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Abstract: In a numerical study, we consider the Allen–Cahn equation with a double-obstacle con-
straint. The constraint is a multivalued function that is provided by the subdifferential of the indicator
function on a closed interval. Therefore, performing a numerical simulation of our problem poses
difficulties. We propose a new approximate method for the constraint and demonstrate its validity.
Moreover, we present stability criteria for the standard forward Euler method guaranteeing stable nu-
merical experiments when using the approximating equation.
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1. Introduction

For each ε ∈ (0, 1], we consider the following Allen–Cahn equation with double obstacle constraint:

uεt − ∆uε +
∂I[−1,1](uε)

ε2 ∋ uε

ε2 in Q := (0,T ) ×Ω, (1.1)

∂uε

∂ν
= 0 on Σ := (0,T ) × Γ, (1.2)

uε(0) = uε0 a.e. in Ω, (1.3)

where 0 < T < ∞, Ω is a bounded domain in RN (1 ≤ N < +∞) with Lipschitz boundary Γ := ∂Ω, ν
is an outward normal vector on Γ and uε0 is a given initial value. Also, the double obstacle constraint
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∂I[−1,1](·) is the subdifferential of the indicator function I[−1,1](·) on the closed interval [−1, 1] defined
by

I[−1,1](z) :=
{

0, if z ∈ [−1, 1],
+∞, otherwise.

(1.4)

More precisely, ∂I[−1,1](·) is a set-valued mapping defined by

∂I[−1,1](z) :=


∅, if z < −1 or z > 1,
[0,∞), if z = 1,
{0}, if − 1 < z < 1,
(−∞, 0], if z = −1.

(1.5)

The Allen–Cahn equation was proposed to describe the macroscopic motion of phase boundaries.
In this physical context, the function uε = uε(t, x) in (P)ε:={(1.1), (1.2), (1.3)} is a non-conserved order
parameter that characterizes the physical structure. Indeed, let v = v(t, x) be the local ratio of the
volume of a pure liquid relative to that of a pure solid at time t and position x ∈ Ω, defined by

v(t, x) := lim
r↓0

volume of pure liquid in Br(x) at time t
|Br(x)| ,

where Br(x) is the ball inRN with center x and radius r and |Br(x)| denotes its volume. Setting uε(t, x) :=
2v(t, x) − 1 for any (t, x) ∈ Q, we then observe that uε(t, x) is the non-conserved order parameter that
characterizes the physical structure:

uε(t, x) = 1 for the pure liquid region,
uε(t, x) = −1 for the pure solid region,
−1 < uε(t, x) < 1 for the mixed region.

Therefore, uε has two threshold values 1 and −1, and hence the constraint ∂I[−1,1](·) that appears in
(1.1).

There is a vast literature on the Allen–Cahn equation with and without constraint ∂I[−1,1](·). For
these studies, we refer to [1, 3, 6, 7, 12, 8, 9, 20, 22, 26]. In particular, Bronsard and Kohn [6] studied
the singular limit of (P)ε as ε → 0 with a bistable potential W having both wells of equal depth and
without constraint ∂I[−1,1](·). Also, Chen and Elliott [7] considered the asymptotic behavior of the
solution to (P)ε as ε → 0. However, there were no details in [7] about elements of the constraint
∂I[−1,1](uε) as ε → 0. Recently, Farshbaf-Shaker et al. [8] provided results concerning properties of
elements of ∂I[−1,1](uε) for the problem (P)ε as ε→ 0.

Also, there is a vast literature on the numerical analysis of the Allen–Cahn equation without con-
straint ∂I[−1,1](·). For these studies, we refer to [10, 11, 24, 27, 28]. However, we observe that it is
hard to perform a numerical experiment of (P)ε, because the double obstacle constraint ∂I[−1,1](·) is
a multivalued function (cf. (1.5)). Recently, Blank et al. [3] proposed as a numerical method the
primal-dual active set algorithm for the local and nonlocal Allen–Cahn variational inequalities with
constraint. Also, Farshbaf-Shaker et al. [8] obtained results for the limit of a solution uε and an el-
ement of ∂I[−1,1](uε), called the Lagrange multiplier, to (P)ε as ε → 0. Moreover, they provided the
numerical experiment to (P)ε via the Lagrange multiplier for a one-dimensional space for sufficiently
small ε ∈ (0, 1] in [9].
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The approximate methods are used to obtain a priori estimate of the solutions to (P)ε (cf. [18, 21, 22,
23]). Indeed, the Yosida approximation of ∂I[−1,1](·) is often used: for δ > 0, the Yosida approximation
(∂I[−1,1])δ(·) of ∂I[−1,1](·) is defined by:

(∂I[−1,1])δ(z) =
[z − 1]+ − [−1 − z]+

δ
, ∀z ∈ R, (1.6)

where [z]+ is the positive part of z. Then, by considering approximate problems of (P)ε and letting
δ ↓ 0, we can obtain estimates of solutions to (P)ε.

Also, using the Yosida approximation (∂I[−1,1])δ(·) of ∂I[−1,1](·), numerical experiments of the ap-
proximate problem of (P)ε were often provided. Recently, in [25], the authors clarified the role of
the stability condition in providing stable numerical experiments of the approximate problem of (P)ε

via the Yosida approximation in the one-dimensional case. However, we observed that the numerical
solution to the approximate equation takes the value outside [−1, 1] (cf. [25, Table 1]).

In this paper, we propose a new approximate method for ∂I[−1,1](·) so that the numerical solutions to
the approximate equation take values in [−1, 1]. Indeed, for each δ ∈ (0, 1), we approximate ∂I[−1,1](·)
by the following function Kδ(·), defined by:

Kδ(z) :=



z − 1 + δ
δ

, if z > 1 − δ,

0, if z ∈ [−1 + δ, 1 − δ],
z + 1 − δ

δ
, if z < −1 + δ.

(1.7)

Then, for each ε ∈ (0, 1] and δ ∈ (0, 1), we study the following approximate problem of (P)ε, denoted
by (P)εδ:

(P)εδ


(uεδ)t − ∆uεδ +

Kδ(uεδ)
ε2 =

uεδ
ε2 in Q = (0, T ) ×Ω,

∂uεδ
∂ν
= 0 on Σ = (0, T ) × Γ,

uεδ(0) = uε0 a.e. in Ω.

The aim is to show the validity of our approximate method defined by (1.7). Moreover, for each
ε > 0 and δ > 0, we present criteria for the standard explicit finite difference scheme to ensure stable
numerical experiments of (P)εδ in a two-dimensional (2D) space. To this end, we consider the following
ODE problem, denoted by (E)εδ:

(E)εδ

 (uεδ)t +
Kδ(uεδ)
ε2 =

uεδ
ε2 in R, for t ∈ (0,T ),

uεδ(0) = uε0 in R.

Note that the unique solution uεδ(t) to (E)εδ takes the value in (0, 1) (resp. (−1, 0)) for all t ∈ [0,T ], if
the initial value uε0 takes the value in (0, 1) (resp. (−1, 0)) (see (i) of Corollary 2.1). Also, note that
uεδ ≡ 0,±1 is a stationary solution to (E)εδ (see Remark 3.2). We then find the criteria that yields stable
numerical experiments of (E)εδ. Also, we perform some numerical simulations of (E)εδ. Finally, taking
into account the theoretical results of (E)εδ, we derive the criteria ensuring stable numerical experiments
of the 2D PDE problem (P)εδ. Therefore, the main novelties are the following:
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(a) We show the existence-uniqueness of a solution uεδ to (P)εδ on [0,T ] for each ε ∈ (0, 1] and δ ∈ (0, 1).
Also, we prove that uεδ converges to the solution uε to (P)ε on [0,T ] as δ→ 0.

