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Abstract: V2O5 is one of the best material for many applications. Progress is currently made to 
improve its performance for use as a sensor, or an electrode, or smart window, electrochromic device, 
supercapacitor, photovoltaic applications among others. In this work, we review the progress that has 
been done these recent years, in relation to the mode of preparation of the V2O5 films. The results 
outline the complex relationship between the synthesis and the properties, which should serve as a 
guide for further research on the dependence of the best synthesis process on the type of application 
that is targeted. 
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1. Introduction 

Vanadium is sparsely distributed in the earth’s crust. It is found at an average concentration of 
150 mg kg−1 in mineral ores and in the range of 3–300 mg kg−1 in soil. Vanadium pentoxide, the 
highest oxidation state 5+ of vanadium, has been known for more than a century. In December 1867, 
as a part of his Bakerian lecture to the Royal Society, the British chemist Sir Henry Roscoe outlined 
the multiple oxidation states of binary oxides of vanadium and set the end-member “vanadic acid” 
V2O5 [1]. The first V2O5 gel was described by the French chemist Ditte in 1885 [2]. The natural 
occurrence (50%) of V2O5 is found in flue-gas deposits from oil-fired furnaces and residues from 
elemental phosphate plants. However, V2O5 mineral is rare; shcherbinaite V2O5 (orthorhombic 
crystal system) is found on the walls of volcanic fissures [3] and navajoite is a mineral trihydrate 
V2O5ꞏ3H2O (monoclinic structure). The titanoferous magnetite ore in lump form contains 
approximately 1.5–1.7% vanadium pentoxide. 
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The structure of crystal isolated from fused V2O5 was first elucidated by Katelaar [4] as a 
rhombic unit cell containing two molecules of V2O5. Refinements were further done by  
Byström et al. [5] who established the orthorhombic layered structure of V2O5 with Pmmn space 
group. In 1961, Bachmann et al. [6] redetermined the crystal structure of V2O5 and reported its lattice 
parameters a = 11.510 Å, b = 4.369 Å, c = 3.563 Å. Their structural description is as follows: “the 
structure is built up from distorted trigonal bipyramidal coordination polyhedral of O around V, 
which share edges to form zigzag double chains along [001] and are cross-linked along [100] 
through shared corners, thus forming sheets in the zz plane”. More recently, Enjalbert and Galy [7] 
proposed the bonding interactions of van der Waals type between two-dimensional V2O5 slabs and 
stated the presence of “square pyramid” instead of trigonal bipyramid. Ramana et al. [8] and  
Julien et al. [9] have described the easy cleavage along the (001) plane due to the weak interaction 
between V2O5 layers. Three V2O5 polymorphs have been identified as α-, β-V2O5, which crystallize 
with the orthorhombic and tetragonal structure, respectively, and the rutile-type δ-V2O5, which is a 
modification of β-V2O5 (space group C12/c1) [10]. Recently, Parija et al. [11] evaluated the 
metastable polymorphs including γ’-, δ’- and ρ’-phase of V2O5 using density functional theory 
calculations. 

Here, we review the properties of V2O5 thin films employed in energy storage and conversion 
systems, which were prepared with a variety of deposition options. Numerous works prior 2001 have 
been devoted to the studies of synthesis, physical characterizations and electrochemical 
performances of films used as either cathode in all-solid-state batteries [12–15] or electrode of 
electrochromic devices [16]. Recently, Mo-doped V2O5 thin film has been studied as an electrode of 
supercapacitors [17]. This is an illustration of the increasing interest in this material in the recent 
years for many applications, sustained by numerous works that are reviewed here. 

This review paper is organized as follows. In Section 2, we summarize the techniques used for 
the preparation of films and discuss the structure and morphology of V2O5 related to the synthesis 
conditions (temperature, partial pressure, substrate, etc.). Section 3 is devoted to the physical 
properties of V2O5 thin films; structure, morphology, vibrational spectroscopy, elemental analysis, 
electrical properties and intercalation process are considered. In the following Sections 4 and 5, 
doped V2O5 thin films and composite films are treated, respectively. Finally, Section 6 is devoted to 
the applications in the field of energy, for which V2O5 thin films are used as electrode materials in 
lithium microbatteries, electrochromic devices, sensors and supercapacitors. 

2. Thin film synthesis 

The structure and morphology of vanadium oxide films are intimately related to the deposition 
method and the operating conditions. As the direct growth of crystalline V2O5 films is very difficult 
except in the cases of some sub-stoichiometric VOx oxides, an annealing process of the as-prepared 
films is required in air and high temperature. In this section we describe the different evaporation 
methods and provide some typical examples for each technique used. Note that the choice of a 
deposition method depends of the thin film application. For instance, electrodeposition [18], reactive 
sputtering [19], sol-gel [20], hydrothermal method [21], doctor-blade route [22] were carried out for 
electrochromic V2O5 films that requests large surface coatings. The reader will find supplementary 
data in the review by Beke [23]. During the deposition process in vacuum or in a reducing 
atmosphere, the removal of oxygen atoms occurs from the film network when V2O5 is heated above 
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its melting point that induces the formation of defects or reduced VOx phases. Consequently, the 
structural and morphological disorders and phase instability can be controlled using appropriate 
deposition parameters. 

