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1. Introduction

The Caginalp phase-field system,

ou

E—Au+f(u)—T, (11)
oT ou
AT =-—— 1.2
ot ot’ (1.2)

has been proposed in [13] to model phase transition phenomena, such as melting-solidification phe-
nomena. Here u is the order parameter, T is the relative temperature and f is the derivative of a
double-well potential F. Furthermore, here and below, we set all physical parameters equal to one.
This system has been much studied; we refer the reader to, e.g., [7] and [15].

These equations can be derived as follows. One introduces the (total Ginzburg-Landau) free energy

1 1
qu:j}—wm2+Fuo—uT——T%¢a (1.3)
02 2

where (Q is the domain occupied by the system (we assume here that it is a bounded and regular domain
of R”, n = 2 or 3, with boundary I'), and the enthalpy

H=u+T. (1.4)
As far as the evolution equation for the order parameter is concerned, one postulates the relaxation
dynamics (with relaxation parameter set equal to one)

ou DY

= 1.5
ot Du (1-5)
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D
where Dn denotes a variational derivative with respect to u, which yields (1.1). Then, we have the
u

energy equation

H
aa_r = —divg, (1.6)

where ¢ is the heat flux. Assuming finally the usual Fourier law for heat condition,
q=-VT, (1.7)

we obtain (1.2).

Now, one essential drawback of the Fourier law is that it predicts that thermal signals propagate at
an infinite speed, which violates causality (the so-called paradox of heat conduction). To overcome
this drawback, or at least to account for more realistic features, several alternatives to the Fourier law,
based, e.g., on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed
and studied, in the context of the Caginalp phase-field system, in [8], [9] and [12].

In the late 1960’s, several authors proposed a heat conduction theory based on two temperatures (see
[16]). More precisely, one now considers the conductive temperature T and the thermodynamic tem-
perature 6. In particular, for simple materials, these two temperatures are shown to coincide. However,
for non-simple materials, they differ and are related as follows:

0=T—AT. (1.8)

The Caginalp system, based on this two temperatures theory and the usual Fourier law, was studied
in [10] and [17].

Our aim in this paper is to study a variant of the Caginalp phase-field system based on the type 111
thermomechanics theory (see [4]) with two temperatures recently proposed in [10].

In that case, the free energy reads, in terms of the (relative) thermodynamic temperature 6,

Y= f (1|Vu|2 + F(u) — ub — 1ez)dx (1.9)
o2 2

and (1.5)yields, in view of (1.8), the following evolution equation for the order parameter:

0

a—L;—Au+f(u):T—AT. (1.10)
Furthermore, the enthalpy now reads

H=u+60=u+T - AT, (1.11)

which yields, owing to (1.6), the energy equation

oT T du
P AL divg = -2 112
o Ao TAva= 7, (1.12)

Finally, the heat flux is given, in the type III theory with two temperatures, by (see [14])
q=-Va-VT, (1.13)
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where

at,x) = f T (7, x)dt + ap(x) (1.14)
0

0
is the conductive thermal displacement. Noting that 7 = —C:, we finally deduce from (1.10) and
(1.12) — (1.13) the following variant of the Caginalp phase-field system (see [17]):

%—Au+f(u):aa—6:—AZ—C:, (1.15)
VAN (1.16)

In this paper, we consider the following conserved phase-field model:
% + A%u— Af(u) = —A(Z—‘; —A’Z—O;), (1.17)
VAN (1.18)

These equations are know as the conserved phase-field model (see [1], [2], [3] and [5]) based on type
III heat conduction and with two temperatures (see [8]), conservative in the sens that, when endowed
with Neumann boundary conditions, the spatial average of the order parameter is a conserved quantity.
Indeed, in that case, integrating (1.17) over the spatial domain €2, we have the conservation of mass,

(u(n) = (u(0)),1 >0, (1.19)

where

1
()= vol(Q)fQ'dx (1.20)

denotes the spatial average. Furthermore, integrating (1.18) over €2, we obtain
(a()) = ((0)),1 > 0. (1.21)

Our aim in this paper is to study the existence and uniqueness of solution of (1.15) — (1.16). We
consider here only one type of boundary condition, namely, Dirichlet (see [6]). Furthermore, we
consider regular nonlinear term f (a usual choice being the cubic term f(s) = s> — s).

