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Abstract: Plato, so the story goes, held mathematics in high esteem, and those philosopher-kings that 
ought to rule his republic should have a thorough foundation in mathematics. This may well be true – 
but an observation made by Aristotle suggests that the mathematics which Plato intends is not the one 
based on theorems and proofs which we normally identify with “Greek mathematics”. Most other 
ancient writers who speak of mathematics as a road toward Wisdom also appear to be blissfully 
ignorant of the mathematics of Euclid, Archimedes, Apollonios, etc. – though not necessarily of their 
names. The aim of the paper is to identify the kinds of mathematics which were available as external 
sources for this current (on the whole leaving out of consideration Liberal-Arts mathematics as not 
properly external). A number of borrowings can be traced to various practitioners' traditions – but 
always as bits borrowed out of context. 
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Remarks about Plato 

       In Aristotle's Metaphysics N, 1090b14–1091a5 there is a short polemical passage dealing with the 
“ideal numbers” and the supposedly Platonic “mathematical” numbers intermediate between ideal and 
sensible number. About the former it is said that “not even is any theorem true of them, unless we want to 
change mathematics and invent doctrines of our own” [trans. Barnes 1984: 1723], and about the latter that 
they are either “the same” as ideal number or an absurdity. 
 We must presume Aristotle to have known Plato's and other contemporary doctrines better than we 
do. This would not necessarily have prevented him from distorting such doctrines for polemical purposes; 
but we must also assume that his audience knew these doctrines, and this must have kept Aristotle from 
making too gross distortions if he wanted to convince. 
 Aristotle's formulation implies that the current mathematics about numbers which he refers to 
contains theorems; we should hence describe it as “theoretical arithmetic”, as different from practical 
computation. 
 This might raise some doubts about that passage in Republic VII (525A) where Socrates/Plato 
distinguishes two branches of knowledge about number, logistics and arithmetic, normally taken to 
correspond to the two approaches to number of which he speaks in the following (525B-526C): the vulgar 
approach of retailers, and the noble approach which suits the guardians, that is, the approach serving war 
and contemplation – from which the particular approach dealing with the contemplation of merely 
intelligible number is singled out as particularly worthy. 
 Actually, there is nothing in the text which suggests that this contemplation should deal with 
theorems, demonstration or anything of the kind. It may be true that the arithmetic spoken of in 525A 
belongs to the same family as Elements VII–IX, but in that case there is nothing which identifies it 
specifically with the discipline about numbers accessible only to thought which should be taught to the 
future guardians. Alternatively, arithmetic might really be intended to designate this latter discipline (less 
likely, since the word is used before Glaucon understands the distinction), but then there is no reason to 
believe that Plato thinks of the theoretical discipline we know from the Elements. 
 Things become even more blurred if we look at 587D, where Socrates shows that the distance 
between the tyrant's imagined pleasure and real pleasure is the “plane number” 3⋅3 = 9 when regarded as 
“number of the length” (τoῦ μήκoυς ἀριθμός). He goes on to claim it to be “clear, in truth, how great a 
distance it is removed according to dýnamis and third increase” (κατὰ δύvαμιn καὶ τρίτηn αὔxηn). 
Glaucon comments that it is “clear at least to the logistician” (δήλoς τî γε λoγιστικî). We may plausibly 
link this reference to a logistic art concerned with the second and third power of (seemingly pure) 
numbers to Diophantos's description of his own concern as “theoretical arithmetic”, of which the dýnamis 
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is an “element” (στoιχε‹on) [ed. Tannery 1893: I, 4] – which might imply that Plato's distinction between 
arithmetic and logistics was not the same as that between theory and non-theoretical practice, and that it 
did not coincide with the distinctions made in later time.[1] In any case it makes it even more obvious that 
nothing in Plato's text forces us to believe that the guardians should learn a theoretical arithmetic 
containing theorems.[2] 
 Plato himself had certainly encountered theoretical mathematics consisting of theorems. There are 
references to it in the dialogues, even though most of them do not prove intimate familiarity. Some, 
however, do prove direct knowledge at least of rather technical results – for instance, the references to 
mathematical harmonics and to the system of heavenly circles in Timaeus 35A–36D.[ 3] Moreover, 
Eudemos was so close in time and so close to Aristotle (that is, to somebody who was quite reserved as 
regards Plato's mathematics) that his narrative of mathematicians working together at Plato’s Academy 
must be considered reliable, at least grosso modo. But it might be time to revise the reading which has 
been current since the Renaissance, according to which this was the kind of mathematics that Plato saw as 
conducive to “wisdom”. 
 I am quite aware that I am not the first to propose such a revised reading. I shall only mention Review 
Netz' delicious simile of “the book according to the film” [1999: 290]: 
  
     We all know the fate of a book which suddenly becomes a bestseller after being turned into a film – 

in the version “according to the film”. This process was originated in south Italy in the late fifth 
century bc, but it was Plato who turned “Mathematics: the Movie” into a compelling vision. This 
vision remained to haunt western culture … 

 
  and his summing up of the curriculum passage in Republic VII as “Do it, but only in a certain, limited 

way” (p. 303). 

