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Abstract: The main result of this work is to study the Liouville type theorem for the stationary Hall-
MHD system on R3. Specificaly, we show that if (u, B) is a smooth solutions to Hall-MHD equations
satisfying (u, B) ∈ L

9
2 (R3), then we have u = B = 0. This improves a recent result of Chae et al. [2]

and Zujin et al. [14].
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1. Introduction and main result

We consider the following stationary Hall-MHD system on R3 :
(u.∇)u − (∇ × B) × B − ∆u + ∇π = 0,

−∇ × (u × B) + ∇ × [(∇ × B) × B] − ∆B = 0,
∇.u = ∇.B = 0,

(u, B)(x, 0) = (u0(x), B0(x)),

(1.1)

where x ∈ R3. Here u = u(x, t) ∈ R3, B = B(x, t) ∈ R3 and π = π(x, t) are non-dimensional quantities
corresponding to the flow velocity, the magnetic field and the pressure at the point (x, t), while u0(x) and
B0(x) are the given initial velocity and initial magnetic field with ∇.u0 = 0 and ∇.B0 = 0, respectively.
An explanation of the mathematical and physical background of equations (1.1) is given for example
in [1] (see also [4, 5, 6, 7, 9, 10, 11, 12, 13] and the references therein).

In their famous paper [2], Chae-Degond-Liu proved (Theorem 2.5, p. 558) (see also [14]) the
following Liouville-type theorem for the smooth solutions of (1.1) :

Theorem 1.1. Let (u, B) ∈ C2
(
R3

)
be a smooth solution of the stationary Hall-MHD system (1.1) such

that

(i) (u, B) ∈ L
9
2 (R3),
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(ii) (u, B) ∈ L∞(R3),

(iii) the (weak and then by classical) solution (u, B) : R3 → R3 is of finite energy in the sense that∫
R3
|∇u|2 dx +

∫
R3
|∇B|2 dx < ∞.

Then,
u = B = 0.

The purpose of this note is to get rid of hypothesis (ii) and (iii) in theorem 1.1. More precisely, we
shall prove the following result.

Theorem 1.2. Let (u, B) ∈ C2
(
R3

)
be a smooth solution of the Hall-MHD equations (1.1) such that

(u, B) ∈ L
9
2 (R3) and

∫
R3
|∇B|2 dx < ∞.

Then,
u = B = 0 in R3.

Remark 1.1. As mentioned in [3], if we set B = 0 in the Hall-MHD system, the above theorem reduces
to the well-known Galdi result [8] for the Navier–Stokes equations (see Theorem X.9.5, pp.729-730).

2. Proof of Theorem 1.2

In order to prove our main result, we introduce some basic identifies in the fluid dynamic.

Lemma 2.1.

∆u = ∇divu − ∇ × (∇ × u),

u × (∇ × u) =
1
2
∇ |u|2 − (u.∇)u,

∇ × (u × B) = (B.∇)u − (u.∇)B + udivB − Bdivu.

Remark 2.1. Based on ∇.B = 0 and Lemma 2.1, we get

(∇ × B) × B = div(B ⊗ B − 1
2
|B|2 I) = −∇ |B|2 − (B.∇)B, (2.1)

where I is the identical matrix.

We are now in a position to the proof of our main result.
Proof: Let (u, B) ∈ C2

(
R3

)
be a smooth solution of the Hall-MHD equations (1.1) satisfies

(u, B) ∈ L
9
2 (R3) and

∫
R3
|∇B|2 dx < ∞.
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We shall first estimate the pressure in (1.1)1. Taking the divergence of (1.1)1 and using the identity
(2.1), we have

∆

(
π +
|B|2
2

)
= −

3∑
j,k=1

∂ j∂k(u juk − B jBk),

from which we have the representation formula of the pressure, using the Riesz transforms in R3 :

π =

3∑
j,k=1

R jRk(u juk − B jBk) −
|B|2
2
. (2.2)

Using (2.2) and Calderòn–Zygmund estimate, one has that

∥π∥Lq ≤ C(∥u∥2L2q + ∥B∥2L2q), 1 < q < ∞. (2.3)

For τ > 0, let φτ be a real nonincreasing smooth function defined in R3 such that