Notation.

We denote by ||.|| the usual L?-norm (with associated scalar product ((.,.))) and set ||.||_; = ||(—A)_71.||,
where —A denotes the minus Laplace operator with Dirichlet boundary conditions. More generally,
||l./lx denotes the norm in the Banach space X.

Throughout this paper, the same letters ¢, ¢’ and ¢”” denotes (generally positive) constants which
may change from line to line, or even in a same line. Similary, the same letter Q denotes monotone
increasing (with respect to each argument) functions which may change from line to line, or even in a
same line.
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2. Setting of the problem

We consider the following initial and boundary value problem

ou Oa Oa
Z A ANu-A =-Al— - A— 2.1
o+ U= Afw) (at at), 2.1)
a  0*a O« ou
— —A—-A—-Aa=—-——, 2.2
o2 " “or o U o (22)
ulr = alr = Aulr =0, (2.3)
Oa
ul;=0 = uo, @li=o = o, a—|z:0 = ay, (2.4)
t
where I is the boundary of the spatial domain Q.
We make the following assumptions:
f is of class C*(R), f(0)=0, (2.5)
f(s)>-cy, co>0, seR, (2.6)
f)s=>cF(s)—cy>2—-c3, ¢1>0, 3,320, seR, 2.7

where F(s) = fos f(r)dr. In particular, the usual cubic nonlinear term f(s) = s°> — s satisfies these
assumptions.

Remarque 2.1. We take here, for simplicity, Dirichlet boundary conditions. However, we can obtain
the same results for Neumann boundary conditions, namely,

ou O0Au Oa

—=——=—=0 on T, 2.8

dv. dv Oy 2:8)
where v denotes the unit outer normal to I'. To do so, we rewrite, owing to (1.3) and (1.5), the equations
in the form

ou oa  Oa

i Au— Af(u) = —A (E —~ AE) + (up + ay) — (u), (2.9)
0*a 0*a oa it
— —A— -A—-Aa=—— 2.1
or? or? ot @ ot’ 2.10)

where v = v — (v), {vo)| < M, {ap)| < My, for fixed positive constants My and M,. Then, we note that
=L_ 2 2.1
v (I(=A)2 017 + (v))2,
where, here, —A denotes the minus Laplace operator with Neumann boundary conditions and acting
on functions with null average and where it is understood that {.) = @(., ) g-1@).m1 @) Furthermore,
1
v s (7P + ()2,

v (DR + ()2,
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v (JAVIE + (1)

and
v (VAP + (v))2,

are norms in H-1(Q), L*(Q), H(Q), H*(Q) and H*(Q), respectively, which are equivalent to the usual
ones. We further assume that
lf($) < eF(s)+c., s €R, 2.11)

which allows to deal with term {f(u)).
3. A priori estimates

In what follows, the Poincaré, Holder and Young inegualities are extensively used, without further
referring to them.
We rewrite (2.1) in the equivalent form

da &
(- A)‘ o —Au v f(u) = 0—‘: —Aa—(j. 3.1)

0
We multiply (3.1) by a—b; and have, integrating over Q and by parts

d ou ou Oa oa
—IVul? +2 | Fwdx|+2|—I?* =2 -A—1|]. 3.2
dt(n ull? + fg () x)+ 151 (( o at)) (3.2)
) o O
We then multiply (2.2) by i AE and obtain

d 5 , ,0a oa , oa , oa ,
o (IIVQII Al +[l—- — A )+2||V 5 2A

ou Oa oa
:_2((& o AE)). (33)

