € D(A) there exists a unique function

u € C'([0, 00); H) N C([0, 0); D(A))

satisfying
d
au +Au =0 on [0, ),
dt (2.5)
u(0) = uy.
Moreover,

luOIl < lluoll - and = lAu(@®)l < lJAuoll  V12=0.

Pl

Theorem 2.2. Assume uy € D(AX) for some integer k > 2. Then the solution u of (2.5) obtained in
Theorem 2.1 satisfies
u € CK([0,0); D(AY)) Vj=0,1,..., k.

In order to apply the Hille-Yosida theory to (2.3) derived from (1.1) we define the domain of A
given by (2.2) as

D(A) = (H*(Q) N Hy(Q)) x Hy(Q) x (H*(Q) N Hy(Q)).
Then A is an operator in the Hilbert space
H := H)(Q) x L*(Q) x H)(Q)

equipped with inner product

1 1 1
(U],Uz) I:fVW1VW2+fW1W2+—2fV1V2+—fV€1V€2+—f€162,
Q Q c Ja y—1Ja y—1Ja

where
wj
UjZ: Vj (]:1,2)
€j
Also, the norm in H is given by
1 1 W
IUIP = (U, U) = Wl gy + Mgy + Sl forU=| v |. (2.6)
e
In particular, we see from (2.4) that
1 1
IAUIF = Mg + 510w = e + mwilig, + ~—llrhe = (= DVl 2)
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3. Existence and uniqueness
In this section we prove Theorem 1.1 by using Theorem 2.1.

3.1. Monotonicity
Let A and H be as in the end of Section 2. Let

w
U=| v |€DA).
e

Then it follows from the definition of the inner product and integration by part that

1
(AU, U) = fV(—v)Vw - f W+ — f V(=2 Aw — m*w + *Ae)
Q o) " Ja

+L V[(y—l)v—O'Ae]Ve+Lfe[(y—l)v—O'Ae]
y—1Ja y-1Ja

m2
(1+—2)fvw+—1 |Ae|2+—f|Ve|2 f
¢ Q Y-

Since the second and third terms on the right-hand side are nonnegative, we have

2
(AU,U)Z—(1+m—2)fvw+fve
c Q Q
2
—(1+’"—2) f [vllwl - f el

We define a positive constant @ as
1 m? 5 m? y-1
= -+ — 1+ — .
@ max{2+2c2, C ( +2c2), 3
Then we conclude that A + « is monotone:
(A +ag)U,U) > (1+m2)f f 1f
T = 22 2 2c2 T2
+ @ f w4+ = f f e
-1 Ja
+ g f Vw2 + — f IVel?
Q y—1Ja
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1
+( il ——) f Et+ay | VP + 2L | vep
y-1 2)Ja Q vy—1Jg

3.2. Maximal monotonicity

We divide the proof into four steps.

Step 1. Writing down the aim. We will select & > 0 later. The aim is to show that A + a/ is maximal

monotone, 1.€.,
YVFeH 3AUeDA) st. U+A+al)U =F.

e

v+ (a+ 1w =f

To see this we take

Then we shall find

w
[ v ] € D(A) st {-c*Aw—m?*w+c*Ae+ (a+ 1)y = g,
e
(y—1v—-—0clAe+ (a+1)e = h.
Step 2. Reducing the equations. We first delete v and then we have

—Aw + [(a+ 1)2—m2]w+c2Ae =(a+1)f+g,
—0Ae+(a@+ e+ (a+1D)(y-1w=(Q-1)f+h.

Now let 6 # 0 which will be fixed later. Making (3.1) X § + (3.2), we have

—0c’Aw = (0 — 6c?)Ae + [o(a + 1) = 6m” + (@ + D)(y = D] w + (@ + e
=0+ 1)+ (y—-D]f +6g+h.
If there exists a constant k such that

0'—c26_ a+1 _
oc2 Sla+ 1?2 —-6m*+(a+Dy-1)

then (3.3) is reduced to
—5ctAu+[6(@+ 1) =om* + (@ + Dy — Du=[6(@+ 1)+ (y = DIf + g + h,

where u := w + ke.