                                                             
1 Summarized in [Heath 1921: I, 14–16]. Both Geminos and a scholiast to Plato's Charmides take logistics to deal 
with concrete, not abstract number. Plato's elder contemporary Archytas, taken by Heath to think along similar 
lines, instead states that logistics is “far ahead of other arts in relation to wisdom or philosophy”, and that it “seems 
to make the things of which it chooses to treat even clearer than geometry does; moreover, it often succeeds even 
where geometry fails”. If anything, this supports the assumption that the meaning of the word had changed 
between Plato and Geminos. 
2 Thus, however much some latter-day mathematicians would like the philosopher-kings to be mathematicians, 
they were not (in any sense in which the mathematicians would recognize themselves). Were they philosophers? 
My personal hunch, built on the strength of the description of light in the myth of the cave, and also in the Seventh 
Letter (independently of whether the latter text is really written by Plato or by a close disciple) is that their long 
preparation was meant to guide them to mystical experience and insight. 
 In an observation about Whitehead's dictum that European philosophy is a series of footnotes to Plato, Imre 
Toth once made the point [1998] (I do not have the book at hand for a precise reference) that the same holds for 
Plato himself: philosophy is footnotes, namely critique, commentary and second thoughts. Philosophy thus begins 
with Aristotle – Plato was a sage. 
3 Familiarity with mathematical results and facts is also abundant in Theon of Smyrna's Expositio. If chronology 
did not forbid it, Plato might probably have learned all his mathematics from Theon. 
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What was at hand? 

 I shall not go on with Plato but concentrate on less prestigious readers of the “book according to the 
film” – more precisely those “quasi-gnostic” writers[4] who claimed mathematics to be a road toward 
Wisdom. Which were the types of mathematics that were around for those who, for lack of competence or 
sympathy, would not read Eudoxos, Euclid, Archimedes, Apollonios, etc. – leaving aside that 
arithmology which the group itself and its tradition created.[5] 
 On a general level, an answer is offered by Republic VII, 525a–527c: the arithmetic of merchants, 
and the practical geometry used in warfare; inherent in the etymology of γεωμετρία is also the geometry 
of surveying, to which we might add that of city-planners and architects. But on that level of generality we 
find no information of relevance for our question. 
 We should therefore first ask what went together with the mathematics of merchants and accountants, 
and with the practical geometries. Indeed, the everyday routine of these groups was too pedestrian to be 
paraded as kindred to “wisdom”. 
 Fortunately for the various quasi-gnostics, the same need for something beyond pedestrian everyday 
turns up in all professions which use their particular knowledge as a means to demarcate themselves. In 
the oral cultures of mathematical practitioners, this need was catered for by “neck riddles” – riddles which 
one had to be able to answer in order to show oneself an authentic member of the group, and which, in 
order to serve this purpose, should look as if they had something to do with the particular practice of the 
group. Among the various kinds of mathematical practitioners, this gave rise to a phrase which, with 
variations, is often found in writings situated at the interface between oral practitioners' culture and 
literate mathematics, “tell me, if you are a diligent calculator, ...”, accompanying so-called “recreational” 

                                                             
4 Since some of these writers might be characterized as Neopythagoreans, others as Neoplatonists, others again as 
late Platonists, I introduce this ad-hoc neologism. 
5 I shall also leave aside what we find in the handbooks serving or reflecting Liberal-Arts mathematics. Part of 
what they include derives from sources that somehow saw mathematics as a way toward gnosis, and many of those 
who belong to the quasi-gnostic tradition may have known the mathematical substance of their own tradition by 
way of its presence in this kind of teaching – which could imply that the very notion of “their own tradition” is 
problematic, this “tradition” possessing perhaps no inner continuity beyond the mere idea that “mathematics” or 
“number” were conducive to higher insight. It is true that the purpose of Liberal-Arts teaching was to impart 
culture rather than Wisdom; but the reason that the mathematical disciplines were at all accepted (at least by a 
minority – the actual curriculum seems not to have gone much beyond grammar and rhetoric) as a constituent of 
necessary culture was probably their supposed affinity with Wisdom. In consequence, Liberal-Arts mathematics 
cannot be distinguished sharply from quasi-gnostic mathematics as a separate and external entity, which excludes 
it as an independent source for quasi-gnostic mathematics per se; at the same time, however, its different 
pretensions forbids an identification of the two. 
 With the partial exception of Proclos, I shall also not consider those Neoplatonists who did understand their 
Euclid, as well as the young Platonizing Augustine, whose De musica [PL 32, 1184] sees “sensible number” as a 
step toward understanding “immutable number”, but who was competent enough to have read Euclid on his own 
(and still could not forget it when writing De civitate Dei). 
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problems.[6] In the original context, “recreational” is thus a misnomer – this label corresponds to the role 
of the problems within the new, literate context. 
 These problems often go together in clusters, depending (so we must presume) on clusters of social 
groups in professional interaction. As a matter of course we have no direct evidence from the non-literate 
groups which were their original carriers, but the problems may turn up in written sources after having 
been adopted by widely scattered literate traditions – often solved by means of techniques developed by 
these traditions. The obvious parallel is Apuleius's taking a fable “as old women tell them”, inserting into 
it the names of Amor and Psyche and twisting it for his own (moral-religious) purposes. 
  

The “Silk Road” cluster 

 The best known cluster – in the sense that it gathers very well-known recreational problems, not that 
it is normally thought of as a cluster[7] – may have been carried by the community of long-distance traders 
interacting along the Silk Road and/or the sea routes over the Chinese Sea and the Indian Ocean. Within 
this cluster we find: 
– unity doubled 30 or 64 times (the “chessboard problem”); 
– pursuit problems;[8] 
– problems of the type “a hundred fowls”;[9] 
– problems of the type “give and take”;[10] 
– problems of the type “purchase of a horse”.[11] 
The “purchase of a horse” appears as a pure-number problem in Diophantos's Arithmetica I.24 [ed. 
Tannery 1893: I, 56], from where I borrowed the numbers of the example. I. 22 and I.23 contain a variant 
where each (of three respectively four) receives only a given fraction (1/3, 1/4, 1/5 and, in the four-number 
case, 1/6) of the neighbouring one. With different dress the same bizarre mathematical structure turns up 
with three respectively six participants in the Chinese Nine Chapters VIII.12–13 [ed., trans. Vogel 1968: 
87; ed., trans. Chemla & GUO 2004: 641, 643] from the first century CE.[12] 
                                                             