2.1. Thermal deposition 

The thermal evaporation technique is the simplest method based in the production of flux of 
vapor in a high vacuum chamber (pressure 100 mPa) to form thin films without the presence of 
catalyst. In this method, the substance is evaporated by means of resistive heating. Generally, the raw 
powder is placed in a molybdenum boat heated at Tboat. The modifications of the structure, 
stoichiometry and morphology of the deposited films are obtained by varying the substrate 
temperature Ts, the flow of reactive gases (in cm3 min−1 at standard pressure and temperature, 
expressed as “sccm” hereafter) and the duration of the target evaporation. For example, thermally 
evaporated polycrystalline V2O5 films (10–20 nm grain size) were fabricated using Tboat = 650 ℃ for 
6 h with gas flow 13 sccm Ar + 50% O2 [24]. The nature of the substrate is an important factor to 
obtain films with preferential orientation [25]. V2O5 films deposited on silicon (111) wafers by 
vacuum thermal evaporation were amorphous when deposited at Ts ≤ 200 ℃, while polycrystalline at 
Ts ≥ 300 ℃. This later temperature is optimum for V2O5 films strongly oriented with (001) planes 
parallel to the substrate [26]. Nanostructured V2O5 thin films (25 nm grain size) thermally deposited 
onto Ni substrates at Ts = 300 ℃ show preferential (001) orientation. These films have 
pseudocapacitance of 730 mF cm−2 at current density of 1 mA cm−2 and charge transfer resistance of 
7.5 Ω [27]. The thermally evaporated V2O5 films at Ts = 25 ℃, 100-nm thick, crystallized after 
annealing process at 500 ℃ with grain size 26 nm and exhibited an electrical conductivity of  
5.5 S cm−1 (activation energy of 0.16 eV) [28] and optical bandgap of 2.8 eV. 

2.2. Flash-evaporation 

In the flash-evaporation method, the powders are placed in a reservoir and poured drop by drop 
into the boat heated at Tboat to ensure the vaporization. This process allows the control of the 
vaporization rate and preserves any decomposition of the starting material before evaporation [29]. It 
was demonstrated that V2O5 flash-evaporated films are more homogeneous [30]. Flash-evaopration 
was also used for depositing LixV2O5 [31]. Polycrystalline V2O5 flash-evaporated films have been 
investigated as a function of the deposition conditions: various substrates, substrate temperature (Ts), 
oxygen partial pressure (pO2) and post-annealing treatment (Ta) [9]. Figure 1 presents the evolution 
of the O/V ratio as a function of the temperature of the molybdenum boat [32]. Films with the best 
stoichiometry O/V = 2.497 were obtained for Tboat in the range 910–980 ℃. However, properties of 
flash-evaporated films are strongly dependent on the deposition “quenching rate” ΔT, which is the 
difference in temperature between the melt and the substrate (ΔT = Ta − Ts). 
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Figure 1. Evolution of the O/V ratio in flash-evaporated V2O5 films as a function of the 
boat temperature (From Ref. [32]). 

2.3. Chemical vapor deposition (CVD) 

Chemical vapor deposition (CVD) is a versatile technique that consists of an evaporator and a 
deposition system. The precursor solution is vaporized into a reactor which acts as a flash 
evaporation system. The vapor condenses in a cold-wall reactor in which the substrate placed in the 
central zone is maintained at constant temperature Ts [33]. This technique has been successfully 
carried out to grow V2O5 films using pure or diluted triisopropoxyvanadium oxide VO(OC3H7)3 
precursor [34]. Typical V2O5 film 240 nm thick was formed at Ts = 300 ℃ in the total pressure  
pt = 2400 Pa with a flow of O2 of 100 sccm. V3O7 and V4O7 films are deposited when pt decreases to 
1200 Pa, while V6O13 films are formed at Ts = 350 ℃ and O2 flow rate of 120 sccm. Highly 
crystallized films (94 nm crystallite size) were obtained after post-annealing at 500 ℃ for 2 h in O2 
atmosphere with a slow cooling process to insure a good adherence on substrate. Plasma-enhanced 
chemical vapor deposition (PE-CVD) is a method for large scale film deposition. In this technique, 
glow discharge creating high-energy electrons ionize gaseous molecules and generate chemically 
reactive ions. Heat-treated (500 ℃ for 2 h) films deposited by CVD technique onto Pt foil are highly 
structured with homogeneous and smooth surfaces as shown in Figure 2a. The coherence domains 
along the a- and c-axis are L200 = 71 nm and L001 = 36 nm, respectively. The cross-section image 
(Figure 2b) displays the compactness of annealed V2O5 films [35]. 

Barreca et al. [36] prepared V2O5 thin films by PE-CVD using VO(hfa)2ꞏH2O (Hhfa = 
1,1,1,5,5,5-hexafluoro-2,4-pentanedione) as precursor. This precursor was vaporized at 70 ℃ at the 
rate of 2 × 10−4 mmol m−2 s−1 in a reactor in which argon (constant flow rate  = 40 sccm) and 
oxygen (flow rate 5 ≤  ≤ 20 sccm) were plasma sources. V2O5 thin films deposited at Ts = 200 ℃ 
and 10 sccm of O2 are highly textured (14 nm crystallite size) and grow with the (001) preferential 
orientation. In the metal organic chemical vapor deposition (MOCVD) the organometallic vapor 
phase takers place at moderate pressure (10–1000 hPa). Watanabe et al. [37] prepared V2O5 thin 
films by means of microwave plasma MOCVD on ITO-coated fused silica substrate. Bis-
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acetylacetonatovanadyl, VO(acac)2, VO(C5H7O2)2 heated at ~600 ℃ was selected as vanadium 
precursor. Its vapor was injected into the oxygen plasma generated by the microwave discharge. 
Other experimental conditions were as follows: the substrate was maintained at Ts ≈ 300 ℃, the O2 
flow was  = 1.2 dm3 h−1 under pressure of 650 Pa. Typical polycrystalline film, 120 nm thick, was 
deposited after 15 min. Vanadyl(IV) β-diketonate has been also used with water in a low-pressure 
reactor under different conditions [38]. A novel vanadium(III) precursor such as vanadium(III) 
alkoxide [V(OCMe2CH2OMe)3] was also used, which presents an appreciable volatility at 55 ℃ 
under pressure of 200 Pa [39]. Strongly (00l)-oriented film composites of V2O5–V6O13 were grown at 
temperatures ≥560 ℃ onto fused quartz substrate using vanadyl acetylacetonate as precursor. Single 
phase was obtained for substrate maintained at Ts = 580 ℃ due to the reentrant-type growth  
behavior [40]. V2O5 electrochromic films were grown on flexible polymer substrates using plasma-
enhanced chemical vapor deposition (PECVD). Films were deposited at high rate of 50 nm min−1 
from the decomposition of vanadium oxytrichloride (VOCl3) and O2 [41]. Nandakumar [42] studied 
the growth rate rG of CVD V2O5 films as a function of Ts and reported an Arrhenius behavior with 
0.14 eV activation energy; rG = 50 nm min−1 at Ts ≈ 230 ℃. 

