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Abstract: In this article, we establish a quantum rule of angular momentum that only fermions with
spin J = 1

2 and bosons with J = 0 can rotate around a center with zero moment of force, and particles
with J , 0, 1

2 will move on a straight line unless there is a nonzero moment of force present.
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1. Main Result

Quantum physics is the study of the behavior of matter and energy at molecular, atomic, nuclear, and
sub-atomic levels. Quantum physics was initiated and developed in the first half of the 20th century,
following the pioneering work [7] on blackbody radiation, of [2] on photons and energy quanta, Niels
Bohr on structure of atoms, and [1] on matter-wave duality. Quantum physics and the Einstein theory
of general relativity have become two cornerstones of modern physics.

Quantum mechanics is then naturally developed, and its core ingredients include 1) the wave func-
tion description of the physical reality and the Bohm probability interpretation of the wave function,
2) the wave equations, dictating the dynamic behavior of the particles, 3) the Heisenberg uncertainty
relation, and 4) the Pauli exclusion principle.

The main objective of this paper is to derive another core ingredient of quantum mechanics, in
addition to the Heisenberg uncertainty relation and the Pauli exclusion principle:

Quantum Rule of Angular Momentum. Only fermions with spin J = 1
2 and bosons with J = 0 can

rotate around a center with zero moment of force, and particles with J , 0, 1
2 will move on a straight

line unless there is a nonzero moment of force present.
This quantum rule is very useful in describing how elementary particles are binding together form-

ing subatomic particles. This rule offers a mathematical and physical foundation of the weakton model
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[5] and the theory of mediator cloud structure of charged leptons and quarks, and explains why all
stable fermions with mediator clouds possess spin J = 1

2 .
This article is part of a research program initiated in the last few years by the authors to derive

experimentally verifiable laws of Nature based only on a few fundamental first principles, guided by
experimental and observation evidences. The new theory we have established gives rise to solutions
and explanations to a number of longstanding mysteries in modern theoretical physics. This work is
synthesized in a recent book by the authors [6].

Basically, we have discovered three fundamental principles: the principle of interaction dynamics
(PID) [3], the principle of representation invariance (PRI) [4], and the principle of symmetry-breaking
(PSB) for unification [6].

PID takes the variation of the action under the energy-momentum conservation constraints, and is
required by the dark matter and dark energy phenomena for gravity, by the quark confinements for the
strong interaction, and by the Higgs field for the weak interaction.

PRI requires that the gauge theory be independent of the choices of the representation genera-
tors. These representation generators play the same role as coordinates, and in this sense, PRI is a
coordinate-free invariance/covariance, reminiscent of the Einstein principle of general relativity. In
other words, PRI is purely a logic requirement for the gauge theory.

PSB offers an entirely different route of unification from the Einstein unification route which uses
large symmetry groups. The three sets of symmetries — the general relativistic invariance, the Lorentz
and gauge invariances, as well as the Galileo invariance — are mutually independent and dictate in
part the physical laws in different levels of Nature. For a system coupling different levels of physical
laws, part of these symmetries must be broken.

These three new principles have important physical consequences, and, in particular, provide a new
route of unification for the four interactions:

1) the general relativity and the gauge symmetries dictate the Lagrangian;
2) the coupling of the four interactions is achieved through PID and PRI in the field equations,

which obey the Einstein principle of general relativity and PRI, but break spontaneously the gauge
symmetry;

3) the unified field model can be easily decoupled to study an individual interaction, when the other
interactions are negligible; and

4) the unified field model coupling the matter fields using PSB.

2. Conservation laws based on quantum Hamiltonian dynamics (QHD)

To prove this quantum rule, we first recall the total angular momentum J⃗ of a particle defined by

J⃗ = L⃗ + sS⃗ ,

where L⃗ = r⃗ × p⃗ is the orbital angular momentum, p⃗ = −i~∇, s is the spin, and

S⃗ = (S 1, S 2, S 3), S k = ~

(
σk 0
0 σk

)
.

Here σk (1 ≤ k ≤ 3) are the Pauli matrices.
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Let H be the Hamiltonian energy of a conservative quantum system, which can be described by the
following Hamiltonian equations:

∂Ψ

∂t
= ĤΦ(Ψ,Φ),

∂Φ

∂t
= −ĤΨ(Ψ,Φ),

(1)

where
ĤΦ =

δH
δΦ

, ĤΨ =
δH
δΨ

.