6 I have discussed this relationship in [1990a] and [1997a] (and elsewhere). 
7 Most of these problems are listed in [Tropfke/Vogel et al 1980] together with a wide range of occurrences from 
China to Western Europe. 
8 For instance, “one man starts 100 steps in front of another one; the first takes 60 steps while the second takes 
100”. Variants with increasing or decreasing speeds are also widespread. 
9 For example, “I go to the market and buy 100 fowls for 100 dinars. A goose costs three dinars, a hen costs two, 
and chicks go three to a dinar”. 
10 For instance, “One man says to another, if you give me 30 dragmas of your money, I shall have twice what you 
have left. The other says, if you give me 50 of yours, I shall have thrice what you have left”. 
11 For instance, “three men go to the market in order to buy a horse; the first man asks for 1/3  of what the others have 
in order to be able to pay it, the second needs 1/4  of the possession of the others, and the third only needs 1/5  of what 
the first and the second have”. 
12 My example of the pursuit was borrowed from problem VI.12 of the same Chinese treatise [ed., trans. Vogel 
1968: 62; ed., trans. Chemla & GUO 2004: 519]. 



82 
 

AIMS Mathematics                                                                                                                              Volume 1, Issue 2, 77-95 
 

 A strange passage in Republic I (333B–C) suggests that Plato knew about the problem, and supposed 
his readers to be in the same situation. At least he refers to the need to associate with an expert in horses 
when one is going to buy in common or sell a horse; since horses were not used for any purpose which 
made common possession meaningful, this is likely to be an oblique reference to the problem.[13] 
 A single case of even striking similarity proves nothing; but there are other similarities of the same 
kind. 
 Firstly, it is obvious that Zeno's paradox of Achilles and the tortoise has the structure of the pursuit 
problem. Even though Diogenes refuted it by walking (if we are to believe Diogenes Laërtios – VI.39, 
trans. [Jürß 1998: 267]), the original intention may well have been not to refute the common sense of 
everybody but that of calculators – or at least to make a point with reference to a familiar mathematical 
problem, where the inexperienced calculator is likely to fall into the trap needed for the paradox. 
 Secondly, there is a problem which the Latin and Italian Middle Ages borrowed from the 
second-century Roman jurisprudent Salvianus Julianus [Cantor 1875: 146–149] – as found in Jacopo da 
Firenze's Tractatus algorismi from 1307 [ed. trans. Høyrup 2007: 259] it runs: 
 
 A man is ill and wants to make testament. And he has a wife, who is pregnant. And this one devises 

that if his wife makes a male child, he leaves to him 2/3 of everything of his, and to the wife he leaves 
1/3. And if the wife makes a female child, he leaves to the girl 1/3. And to the wife 2/3 of all his pos-
session. Now it happened that the good man departed from this life, and in due time the wife gave 
birth and made a male child, and a female child.  

 
  One may suspect the Roman jurisprudent to have taken over a mathematical recreational problem 

belonging to the same cluster and giving it a dress corresponding to his own field (juridically, the 
conditions would be impossible). Indeed, the earliest extant Chinese mathematical manuscript, the Suàn 
shù shū from no later than c. 186 BCE, contains a problem about a fox, a wild-cat and a dog going through 
a customs-post and sharing the tax according to the ratios between the value of their skins, which again 
are pairwise 1:2 [trans. Cullen 2004: 45]. A similar story about animals (now eating in the same 
proportions) is found in the Nine Chapters [ed., trans. Vogel 1968: 28; ed., trans. Chemla & GUO 2004: 
285–287].[14] 
 Taken alone, neither Plato's reference to the collective purchase of a horse, nor Zeno's paradox or the 
twin inheritance is more than a suggestion. Taken together, and seen in the light of the shared structure of 
Arithmetica I.22–23 and Nine Chapters VIII.12–13, they make it plausible that the cluster of problems to 
which they belong and which reached from the Mediterranean to East Asia in the Middle Ages, was 
already known over most of the same area in Antiquity.[15] However, there is only one fairly certain set-off 
                                                             
13 Below I shall present more evidence for the familiarity with the problem type in Plato's times. 
14 There is no reason to conclude that all these problems originated in China; China just happens to be the only 
region outside the Mediterranean where documents of the kind from the epoch have survived. 
15 Further supportive evidence could be found in the arithmetical epigrams of the Greek Anthology. The doubling 
of 1 “until 30 times”, first found in a text from Mari in Iraq from the eighteenth century BCE, is also known from a 
Greco-Egyptian papyrus of CE-date, and again in the Carolingian Propositiones ad acuendos iuvenes, which in the 
main might consist of problems that had circulated in the Gallic region since Roman times – see [Høyrup 1990b: 
23f]. 
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in the “book according to the film”, namely Iamblichos's account of “Thymaridas's bloom”,[ 16 ] a 
technique that can be used to solve problems belonging to the family of the “purchase of a horse”. If we 
can trust Iamblichos's ascription to Thymaridas (I have never seen any doubts raised), this shows that at 
least somebody in the Pythagorean environment of Plato's times was interested in number problems of a 
kind which was derived from the purchase-of-a-horse family, and which is also represented by 
Diophantos's Arithmetic I.22–25; since Iamblichos discusses the method in detail with examples, the 
interest must have remained alive in at least some Neopythagorean circles. 
 This, however, is the only trace I have found in wisdom-oriented writings about mathematics 
pointing to the “Silk Road” problem cluster. Zeno, if he really referred to the pursuit problem, rather 
proved that the insights gained from mathematics are deceptive. In general, the sometimes elegant, 
sometimes convoluted tricks used to solve problems from this category may give the same impression, 
which of course might make them unsuited for the purpose. (Indeed, even Plato's reference, if it is one, is 
to a situation where you should better not trust your own reason.) 
  