Summing (3.2) and (3.3), we find the differential egality

dE

dl +2||—|| 1+2||V—|| +||A || = (3.4)
t
where 5 5
E| = ||Vul* + 2fF(M)dx +|[Vall* + ||Aa|* + ”_a - A—0[||2, (3.5)
o o "ot
satisfies
2 (9(1’ ’
Ev > eIl g, + g, + 15 By | ~ ¢ > 0 (3.6)
o P da
(note indeed that ||6—‘:||2 + 2||v8—6:||2 +HIAZIP = ”E - A—|| ).
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We now multiply (3.1) by u and have, owing to (2.7), where ||u||* < c||Vul?,

d. ., 5 f O oa ,
— \Y) Fuwdx) < ||— - A—|I°. 3.7
dt||”||‘1+c(|| ull + \ (u)dx) IIat at” 3.7)

Multiplying (2.2) by —Aa, we then obtain

& (1 252 a0 + 2 (58 o] + 2

ou , oa , oa ,
< |l= V— A—I||~. 3.8
IIatII + | atll + || 6t” (3.8)
Summing (3.4), 6,(3.7) and 6,(3.8), where d;, 5, > 0, are small enough, we find a differential

ineguality of the form

d 2 8u ,
? + C(E2 + ”u”Hz(Q) || Ht ||31) < c,c > 07 (3.9)
where 5 5
Ey = Ey + &l + 6, (nAan2 -2 ((a—‘: Aa)) +2 ((Aa—‘:, Aa))) , (3.10)
satisfies 5
a ’
E2 > C(“””i]l(g) + ||a||H2(Q) + ”E”iﬂ(g)) —C. (31 1)

P
We multiply (2.1) by a—”t‘ to find

d ou o P
R N ]

which yields, owing to (2.5) and the continuous embedding H*(Q) c C(Q),

ou 0 0
—||Au||2+|| ||2 Q(Ilullyz<g))—2((A e A“)).

—, = —A— 12
ot’ ot ot (3.12)

da 0
Multiply also (2.2) by —A(a—(j - Aa—C:) to have

d O o
E(”VE” 2||A || +||VA—|| +[|Aa* + [[VA«|| )+2||A II° +2||VA ||

ou Oa oo
=2(|1A—,— - A—]. Nl
(( o’ ot at)) (3.13)

Summing then (3.12) and (3.13), we obtain

d 0o 0 0o
= (uAun2 + ||va—f||2 + 2||Aa—‘f||2 + ||VA8—‘:||2 + lAalP? + ||VAa||2)

Oou O O
+|IEII2+2IIA8 I”? +2lva—- ||2 < Ollullrz)- (3.14)

AIMS Mathematics Volume 1, Issue 2, 144-155



150

In particular, setting
= l|Aul? +|IV || +2||A || +||VA || +lIAal + [[VAalP,

we deduce from (3.14) an inequation of the form

Y <00

Let z be the solution to the ordinary differential equation

7 = 0(2),2(0) = y(0).

(3.15)

(3.16)

(3.17)

If follows from the comparison principle that there exists To = To(|luollp2(0), lollm3@)s i3 @) be-

1
longing to, say, (O, 5) such that
y(1) < 2(1), ¥t € [0, To]

hence

o
(2 + lla@)llm @) + ||E(l)||H3(Q) < Oluolli2@)s llaoll s @ys lar @), t < To.