(3.1
(3.2)

(3.3)

(3.4)

(3.5)
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Step 3. Finding two kinds of (9, k) in (3.4). We rewrite (3.4) as
sct(a+ 1) = (o = 6cH)[6(a + 1)* = 6m* + (@ + D)(y = D].

Dividing the both sides, we have

2
1+(7—1)]

2 szz
G oly—-D=cy—-1)=cHa+ )6 + ?52 — Ay - 1)6.
a

s
52 = (o -6 6@+ 1) - 2L
a +

om
= +1)0 -
ola+1) a+

Therefore,

m2

2 _
@(0) = ¢ [(a+1) o

2

5 + 1]6—)/()/—1):0. (3.6)

om
C2’)/ —ola+1)+

a+
In order to find two solutions ¢ = d;, 6, of this equation we show that the discriminant D is positive for
a > |m| — 1. Indeed, we observe that

2
m

+1) -
(@ )a+

212
D:[czy—a(a/+1)+ an ] +4c?
a+1

-1,
1]7()/ )
where if we take a as

a>m -1, ie., a+1>|m|,

then

m? (+1)?-—m?

+1) - = > 0.
(@ ) a+1 a+1

Thus we deduce that D > 0. Noting that ¢(0) = —y(y — 1) < 0, we see that (3.6) has two solutions
0 = 01, 02 such that 6; < 0 and 6, > O:

5 [cy 0'(a+1)+%]—\/l_)
1 2w @+n-2]
5 = [cy 0'(a/+1)+%]+\/5
1 2@+ -2

So we find two kinds of (6, k) in (3.4):

0'—c2(5_ a+1
¢ Sla+ 1?2 —6m*+(a+Dy-1)

k., if 6=6,
Nk, if 5=6,
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Step 4. Conclusion. Let us consider the 2 parameters of Step 3, 6 = 6;(< 0) and 6 = 6,(> 0). Note
that k; # k,. Hence we can find two solutions u = u;, u, of (3.5) with 6 = 91, d,, respectively (see [1,
Theorems 9.21 and 9.25]):

—61*Auy + [6( + 1)? = 6m® + (a + D(y — D]y

=0+ D)+ (y=DIf+db1g+h, (3.7
—6,* Auty + [6r(a + 1)* = 6,m® + (a + D(y — D]un
=[0(@+ 1)+ (y—=DIf + g+ h, (3.8)
which are equivalent to

2 » o @+Dy-D] y-1 h
—cAu1+[(oz+1) — +5—1]u1—[(a/+1)+ 5 ]f+g+6l, 3.9

) > o, (a+Dly-D1 (y-D h
—c Au2+[(a+1) - +6—2]u2_[(a+1)+ 5 f+g+(52’ (3.10)

where the coefficients of the second terms on the left-hand sides are positive for some @ > 0. Indeed,
the coefficient of u, is positive when a > |m| — 1, because 6, > 0. As to the coefficient of u;, we see
that

1 202 [(@+1) - 2]
01 [czy ola+1)+ "mz] + D

[(a+1 afl]{[cy 0'(a+1)+a+12]—\/5}
—4c @+ D) - 22 ]yty - 1)

-0

[cy ocla+1)+ <

a+1

2y(y - 1)

Hence it follows that

2 e+ Diy- 1D

12
( ) 61
[C2V—0'(6Y+1)+—f]— VD

0
2y >

=(@+ 1) -m*+(a+1)
= Qy-o)a+ 1P +Fy@+ 1)+ (c-2y)m* > (@+1)VD. (3.11)
Let @ > |m| — 1. First consider the case 2y > o. In this case, since

Qy —o)a+ 1) + Ayl + 1) + (o = 2y)m?
=Q2y-o0) [(a/ + 1)2 — m2] + czy(a +1)
>0,
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we have
Qy - o)a+ 1 +ya+ 1)+ (o - 2y)m* > (@+ 1) VD