Surveyors' riddles 

 Another cluster consists of geometric proto-algebraic riddles about squares and rectangles:[17] 
– given, for a square, the sum of or the difference between the area and either one or all four sides, to 

find the side; 
– or about a rectangle, given the area and either the sum of or the difference between the sides, to find 

the sides; 
– still for a rectangle, given the diagonal and the area, to find the sides; 
– to find a rectangle where the sum of length and width equals the area; 
– for two squares, given the sum of or the difference between the areas together with the sum of or the 

difference between the sides, to find the sides; 
– for a circle, to find the perimeter or diameter from the sum of perimeter, diameter and area; 
– and a few more. 
 These riddles appear to have been invented in a Near Eastern lay surveyors' environment around the 
outgoing third millennium. Their first manifestation in written culture is in the “algebra” of the Old 
Babylonian scribe school, which expanded their scope immensely. With the collapse of the Old 
Babylonian culture around 1600 BCE, this sophisticated discipline disappeared, but the original riddles 
turn up twice in the late Babylonian period, first in the fifth century BCE. In written sources from the 
Seleucid period (the third and second century BCE) some further riddles are added, for instance to find the 
sides of a rectangle from the area and the sum of length, width and diagonal. In these texts, the solutions 
of rectangle problems go via the sum and the difference between the sides – until then, their half-sum and 
half-difference (in other words, the average side and the deviations from the average) had been used. At 
this stage and in this characteristic form, (some of) the riddles also turn up in Demotic papyri.[18] The 
geometrical section of Mahāvīra's ninth-century Ganita-sāra-sangraha shows that both the original and 
                                                             
16 Ed. [Pistelli 1975: 62–67], cf. [Heath 1921: I, 94–96]. Heath (p. 69) describes Thymaridas as “an ancient 
Pythagorean, probably not later than Plato's time”). 
17 See, for instance, [Høyrup 2001]. 
18 Concerning the Seleucid-Demotic period, see for instance [Høyrup 2002]. 
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the Seleucid-Demotic version of the riddles had reached India long ago [Høyrup 2004] – apparently in 
separate waves. 
 Both versions also had an impact in Mediterranean classical Antiquity. Most of Euclid's Elements II 
is in fact a “critique” of the traditional solutions (in the Kantian sense – in which sense and to which extent 
they are true); Diophantos' Arithmetica I.27–30 are pure-number versions of traditional rectangle riddles; 
and chapter 24 of the pseudo-Heronian Geometrica contains the four-sides-and-area riddle about a square 
[ed. Heiberg 1912: 418].[19] All of these build on the original riddles and methods; but certain problems in 
the Latin Liber podismi [ed. Bubnov 1899: 511f], which according to its title must be based on a Greek 
original (πόδισμός means “mensuration in feet”), and also those in the Papyrus graecus genevensis 259 
[ed. Sesiano 1999] descend from the Seleucid-Demotic type [Høyrup 2002: 21f]. 
 Geometrica 24 also contains pure-number problems (discussed in [Sesiano 1998]) which betray 
some kind of inspiration from these geometric riddles; probably they are witnesses of that kind of 
“theoretical arithmetic” which we know best from Diophantos, and therefore constitute evidence that this 
discipline had some of its ultimate roots in the geometric riddles, though rather in the riddles than in the 
methods used to solve them. 
 Once again, I know of one piece of mathematical knowledge in the “book according to the film” that 
points to these geometrical riddles. However, it occurs several times. 
 Firstly, Plutarch has the following in Isis et Osiris, chapter 42[20], 
 
 The Egyptians have a legend that the end of Osiris's life came on the seventeenth of the month, on 

which day it is quite evident to the eye that the period of the full moon is over. Because of this the 
Pythagoreans call this day “the Barrier”, and utterly abominate this number. For the number 
seventeen, coming in between the square sixteen and the oblong rectangle eighteen, which, as it 
happens, are the only plane figures that have their perimeters equal to their areas, bars them off from 
each other and disjoins them, and breaks up the ratio of eight to eight and an eighth [8:9, the whole 
tone/JH] by its division into unequal intervals.  

 
 The text speaks of surface numbers, not surfaces, which might make us believe that it refers to a 
representation of numbers by means of ψÁφoι, calculi. If so, however, the counting of the total number of 
calculi and of those on the perimeter is certainly meaningful – but the statement is false, cf. Figure 1, 
bottom. It is only true if rectangular areas and their sides are thought of. There is thus no doubt that both 
Plutarch and those Pythagoreans whom he refers to thought of the upper configuration and its square 
counterpart. 
 Secondly, there are two references to the equality of square perimeter and area in the Theologumena 
arithmeticae (II.11 and IV.29)[21] – once under the dyad and once under the tetrad. Under the dyad, the 
fact that in smaller squares the perimeter is larger than the area and in larger squares it is smaller explains 
                                                             
19 Chapter 24 is actually an independent treatise (or rather a conglomerate of several independent problem 
collections), which happens to be in the same composite codex as one of the main components of what Heiberg put 
together as Geometrica but is well separated from it. See [Høyrup 1997b: 92f]. 
20 Ed., trans. [Babbitt 1936: 101–103]. This passage must be the one to which Heath [1921: I, 96] tells to have 
found a reference in a letter from Sluse to Huygens without being able to locate it. 
21 Ed. [de Falco 1975: 1111–13, 296–10], trans. [Waterfield 1988: 44, 63]. 
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why 16 is “a sort of mean between larger and lesser”; the second, taken over from the mid–third-century 
bishop and computist Anatolios of Alexandria, explains that 4 “is called `justice', since the square which 
is based on it is equal to the perimeter”; both observations refer to themes that fit early as well as later 
Pythagorean currents – and, in general, fit the metaphorical use of mathematics in the service of (social) 
Wisdom. So does Plutarch's account of the matter. The observation might thus have been borrowed 
already in Plato's times or before (it does not ask for that level of mathematical competence which 
Thymaridas must have possessed, and which is evident in Archytas's discussion of the various means in 
Fragment 2[22]). But it may also have been borrowed much later. 
 