(b) We present the criteria that ensure stable numerical simulations of the ODE problem (E)εδ. Also,
we provide numerical experiments to (E)εδ for small ε ∈ (0, 1] and δ ∈ (0, 1).

(c) We consider instances whenΩ is a bounded domain in R2. Then, we give the criteria yielding stable
numerical simulations of the PDE problem (P)εδ. Also, we provide the numerical experiments of
(P)εδ for small ε ∈ (0, 1] and δ ∈ (0, 1).

The plan of this paper is as follows. In Section 2, we discuss the validity of our approximate
method defined by (1.7). Indeed, we prove the main result (Theorem 2.1) concerning the solvability and
convergence result of (P)εδ corresponding to item (a) above. In Section 3, we consider (E)εδ numerically.
Then, we prove the main result (Theorem 3.1) corresponding to item (b) above. Also, we provide
several numerical experiments to (E)εδ for small ε ∈ (0, 1] and δ ∈ (0, 1). In the final Section 4, we
consider from the view-point of numerical analysis (P)εδ for a 2D space. Then, we prove the main result
(Theorem 4.1) corresponding to item (c) above and provide numerical experiments of (P)εδ for small
ε ∈ (0, 1] and δ ∈ (0, 1).

Notation and basic assumptions

Throughout this paper, we consider the usual real Hilbert space structure denoted by H := L2(Ω).
The inner product in H is denoted by (·, ·)H. We also write V := H1(Ω).

In Section 2, we use some techniques of proper (that is, not identically equal to infinity), l.s.c. (lower
semi-continuous), convex functions and their subdifferentials, which are useful in the systematic study
of variational inequalities. Therefore, let us outline some notation and definitions. For a proper, l.s.c.,
convex function ψ : H → R ∪ {+∞}, the effective domain D(ψ) is defined by

D(ψ) := {z ∈ H; ψ(z) < ∞}.

The subdifferential of ψ is a possibly multi-valued operator in H and is defined by z∗ ∈ ∂ψ(z) if and
only if

z ∈ D(ψ) and (z∗, y − z)H ≤ ψ(y) − ψ(z) for all y ∈ H.

Next, we recall the notion of convergence for convex functions developed by Mosco [19].

Definition 1.1 (cf. [19]). Let ψ, ψn (n ∈ N) be proper, l.s.c., convex functions on H. Then, we say
that ψn converges to ψ on H in the sense of Mosco [19] as n → ∞, if the following two conditions are
satisfied:

(M1) for any subsequence {ψnk} ⊂ {ψn}, if zk → z weakly in H as k → ∞, then

lim inf
k→∞

ψnk(zk) ≥ ψ(z);

(M2) for any z ∈ D(ψ), there is a sequence {zn} in H such that

zn → z in H as n→ ∞ and lim
n→∞

ψn(zn) = ψ(z).
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For various properties and related notions of the proper, l.s.c., convex function ψ and its subdiffer-
ential ∂ψ, we refer to the monograph by Brézis [4].

Next we present condition (A), which we shall use throughout the paper and assume applies to data.

(A) uε0 ∈ K := {z ∈ V ; |z| ≤ 1 a.e. in Ω}.

2. Solvability and convergence results for (P)εδ

We begin by giving a rigorous definition of solutions to (P)εδ (ε ∈ (0, 1] and δ ∈ (0, 1)).

Definition 2.1. Let ε ∈ (0, 1], δ ∈ (0, 1) and uε0 ∈ H. Then, a function uεδ : [0,T ] → H is called a
solution to (P)εδ on [0,T ], if the following conditions are satisfied:

(i) uεδ ∈ W1,2(0, T ; H) ∩ L∞(0,T ; V).
(ii) The following variational identity holds:

(
(uεδ)t(t), z

)
H +

∫
Ω

∇uεδ(t) · ∇z dx +
(

Kδ(uεδ(t))
ε2 , z

)
H
=

(
uεδ(t)
ε2 , z

)
H

for all z ∈ V and a.e. t ∈ (0,T ).

(iii) uεδ(0) = uε0 in H.

Also, we give a rigorous definition of solutions to the problem (P)ε (ε ∈ (0, 1]).

Definition 2.2. Let ε ∈ (0, 1] and uε0 ∈ H. Then, a function uε : [0,T ]→ H is called a solution to (P)ε

on [0,T ], if the following conditions are satisfied:

(i) uε ∈ W1,2(0, T ; H) ∩ L∞(0,T ; V), and |uε| ≤ 1 a.e. on QT .
(ii) The following variational inequality holds:(

uεt (t) − 1
ε2 uε(t), uε(t) − z

)
H
+

∫
Ω

∇uε(t) · (∇uε(t) − ∇z)dx ≤ 0

for all z ∈ K and a.e. t ∈ (0,T ).

(iii) uε(0) = uε0 in H.

Here we mention the result concerning the existence-uniqueness of solutions for (P)ε on [0,T ] for
each ε ∈ (0, 1].

Proposition 2.1 (cf. [5, 15]). Assume (A). Then, for each ε ∈ (0, 1] and uε0 ∈ K, there exists a unique
solution uε to (P)ε on [0,T ] in the sense of Definition 2.2.

Proof. Applying the abstract theory of nonlinear evolution equations (cf. [5, 15]), we can prove this
Proposition 2.1. Indeed, for each ε ∈ (0, 1], we define a functional φε on H by

φε(z) :=


1
2

∫
Ω

|∇z|2dx +
1
ε2

∫
Ω

I[−1,1](z(x))dx, if z ∈ V with I[−1,1](z) ∈ L1(Ω),

∞, otherwise.
(2.1)
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Clearly, φε is proper, l.s.c. and convex on H with the effective domain D(φε) = {z ∈ V ; I[−1,1](z(·)) ∈
L1(Ω)}. Then, the problem (P)ε can be rewritten as an abstract evolution equation of the form:

(CP)ε


d
dt

uε(t) + ∂φε(uε(t)) − 1
ε2 uε(t) ∋ 0 in H, for t > 0,

uε(0) = uε0 in H.

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [5, 15]), we
demonstrate the existence-uniqueness of a solution uε to (CP)ε, hence (P)ε, on [0,T ] for each ε ∈ (0, 1]
in the sense of Definition 2.2. Thus, the proof of Proposition 2.1 is complete. �

Now, we mention the first main result concerning the solvability and convergence of solutions to
(P)εδ on [0,T ].

Theorem 2.1. Assume (A). Then, for each ε ∈ (0, 1], δ ∈ (0, 1) and uε0 ∈ K, there exists a unique
solution uεδ to (P)εδ on [0,T ] in the sense of Definition 2.1. Moreover, the following statements hold:

(i) If the initial value uε0(x) takes the value in [0, 1] (resp. [−1, 0]) for a.e. x ∈ Ω, the solution uεδ(t, x)
also takes the value in [0, 1] (resp. [−1, 0]) for a.e. (t, x) ∈ Q.

(ii) uεδ converges to the unique solution uε of (P)ε on [0,T ] in the sense that

uεδ → uε in C([0,T ]; H) as δ→ 0. (2.2)

To prove Theorem 2.1, we define a primitive K̂δ by

K̂δ(z) :=



1
2δ

z2 − 1 − δ
δ

z +
(1 − δ)2

2δ
, if z > 1 − δ,

0, if z ∈ [−1 + δ, 1 − δ],
1
2δ

z2 +
1 − δ
δ

z +
(1 − δ)2

2δ
, if z < −1 + δ.

(2.3)

Clearly, K̂δ(·) is continuous and convex on R with ∂K̂δ(·) = Kδ(·) in R, where Kδ(·) is the function
defined by (1.7). Then, we observe from (1.4) and (2.3) that the following lemma holds.