Let L be an observable physical quantity with the corresponding Hermitian operator L̂ for the con-
jugate fields (Ψ,Φ)T of (1), and L̂ is expressed as

L̂ =
(
L̂11 L̂12

L̂21 L̂22

)
, L̂T

12 = L̂∗21.

Then the physical quantity L of system (1) is given by

L =
∫

(Ψ†,Φ†)L̂
(
Ψ

Φ

)
dx =

∫ [
Ψ†L̂11Ψ + Φ

†L̂22Φ + 2Re(Ψ†L̂12Φ)
]

dx. (2)

It is clear that the quantity L of (2) is conserved if for the solution (Ψ,Φ)T of (1) we have

dL
dt
= 0,

which is equivalent to ∫ [
Ĥ†
Φ

L̂11Ψ + Ψ
†L̂11ĤΦ − Ĥ†

Ψ
L̂22Φ − Φ†L̂22ĤΨ (3)

+ 2Re(Ĥ†
Φ

L̂12Φ − Ψ†L̂12ĤΨ)]dx = 0.

We remark here that if the QHD is described by a complex valued wave function:

ψ = Ψ + iΦ,

and its dynamic equation is linear, then (1) can be written as

i~
∂ψ

∂t
= Ĥψ, H =

∫
ψ†Ĥψdx. (4)

In this case, the physical quantity L in (2) is in the form

L =
∫

ψ†L̂ψdx, (5)

and the conservation law (3) of L is equivalent to

L̂Ĥ − ĤL̂ = 0. (6)

The formulas (4)-(6) are the conservation laws of the classical quantum mechanics.
Hence, the conservation law (3) is the generalization to the classical quantum mechanics, which

are applicable to all conservative quantum systems, including the Klein-Gordon system and nonlinear
systems.
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3. Angular Momentum Rule for Fermions

Consider fermions which obey the Dirac equations as (4) with the Hamiltonian

Ĥ = −i~c(αk∂k) + mc2α0 + V(r), (7)

where V is the potential energy of a central field, and α0, αk (1 ≤ k ≤ 3) are the Dirac matrices

α0 =

(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
for 1 ≤ k ≤ 3, (8)

and σk are the Pauli matrices.
The total angular momentum Ĵ of a particle is

Ĵ = L̂ + sŜ ,

where s is the spin, L̂ is the orbital angular momentum

L̂ = (L̂1, L̂2, L̂3) = r̂ × p̂, p̂ = −i~∇,
L̂1 = −i~(x2∂3 − x3∂2),
L̂2 = −i~(x3∂1 − x1∂3),
L̂3 = −i~(x1∂2 − x2∂1),

(9)

and Ŝ is the spin operator

Ŝ = (Ŝ 1, Ŝ 2, Ŝ 3), Ŝ k = ~

(
σk 0
0 σk

)
for 1 ≤ k ≤ 3. (10)

By (7)-(10), we see that

ĤL̂1 − L̂1Ĥ =~2c[(x2∂3 − x3∂2)(α2∂2 + α
3∂3) − (α2∂2 + α

3∂3)(x2∂3 − x3∂2)]
=~2c[α2∂3(x2∂2 − ∂2x2) − α3∂2(x3∂3 − ∂3x3)].

Notice that
x2∂2 − ∂2x2 = x3∂3 − ∂3x3 = −1.

Hence we get
ĤL̂1 − L̂1Ĥ = ~2c(α3∂2 − α2∂3). (11)

Similarly we have
ĤL̂2 − L̂2Ĥ = ~2c(α1∂3 − α3∂1),
ĤL̂3 − L̂3Ĥ = ~2c(α2∂1 − α1∂2).

(12)

On the other hand, we infer from (7) and (10) that

ĤŜ j − Ŝ jĤ = −i~2cγ5
[
∂k(σkσ j − σ jσk)

]
= −i~2cγ5(2iεk jlσ

l)∂k = 2~2cεk jlα
l∂k,
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where γ5 is defined by

γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
, γ0 = α0, γk = α0αk.