 

Figure 1. 6 × 3 represented as a surface and as a surface number. 
 

Summations until 10 

 A third cluster, first known from Seleucid and Demotic sources, is constituted by summations of 
various series. In the tablet AO 6484[23] (a mixed anthology text from the early second century BCE), we 
find among other things two summations “from 1 to 10”. Obv. 1–2 finds 1 + 2 +...+ 29, while obv. 3–4 
determines 1 + 4 +...+ 102. The latter summation is solved as 

 Q10 = 55)101( 3
2

3
1210

1    +   = i=i ⋅⋅⋅∑  , 

a special case of the formula 

 Qn = T  n +   = i n
n
=i ⋅⋅⋅∑ )1( 3

2
3
12

1  ,   where   Tn = in
=i∑ 1  . 

The determination of the factor )1( 3
2

3
1  n +   ⋅⋅   is described in detail; unless we assume gross stylistic 

inhomogeneity, the unexplained number 55 must therefore have been found as T10 in an earlier problem of 
the original thematic text from which the anthology borrowed the two summations. 
 This is mathematically impressive, but totally isolated within the cuneiform tradition. The idea of 

                                                             
22 Ed. [Diels 1912: 333f]. 
23 Ed. Neugebauer in [MKT I, 96–99]. 
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taking precisely 10 members in both cases might therefore be a quirk of the author, or it might agree with 
a more general pattern. 
 The Demotic P. British Museum 10520[24] (probably of early Roman date) is helpful. In literal 
translation it says that “1 is filled up twice to 10”; as the numbers show, this refers to the sums 

 T10 = i10
=i∑ 1    and    P10 = T i

10
=i∑ 1  . 

The answers given correspond to the (correct) formulae 

Tn = 
2

2 n + n    and   Pn = )
2

()
3

2(
2 n + n  + n

⋅  . 

This does not overlap with the series dealt with in AO 6484, but the four summations are sufficiently 
close in style to be reckoned as members of a single cluster. Moreover, the formula for T10 is just what (as 
argued) must have been contained in the thematic text on which the Seleucid anthology text is based; 
further, the Seleucid formula for Qn follows from the Demotic formula for Pn when combined with the 
observation that i2 = Ti + Ti–1. 
 In the formulae for Tn, Pn and Qn it is noteworthy that the latter two are expressed in terms of the 
former (represented by the number 55); also worth noticing is that Tn is not found as the product of mean 
value and number of terms, as normal in most mathematical cultures. 
 In modern symbolism, the formula is easily derived from the identity n2 = Tn+Tn–1, from which 
follows 

 T + T= n+ T + T = n + n nn1nn
2

_ , 

and thus 

)(
2
1 2 n + n  = T n ⋅ . 

This was evidently not the way things were expressed in Antiquity, but the structure corresponds to an 
observation made by Iamblichos in his commentary to Nicomachos's Introduction[25] – that 10 × 10 laid 
out as a square and counted “in horse-race” as shown in Figure 2 shows that 10 × 10 = (1 + 2 +...+ 9) + 10 
+ (9 +...+ 2 + 1), whence 10 × 10 + 10 = 2T10. 
 Exceptional as the formula is in the general historical record, it is fairly certain that the 
Neopythagorean observation and the Seleucid-Demotic formulae are linked. Since both the Seleucid and 
the Demotic text postdate Euclid, they could prima facie have borrowed a result obtained by early Greek 
arithmeticians (perhaps Pythagoreans, perhaps not). However, the same texts contain nothing else which 
might remind of Greek theoretical mathematics, which speaks against a borrowing of just these 
summation formulae – in particular because this very selective adoption should have happened both in 
Egypt and in Mesopotamia. 
 There is a further reason to doubt a Greek invention. The determination of 

                                                             
24 Ed., trans. [Parker 1972]. 
25 Ed. [Pistelli 1975: 7525–27], cf. [Heath 1921: 113f]. 
 The diagram described by Iamblichos is used also by several modern historians – thus by J. Dupuis in his 
edition of Theon of Smyrna's Expositio [1892: 69 n. 14] and by Ivor Bulmer-Thomas in a commentary to an 
excerpt from Nicomachos [Thomas 1939: 96 n. a]. 
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 Q10 = 12 + 22 +...+ 102  as  i + =i∑⋅⋅⋅ 10
13

2
3
1 )101(  

 

 

Figure 2. 10 × 10 arranged as a “race-course”. 
 