 

Figure 2. Morphology of CVD V2O5 films deposited onto Pt substrate. (a) SEM image of 
film annealed at 500 ℃ for 2 h and (b) cross section (from Ref. [35]). 

2.4. Magnetron sputtering 

Sputtering deposition method is the most popular technique to grow metal-oxide films, since it 
allows faster deposition rates. Its main advantage comes from the production of good surface 
uniformity of as-deposited films. It includes radio-frequency (r.f.) magnetron sputtering [43–46], 
direct current (dc) magnetron sputtering [47–49] and ion beam sputtering [50]. The stoichiometry of 
V2O5 films can be tuned by this evaporation method [51,52]. Typical r.f.-magnetron sputtered V2O5 
films are formed in a plasma sputtering chamber using V2O5 target bombarded by argon ions in a 
plasma of power Pw = 150–300 W. For specific application, low sputtering power Pw < 100 W can 
be used [53]. The reactive deposition is realized by injection of pure argon and oxygen gases, at flow 
rate  < 10 sccm. Silversmit et al. [51] obtained V2O5 films on Si (100) wafers by reactive dc 
magnetron sputtering and studied the influence of deposition parameters on their stoichiometry. 
These experiments were carried out in a vacuum of 5 × 10−5 Pa with a magnetron discharge voltage 
at ~550 V and a plasma constant current of 150 mA. The O2 flow was maintained at  = 3.5 sccm. 
Fateh et al. [54] deposited V2O5 films onto (100) oriented Mg substrates and established detailed 
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synthesis-structure relationships showing the best crystallinity for the film deposited at 80 ℃. 
Lourenço et al. [55] investigated the effect of different oxygen flow rates on the structure of VOx 
films and determined that V2O5 films are obtained at high oxygen flows ( > 9 sccm).  
Benmoussa et al. [56,57] sputtered V2O5 thin films on Corning glass and ITO-coated glass substrates 
for electrochromic application. The films deposited on both substrates are c-axis preferred oriented 
showing that texture is substrate independent.  

 

Figure 3. XRD diffractogram for r.f. sputtered V2O5 films (a) as-deposited at 25 ℃ and 
(b) thermally annealed at 475 ℃ in air for 3 h (from Ref. [46]). 

Yoon et al. [58] compared the structure of V2O5 thin films grown on (100) Si wafers by d.c. and 
r.f. reactive sputtering at room temperature; d.c.-sputtered films are amorphous, while those prepared 
from reactive r.f.-sputtering crystallized with large grain size that is due to the self-bias effect. 
Gianneta et al. [46] deposited VOx films using a base pressure 1 mPa, a r.f. plasma power of 200 W 
and an Ar flow  = 20 sccm. As-deposited films are almost amorphous and exhibit broad XRD 
reflections matching those of VO0.9, while annealing at 475 ℃ in air for 3 h promotes the well-
crystallized V2O5 phase with well-developed orthorhombic shape and grain size >100 nm (see  
Figure 3). Ottaviano et al. [59] reported the improved electrochromic properties of rf reactive 
sputtered films deposited at low O2 flow (2%) showing the highest value of injected charge  
(49.8 mC cm−2) and the greatest differences in optical density. Lin and Tsai [19,60] prepared V2O5−z 
films on flexible PET(polyethylene terephthalate)/ITO (indium tin oxide) substrates. Oxygen 
deficient V2O5−z films (z = 0.13) were formed in a chamber pressure of 6 Pa with Ar and O2 flow rate 
of 4 sccm that show a transmittance variance od 36.5% after 200 cycles. Kang et al. [61] prepared 
nanorod-like V2O5 film by electron-beam irradiated amorphous film, which were obtained by r.f. 
sputtering at power of 200 W at 1 nm min−1 growth rate on alumina substrate. 
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2.5. Pulsed-laser deposition (PLD) 