Lemma 2.1 (cf. [2, Section 5], [4, Chapter 2], [17, Section 2]). Let I[−1,1](·) and K̂δ(·) be convex func-
tions defined by (1.4) and (2.3), respectively. Then,

K̂δ(·)→ I[−1,1](·) on R in the sense of Mosco [19] as δ→ 0. (2.4)

Proof. We first check the condition (M1). Let {δk} ⊂ (0, 1), {zk} ⊂ R and z ∈ R so that

δk ↓ 0 and zk → z weakly in R as k → +∞.

As R is a one-dimensional space, we observe that

zk → z in R as k → +∞. (2.5)
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If z ∈ [−1, 1], we easily observe from (1.4) and (2.3) that

lim inf
k→+∞

K̂δk(zk) ≥ I[−1,1](z) = 0.

Now we assume that z > 1. Then, there exists a small positive constant µ such that

z ≥ 1 + µ > 1.

Then, from (2.5), there exists a number kµ ∈ N satisfying

|zk − z| < µ

2
for all k ≥ kµ.

Therefore, we have
zk > z − µ

2
≥ 1 +

µ

2
> 1 − δ for all k ≥ kµ. (2.6)

Hence, we infer from (2.3) and (2.6) that

K̂δk(zk) ≥ K̂δk

(
1 +

µ

2

)
=

1
2δk

(
1 +

µ

2

)2
− 1 − δk

δk

(
1 +

µ

2

)
+

(1 − δk)2

2δk

=
µ2

8δk
+
µ

2
+
δk

2
→ +∞ as k → +∞.

Thus, we observe that
lim inf

k→+∞
K̂δk(zk) = +∞ = I[−1,1](z).

Similarly, if z < −1, we have:

lim inf
k→+∞

K̂δk(zk) = +∞ = I[−1,1](z).

Thus (M1) holds.
Next we establish (M2). Assume that δn ↓ 0 as n → +∞ and z ∈ D(I[−1,1]), namely, z ∈ [−1, 1]. Put

zn = z for all n ∈ N. Then, we easily observe from (2.3) that

lim
n→+∞

K̂δn(zn) = 0 = I[−1,1](z).

Therefore (M2) holds.
This completes the proof of Lemma 2.1. �

We observe from Lemma 2.1 and the general result of Mosco convergence (cf. [2, Theorem 3.66],
[17, Theorem 8.1], [14, Proposition.9]) that

∂K̂δ(·) = Kδ(·) converges to ∂I[−1,1](·) in the sense of resolvent convergence as δ→ 0.

Therefore, Kδ(·) is the approximation of ∂I[−1,1](·) defined by (1.7).
Taking into account Lemma 2.1, we have the following lemma but omit here a detailed proof.
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Lemma 2.2 (cf. [2, Section 5], [4, Chapter 2], [17, Section 2]). Let ε ∈ (0, 1] and δ ∈ (0, 1), and let
K̂δ(·) be the convex function defined by (2.3). Define

φεδ(z) :=


1
2

∫
Ω

|∇z|2dx +
1
ε2

∫
Ω

K̂δ(z(x))dx, if z ∈ V,

∞, otherwise.
(2.7)

Then, φεδ is proper, l.s.c. and convex on H with the effective domain D(φεδ) = V. Moreover,

φεδ(·)→ φε(·) on H in the sense of Mosco [19] as δ→ 0, (2.8)

where φε is the proper, l.s.c., convex functional on H defined by (2.1).

Now let us prove Theorem 2.1 considering the solvability and convergence of solutions to (P)εδ on
[0,T ].

Proof of Theorem 2.1. By the argument similar to (P)ε (cf. Proposition 2.1), we can show the existence-
uniqueness of solutions to (P)εδ on [0,T ] for each ε ∈ (0, 1] and δ ∈ (0, 1). Indeed, we infer from Lemma
2.2 that φεδ is proper, l.s.c. and convex on H with the effective domain D(φεδ) = V . Also, we observe
that problem (P)εδ can be rewritten as an abstract evolution equation of the form:

(CP)εδ


d
dt

uεδ(t) + ∂φ
ε
δ(u

ε
δ(t)) −

1
ε2 uεδ(t) = 0 in H, for t > 0,

uε(0) = uε0 in H.

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [5, 15]), we
can show the existence-uniqueness of a solution uεδ to (CP)εδ, hence (P)εδ, on [0,T ] for each ε ∈ (0, 1]
and δ ∈ (0, 1) in the sense of Definition 2.1.

Now we show (i) by the maximum principle arguments (cf. [13]). We present the proof only for
initial values uε0(x) ∈ [0, 1] for a.e. x ∈ Ω, because for uε0(x) ∈ [−1, 0] the same arguments apply.

Assigning [uεδ(τ) − 1]+ to z in (ii) of Definition 2.1, we get

1
2

d
dτ

∣∣∣[uεδ(τ) − 1]+
∣∣∣2
H
+

∣∣∣∇[uεδ(τ) − 1]+
∣∣∣2
H
+

(
Kδ(uεδ(τ))

ε2 , [uεδ(τ) − 1]+
)

H
=

(
uεδ(τ)
ε2 , [uεδ(τ) − 1]+

)
H

for a.e. τ ∈ (0,T ).
(2.9)

Adding
(
−1/ε2, [uεδ(τ) − 1]+

)
H

to the both side in (2.9), we observe that

1
2

d
dτ

∣∣∣[uεδ(τ) − 1]+
∣∣∣2
H
+

1
ε2

(
Kδ(uεδ(τ)) − 1, [uεδ(τ) − 1]+

)
H ≤

1
ε2

∣∣∣[uεδ(τ) − 1]+
∣∣∣2
H

for a.e. τ ∈ (0,T ).
(2.10)

Because Kδ(·) is monotone in R with Kδ(1) = 1, we infer from (2.10) that

d
dτ

∣∣∣[uεδ(τ) − 1]+
∣∣∣2
H
≤ 2
ε2

∣∣∣[uεδ(τ) − 1]+
∣∣∣2
H

for a.e. τ ∈ (0,T ). (2.11)

Therefore, applying the Gronwall lemma to (2.11), we observe from uε0(x) ∈ [0, 1] for a.e. x ∈ Ω that

e−
2
ε2 t

∣∣∣[uεδ(t) − 1]+
∣∣∣2
H
≤

∣∣∣[uε0 − 1]+
∣∣∣2
H
= 0 for all t ∈ [0,T ],

AIMS Mathematics Volume 1, Issue 3, 288-317



296

which implies that
uεδ(t, x) ≤ 1 for a.e. (t, x) ∈ Q. (2.12)

Next, assigning [0− uεδ]
+ to z in (ii) of Definition 2.1, we infer from similar arguments as above that

uεδ(t, x) ≥ 0 for a.e. (t, x) ∈ Q. (2.13)

Thus, we conclude from (2.12) and (2.13) that (i) of Theorem 2.1 holds.
Now we show (ii). Note from Lemma 2.2 that φεδ(·) → φε(·) on H in the sense of Mosco [19] as

δ→ 0 (cf. (2.8)). Therefore, from the abstract convergence theory of evolution equations (cf. [2, 16]),
we observe that uεδ converges to the unique solution uε of (CP)ε on [0,T ] as δ→ 0 in the sense of (2.2).
As uε (resp. uεδ) is the unique solution to (P)ε (resp. (P)εδ) on [0,T ], we conclude that the convergence
result (2.2) holds.

Thus, the proof of Theorem 2.1 is complete. �

By arguments similar to the proof of Theorem 2.1, the following result of (E)εδ holds. Hence, its
detailed proof is omitted.