also turns up in the Theologumena arithmeticae (X.64, ed. [de Falco 1975: 86], trans. [Waterfield 1988: 
115]), in another quotation from Anatolios (in a passage dealing with the many wonderful properties of 
the number 55). Anatolios, however, gives the sum in abbreviated form, as “sevenfold” T10, that is, in a 
form from which the correct Seleucid formula cannot be derived; this in itself does not prove that earlier 
Greek arithmeticians did not know better; but at least it shows that the Seleucid-Demotic cluster cannot 
derive from the form in which the formula was known to Anatolios. In addition, the absence of the 
formula from any earlier Greek source derived from the theoretical or the Pythagorean tradition 
(including Theon of Smyrna and Nicomachos) suggests that the learned Anatolios has picked it up 
elsewhere. 
 The shape of the summation formulae in combination with the reference to the race-course 
arrangement points with high certainty toward a derivation or proof based on ψÁφoι. If we accept the 
axiom that only Greek and Greek-inspired mathematics can have been based on (even heuristic) proofs 
and that everything else has been “empirical”, then we may still conclude that the formulae must be of 
Greek origin, in spite of contrary evidence. Without this prejudice, the evidence instead suggests that 
(heuristic) proofs based on pebbles were no Pythagorean or otherwise Greek invention. Instead the 
technique will have been part of the heritage which the Greeks adopted from the Near East. Most 
plausibly, the source was that practitioners' melting pot of which the various shared themes and formulae 
of Seleucid and Demotic mathematics bear witness. Since Epicharmos Fragment B 2[26] refers to the 
representation of an odd number (“or, for that matter, an even number”) by a collection of ψÁφoι as 
something trivially familiar, the adoption must be placed no later than the early phase of 
Pythagoreanism – whence it may well even have been pre-Pythagorean, all reliable evidence for 
Pythagorean mathematics being later. However, there is no doubt that at some moment the representation 
of numbers by ψÁφoι (and, as Iamblichos shows, heuristic proofs) were taken over by Pythagoreans and 
other quasi-gnostics[27] 
                                                             
26 Dated no later than c. 475 BCE. Ed. [Diels 1912: I, 118f]. 
27 It may be an accident, but the ever-recurrent summation until precisely ten suggest that even the sacred 
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 ψÁφoj arithmetic is known to have been used for other purposes than the summation of series – the 
Epicharmos fragment refers to the “doctrine of odd and even”, apart from which the figurate numbers 
(including the summations just discussed) constitute its most conspicuous application. The 
Seleucid-Demotic material suggest that even the Near Eastern predecessors of the Greeks had used it to 
argue about triangular and square numbers and the corresponding pyramid numbers Pn and Qn; since 

these turn up together (and always together with the sum T = i n
n
=i

23
1∑ ) in Indian sources and in al-Karajī's 

Fakhrī,[28] it is a fair assumption that these were all dealt with before the borrowing took place; the 
absence of higher polygonal numbers from all these sources (of which the Indian sources, Āryabhaṭa as 
well as Bhāskara II and Brahmagupta, are more systematic than can be expected from the random 
surviving papyri and fragments of clay tablets) indicates that these represent further Greek explorations of 
the tool – explorations that did not spread eastward. 
 Westward they did spread, or rather an unintended repercussion. The higher polygonal numbers were 
taken over by the Roman agrimensors, who mistook these inhomogeneous expressions for area 
determinations of regular polygons.[29] No Near Eastern surveyor would have made this mistake, nor 
would Hero or even the less able compilers of the Geometrica. There is thus little doubt that they came 
from mistaken Greek theory (maybe a reminiscence of the teaching of Liberal-Arts arithmetic, where 
these numbers played a conspicuous role). On the other hand, the side of the regular polygons in the 
treatise mentioned in note 29 is invariably 10, which seems to be a heritage from the Near Eastern 
tradition – see [Høyrup 1997b: 91]. 
 The higher figurate numbers play a role in the handbooks for Liberal-Arts arithmetic, but I have not 
noticed them in quasi-gnostic contexts. Here, only the Near Eastern heritage (perhaps in watered-down 
form, witness Anatolios) turns up. 

                                                                                                                                                                                                             
Pythagorean ten could have been a borrowing; whether even its sacredness was a borrowing is a matter of 
guessing (my own guess being that it was not). If an accident, the coincidence must have pleased the 
Pythagoreans. 
28 See [Clark 1930: 37] (Āryabhaṭa), [Colebrooke 1817: 290–294] (Brahmagupta), [Colebrooke 1817: 51–57] 
(Bhāskara II), and [Woepcke 1853: 61] (Fakhrī).  
29 For instance Epaphroditus & Vitruvius Rufus, ed. [Bubnov 1899: 534–545]. But the nonsense survived into the 
late medieval abbacus tradition. 
 Fields to be measured would hardly ever by regular pentagons, hexagons etc. – and if they were, standard 
measurement would only reveal them to be equilateral, not equiangular, for which reason their area would anyhow 
have to be found by subdivision. We may therefore safely assume that the wrong formulae were never used in 
practice; though no riddles, these formulae, giving an impression of completeness, were supra-utilitarian 
adornments. 
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Side-and-diagonal numbers 

 The last topic I shall take up in some detail is a likely borrowing from architectural geometry, at some 
moment transferred into a number algorithm. I refer to the “side-and-diagonal-number algorithm”, an 
algorithm for producing increasingly precise approximations to the ratio between the diagonal and the 
side of a square (in anachronistic terms, to √2). The basis for this algorithm is what I shall call the 
side-and-diagonal rule: if s and d are the side and diagonal of a square, then the same holds for Σ = s + d 
and Δ = 2s + d. Experience combined with common sense shows that iteration of the process from values 
s1 and d1 which do not fulfill the condition d1

2 = 2s1
2 leads to convergence of the ratio dn

2:sn
2 toward 2:1. 