Extensive works using the PLD technique have been successful for the growth of V2O5 thin 
films. Advantages include an easily control of the film composition by tuning the deposition 
parameters and a good reproducible stoichiometry of the target material in the films [62–73]. In the 
PLD technique, a pulsed laser beam (10 ns duration) is focused by a lens to ablate the V2O5 target. 
The energy of the beam is in the range 100–500 mJ per pulse (laser fluence of 10 J cm−2) with a laser 
pulse repetition of 10 Hz. Target and substrates are placed inside the deposition chamber evacuated 
to ~1 mPa. To avoid depletion of deposit at any given spot, the target rotates at 10 rpm. For reactive 
synthesis, pure oxygen gas is introduced into the chamber with a typical partial pressure (pO2) in the 
range 0.1–10 Pa to obtain single-phased and stoichiometric V2O5 films. Typical deposition rate is in 
the range 2–5 Å s−1. Various laser wavelengths are reported in the literature: 532 nm line of a 
doubled frequency pulsed Nd:YAG laser [63], 248 nm line of a KrF excimer UV laser [62,64] or the 
266 nm line of the quadrupled Nd:YAG laser. Zhang et al. [62] prepared PLD crystalline oriented 
V2O5 films deposited at 200 ℃ in different partial pressure of O2 + Ar mixed gases. The films grown 
in oxygen-rich, pO2 = 0.1 Pa, environment at low substrate temperature Ts ≈ 200 ℃ crystallizes in 
the orthorhombic structure. Iida et al. [65] suggested that films deposited at Ts = 350 ℃ in a chamber 
under partial pressure pO2 = 13.3 Pa using the 238-nm line of a KrF excimer laser have a surface 
morphology suitable for electrochromic application. The same process was used to grow doped films, 
with various elements Nb, Ce, Nd, Dy, Sm, Ag [66]. Fang et al. [74] prepared orientated V2O5 
electrochromic thin films on glass by pulsed excimer laser ablation. Nanocrystalline films highly 
oriented along the c-axis were obtained at lower temperature Ts (200 ℃) that that of thermal vacuum 
deposition (300–500 ℃). McGraw et al. [67] found that the crystallographic texture of PLD V2O5 
films depends mainly on temperature and oxygen pressure rather than on the choice of substrate. 
Films deposited on SnO2/glass substrate are dense and phase pure orthorhombic V2O5. For Ts = 
200 ℃ and pO2 = 2.7 Pa, the films are well (200)-textured, while they are (001) and (101) dual-
oriented for Ts = 500 ℃ and pO2 > 12 Pa. Ramana et al. [75] investigated the structural patterns of 
PLD V2O5 films which revealed that stoichiometric specimens are well-crystallized with the layered 
orthorhombic structure even onto amorphous substrates at Ts = 200 ℃ under partial oxygen 
atmosphere pO2 = 10 Pa. Atomic force microscopy (AFM) analysis gave a consistent picture of the 
surface morphology and microstructure: grains of small size, spherical in shape. Figure 4 shows the 
variation of the grain size as a function of the growth temperature for various substrate materials. The 
evolution of the grain size follows an exponential law (dashed lines) as [76]: 

Lc= L0 exp(− Qd /k B T )
 (1)

where Qd is the activation energy, kB is the Boltzmann constant, T is the absolute temperature, and Lo 
is a preexponential factor that depends on the physical properties of the substrate-deposit. The grain 
size appears to be 50–300 nm for films deposited onto glass, 50–400 nm for films on ITO-coated 
glass and 60–600 nm for films evaporated on Si wafer. Qd of the PLD V2O5 film in the range  
0.43–0.55 eV reflects the nucleation rate [64]. AFM images show that films deposited onto Si (8 nm) 
and ITO-coated glass (10 nm) exhibited lower surface roughness. The dependence of the substrate 
temperature on the gross microstructure of PLD V2O5 films is presented in Figure 5. The domain of 
optimum controlled morphology is illustrated by the shaded region of substrate temperature range 
200 ≤ Ts ≤ 300 ℃. 
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Figure 4. Evolution of the grain size of PLD V2O5 films with growth temperature during 
deposition onto amorphous glass, ITO-coated glass and silicon substrates [64]. 

 

Figure 5. Diagram mapping the effect of substrate temperature on the microstructure 
evolution of PLD V2O5 thin films. The domain of optimum controlled morphology is 
illustrated by the shaded region of substrate temperature range 200 ≤ Ts ≤ 300 ℃ [76]. 

2.6. Electron-beam (e-beam) evaporation 

The e-beam evaporation method implies a high vacuum coating unit with vacuum better that  
0.1 mPa, in which an electron beam accelerated by a voltage of several kV (typically 6 kV) and 
power density of ~1.5 kW cm−2 is scanned on the surface of the target. It is a low-cost technique, 
which allows high deposition rate (30–50 Å s−1) with good control of the structure and morphology, 
and allows for sequential and co-deposition with minimum contamination [8,77–84]. 
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In their early work, Ramana et al. [81] reported the growth of non-stoichiometric V2O5 films 
deposited on Corning 7059 glass substrates maintained at Ts = 280 ℃ in a vacuum of 0.05 mPa, 
while the injection of pure oxygen (partial pressure of 0.1 mPa) produced near-stoichiometric films 
with pale orange yellow color. The XPS experiments revealed that films formed at room temperature 
are nearly stoichiometric, while the films formed at elevated temperatures are oxygen deficient. 
These results are supported by the shift of the vanadyl mode in the FTIR and Raman spectra. 
However, the films deposited at Ts ≈ 420 ℃ in oxygen partial pressure of 10−4 mbar led to vanadium 
ions in their highest oxidation state [8,79]. Alumina-doped V2O5 thin films, (V2O5)100−x(Al2O3)x with 
x = 5, 10, 15, 20 wt.%, were fabricated by e-beam evaporation method [85]. Thiagarajan et al. [84] 
studied the physical properties of highly oriented V2O5 films (0.8–1.2 µm thick, 31–45 grain size) 
grown by electron beam evaporation at 200 ℃ throughout all depositions. It was shown that the 
microstrain decreases with the decrease of the film thickness, due to the reduced dislocation density. 