Corollary 2.1 (cf. [5, 15]). Let ε ∈ (0, 1], δ ∈ (0, 1), and uε0 ∈ R with |uε0| ≤ 1. Then, there exists a
unique solution uεδ : [0,T ] → R to (E)εδ on [0,T ] such that uεδ ∈ W1,2(0,T ) and the following equation
holds:

(E)εδ

 (uεδ)t +
Kδ(uεδ)
ε2 =

uεδ
ε2 in R for a.e. t ∈ (0,T ),

uεδ(0) = uε0 in R.

Moreover, the following statements hold:

(i) If the initial value uε0 takes the value in (0, 1) (resp. (−1, 0)), the solution uεδ(t) also takes the value
in (0, 1) (resp. (−1, 0)) for all t ∈ [0,T ].

(ii) There exists a unique function uε ∈ W1,2(0,T ) such that

uεδ → uε in C([0,T ]) as δ→ 0

and uε is the unique solution of the following problem (E)ε on [0,T ]:

(E)ε
 uεt +

∂I[−1,1](uε)
ε2 ∋ uε

ε2 in R for a.e. t ∈ (0,T ),

uε(0) = uε0 in R.

3. Stable criteria and numerical experiments for (E)εδ

Note from (1.5) that ∂I[−1,1](·) is a multivalued function and therefore very hard to investigate (E)ε

numerically. However, we observe from Corollary 2.1 that (E)εδ is the approximate problem of (E)ε.
Hence, in this section, we consider (E)εδ from the view-point of numerical analysis.

We present results concerning numerical experiments of (E)εδ. There is a vast method on numerical
simulations of the ODE problem (e.g., backward Euler scheme, Runge–Kutta method and so on). The
authors provided the numerical experiment to (E)ε via the Yosida approximation using the standard
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forward Euler method in [25]. To clarify the advantage of our new approximate method (1.7), we
also provide numerical experiments of (E)εδ using the standard forward Euler method. To this end, we
consider the following explicit finite difference scheme to (E)εδ, denoted by (DE)εδ:

(DE)εδ


un+1 − un

△t
+

Kδ(un)
ε2 =

un

ε2 in R, for n = 0, 1, 2, · · · ,Nt,

u0 = uε0 in R,

where Nt ∈ N is a given positive integer and △t := T/Nt is the mesh size for time.
Note that un is the approximate solution of (E)εδ at the time t = n△t. Also, note that the explicit finite

difference scheme (DE)εδ converges to (E)εδ as △t → 0 because (DE)εδ is the standard time discretization
scheme for (E)εδ.

Here, we present the result for an unstable numerical experiment of (DE)εδ for T = 0.002, ε = 0.003,
δ = 0.01, the initial data uε0 = 0.1, and the mesh size for time △t = 0.000001:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.0005  0.001  0.0015  0.002

S
ol

ut
io

n

TIME

Figure 1. Behavior of a solution un to (DE)εδ with ε = 0.003, △t = 0.000001, and δ = 0.01.

We observe from Figure 1 that we have to choose suitable values for constants ε, δ, and mesh size
of time-step △t to generate stable numerical results for (DE)εδ.

Our second main result of this paper concerns criteria for stable numerical simulations of (DE)εδ.

Theorem 3.1 (cf. [25, Theorem 7]). Let ε ∈ (0, 1], δ ∈ (0, 1) and △t ∈ (0, 1]. Assume uε0 ∈ (0, 1) (resp.
uε0 ∈ (−1, 0)) and T = ∞. Let {un; n ≥ 0} be the solution to (DE)εδ. Then, we have:

(i) Assume △t ∈
(
0, δε2/(1 − δ)

)
. Then, un ∈ (0, 1) (resp. un ∈ (−1, 0)) for all n ≥ 0. Moreover, un

converges to 1 (resp. −1) monotonically as n→ +∞.
(ii) Assume △t ∈

(
δε2/(1 − δ), 2δε2/(1 − δ)

)
. Then, there is a positive number n0 ∈ N such that un

oscillates for all n ≥ n0. Moreover, un converges to 1 (resp. −1) as n→ +∞.

Proof. We prove this theorem by arguments similar to those for the proof of [25, Theorem 7].
We present the proof only for initial values uε0 ∈ (0, 1), because for uε0 ∈ (−1, 0) the same arguments

apply.
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Assuming uε0 ∈ (0, 1), we set for simplicity

fδ(z) := Kδ(z) − z for z ∈ R. (3.1)

Then, we easily observe that

fδ(z) =



1 − δ
δ

(z − 1), if z > 1 − δ,

−z, if z ∈ [−1 + δ, 1 − δ],
1 − δ
δ

(z + 1), if z < −1 + δ

(3.2)

and z = −1, 0, 1 are zero points of fδ(·).
Note that the difference equation (DE)εδ is reformulated to give

un+1 = un − △t
ε2 fδ(un) in R, for n = 0, 1, 2, · · · . (3.3)

Now, we prove (i). To this end, we assume that △t ∈
(
0, δε2/(1 − δ)

)
. By mathematical induction,

we show:
ui ∈ (0, 1) for all i ≥ 0. (3.4)

Clearly (3.4) holds for i = 0 because u0 = uε0 ∈ (0, 1).
We now assume that (3.4) holds for all i = 0, 1, · · · , n. If un ∈ (0, 1 − δ], we observe from (3.2),

(3.3), and △t ∈
(
0, δε2/(1 − δ)

)
that

un ≤ un+1 = un − △t
ε2 fδ(un)

= un +
△t
ε2 un

≤ 1 − δ + △t
ε2 (1 − δ)

< 1 − δ + δ

1 − δ(1 − δ) = 1,

which implies that
un+1 ∈ (0, 1), if un ∈ (0, 1 − δ]. (3.5)

Next, if un ∈ (1 − δ, 1), we observe from (3.2), (3.3), and △t ∈
(
0, δε2/(1 − δ)

)
that

un ≤ un+1 = un − △t
ε2 fδ(un)

= un − △t
ε2 ·

1 − δ
δ

(un − 1)

< un − δ

1 − δ ·
1 − δ
δ

(un − 1) = 1,

which implies that
un+1 ∈ (0, 1), if un ∈ (1 − δ, 1). (3.6)
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From (3.5) and (3.6) we infer that (3.4) holds for i = n + 1. Therefore, we conclude by mathematical
induction that (3.4) holds, which is the result similar to (i) of Corollary 2.1.

Also, by (3.2) and (3.4), we observe that fδ(un) ≤ 0 for all n ≥ 0. Therefore, we have from (3.3)

un+1 = un − △t
ε2 fδ(un) ≥ un for all n ≥ 0. (3.7)

Therefore, we infer from (3.4) and (3.7) that {un; n ≥ 0} is a bounded and increasing sequence with
respect to n. Hence, there exists a point u∞ ∈ R such that

un → u∞ in R as n→ +∞. (3.8)

By taking the limit in (3.3) as n → +∞, we easily observe from the continuity of fδ(·) that u∞ = 1,
which is the zero point of fδ(·). Hence, the proof of (i) is complete.

Next, we show (ii). To this end, we put

△t :=
δε2

1 − δτ for some τ ∈ (1, 2).

We assume that the initial value uε0 ∈ (0, 1 − δ]. We can then find the minimal number n0 ∈ N such
that

un0 ∈ (1 − δ, 1 + δ) and ui ∈ (0, 1 − δ] for all i = 0, 1, · · · , n0 − 1. (3.9)

Indeed, if ui ∈ (0, 1 − δ] for all i = 0, 1, · · · , k, we observe from (3.3) that

uk+1 = uk − △t
ε2 fδ(uk) =

(
1 +
△t
ε2

)
uk

=

(
1 +
△t
ε2

)2
uk−1

= · · ·

=

(
1 +
△t
ε2

)k+1
u0. (3.10)

Taking into account (3.10), u0 = uε0 ∈ (0, 1 − δ], and

1 +
△t
ε2 > 1 +

δ

1 − δ > 1,

we can then find the minimal number n0 ∈ N such that

un0 > 1 − δ and ui ∈ (0, 1 − δ] for all i = 0, 1, · · · , n0 − 1.