φτ(x) =
{

1 for |x| ≤ τ,
0 for |x| ≥ 2τ,

and satisfying ∥∥∥∇kφτ
∥∥∥

L∞
≤ Cτ−k for k = 0, 1, 2, 3,

for some positive constant C independent of x ∈ R3.
Multiplying (1.1)1 by uφτ and (1.1)2 by Bφτ, respectively, integrating by parts over R3 and taking

into acount (1.1)3, add the result together, we obtain∫
R3
|∇u|2 φτdx +

∫
R3
|∇B|2 φτdx

=
1
2

∫
R3
|u|2 (u.∇)φτdx +

∫
R3
π(u.∇)φτdx −

∫
R3

(u × B).(∇φτ × B)dx

+

∫
R3

[(∇ × B) × B].(∇φτ × B)dx +
1
2

∫
R3
|u|2 ∆φτdx +

1
2

∫
R3
|B|2 ∆φτdx

=

6∑
k=1

Ak, (2.4)

where we have used the fact

−
∫
R3

(∆w)wφτdx =
∫
R3
|∇w|2 φτdx +

∫
R3

(w∇w).∇φτdx

=

∫
R3
|∇w|2 φτdx +

1
2

∫
R3
∇w2.∇φτdx

=

∫
R3
|∇w|2 φτdx − 1

2

∫
R3

w2∆φτdx.

In the following, we will estimate all the terms on the right-hand side of (2.4). For the first integral A1,
Hölder’s inequality yields

|A1| ≤ C
∫
τ≤|x|≤2τ

|u|3 |∇φτ| dx
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≤ 1
2τ
∥∇φ∥L∞

(∫
τ≤|x|≤2τ

|u| 92 dx
) 2

3
(∫
τ≤|x|≤2τ

dx
) 1

3

≤ C ∥u∥3
L

9
2 (τ≤|x|≤2τ)

→ 0 as τ→ +∞.

As for A2, using the Hölder inequality, it follows according to (2.3) that

|A2| ≤
∫
τ≤|x|≤2τ

|π| |u| |∇φτ| dx

≤ 1
τ
∥∇φ∥L∞

(∫
R3
|π| 94 dx

) 4
9
(∫
τ≤|x|≤2τ

|u| 92 dx
) 2

9
(∫
τ≤|x|≤2τ

dx
) 1

3

≤ C(∥u∥2
L

9
2
+ ∥B∥2

L
9
2
) ∥u∥

L
9
2 (τ≤|x|≤2τ)

→ 0 as τ→ +∞.

Analogously to A1, an application of the Hölder inequality shows that

|A3| ≤
∫
τ≤|x|≤2τ

|u| |B|2 |∇φτ| dx

≤ 1
τ
∥∇φ∥L∞

(∫
τ≤|x|≤2τ

|B| 92 dx
) 4

9
(∫
τ≤|x|≤2τ

|u| 92 dx
) 2

9
(∫
τ≤|x|≤2τ

dx
) 1

3

≤ C ∥B∥2
L

9
2 (τ≤|x|≤2τ)

∥u∥
L

9
2 (τ≤|x|≤2τ)

→ 0 as τ→ +∞.

Similar to the treatment of A3, A4 can be estimated as

|A4| ≤
∫
τ≤|x|≤2τ

|∇B| |B|2 |∇φτ| dx

≤ 1
τ
∥∇φ∥L∞

(∫
τ≤|x|≤2τ

|∇B|2 dx
) 1

2
(∫
τ≤|x|≤2τ

|B|6 dx
) 1

3
(∫
τ≤|x|≤2τ

dx
) 1

6

≤ C
√
τ
∥∇φ∥L∞ ∥∇B∥L2 ∥B∥2L6

≤ C
√
τ
∥∇φ∥L∞ ∥∇B∥3L2 → 0 as τ→ +∞.

Finally, calculating A5 + A6 we obtain

|A5| + |A6| ≤ C
∫
τ≤|x|≤2τ

(|u|2 + |B|2) |∆φτ| dx

≤ C
1
τ2 ∥∆φ∥L∞

(∫
τ≤|x|≤2τ

(|u|2 + |B|2)
9
4 dx

) 4
9
(∫
τ≤|x|≤2τ

dx
) 5

9

≤ C
1

τ
1
3

∥∆φ∥L∞
(∫
τ≤|x|≤2τ

(|u| 92 + |B| 92 )dx
) 4

9

≤ C
1

τ
1
3

∥∆φ∥L∞
(
∥u∥2

L
9
2
+ ∥B∥2

L
9
2

)
→ 0 as τ→ +∞.
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Here we have used the Cauchy inequality. Consequently, letting τ→ +∞ in (2.4), we obtain

lim
τ→+∞

(∫
R3
|∇u|2 φτdx +

∫
R3
|∇B|2 φτdx

)
= 0

On the other hand, by means of the monotone convergence theorem, we deduce∫
R3
|∇u|2 dx +

∫
R3
|∇B|2 dx = lim

τ→+∞

(∫
R3
|∇u|2 φτdx +

∫
R3
|∇B|2 φτdx

)
= 0,

and thus u =const and B =const. Since (u, B) ∈ L
9
2 (R3), this latter condition delivers

u = B = 0.

This completes the proof of Theorem 1.2. �
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