2.7. Spray pyrolysis 

Spray pyrolysis is considered as a cost-efficient technique and has been widely employed to 
fabricate V2O5 thin films. Currently, the pyrolysis process is performed at relatively low 
temperature >500 ℃ [86–90]. The V2O5 films are deposited through thermal decomposition of 
vanadium precursor such as VCl3 in deionized water [91]. By increasing the spray deposition rates, 
the crystallite size increases, while the microstrain decreases. Nanostructured flower-like V2O5 
(crystallite size of ~25 nm) were prepared by spray pyrolysis from 0.1 mol L−1 ammonium vanadate 
in aqueous solution. Polycrystalline films deposited at Ts = 300 ℃ exhibit the largest carrier density 
3.6 × 1018 cm−3 and the lowest electrical resistivity 5.56 Ω cm−1, which allow to use them as xylene 
sensors [92]. 10% Mo-doped films (~28 nm crystallite size) prepared by spraying VCl3 and MoCl5 in 
aqueous solution on substrate maintained at 380 ℃ crystallize with a tetragonal structure [93].  
Wei et al. [90] prepared V2O5 films using ultrasonic spray method that revealed a small amount of 
V4+ species. These films heat-treated at 350 ℃ show good charge storage stability over 10000 
electrochromic cycles. A d.c. plasma torch was used to atomize the solution VOCl3 precursor, which 
is injected externally into the plasma flame and deposited on the substrate [88]. Nanostructural V2O5 
thin films deposited by spray pyrolysis technique exhibit the highest transmittance when deposited at 
550 ℃. A shift of the absorption edge from 2.5 to 2.8 eV is observed for Ts > 450 ℃ due to modified 
chemical bonds at the film/substrate interface [89]. The influence of the molarity of the spray 
pyrolysis precursor on the structure and morphology of V2O5 films shows that vanadium nitrate 
V(NO3)5ꞏ5H2O with concentration ≥0.1 mol L−1 provides orthorhombic structured films with (001) 
preferred orientation [94]. 

2.8. Sol-gel 

Sol-gel method is a low-temperature wet-chemistry method in which the raw materials are 
mixed at the molecular level. Wang et al. [95] investigated the structural modifications of spray 
deposited V2O5ꞏnH2O xerogel films as a function of post-annealing temperatures. Films sprayed at 
150 ℃ showed broad peaks in their 51V NMR spectra for heat-treatment at Ta ≈ 120 ℃, which gives 
evidence of a distortion of the square pyramids. The structural feature of V2O5ꞏnH2O (with structural 
water) favors the lithium intercalation between the slabs with respect to contracted dried films at  
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Ta > 250 ℃. The effect of deposition conditions and post-annealing treatment of xerogel V2O5 films 
was studied by several groups. Najdoski et al. [96] examined the electrochromic properties of 
(NH4)0.3V2O5ꞏ1.25H2O nanostructured films deposited onto SnO2:F (FTO) as a function of the 
temperature of preparation. Elongated aggregates 250–500 nm length were obtained at 50 ℃, while 
shorter particles (50–300 nm) were obtained at 85 ℃. Chen et al. [97] prepared thin films by spin 
coating of the sol-gel composed by the mixture of V2O5 powders benzyl alcohol (BA) and isobutanol 
(IB) (molar ratio 1:40:4) heated at 110 ℃ for 5 h. Wang et al. [98] fabricated V2O5ꞏnH2O xerogel 
films by reacting V2O5 and H2O2 under ambient conditions. V2O5ꞏ⅓H2O film exhibited the best Li+ 
intercalation properties with a stabilized specific capacity of 185 mAh g−1 at 0.1 mA cm−2 current 
density after 50 cycles. Cazzanelli et al. [99] analyzed the Raman spectra of xerogel films 
intercalated with lithium. V2O5ꞏnH2O xerogel films (1.8 ≤ n ≤ 0) were spin-coated at angular velocity 
of 1500 rpm. Spectral features of Li-intercalated samples show significant effect of the water content 
in the interlayer space inducing new Raman bands at 800 and 950 cm−1. V2O5 films deposited by the 
doctor-blade route using polyol dispersed in waterand acetyl acetone crystallized with the C2/c 
structure, which transformed to orthorhombic Pmmn (86 nm crystallite size) after calcination at 
170 ℃ for 3 h [22]. Dip-coating method was used to produce V2O5 xerogel films from organic 
(vanadium tri-isopropoxide into isopropyl alcohol) and inorganic (V2O5 powers in 15 wt.% H2O2) 
precursors [100,101] 

2.9. Electrodeposition 

A typical electrodeposition experiment takes place in an aqueous solution of vanadium 
precursor such as vanadyl sulfate hydrate (VOSO4ꞏnH2O) or V2O5 powers dissolved in hydrogen 
peroxide as electrolyte using a constant potential (1.7 V vs. Ag/AgCl) [18,102,103]. Liu et al. [104] 
prepared nanostructured V2O5 films by means of cathodic deposition from V2O5 and H2O2 aqueous 
solution. As-deposited samples contained 14% V4+, while annealing at 500 ℃ in air oxidized all 
vanadium cations. Electrochromic V2O5 films were synthesized by electrophoretic deposition of a sol 
formed by the dissolution of V2O5 powers in H2O2 solution with the H2O2/V2O5 ratio of 8:1. The 
deposition occurred in a Teflon vessel at the voltage of 5 V using a Pt rod as counter electrode [102]. 
The electrodeposition experiments carried out by Vernardou et al. [18] consisted in the coating of 
V2O5 powders dissolved in a solution of methanol and water as electrolyte to form an orange 
suspension. Pt rod was the counter electrode. Experiments were performed using deposition current 
density of 0.25 mA cm−2.  