Also, by (3.3), we observe that

un0 = un0−1 − △t
ε2 fδ(un0−1) = un0−1 +

△t
ε2 un0−1 < 1 − δ + 2δ

1 − δ · (1 − δ) = 1 + δ,

hence (3.9) holds.
Now we show (ii) given the initial value uε0 ∈ (0, 1 − δ]. We find from (3.2), (3.3) and (3.9) that

un0+1 = un0 − △t
ε2 fδ(un0)
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= un0 − △t
ε2 ·

1 − δ
δ

(un0 − 1)

= (1 − τ)un0 + τ, (3.11)

which implies that
un0+1 + (τ − 1)un0

τ
= 1. (3.12)

Therefore, we see from (3.12) and τ ∈ (1, 2) that the zero point 1 of fδ(·) is in the interval between un0

and un0+1. Also, we observe from (3.9) and (3.11) that

un0+1 = (1 − τ)un0 + τ > (1 − τ)(1 + δ) + τ > 1 − δ

and
un0+1 = (1 − τ)un0 + τ < (1 − τ)(1 − δ) + τ < 1 + δ,

which implies that
un0+1 ∈ (1 − δ, 1 + δ).

By (3.11), (3.12), and repeating the above procedure, we obtain

un ∈ (1 − δ, 1 + δ) for all n ≥ n0 (3.13)

and un oscillates around the zero point 1 of fδ(·) for all n ≥ n0. Also, we observe from (3.11) and (3.13)
that ∣∣∣un+1 − 1

∣∣∣ = |1 − τ| |un − 1| for all n ≥ n0. (3.14)

Therefore, by τ ∈ (1, 2) and (3.12)–(3.14), there exists a subsequence {nk} of {n} such that unk oscillates
and converges to 1 as k → ∞. Hence, taking into account the uniqueness of the limit point, we find
that (ii) holds for the initial value uε0 ∈ (0, 1 − δ].

From similar arguments as above, we find that (ii) holds for n0 = 0 if uε0 ∈ (1 − δ, 1]. Therefore, the
proof of (ii) is complete.

This completes the proof of Theorem 3.1. �

Remark 3.1. Assume △t ∈
[
2δε2/(1 − δ),∞

)
and put △t := δε2τ/(1 − δ) for some τ ≥ 2. Then, we

observe that
1 +
△t
ε2 > 1 +

2δ
1 − δ > 1 and |1 − τ| ≥ 1.

Therefore, we infer from Theorem 3.1 (cf. (3.10), (3.11), (3.14)) that the solution un to (DE)εδ oscillates
as n→ ∞, in general.

Remark 3.2. We infer from (3.2) and (3.3) that

un ≡ 1 for all n ≥ 0, if uε0 = 1,

un ≡ 0 for all n ≥ 0, if uε0 = 0

and
un ≡ −1 for all n ≥ 0, if uε0 = −1.

In comparison with this, the stationary solutions of the difference equation studied by [25] depend on
δ without un ≡ 0 (see [25, Remark 9]).
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From (ii) of Theorem 3.1, we observe that un oscillates for sufficiently large n and converges to the
zero point of fδ(·) for △t ∈

(
δε2/(1 − δ), 2δε2/(1 − δ)

)
. However, for △t = 2δε2/(1 − δ), we have the

following special case that the solution to (DE)εδ does not oscillate and coincides with the zero point of
fδ(·) after some finite number of iterations.

Corollary 3.1 (cf. [25, Corollary 10]). Let ε ∈ (0, 1], δ ∈ (0, 1), △t = 2δε2/(1 − δ) and n ∈ N. Assume
uε0 := (1 − δ)n/(1 + δ)n. Then, the solution to (DE)εδ is given by

ui =


(
1 − δ
1 + δ

)n−i

, if i = 0, 1, · · · , n − 1,

1, if i ≥ n.

(3.15)

Similarly, if uε0 := −(1 − δ)n/(1 + δ)n, then the solution to (DE)εδ is given by

ui =


−

(
1 − δ
1 + δ

)n−i

, if i = 0, 1, · · · , n − 1,

−1, if i ≥ n.

Proof. We present only the proof of (3.15) as similar arguments hold for uε0 := −(1 − δ)n/(1 + δ)n.
Note that uε0 := (1 − δ)n/(1 + δ)n ∈ (0, 1 − δ). Therefore we infer from (3.2), (3.3), and u0 = uε0 that

u1 = u0 − △t
ε2 fδ(u0) = uε0 −

2δ
1 − δ(−uε0) =

1 + δ
1 − δuε0 =

(
1 − δ
1 + δ

)n−1

.

Similarly, we observe from u1 ∈ (0, 1 − δ) that

u2 = u1 − △t
ε2 fδ(u1) =

1 + δ
1 − δu1 =

(
1 − δ
1 + δ

)n−2

.

Repeating this procedure, we note that from Remark 3.2 the solution to (DE)εδ is given by (3.15). �

Taking into account Theorem 3.1, we present results of numerical experiments of (DE)εδ. To this
end, we take

T = 0.002, ε = 0.01, δ = 0.01 and the initial data uε0 = 0.1

as numerical data. Then, we observe that:

1
1 − δ =

1
1 − 0.01

= 1.010101010 · · ·

and
δε2

1 − δ = 0.0000010101010 · · · .
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3.1. The case when △t = 0.000001

Setting △t = 0.000001, we have:

δε2

1 − δ = 0.0000010101010 · · · > △t = 0.000001,

which complies with (i) of Theorem 3.1. Hence, we have the following stable numerical result of (DE)εδ.
Indeed, we observe from Figure 2 and Table 1 in Remark 3.3 that the solution to (DE)εδ converges to
the stationary solution 1 monotonically.
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Figure 2.
δε2

1 − δ = 0.0000010101010 · · · > △t = 0.000001.

Remark 3.3 (cf. [25, Table 1]). In [25], the authors provided numerical results of the following dif-
ference equation:

(YDE)εδ


un+1 − un

△t
+

(∂I[−1,1])δ(un)
ε2 =

un

ε2 in R, for n = 0, 1, 2, · · · ,Nt,

u0 = uε0 in R.

Then, we obtained the following Table 1 of numerical result of solutions to (YDE)εδ (cf. [25, Table 1]).
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Table 1. Numerical results of (DE)εδ and (YDE)εδ for △t = 0.000001.
number of iterations i the value of ui to (DE)εδ the value of ui to (YDE)εδ

0 0.100000 0.100000
1 0.101000 0.101000
2 0.102010 0.102010
3 0.103030 0.103030
4 0.104060 0.104060
5 0.105101 0.105101
...

...
...

224 0.928940 0.928940
225 0.938230 0.938230
226 0.947612 0.947612
227 0.957088 0.957088
228 0.966659 0.966659
229 0.976325 0.976325
230 0.986089 0.986089
231 0.995950 0.995950
232 0.999959 1.005909
233 1.000000 1.010059
234 1.000000 1.010101
235 1.000000 1.010101
236 1.000000 1.010101
237 1.000000 1.010101
...

...
...

3.2. The case when △t = 0.000002

Next we set △t = 0.000002 where we have

δε2

1 − δ = 0.0000010101010 · · · < △t = 0.000002 <
2δε2

1 − δ,

which complies with (ii) of Theorem 3.1. Hence, we observe from Figure 3 and Table 2 that the

solution to (DE)εδ oscillates and converges to the stationary solution 1.
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Figure 3.
δε2

1 − δ = 0.0000010101010 · · · < △t = 0.000002 <
2δε2

1 − δ .