We now differentiate (3.1) with respect to time and have, noting that

P Pa Oa ou
& AZY A%y pe -
or  "ar "% TR ar
the equation
L 0 Ou Gu ou oa ou
AL A o A A
A gy At g = A e

0
We multiply (3.20) by ta—l: and find, owing to (2.6)

d( Ou, 3 _0u ., ou , ) oa , ou ,
— — —t|IV—I|IF € — — — ,
7 (tllatll_1)+ SUV I < etz + IVadl” + 1AZ 1) + 111

ou

EH,

ou
hence, noting that ||—||* < c||—||-{||V
g II(%II II&II il

d

@IIZ
dt '

ou
=2, | + tIV=I* < ct 2+ |IVall* + A
(II 112 ) I atll (|| || IVall” + | ||) II& z
Returning to (3.9) we have in particular
d
—E, +cE, <

dt
If thus follows form (3.22) and Gronwall’s lemma that

EZ(t) Ct(”uO”Hl(Q) + ||a/0||H2(Q) + ”al”HZ(Q) fF(MO)dx) + CN, C/ > 0’t 2 0.
Q

AIMS Mathematics Volume 1, Issue 2,
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Furthermore

t+1 a
u.o- 2
(=2 + el AT
j: ot )
— 2 2 2
< ce™ (ol g + ol + e [Py + fg Fuo)dn) + ¢/, > 0,62 0. (324)

Finally, more generally, for every » > 0, we have

f <|| I+l e

<c - t(”u()”HI(Q) + ”a()”HZ(Q) + ||a’1||H2(Q) fF(u())d)C) + C”(r)a C, > 0’t 2 0. (325)
Q

In particular, we deduce from (3.19), (3.21), (3.24) and Gronwall’s lemma that

II—( IE; < Q(Iluollm(g),||ao||m<g>,IIalllHa(g)) 1€(0,To]. (3.26)

0
Mutiplying then (3.20) by a—l: we have, proceeding as above,
d ou, ., ou ou 5 oa ,
—||—=(t +|IV—=II” < c(l=IIZ; + [IVall” + |A—]%). 3.27
dtHat()”—l [ az” C(”at”—l IVall” + I 8t” ) (3.27)
If thus follows form (3.24), (3.27) and Gronwall’s lemma that
II—(t)II | e”’Q(IIMoIIHZ(m,IIC¥o|IH3<Q>,||6¥1||H3(g>)||—(To)II 1> 2 To, (3.28)
hence, owing to (3.26),

ou
||E(f)||%1 < " Qlluoll 2y laollms s llarllms ), t = To. (3.29)

We now rewrite (3.1) in the form

—Au+ f(u)=h,(),u=0 on T,for t>T, (fixed), (3.30)
where 6 5
_ u N
h(t) = —(—=A) 5 A (3.31)

satisfies, owing to (3.23) and (3.29),
12O < e Qluoll 120 llvoll 3 il y)s t = To. (3.32)
We multiply (3.30) by u and have, owing to (2.7)
IVulP < el )P + ¢ (3.33)
Then, multiplying (3.30) by —Au, we find, owing to (2.6),

IAul? < el OIF + 11Vull). (3.34)
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We thus deduce from (3.32) — (3.34) that
lull 2y < € Qlluollmy, llaollms @), llanllm @), t = T,
and, thus, owing to (2.22),
||M||H2(Q) < eCZQ(”uO”HZ(Q)’ ||C¥0||H3(Q), ||011||H3(Q)), t>0.

Returnig to (3.13), we have
d oa oa oa
— V=1 + 2[[A—]1* + IVA—|I* + |Ac|]* + |IVA|
dt(” az” +2| atll + || atll +[|Aa|l” + [[VA«|]

Oa oa ou
A—|P + IVA—|P) < |IV—]I%.
+c(| at” +1| az”) I mll

Noting that it follows from (3.24), (3.27) and (3.28) that
!
0
V—

To

We finally deduce from (3.19) and (3.36) — (3.38) that
oa
eIl 2y + Nl @3 ) + ||E(f)||113(9)

< €CIQ(||M0||H2(Q), ”a'0||H3(Q)’ ||QI||H3(Q))’ t>0.
4. Existence and uniqueness of solutions

We first have the following theorem.

un
Bt” dr < €CtQ(||M0||H2(Q), ||a0||H3(Q)’ ||C¥1||H3(Q)),f = T.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Theorem 4.1. We assume that (2.6) and (2.7) hold. Then, if (up, a0, 1) € (HXQ)N HY(Q)) x
(H*(@) n HY(Q) x (H¥(Q) N HY(Q)) and F(up) < oo, (1.1) — (1.4) possesses at last one solution

0
(u, a, a_c:) such that

ue L (R.: H(Q) N Hy(Q)), @ € L (R.: H(Q) N Hy(Q)).