2.10.  Atomic layer deposition (ALD) 

The atomic layer chemical vapor deposition (ALCVD) was successfully applied to grow V2O5 
films [105–112]. This method provides uniform and compact films with a high control of phase 
formation and the film thickness that include atomic layer epitaxy (ALE) and atomic layer deposition 
(ALD). ALD process consists in alternative exposition of a substrate to the precursor fluxes, which 
are timely separated in space. In principle this process is self-limiting as the monomolecular layers 
are absorbed with molecular excess flushed away by evacuation of the system. The vapor pressure of 
the precursor must agree with the deposition temperature chosen. Groult et al. [105,106] prepared 
nanometric V2O5 thin films deposited onto Si wafers (100) by means of ALCVD.  
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The atomic layer deposition (ALD) technique is proven suitable for the growth of uniform and 
pin-hole free V2O5 thin films. ALD is becoming an attractive process to prepare thin films for energy 
storage, because it allows the control of deposit films of thickness in the range 1–100 nm with 
remarkable uniformity and control of the thickness. V2O5 has been synthesized by this process by 
several authors [113–119]. This scalable method, which allows to do bath processes, is based on self-
limited reactions between gas phase precursors and active sites on surfaces. This technique leads to 
monolayer thickness control. The growth of V2O5 thin films consists of the successive cycles of 
deposition of atomic layers from the reaction of a vanadium precursor with oxygen. Various 
vanadium precursors have been proposed such as vanadyl tri-isopropoxide VO(OC3H7)3 (VO(OPri)3, 
VTIP), vanadyl triethoxide (VO(OEt)3), vanadyl triisobutoxide (VO(OBui)3), vanadyl 
acetylacetonate (VO(acac)2) and vanadium acetylacetonate (V(acac)3 (acac = C5H7O2

−)), VTIP being 
the most popular due to its high vapor pressure (38 Pa at 45 ℃) and its rapid reaction with  
water [107–109]. Examination of the literature shows that the choice of ALD precursors has a 
significant impact on the crystallinity and morphology of V2O5 films. One ALD cycle is composed 
of four pulses in the sequence t1/t2/t3/t4, where ti is the duration (in s) of injection of V precursor, 
purge, reactive gas, purge, respectively. For instance, the global ALD reaction of VTIP precursor 
with water is: 

VO(OC3 H7 )3+ 3H2 O →V2 O5+ 6 HOC3 H7  (2)

The pressure of (VTIP) in the reactor is adjusted to 5 mPa and the water pressure to 0.3 Pa. 
Typical cycle to grow V2O5 films lasts 17 s (2 s VTIP, 5 s pumping, 5 s reactive gas and 5 second 
pumping) that makes a growth rate of 0.7 Å per cycle. Several authors demonstrated that the rate-
determining step is the oxidant in O3-based or H2O-based ALD reaction [109,110].  
Keränen et al. [107] prepared ALD V2O5 films deposited onto various metal oxides for catalytic 
applications using VO(acac)2 as V precursor with a N2 flow of 3 dm3 h−1. Chen et al. [111] used a 
water-free system to prepare crystalline as-deposited V2O5 films from VTIP and ozone, using an 
Al2O3 template at low temperature (170–180 ℃). With this process, a deposition rate of 0.27 Å per 
cycle onto Si wafer was achieved. Badot et al. [110] reported a growth rate of ~20 ng cm−2 per cycle 
at 170 ℃ using VTIP + water sequence. With these growth conditions and annealing at 400 ℃, the 
ALD V2O5 films were well-crystallized and preferentially oriented with the (a,b) planes parallel to 
the SnO2-coated glass substrate. ALD V2O5 films deposited onto Ti foil using the VTIP-water vapor 
route in the pulsing sequence—VTIP/N2 purge/H2O vapor/N2 purge of 200/400/2400/1000 ms and 
annealed at 500 ℃ for 2 h showed a small-polaron drift mobility of 1.84 × 10−2 cm2 V−1 s−1 at room 
temperature (activation energy of 0.14 eV) [112]. Ostreng et al. [113] prepared nano-structured ALD 
V2O5 films from vanadyl 2,2,6,6-tetramethylhepta-3,5-dione (VO(thd)2) and ozone at 215 ℃ with N2 
as carrier gas (500 sccm flow) applied as cathode films for lithium microbatteries. 86-nm thick films 
oriented along a (001)/(010) orientation were thus obtained after 2000 cycles. Chen et al. [114] 
employed VTIP precursor with both O3 and H2O as oxidant. For ALD cycles operating in the  
170–185 ℃ window, the water-VTIP route (growth rate 0.4 Å per cycle) produces amorphous films, 
while crystalline films are formed with the ozone-VTIP reaction (growth rate 0.20 Å). The transition 
from amorphous to crystalline structure was characterized by rectangular V2O5 nanograins (20 nm 
size) with a monomodal distribution starting at 400 ℃. 

A comparison of thermal and plasma-enhanced ALD/CVD has been carried out by  
Musschoot et al. [109]. Chen et al. [114] determined that areal energy and power density is optimized 
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with V2O5 thickness round 60 nm. Larger thickness results in a decrease of the rate capability due to 
the small intrinsic diffusion coefficient of lithium, while thinner films suffer from a decrease of 
material loading. The authors estimated that the device would outperform the gravimetric power 
density of the current Li-ion batteries by one order of magnitude. Song et al. [114] adopted to deposit 
V2O5 thin films by ALD using vanadyl tri-isopropoxide and water and showed remarkable 
electrochemical response and voltage-induced insulator-to-metal transition. Ultrathin V2O5 films 
(10–90 nm thick) were prepared by ALD using vanadyl acetylacetonate as the vanadium  
precursor [119]. Crystalline films were obtained below 200 ℃ yielding a growth rate of 4.5 pm per 
cycle. Heterojunction diodes based on TiO2(p)-(n)V2O5 were fabricated as humidity sensor. 