[y =)@+ 1)+ Pya+ 1)+ (o - 27)m2]2 > (@ + 1)’D

—
= (y-o)a+ D'+ a+ 1) -2y - om(a+1)
—Fmfa+ D+ (y—o)m* >0
= (y-o)|@+1y- m2]2 + @+ D)@+ 1) =m?| >0 (3.12)
= [+ -m||(y -+ 1)+ @+ 1) (y-om’| > 0. (3.13)

Therefore, if y > o, then the coefficient of u; in (3.9) is positive in view of (3.12). If 2y > o > vy, then
from (3.13) it suffices to choose a such that

(y—o)a+ 1)’ +a+1)—(y—o)ym?* >0,
that is,
(c—y)(a+ D -ca+1)-(o- )/)m2 <0.

Solving this inequality and noting that @ + 1 > |m| > 0, we have

c? + At + 4(o - y)Pm?

(m<)a+1< - (3.14)
Next consider the case 2y < o. In this case, from (3.11) it suffices to take a such that
Qy-o)a+ 1) +ya+ 1)+ (0 =2y)m* >0,
that is,
(=29 (a+1)? -cy(@+1) - (o - 2y)m* < 0.
Solving this inequality gives
(il <)+ 1 < SXHENCYH 4@ = 2yt (3.15)

2(0 —2y)

Hence the same way as in the case 2y > o yields that the coefficient of u; in (3.9) is positive when
« satisfies (3.14) and (3.15). Thus we can find two solutions u = u;,u, of (3.5) with 6 = 6, 0,,
respectively. For ki, k; and u;, u, constructed above, we solve the following system with respect to

w,e:
w+ kle = U,
w+ kye = u,.
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Then we find
1
= kouy — kiuy), 3.16
w ky — kl( 2U] 1U2) ( )
1
= —up). 3.17
‘=5 _kl(uz up) (3.17)
Moreover, setting
a+1
V= X A (kouy — kyup) — f, (3.18)
2 — Ky

we shall show that w, v, e are the desired functions in Step 1. Indeed, we see that (3.18) implies the
required equation

-v+(a+ Dw=f. (3.19)
Making (k, — k1)[(3.16) + k; X (3.17)] and (ky — k1)[(3.16) + k» X (3.17)], we have

(kl — kz)(W + k]@) = (k1 - kz)l/ll, 1.e.,u; = w+ ke,
(kl — kz)(W + kze) = (kl - kz)l/tz, 1.e., uw + kge.

Therefore, in view of (3.7) and (3.8),
—61AW + kie) + [61(a+ 1) —=6m* + (@ + D(y = DIw + kie) = [61(a + 1) + (y = DIf + 618 + h,
— 8P AW + kye) + [G2(a + 1)? = 6om® + (@ + D)(y = DIw + kye) = [G2(a + 1) + (y = D]f + 628 + h,
of which the first equation is equivalent to

—61PAW + [61(a + 1)* = 5;m® + (@ + D(y — DIw
+ [=612Ae + 61 (a + 1)2e — 61mPe + (o + 1)(y — Delk;
=[61(a+ 1)+ (y— DIf + 618 +h.

Recall the definition of &;:

0'—c251 B a+1 _
Sic2 Sla+ 1R —sm+(@+Dy-1)