Hence we have
ĤŜ 1 − Ŝ 1Ĥ = −2~2c(α3∂2 − α2∂3),
ĤŜ 2 − Ŝ 2Ĥ = −2~2c(α1∂3 − α3∂1),
ĤŜ 3 − Ŝ 3Ĥ = −2~2c(α2∂1 − α1∂2).

(13)

For Ĵ = L̂ + sŜ , we derive from (11)-(13) that

Ĥ Ĵ − ĴĤ = 0 ⇐⇒ spin s =
1
2
. (14)

When fermions move on a straight line,

Ĥ = cα3 p3, L̂ = 0.

In this case, by (11)-(12), for straight line motion,

Ĥ Ĵ − ĴĤ = 0 for any s. (15)

Thus, by the conservation law (6), the assertion of Angular Momentum Rule for fermions follows from
(14) and (15).

4. Angular Momentum Rule for Bosons

Now, consider bosons which obey the Klein-Gordon equation in the form (1). It is known that the
spins J of bosons depend on the types of Klein-Gordon fields (Ψ,Φ):

(
Ψ

Φ

)
=



a scalar field ⇒ J = 0,
a 4-vector field ⇒ J = 1,
a 2nd-order tensor field ⇒ J = 2,
a real valued field ⇒ neutral bosons,
a complex valued field ⇒ charged bosons.

(16)

For the Klein-Gordon fields (Ψ,Φ)T , the Hamiltonian for a central force field is given by

H =
1
2

∫ [
|Φ|2 + c2|∇Ψ|2 + 1

~2 (m2c4 + V(r))|Ψ|2
]

dx (17)

The Hamiltonian energy operator Ĥ of (17) is given by

Ĥ =
(
ĤΨ 0
0 ĤΦ

)
, ĤΦ = Φ, ĤΨ =

[
−c2∆ +

1
~2 (m2c4 + V)

]
Ψ. (18)
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The angular momentum operator Ĵ is

Ĵ =
(
L̂ 0
0 L̂

)
+ s~σ̂, σ̂ = (σ1, σ2, σ3). (19)

where s is the spin of bosons, and L̂ is as in (9).
For scalar bosons, spin s = 0 in (19) and the Hermitian operators in the conservation law (3) are

L̂11 = L̂22 = L̂, L̂12 = L̂21 = 0, ĤΦ, ĤΨ as in (18)

Then by ∫
Φ†L̂Ψdx = −

∫
ΨL̂†Φdx,∫

Ĥ†
Ψ

L̂Φdx = −
∫
Φ†L̂ĤΨdx,

we derive the conservation law (3), i.e.∫ [
Φ†L̂Ψ + Ψ†L̂Φ − Ĥ†

Ψ
L̂Φ − Φ†L̂ĤΨ

]
dx = 0.

However, it is clear that Ĥ and Ĵ in (18) and (19) don’t satisfy (3) for spin s , 0. Hence the quantum
rule of angular momentum for bosons holds true.
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2. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen
Gesichtspunkt, Annalen der Physik 322, 132–148.

3. T. Ma and S. Wang, Unified field equations coupling four forces and principle of interaction dy-
namics, arXiv:1210.0448 (2012); DCDS-A, 35:3 (2015), 1103-1138.

4. T. Ma and S. Wang, Unified field theory and principle of representation invariance,
arXiv:1212.4893 (2012); version 1 appeared in Applied Mathematics and Optimization, DOI:
10.1007/s00245-013-9226-0, 69:3 (2014), 359-392.

5. T. Ma and S. Wang, Weakton model of elementary particles and decay mechanisms, Indiana Uni-
versity Institute for Scientific Computing and Applied Mathematics Preprint Series, #1304 (May
30, 2013); Electronic Journal of Theoretical Physics, Volume 12, No. 32, 139-178.

6. T. Ma and S. Wang, Mathematical Principles of Theoretical Physics, Science Press, Beijing,
524pp., August, 2015.

AIMS Mathematics Volume 1, Issue 2, 137-143



143

7. M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Annalen der Physik, 309,
553–563.

c⃝ 2016, Ma & Wang, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 1, Issue 2, 137-143

http://creativecommons.org/licenses/by/4.0

	Main Result
	Conservation laws based on quantum Hamiltonian dynamics (QHD)
	Angular Momentum Rule for Fermions
	Angular Momentum Rule for Bosons