3. Characterizations of V2O5 films 

3.1. Structure and morphology 

V2O5 is the highest oxidation compound of the vanadium oxide system which crystallizes with a 
lamellar orthorhombic structure in space group Pmmn (D2h

13, No. 59) with lattice parameters a = 
11.512 Å, b = 3.564 Å, c = 4.368 Å and V = 179.17 Å3 (see Table 1). It has a layered structure with 
atomic layers in the [100] × [010] plane and van der Waals-type interlayer coupling. The structure is 
formed of three types of oxygen atoms: apical-vanadyl (Ovan), bridge (Obri) and chain (Och) (see 
Figure 6). Oxygen vacancies in V2O5−δ are predominantly of the Ovan type, forming the vanadyl 
bonds. Atomic positions in V2O5 are summarized in Table 1. Pure V2O5 is a diamagnetic 
semiconductor with an energy gap (Eg) of 2.2–2.3 eV [120], while oxygen-deficient material is 
ferromagnetic with spin moment ~2 µB per vacancy [121]. A density functional calcualtion of the 
electronic structure is given in Refs. [122,123]. The role of octahedral deformations has been 
explored in [124]. 

 

Figure 6. Structure of orthorhombic V2O5 with netplane stacking along the (010) 
direction that shows the vanadium and inequivalent oxygen singly coordinated apical 
vanadyl-Ovan, doubly coordinated bridge-Obri, and triply coordinated chain-Och atoms 
(from Ref. [123]). 
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Table 1. Atomic positions in orthorhombic V2O5 (space group Pmmn) (from Ref. [124]). 

Atom Wyckoff position 
Parameters 

x y z 

V 4f 0.10118 0.25 −0.1083 

Ovan 4f 0.10430 0.25 −0.469 

Obr 2a 0.25 0.25 0.001 

Och 4f −0.0689 0.25 0.003 

Figure 7 shows the typical XRD patterns of V2O5 films deposited by PLD (a) and (b) by 
electron beam (EBD) techniques. The spectra of samples deposited at low Ts are rather amorphous, 
while they can be obtained crystallized by raising the substrate temperature and/or increasing p(O2). 
The significant feature is the growth of XRD reflections at ca. 2θ = 20.26° and around 2θ = 41.4° 
that correspond to the (001) and (002) lattice planes of the orthorhombic structure, respectively. The 
(001) reflection is the dominant line for well-crystallized films showing the preferential c-axis 
orientation lying perpendicular to the substrate with stacking ab planes [125]. Gradual increase in 
intensity of the (101) reflection at high Ts is attributed to a re-organization process of the in-plane V–
O–V chains in flash-evaporated film. This crystallographic behavior seems to be the general trend for 
the growth of V2O5 films; it has been found for various deposition techniques: as-prepared r.f. 
sputtered films under a gas mixture of Ar and O2 [56,126], sol-gel spin-coated films annealed at 
400 ℃ [127], pulsed-laser deposited V2O5 films [63], plasma-enhanced CVD method [128] and 
vapor deposition in high vacuum [26,129] on heated substrates. The c-axis preferred growth was also 
found for films prepared by ALD [110,113] and EBD [79] processes. Well-ordered V2O5-(001) films 
were obtained by the oxidation of vacuum deposited vanadium layers with oxygen partial pressure of 
50 hPa [130]. Due to the imperfect stacking of ab planes built up of Ovan, the (001) orientation for 
crystalline V2O5 films deposited by PECVD from a vanadyl(IV) β-diketonate compound appears at 
Ts as low as 150 ℃ [38], while higher temperature Ts = 240 ℃ for films prepared by CVD of VOCl3 
with water [131]. Note that films prepared from sol-gel precursor display complex behavior due to 
the large fraction of water content. For instance, the XRD spectrum of spin-coated films obtained 
from V2O5 + H2O2 sol-gel (crystallized at Ta = 150 ℃) displayed the dominant (110) Bragg line, 
which disappeared and was replaced at Ta = 300 ℃ by the (00l) reflections showing the nucleation 
parallel to the substrate [121]. Other workers found that spin-coated films crystallize above  
350 ℃ [132]. The texture of V2O5 films grown by ALD technique varies with the number of 
deposition cycles (nc). For nc < 1000, the predominant orientation is along the (001) plane, which is 
modified for nc ≈ 2000 with the appearance of sharp (0k0) Bragg reflections. Finally (021) and (061) 
reflections are observed for nc ≈ 5000. This is attributed to the overgrowth of nuclei on the surface of 
platelets with their edges orientated normal to the substrate [113]. Similar thickness (df) effect was 
observed on e-beam deposited films [84]. Moreover, the increase of the peak broadening of the (001) 
lattice place with df is attributed to microstrains inversely proportional to the crystallite size that 
linearly decreases with the increase in df. 

Rajendra-Kumar et al. [133] deposited V2O5 films at various substrate temperatures (25 ≤ Ts ≤ 
400 ℃) using vacuum evaporation technique. The orthorhombic lattice parameters “a” and “c” of 
polycrystalline films determined by Nelson-Rieley function were found to decrease when the 
deposition temperature increases (Figure 7a). According to the model proposed by Gilles and 
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Boesman [134] from EPR spectroscopy, these structural changes are assigned to the increase of non-
stoichiometry (oxygen vacancies) leading to a contraction of the (001) interplanar spacing. 