In particular, if we start from s1 = d1 = 1, we get the successive pairs 1:1, 3:2, 7:5, 17:12, 41:29, 99:70, 
239:169, ...; this is the side-and-diagonal algorithm.[30] 
 The algorithm is not described by any of the “great” or “genuine” mathematicians, but it was known 
by both Theon of Smyrna (Expositio I.XXXI, ed. [Dupuis 1892: 70–74] and Proclos;[31] a final reference is 
found in Iamblichos's commentary to Nicomachos [ed. Pistelli 1975: 91]. We may assume it to have 
circulated in quasi-gnostic circles, which was part of the shared background of these three authors (and 
Iamblichos's principal background). 
 In his edition of Proclos' commentary to the Republic, Kroll supposed that the rule was proved by 
means of Elements II.10,[ 32] which he further took to be of Pythagorean origin (actually, it is the 
justification of one of the old two-square riddles, which antedates Pythagoras by an abundant millennium). 
Another (quasi-algebraic) proof can be based on the diagram which Leonardo Fibonacci employs in the 
Pratica geometrie [ed. Boncompagni 1862: 62] when solving the problem Δ–Σ = 6 (see Figure 3); by 
simple counting, the same diagram can also be used to prove Elements II.10. The proof is of a type that is 
familiar from the Seleucid rectangle riddles, and strong arguments can be given that the similarity is based 
on an actual historical link. 
 
                                                             
30 Asymptotically, each added step reduces the error of the ratio d:s by a factor 1/1+√2. 
31 Proclos describes it in a commentary to a passage in Republic 546C ([ed. Kroll 1899: II, 24f]; cf. discussion in 
[Vitrac 1990: 351f]); there is also an oblique but unmistakeable reference in his commentary to Elements I ([ed. 
Friedlein 1873: 42721–23], trans. [Morrow 1972: 339]), where it is spoken of as σύvεγγυζ, “proximate”. 
 It has been assumed that Plato's reference to “a hundred numbers determined by the rational diameters of the 
pempad lacking one in each case” in Republic 546C, trans. [Shorey 1930: II, 247]) shows him to be familiar with 
the same algorithm. Actually, all it shows for certain is that he was familiar with the use of 7 as an (approximate) 
value for the diagonal in a square with side 5. 
 Heath [1926: I, 399] supposes that the “lacking one” refers to the fact that 72 is lacking 1 compared to the 
square on the true (irrational) diameter in the square with side 5, which is an essential feature of the sequence of 
approximations produced by the algorithm. Actually, as pointed out to me by Marinus Taisbak (personal 
communication), Plato's point is rather that the number 48 (the number which is required) is lacking one with 
regard to the “number on the rational diameter 7” (and 2 with regard to that on the irrational diameter dynámei, as 
Plato goes on). This is indeed also Proclos's explanation, cf. Hultsch in [Kroll 1899: II, 407]. 
32  Using the letters of Figure 4: If CB is bisected by G, and prolonged by BE, then (CE)+(BE) = 
2⋅((CG)+(GE)). 
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Figure 3. Fibonacci's implicit proof of the side-and-diagonal algorithm. 
  
 However, the rule can also be observed rather directly in the construction of a rectangular octagon by 
superposition of two identical squares (see Figure 4): if CG = GB = DG = s, then CD = AC = AF = d. 
Therefore Σ = DJ = DG + GJ = s + d, while the corresponding diagonal is Δ = FD = FC + CD. But FC = 
CD = 2s, whence Δ = 2s + d. 
 In the pseudo-Heronian De mensuris 52 [ed. Heiberg 1914: 206], a reduced version of Figure 4 is 
used for the octagon construction: the oblique square is omitted, but it is used that AB = EC = AO (etc.). 
This follows from exactly the same arguments as lead to the side-and-diagonal-rule. It is difficult to 
believe this construction to have been invented directly, without the passage over the superimposed 
squares. 
 

 

Figure 4. A regular octagon produced by superimposed squares. 
 
 The reduced construction turns again up in Abū'l-Wafā’'s Book on What is Necessary from 
Geometric Construction for the Artisan VII.xxii [ed., Russian trans. Krasnova 1966: 93]; in the 
Geometria incerti auctoris no. 55 [ed. Bubnov 1899: 360f]; and in Mathes Roriczer's late fifteenth-cen-
tury Geometria deutsch [ed. Shelby 1977: 119f]. Roriczer's Wimpergbüchlein [ed. Shelby 1977: 108f] 
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makes use of the superimposed squares and shows (though this is not the topic) that Roriczer knew some 
of their relevant properties. The superimposed squares producing the regular octagon are found as an 
illustration to the determination of its area (via the octagonal number!) in Epaphroditus & Vitruvius Rufus 
[ed. Cantor 1875: 212, Fig. 40[33]]. As I have been told by Hermann Kienast (personal communication) 
they can also be seen to have been used in the ground plan of the Athenian “Tower of the Winds” from the 
first century BCE.[34] All in all there is thus no doubt that both constructions were known by practical 
geometers in the classical age; the places where we find references to the algorithm or material traces of 
the construction (all late and far removed from the theoretical tradition) make it unlikely that the idea 
originated among Greek theoretical mathematicians – including the Pythagorean mathematikoi. 
 The rule and even its transformation into an algorithm could be of much earlier date. Two Old 
Babylonian tablets (YBC 7289 and YBC 7243, in [MCT, 43, 136]) give the value 1;24,51,10 for the ratio 
between the square diagonal and side. In their commentary, Neugebauer and Sachs noticed that this value 
is the sixth step in an alternating iteration by arithmetic and harmonic means,[35] the fourth step of which 
is the value 1;25, which also turns up in cuneiform sources (as we now know, of Old Babylonian as well 
as Seleucid date). As shown by David Fowler and Eleanor Robson [1998], however, the calculations 
require repeated divisions by sexagesimally irregular numbers; approximation by regular divisors would 
lead to roundings which would either yield a result which was less or which was even more precise. This 
explanation can therefore be discarded; so can the iteration suggested in note 35, which suffers from the 
same defect. 
 This seems to leave us with the side-and-diagonal algorithm. Indeed, 1;24,51,10 is the rounded value 
of 239÷169; it can be found by a single division by an irregular number, which we know Mesopotamian 
scribes to have been trained to perform already before the mid-third millennium BCE. The approximation 
1;25, also found in Babylonian sources as we remember, is nothing but 17÷12. This value can be found by 
the iteration of note 35 from above, starting from the value 1 1/2 ; but the plausible use of the 
side-and-diagonal for the better approximation speaks in favour of its use even here.[36] If this is so, a 
possible link between the Old Babylonian (plausible) use of the rule and its certain presence in the 
classical world is at hand. Indeed, the peculiar Old Babylonian way to express the perimeter of the circle 
in terms of the diameter (not multiplying by 3 but taking the triple) pops up again in Greek practical 
geometry, and finds its explanation in a construction described by Roriczer and in an Icelandic manuscript 
from the early fourteenth century – a construction which allows to measure the perimeter without 
calculation; it is likely to have been carried by the profession of master builders.[37] However, the reader 
                                                             