Table 2. Numerical result of (DE)εδ for △t = 0.000002.
number of iterations i the value of ui

0 0.100000
1 0.102000
2 0.104040
...

...

120 0.994959
121 1.004940
122 0.995159
123 1.004745
124 0.995350
125 1.004557
126 0.995534
127 1.004376
128 0.995711
129 1.004203
...

...

574 0.999999
575 1.000001
576 0.999999
577 1.000000
578 1.000000
579 1.000000
580 1.000000
...

...
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3.3. The case when △t = 2
δε2

1 − δ
Setting △t = 2δε2/(1 − δ) = 0.0000020202020 · · · , we note Remark 3.1. Indeed, we observe from

Figure 4 and Table 3 that the solution to (DE)εδ oscillates.
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Figure 4. △t = 2
δε2

1 − δ = 0.0000020202020 · · · .

Table 3. Numerical result of (DE)εδ for △t = 2
δε2

1 − δ = 0.0000020202020 · · · .

number of iterations i the value of ui

0 0.100000
1 0.102020
2 0.104081
3 0.106184
4 0.108329
5 0.110517
...

...

111 0.920801
112 0.939403
113 0.958381
114 0.977742
115 0.997495
116 1.002505
117 0.997495
118 1.002505
119 0.997495
120 1.002505
...

...
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3.4. The case when △t = 0.000005

Setting △t = 0.000005, we have:

2
δε2

1 − δ = 0.0000020202020 · · · < △t = 0.000005.

Therefore, noting Remark 3.1, we indeed observe from Figure 5 that the solution to (DE)εδ oscillates.
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Figure 5. 2
δε2

1 − δ = 0.0000020202020 · · · < △t = 0.000005.

3.5. The case when △t = 15
δε2

1 − δ
Now we consider △t = 15δε2/(1 − δ). Recalling Remark 3.1, we indeed observe from Figure 6 that

the solution to (DE)εδ oscillates between three zero points of fδ(·).
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Figure 6. △t = 15
δε2

1 − δ .
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3.6. Numerical result establishing Corollary 3.1

Next, we consider a numerical example of Corollary 3.1. To this end, we use the following initial
data:

u0 :=
(1 − δ)6

(1 + δ)6 =
(1 − 0.01)6

(1 + 0.01)6 = 0.88691688 · · · .

We observe from Table 4, Figure 7, and Corollary 3.1 that (3.15) holds with n = 6:

Table 4. Numerical result of (DE)εδ for △t = 2
δε2

1 − δ = 0.0000020202020 · · · .

number of iterations i the value of ui

0 0.886917
1 0.904834
2 0.923114
3 0.941763
4 0.960788
5 0.980198
6 1.000000
7 1.000000
8 1.000000
9 1.000000

10 1.000000
...

...
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Figure 7. △t = 2
δε2

1 − δ = 0.0000020202020 · · · .

3.7. Conclusion for the ODE problem (DE)εδ

From Theorem 3.1, Remark 3.3 and numerical experiments as above, we conclude that
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(i) the mesh size for the time step △t needs to be smaller than δε2/(1−δ) to provide a stable numerical
solution for (DE)εδ;

(ii) our new approximate method (1.7) is better than the Yosida approximation (1.6) because the
solutions to (DE)εδ take values in [−1, 1] (cf. Table 1);

(iii) we provide a stable numerical examples of (DE)εδ with the initial data uε0 := (1− δ)n/(1+ δ)n, even
if the mesh size △t is equal to 2δε2/(1 − δ).

4. Stable criteria for the explicit finite difference scheme applied to (P)εδ in 2D space

Although a numerical study of (P)ε is hard as ∂I[−1,1](·) is multivalued (cf. (1.5)), we observe from
Theorem 2.1 nevertheless that (P)εδ is an approximation to the problem (P)ε. Therefore, in this section,
we shall consider (P)εδ in a 2D space from a numerical analysis view-point.

To extend the result obtained in [25, Theorem 16] and avoid the complicated arguments, we perform
numerical experiments using the standard forward Euler method, although there is a vast method on
numerical simulations of the PDE problem (e.g., backward Euler scheme, finite element method and
so on).

For simplicity, assume that Ω := (0, 1) × (0, 1) is a square domain in R2. We consider the following
difference equation to the Allen–Cahn equation in (P)εδ:

un+1
i, j − un

i, j

△t
−

un
i−1, j − 2un

i, j + un
i+1, j

(△x)2 −
un

i, j−1 − 2un
i, j + un

i, j+1

(△y)2 +
Kδ(un

i, j)

ε2 =
un

i, j

ε2

for n = 0, 1, · · · ,Nt − 1, i = 1, 2, · · · ,Nx − 1, and j = 1, 2, · · · ,Ny − 1,
(4.1)

where Nt,Nx,Ny ∈ N are given integers, △t := T/Nt is the mesh size for the time steps, and in the 2-D
space △x := 1/Nx and △y := 1/Ny are the mesh sizes along the x- and y-axes.

Also, for the homogeneous Neumann boundary and initial conditions, we consider the following
explicit situations:

un
0,0 = un

1,1, un
Nx,0 = un

Nx−1,1,

un
0,Ny
= un

1,Ny−1, un
Nx,Ny
= un

Nx−1,Ny−1,

un
i,0 = un

i,1, un
i,Ny
= un

i,Ny−1 for i = 1, 2, · · · ,Nx − 1,

un
0, j = un

1, j, un
Nx, j = un

Nx−1, j for j = 1, 2, · · · ,Ny − 1


(1 ≤ n ≤ Nt) (4.2)

and
u0

i, j = uε0(xi, y j) for i = 0, 1, · · · ,Nx, and j = 0, 1, · · · ,Ny, (4.3)

where xi := i△x and y j := j△y.
In considering the explicit finite difference system (DP)εδ := {(4.1), (4.2), (4.3)}, we observe that un

i, j
is the approximate solution of (P)εδ at time tn := n△t and position (xi, y j). Also, we observe that (DP)εδ
converges to (P)εδ as △t → 0, △x → 0, and △y → 0, because (DP)εδ is the standard time and space
discretized form of (P)εδ in the 2D space.

Using Theorem 3.1, we observe that we also have to choose suitable values for the constants ε, δ,
and the mesh sizes for time △t and space △x and △y to establish stable numerical results for (DP)εδ. We
now announce our final main result concerning the stability of (DP)εδ.
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Theorem 4.1. Let ε ∈ (0, 1], δ ∈ (0, 1), T > 0, Ω := (0, 1) × (0, 1) and uε0 ∈ K ∩ C(Ω), where K is
the set of initial data defined in (A). Also, let Nt,Nx,Ny be the integers so that △t ∈ (0, 1], △x ∈ (0, 1]
and △y ∈ (0, 1], where △t := T/Nt, △x := 1/Nx and △y := 1/Ny. Let {un

i, j; n = 0, 1, · · · ,Nt, i =
0, 1, · · · ,Nx, j = 0, 1, · · · ,Ny} be the solution to (DP)εδ. Also, let c0 ∈ (0, 1) and assume that

0 < △t ≤ c0δε
2

1 − δ and 0 ≤ △t
(△x)2 +

△t
(△y)2 ≤

1 − c0

2
. (4.4)

Then, the solution to (DP)εδ is bounded in the following sense:

max
0 ≤ i ≤ Nx
0 ≤ j ≤ Ny

∣∣∣un
i, j

∣∣∣ ≤ 1 for all n ≥ 0. (4.5)