ki.
Then it follows that

kioic* = o = %61 ki [oi(a+ 1P —5m’ + (@+ Dy - D] =a+1,
and hence

=817 Aw — (0 = 61cM)Ae + |61 + 1) = 6ym” + (@ + Dy = D|w+ (@ + De
=[6i(@+ 1)+ (y = DIf + 618 +h. (3.20)
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In the same way as above we can deduce
= 5,67 Aw — (0 = 62¢M)Ae + [6a(e + 1) = 6m” + (@ + D)y = D|w+ (@ + De
=[0(a+ 1)+ (y—DIf + 5,8 +h. (3.21)
Making (3.20) — (3.21) and (3.20) X 6, — (3.21) X d;, we have
— (81 = 3 Aw + (81 — 2)c*Ae + (8 — 62)(@ + 1)*w = (6; — 6)m’w
= (01 —o)a+ 1)f + (61 — 62)8.
— (02 —01)oAe(0, — 61)a+ 1)y = Dw + (62 —d1)(a + 1e
= (602 — o)y = Df + (62 — d1h.
Thus we arrive at (3.1) and (3.2). Making (3.1) - (3.19) X (e + 1) and (3.2) — (3.19) X (y — 1), we obtain
—2Aw —m*w + PAe + (@ + Dy = g,
(y=Dyv—-0cAe+ (a+1)e=h.
Consequently, we conclude that w, v, e are the desired functions which satisfy
v+ (a+ DHw =f,
—PAw —mPw + Ae+ (@ + 1)y = g,

(y—1wv—0cAe+ (a+ e =h.

3.3. Proof of Theorem 1.1
Since A + @ is maximal monotone as proved above, it follows from Theorem 2.1 that for U, € D(A)

the problem

dv
E+AV+(1V:O on [0, o),

V() = Uy
has a unique solution V € C'([0, o0); H) N C([0, o0); D(A)) such that
IVOI < IUoll and |JAV(@®)|| < [[AUoll Yi2=0.

Setting
U(t) := e V(1),

we deduce that U € C'([0, o0); H) N C([0, o); D(A)) satisfies

ci,—lt]+AU:0 on [0, c0),
U(0) = Uy,

with the estimates
U@ < e”|Uoll and [JAU®)|| < e™|AUo|| V1> 0.

The properties (1.5), (1.6), (1.7), (1.8) follow from those for U. This completes the proof of Theorem
1.1. |
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4. Regularity

We use the same notation as in the end of Section 2.
Proof of Theorem 1.2. We first recall the definition of D(A*) which is given by induction as follows:
DAY := D(A), D(A" :={U € D(A* Y AU € D(A*™M)), k& >2.
It is easy to see, by induction on k, that

w| weH*'(Q), Aw=0onT (0<Vj<[4])
D(A") = Dy := [v] v e H(Q), Alv=0onT (Os\v’js[%]—l)
¢ J| ec H*Y(Q), Ae=0onT (0<Vj<[i]

Indeed, when k = 1, we have

D(AY) = (H*(Q) N Hy(Q)) x HY(Q) X (H*(Q) N Hy(Q))

v veH(Q), v=0 onl }=D,.

[w] weH*(Q), w=0 onTl
ecH*(Q), e=0 onl

e

If D(A*) = Dy holds for k, then the statement for k + 1 reads as follows:

D(A*Y = {U € D(A%) = Di| AU € D(A*) = D}

1%
e

ve HY(Q), Av=0 onl (0<Vj<[&]-1)

w) WEHk+1(Q)a ANw=0 onTI (OSV].S[g])
e € H*(Q), Ae=0 onT (0<Vj<[L)

—v e H*Y(Q), Al(-v)=00onT (0 < V;j < [£])
w —c*Aw — m*w + ?Ae € HK(Q),
N ( % ] A(=c*Aw —m*w + *Ae) =0onT (0 < Vj <[] - 1)
(y — Dy — cAe € H*1(Q),
N((y—1yw—cAe)=00nT (0 < Vj<[%])

= Dyy1.

In particular, D(A*) ¢ H*"'(Q) x H*(Q) x H**'(Q) with continuous injection. Applying Theorem 2.2,
we see that if Uy € D(A%), then the solution U of (2.3) satisfies

U € C*([0, oo]; D(AY))
C C([0, c0]; HH(Q) X HI(Q) x H*'(Q)) ¥ j=0,1,... .,k

Therefore we conclude by [1, Corollary 9.15] that under the assumption of Theorem 1.2 (i.e., Uy €
DAYV k e N), U € CK([0, 00); C¥K(Q) x C*K(Q) x C¥(Q)) V k € N. O
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