33 The text is also in [Bubnov 1899: 539], but the diagram is omitted. 
34 Vitruvius's description of how the ground plan was made (De architectura I.vi.4) is thus an a posteriori 
reconstruction – “rational”, but wrong. 

35 More likely than this alternation would be the equivalent iteration of the approximation 2n
d2  + n  d+n ≈ , 

which can be argued geometrically. This eliminates half of the steps from the Neugebauer-Sachs procedure, but 
leaves the relevant ones. 
36 One Old Babylonian text uses this iteration from below, but none from above (which in general is much less 
common in the sources until the outgoing Middle Ages). 
37 See [Høyrup 2009: 368–370]. 
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counting the occurrences of words like “plausible”, “seems” and “if” in the course of this argument will 
realize that it is far from compulsory – and definitely insufficient to decide with any certainty between a 
borrowing and independent (re)discovery, either of the construction or of the number algorithm. 
 We have no indication as to when the algorithm was adopted by the quasi-gnostic environment; it 
may have been in the age of Thymaridas and the Pythagorean mathematikói, or much closer to Theon's 
late first century CE. But we cannot avoid noticing that all sources we possess for the algorithm link 
mathematics with Wisdom, while the evidence we have for the diagram behind it is an architectural 
real-life construction; if mathematicians with no esoteric affinity had once worked on the topic, they seem 
to have lost all interest in epochs from which sources survive.[38] None of our explicit sources – that is, 
neither Theon nor Proclos – show convincingly to know the “principles and causes” behind the algorithm. 
  

A final note about fractions and ratios, and a conclusion 

 I promised in note 5 to leave aside Liberal-Arts arithmetic together with its impact in the 
mathematics of Wisdom. I shall permit myself a slight breach of this promise, a mere reference to a 
publication which in my opinion by far has not received the attention it deserves: Kurt Vogel's habilitation 
thesis from [1936]. 
 One of the points made by Vogel (p. 449) is that the Greek vocabulary for ratios is shaped after that 
for fractions. For reasons I shall not discuss here, the Euclidean (but not the Diophantine) brand of 
theoretical arithmetic as well as the arithmetic of Liberal-Arts handbooks avoided fractions.[39] Instead, as 
we know, theoretical Greek mathematics had recourse to ratios, and a large part of Liberal-Arts arithmetic 
is dedicated to the classification and naming of ratios – an interest which is also visible in some of the 
quasi-gnostic writings (first of all of course in Nicomachos's Introduction, if we count that, next in 
Iamblichos's commentary to this work). The whole apparatus built up around this classification was quite 
adequate for those who felt attracted to the easy “royal road” to mathematics – in particular when it was 
taught exclusively through numerical examples and without even paradigmatic proofs built on single 
cases. Ultimately, this is another case of mathematics coming from base practice and taken over as 
“wisdom”. With the difference, however, that only the transposition to ratios called for the creation of the 
classification system – for fractions most of it would have been obviously superfluous.  
 Apart from this, however, that “royal road” to mathematical Wisdom whose existence Euclid denied 

                                                             
38 There is one just possible impact on the theoretical tradition: the proof of Elements II.10, the diagram of which is 
nothing but the section of Figure 4 designated by the letters KEBGCDD (but in the general case, without the 
specific ratio between GB and BE). The proposition states that CE+BE = 2(EG+BG), which is obviously 
fulfilled when BE = 2BG, CE = 2EG, as happens in the case of the superimposed squares. Whereas the 
proofs of Elements II.1–8 all correspond to the techniques by which the rectangle riddles were solved already in 
the Old Babylonian epoch, those of II.10 and the closely related II.9 are of a wholly different kind. 
 Isolated as that similarity is, the preceding observation can be nothing but a suggestion. Euclid and his 
predecessors were certainly able to devise their own diagrams as they needed. 
39 The avoidance may have to do, both with the fateful answer “a collection of units” once given to the question 
“what is a number”, and (in Plato's case, according to the curriculum passage of Republic VII) with the use of 
fractions by petty traders. A supplementary stimulus for interest in ratios (but not for avoiding fractions in general) 
is the creation of mathematical harmonics. 
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(as Proclos's story goes) was in part paved with material borrowed from those who designed common 
roads or moved their merchandise along them – but borrowed piecemeal, mostly as bits without 
coherence and out of context. The internal coherence of quasi-gnostic mathematics, to the extent it can be 
seen to have possessed one, was probably provided by arithmology and by the interests it shared with 
Liberal-Arts mathematics. 
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