In particular, if the initial value uε0(x) takes the value in [0, 1] (resp. [−1, 0]) for a.e. x ∈ Ω, the
following boundedness holds:

un
i, j ∈ [0, 1] (resp. un

i, j ∈ [−1, 0]) for all n ≥ 0, i = 0, 1, · · · ,Nx and j = 0, 1, · · · ,Ny. (4.6)

Proof. We demonstrate (4.5) by mathematical induction. Clearly (4.5) holds for n = 0 because u0 =

uε0 ∈ K. We next assume that

max
0 ≤ i ≤ Nx
0 ≤ j ≤ Ny

∣∣∣uℓi, j∣∣∣ ≤ 1 for all ℓ = 0, 1, · · · , n. (4.7)

Then, we observe that the explicit finite difference equation (4.1) in (DP)εδ can be reformulated giving

un+1
i, j = rxun

i−1, j + rxun
i+1, j + ryun

i, j−1 + ryun
i, j+1

+(1 − 2rx − 2ry)un
i, j −
△t
ε2 fδ(un

i, j)

for all n = 0, 1, · · · ,Nt − 1, i = 1, 2, · · · ,Nx − 1, and j = 1, 2, · · · ,Ny − 1,

(4.8)

where we put rx := △t/(△x)2, ry := △t/(△y)2, and fδ(·) is the function defined in (3.2). Note that
z = −1, 0, 1 are the zero points of fδ(z).

We observe from (4.4), (4.7), and (4.8) that

1 − un+1
i, j = rx

(
1 − un

i−1, j

)
+ rx

(
1 − un

i+1, j

)
+ ry

(
1 − un

i, j−1

)
+ ry

(
1 − un

i, j+1

)
+ (1 − 2rx − 2ry)

(
1 − un

i, j

)
+
△t
ε2 fδ(un

i, j)

≥ (1 − 2rx − 2ry)
(
1 − un

i, j

)
+
△t
ε2 fδ(un

i, j) (4.9)

for all i = 1, 2, · · · ,Nx − 1, and j = 1, 2, · · · ,Ny − 1.

Note from (3.2) that the function [−1, 1] ∋ z → (1 − 2rx − 2ry)(1 − z) + △t/ε2 fδ(z) is continuous.
Also, we infer from (3.2), (4.4) and (4.7) that

(1 − 2rx − 2ry)(1 − z) +
△t
ε2 fδ(z) ≥ 0 for all z ∈ [−1, 1]. (4.10)
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Indeed, we observe from (4.4) that

1 − 2rx − 2ry ≥ c0 > 0. (4.11)

Therefore, it follows from (3.2) that the function [−1, 1 − δ] ∋ z → (1 − 2rx − 2ry)(1 − z) + △t/ε2 fδ(z)
attains a minimum value at z = 1 − δ. Therefore we obtain from (3.2) and (4.4) that

(1 − 2rx − 2ry)(1 − z) +
△t
ε2 fδ(z)

≥(1 − 2rx − 2ry) (1 − (1 − δ)) + △t
ε2 fδ(1 − δ)

=(1 − 2rx − 2ry)δ −
△t
ε2 (1 − δ)

≥c0δ −
△t
ε2 (1 − δ)

≥0 for all z ∈ [−1, 1 − δ]. (4.12)

Also, for any z ∈ [1 − δ, 1], we observe from (3.2) that

(1 − 2rx − 2ry)(1 − z) +
△t
ε2 fδ(z)

=(1 − 2rx − 2ry)(1 − z) +
△t
ε2 ·

1 − δ
δ

(z − 1)

=

[
1 − δ
δε2 △t − (1 − 2rx − 2ry)

]
z + (1 − 2rx − 2ry) −

1 − δ
δε2 △t. (4.13)

Here we note from (4.4) that

1 − δ
δε2 △t − (1 − 2rx − 2ry) ≤

1 − δ
δε2 △t − c0 ≤ 0,

which implies from (4.13) that the function [1 − δ, 1] ∋ z → (1 − 2rx − 2ry)(1 − z) + △t/ε2 fδ(z) is
non-increasing and attains a minimum value at z = 1. Therefore, we have:

(1 − 2rx − 2ry)(1 − z) +
△t
ε2 fδ(z) ≥ △t

ε2 fδ(1) = 0 for all z ∈ [1 − δ, 1]. (4.14)

Hence, from (4.12) and (4.14), (4.10) holds. Therefore we find from (4.7), (4.9) and (4.10) that

1 − un+1
i, j ≥ 0

for all i = 1, 2, · · · ,Nx − 1, and j = 1, 2, · · · ,Ny − 1.
(4.15)

Similarly, we observe from (4.4), (4.7), and (4.8) that

un+1
i, j + 1 =rx

(
un

i−1, j + 1
)
+ rx

(
un

i+1, j + 1
)

+ ry

(
un

i, j−1 + 1
)
+ ry

(
un

i, j+1 + 1
)

+ (1 − 2rx − 2ry)
(
un

i, j + 1
)
− △t
ε2 fδ(un

i, j)
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≥(1 − 2rx − 2ry)
(
un

i, j + 1
)
− △t
ε2 fδ(un

i, j) (4.16)

for all i = 1, 2, · · · ,Nx − 1 and j = 1, 2, · · · ,Ny − 1.

Clearly, we have from (3.2) that the function [−1, 1] ∋ z → (1 − 2rx − 2ry)(z + 1) − △t/ε2 fδ(z) is
continuous. Also, using similar arguments as above (cf. (4.10)), we infer that the function [−1, 1] ∋
z → (1 − 2rx − 2ry)(z + 1) − △t/ε2 fδ(z) is non-negative. Indeed, we observe from (3.2), (4.4), and
(4.11) that the function [−1 + δ, 1] ∋ z → (1 − 2rx − 2ry)(z + 1) − △t/ε2 fδ(z) attains a minimum value
at z = −1 + δ. Therefore, it follows from (3.2) and (4.4) (cf. (4.12)) that

(1 − 2rx − 2ry) (z + 1) − △t
ε2 fδ(z)

≥(1 − 2rx − 2ry) ((−1 + δ) + 1) − △t
ε2 fδ(−1 + δ)

=(1 − 2rx − 2ry)δ +
△t
ε2 (−1 + δ)

≥c0δ −
△t
ε2 (1 − δ)

≥0 for all z ∈ [−1 + δ, 1] . (4.17)

Also, for any z ∈ [−1,−1 + δ], we observe from (3.2) that

(1 − 2rx − 2ry) (z + 1) − △t
ε2 fδ(z)

=(1 − 2rx − 2ry) (z + 1) − △t
ε2 ·

1 − δ
δ

(z + 1)

=

[
(1 − 2rx − 2ry) −

1 − δ
δε2 △t

]
z + (1 − 2rx − 2ry) −

1 − δ
δε2 △t. (4.18)

Here we note from (4.4) that

(1 − 2rx − 2ry) −
1 − δ
δε2 △t ≥ c0 −

1 − δ
δε2 △t ≥ 0.

Therefore, we infer from (4.18) that the function [−1,−1 + δ] ∋ z→ (1 − 2rx − 2ry)(z + 1) − △t/ε2 fδ(z)
is non-decreasing and attains a minimum value at z = −1. Hence, we have:

(1 − 2rx − 2ry)(z + 1) − △t
ε2 fδ(z) ≥ −△t

ε2 fδ(−1) = 0 for all z ∈ [−1,−1 + δ]. (4.19)

From (4.17) and (4.19), we obtain

(1 − 2rx − 2ry)(z + 1) − △t
ε2 fδ(z) ≥ 0 for all z ∈ [−1, 1],

which from (4.7) and (4.16) implies that

un+1
i, j + 1 ≥ 0

for all i = 1, 2, · · · ,Nx − 1, and j = 1, 2, · · · ,Ny − 1.
(4.20)
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Taking into account the Neumann boundary condition, specifically (4.2), we observe from (4.15)
and (4.20) that

max
0 ≤ i ≤ Nx
0 ≤ j ≤ Ny

∣∣∣un+1
i, j

∣∣∣ ≤ 1,

which implies that (4.7) holds for ℓ = n + 1. Therefore, we conclude by mathematical induction that
(4.5) holds.