% e L*(0.7: H (@), 2—‘: € L~ (R H(Q) N Hy(Q)).

The proof of this theorem is based on (3.9), (3.39) and a standard Galerkin scheme.

We then have the following theorem.

Theorem 4.2. The system (1.1) — (1.4) possesses a unique solution with the above regularity.
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. . da'V
Proof. There only remains to prove the uniqueness. Let (u(l), al, —

@O @ M @ 2 @2

solutions to (1.1) — (1.4) with initial data (”o L@y, @, )and (“o Ly, @ ) respectively. We set

Oa O da®
=l =1,D (1) @ 2 =
(u’a’ at) (u ’ 5;) (u & 6;)

Do ) @ @
(MO’Q'Oaa’l)—(u(()),a’é),a’(l)) (ué),aé),a(l)).

and

Then, (u, @) satisfies

ou 2, My _ @) _ A [0 da
o A= A(f) = f)) = —A| - - A,

Pa A Pa oo A ou

A — —A— —Aa = ——,
o "o o TRYT T
ur=alr=0= on T,

oa

ul=o = Uo, al=o = ay, Ehzo = ag.

0
Multiplying (4.1) by (—A)‘la—b;, we have

0o d 0
2||a—bt‘||’i1 + IVl +2 ((f<u<‘>> — fu®), 6—3‘))

ou oa oo
2(( or’ ot AE))
oo

Oa
Multiplying then (4.2) by Frie A— o , we obtain

oa o
(II—II +2||V || +||A || +[IVall* + || Aa|| )+2||VE||2+2IIAEII2

ou oo oo
-‘2((5’5”5))'

Summing (4.5) and (4.6), we find

d Oa Oa ou oa Oa
—(IVull® + |IVal]?* + ||Aa|P + [|[— = A—|P) + 2||—|*, + 2[IV—|* + [|A—|?
dt(ll ull” +[|[Vall” + [|Acl| +”ar 6t||)+ “at”—1+ Il é)tll + | 6t”

=20 - . 5.

2 |((f(u(”) - fw®), %))

We have 6
<ACHFE = Fa-mF L

da®
and (u(z), a?, = be two

4.1)

(4.2)
(4.3)

4.4)

4.5)

(4.6)
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1 =1 (9
<N = FaIE + II(—A)TG—L;IIZ,

ou
< 2 ou »
O(llu”) + |lat||_1,

where, here and below

1 1 1 2 2 2
0 = QU ez 1o ez 1l 1612, e gy e Pl )

Therefore
d oa oa ou Oa oa
—(IVull® + IVall?> + Al + [l— — A=) + |11, + 2IIV—I* + |A—]* < 2,
dt(” ull” + [IVell” + [|Aell” + | oy atll ) |I0t||_1 | atll [ atll Olfull
In particular,
d Oa oa
—(IVul?® + [IVall? + Al + |— — A—|P) < 2, 4.7
dr(” ull” + [IVell” + [|Aell” + | Ey az” ) < Olfull (4.7)
It thus follows form (4.7) and Gronwall’s lemma that
oa
2 2 2
”I/l(t)”H](Q) + ”a/(t)HHZ(Q) + ”E(I)HHZ(Q)
< e (ol + ol gy + et ) > O, (4.8)
hence the uiqueness, as well as the continuous dependence with respec to the initial data. m|
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