Finally, we show (4.6). We present the proof only for initial values uε0(x) ∈ [0, 1] for a.e. x ∈ Ω,
because for uε0(x) ∈ [−1, 0] the same arguments apply.

We demonstrate (4.6) by arguments similar to the proof of (4.5), namely, by mathematical induction.
Clearly (4.6) holds for n = 0 because u0(x) = uε0(x) ∈ [0, 1] for a.e. x ∈ Ω. We next assume that

uℓi, j ∈ [0, 1] for all ℓ = 0, 1, · · · , n, i = 0, 1, · · · ,Nx and j = 0, 1, · · · ,Ny. (4.21)

Note from (3.2) and (4.21) that

fδ(un
i, j) ≤ 0 for all i = 0, 1, · · · ,Nx and j = 0, 1, · · · ,Ny.

Therefore, we observe from (4.8), (4.11) and (4.21) that

un+1
i, j = rxun

i−1, j + rxun
i+1, j + ryun

i, j−1 + ryun
i, j+1 + (1 − 2rx − 2ry)un

i, j −
△t
ε2 fδ(un

i, j)

≥ 0 for all i = 1, 2, · · · ,Nx − 1 and j = 1, 2, · · · ,Ny − 1.
(4.22)

By arguments similar to the proof of (4.15), we also observe that

un+1
i, j ≤ 1 for all i = 1, 2, · · · ,Nx − 1 and j = 1, 2, · · · ,Ny − 1. (4.23)

Hence, from (4.22), (4.23) and the Neumann boundary condition, specifically (4.2), we observe that

un+1
i, j ∈ [0, 1] for all i = 0, 1, · · · ,Nx and j = 0, 1, · · · ,Ny,

which implies that (4.21) holds for ℓ = n + 1. Therefore, we conclude by mathematical induction that
(4.6) holds, which is the result similar to (i) of Theorem 2.1.

This completes the proof of Theorem 4.1. �

Remark 4.1. We can set c0 = 0 in (4.4) for the explicit finite difference scheme to the following usual
2D heat equation applying a homogeneous Neumann boundary condition:

ut − ∆u = 0 in Q = (0,T ) ×Ω,
∂u
∂ν
= 0 on Σ = (0,T ) × Γ,

u(0, x) = u0(x), x ∈ Ω,

where Ω := (0, 1) × (0, 1) is a square domain in R2 and Γ := ∂Ω is the boundary of Ω.

AIMS Mathematics Volume 1, Issue 3, 288-317



313

Remark 4.2. We note that Theorem 4.1 holds for the homogeneous Dirichlet boundary condition.
Also, we can establish stability criteria for a 3D space. Indeed, assume for simplicity that Ω :=
(0, 1) × (0, 1) × (0, 1). Let △z denote the mesh size along the z-axis in 3-D space. Also, let c0 ∈ (0, 1)
and assume that

0 < △t ≤ c0δε
2

1 − δ and 0 ≤ △t
(△x)2 +

△t
(△y)2 +

△t
(△z)2 ≤

1 − c0

2
.

Then, a boundedness result similar to (4.5) holds for Ω := (0, 1) × (0, 1) × (0, 1) ⊂ R3.

From Theorem 4.1, we determine the stable numerical experiments of (DP)εδ as follows. We set

Ω := (0, 1) × (0, 1), T = 0.01, δ = 0.01 and △x = △y = 0.005

as numerical data. Also, we consider the following initial data uε0(x, y) defined by

uε0(x, y) =

 0.2, if (x, y) ∈ [0.25, 0.75] × [0.25, 0.75],
−0.7, if (x, y) ∈ Ω \ [0.25, 0.75] × [0.25, 0.75].

(4.24)

The graph of the initial data uε0(x, y) is as follows (Figure 8):

Figure 8. Graph of initial data uε0(x, y) defined by (4.24).

4.1. The case when ε = 0.08 and △t = 0.000005

Now, setting ε = 0.08 and △t = 0.000005, we take c0 = 0.1. Then, we observe that:

△t
(△x)2 +

△t
(△y)2 =

0.000005
(0.005)2 × 2 = 0.4 < 0.45 =

1 − c0

2

and
c0δε

2

1 − δ =
0.1 × 0.01 × (0.08)2

1 − 0.01
= 0.0000064646464 · · · .

Therefore, we have
c0δε

2

1 − δ = 0.0000064646464 · · · > △t,

AIMS Mathematics Volume 1, Issue 3, 288-317



314

which implies that the criteria condition (4.4) holds. Thus, we obtain a stable numerical experiment of
(DP)εδ yielding Figure 9:

Figure 9. ε = 0.08, △t = 0.000005, △x = △y = 0.005, δ = 0.01, and t = 0.002

4.2. The case when ε = 0.01 and △t = 0.000005

Next, we set ε = 0.01, △t = 0.000005, and consider c0 = 0.1. Then, we find that:

△t
(△x)2 +

△t
(△y)2 =

0.000005
(0.005)2 × 2 = 0.4 < 0.45 =

1 − c0

2
,

and
c0δε

2

1 − δ =
0.1 × 0.01 × (0.01)2

1 − 0.01
= 0.00000010101010 · · · < △t.

Therefore, the criteria (4.4) does not hold and hence yields an unstable numerical experiment of (DP)εδ.
Indeed, we obtain Figure 10:

Figure 10. ε = 0.01, △t = 0.000005, △x = △y = 0.005, δ = 0.01, and t = 0.002

4.3. The case when ε = 0.01 and △t = 0.0000005

Finally, we consider the case ε = 0.01, △t = 0.0000005, and set c0 = 0.5. We then observe that:

△t
(△x)2 +

△t
(△y)2 =

0.0000005
(0.005)2 × 2 = 0.04 < 0.25 =

1 − c0

2
,
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and
c0δε

2

1 − δ =
0.5 × 0.01 × (0.01)2

1 − 0.01
= 0.00000050505050 · · · > △t,

which implies that the inequalities (4.4) hold. Therefore, we obtain a stable numerical experiment of
(DP)εδ that yields Figure 11:

Figure 11. ε = 0.01, △t = 0.0000005, △x = △y = 0.005, δ = 0.01, and t = 0.002

Remark 4.3. From Theorem 4.1, stable numerical results for (DP)εδ are produced if we choose suitable
values for the constants ε, δ, and mesh sizes for time △t and space △x and △y. Therefore, if we perform
a numerical experiment of (P)ε for sufficiently small ε, we found it imperative to consider the original
problem (P)ε using the primal-dual active set method of [3], the Lagrange multiplier method of [9]
and so on.

4.4. Conclusion of PDE problem (DP)εδ
From Theorem 4.1 and the numerical experiments presented above, we conclude that

(i) the mesh sizes for time-step △t and spatial-steps △x, △y must satisfy constraints

0 < △t ≤ c0δε
2

1 − δ , 0 ≤ △t
(△x)2 +

△t
(△y)2 ≤

1 − c0

2
for some constant c0 ∈ (0, 1),

to generate stable numerical simulations of (DP)εδ;
(ii) the value δε2/(1 − δ) is very important in providing numerical experiments of (DE)εδ and (DP)εδ

(cf. Theorems 3.1 and 4.1);
(iii) our new approximate method (1.7) is better than the Yosida approximation (1.6), because the

solutions to (DP)εδ also take values in [−1, 1] (cf. (DE)εδ).
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