        

Figure 7. XRD patterns ox deposited V2O5 films. (a) PLD films grown at various 
substrate temperatures [75]. (b) EBD films grown using various oxygen partial  
pressures [79]. 

The crystallite size Lc of composites is calculated using the Scherrer’s formula by considering 
the (002) reflection line: 





cosB

K
Lc  (3)

where K is the shape factor, which varies with the crystallite shape (0.89 for spherical crystallites), λ 
is the wavelength of X-ray radiation (0.15406 nm), B is the full-width at half maximum (FWHM) 
expressed in radians and θ is the Bragg angle. Generally, the peak intensity and the full-width at half-
maximum (FWHM) vary with the deposition conditions, which indicates differences in crystallinity, 
particle sizes and ordering of local structure between samples. The analysis is obtained by the 
combination of the Scherrer and Bragg formulæ: 

2
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where <e2> denotes local strain (defined as ∆d/d with d the interplanar spacing). From the slope 
16<e2> and intercept K2λ2/Lc

2 of the plot of B2cos2θ as a function of sin2θ, one can estimate the strain 
<e2> and coherence length Lc. The variation of the local strain as a function of the substrate 
temperature for V2O5 films deposited by PLD method is reported in Figure 7b. 
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The surface morphology and surface topography are currently investigated by scanning electron 
microscopy (SEM) and atomic force microscopy (AFM) as a function of at various Ts. The AFM 
images recorded at the scan area of 2 × 2 μm2 for thermally evaporated V2O5 films are displayed in 
Figure 8 [82]. These patterns show that both the surface roughness and the grain size increase with 
the increase in Ts. Surface roughness of 27 nm and grain size of 130 nm are found for films deposited 
at 300 ℃. It was demonstrated that the morphology, structure and optical and electrical properties of 
dip-coated V2O5 films are affected by the sol aging [135–138]. Senapati and Panda [131] 
investigated nanoscale films prepared by spin coating of V2O5ꞏnH2O sol at different stages of aging. 
Microstrains of films 92–137 nm thick were found to decrease from 4.93 × 10−3 for fresh sol to  
2.62 × 10−3 for 192 h for aged sol in relation to the water loss, while the optical bandgaps decrease 
from 2.66 to 2.36 eV suggesting a decrease in the localized states with aging. 

 

Figure 8. AFM images of the V2O5 films at various Ts: (a) Ts = 25 ℃, (b) post-annealed 
film deposited at 25 ℃, (c) Ts = 300 ℃ and (d) Ts = 500 ℃ (from Kumar et al. [82]). 

3.2. Optical properties 

Optical properties of V2O5 thin films were investigated by means of absorption measurements 
for the determination of the optical bandgap, dispersion parameters and spectral window of 
electrochromic films. Optical absorption coefficient α is calculated by the relation: 

T =
(1− R)2 exp(− α d )

1− R2 exp(− 2α d )  
(5)

where T and R are the spectral transmittance and reflectance and d the film thickness. The 
interference effect due to internal reflection at normal incidence is negligible for higher optical 
density (αd > 1) that reduce Eq 1 to: 
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T ≈ exp(− α d )  (6)

and the optical absorption coefficient becomes: 

α= − (1/d ) ln (T )  (7)

The optical bandgap Eg
opt of a semiconductor is calculated using the interband absorption theory: 

α h ν i= A(h νi− E g
opt)n

 (8)

where νi is the incident photon energy, A is a probability parameter and n is the transition coefficient 
with n = 2 for indirect transition and n = 3/2 for direct bandgap that is the case of V2O5. 

Overall, optical absorption spectra, electrical conductivity and electron paramagnetic resonance 
(EPR) spectra of V2O5 show a polaronic character. The polaron originates from the oxygen vacancies 
that result in an excess of electrons localized in the empty 3d orbitals of vanadium atoms. 
Consequently, V5+/V4+ pairs are closed to oxygen vacancies and result in an absorption in the 
infrared spectrum. The optical transmittance Topt of V2O5 prepared by e-beam deposition at different 
oxygen partial pressure revealed a sharp increase of Topt in the spectral range 550–600 nm. This is 
due to the fundamental absorption edge that shifts towards the higher energy with the increase in 
oxygen partial pressure. Figure 9 shows the plots of (αhνi)

2/3 vs. photon energy for V2O5 deposited at 
Ts = 280 ℃ under various oxygen partial pressure. The high value of the optical bandgap Eg =  
2.32 eV determined by extrapolation of the linear part of the graph to zero (α = 0) indicates that the 
films are stoichiometric for p(O2) = 20 mPa, while oxygen vacancies are created at lower pressure.  

 

Figure 9. Tauc plots of (αhνi)
2/3 vs. photon energy for V2O5 e-beam deposited at Ts = 

280 ℃ under various oxygen partial pressures (from Ref. [81]). 
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The partial filling of oxygen vacancies results in a decrease of the concentration of electronic 
localized states and an increase of Eg. The overall process of oxygen loss can be expression by the 
Kroger notation: 

Oo
x ↔ Vo

x+
1
2

O2

Vo
x ↔ Vo

 •+ e ' ↔ Vo
••+ 2e '

 

(9)

Lourenço et al. [55] studied the effect of oxygen flow rate  on the optical properties of r.f. 
sputtered V2O5 films. The highest Eg = 2.56 eV was obtained at low  = 1 sccm while higher  
produced films with an optical bandgap in the range 2.41–2.45 eV. Optical bandgap data of the 
literature for r.f. sputtered films are in the range 2.15–2.40 eV [56,139,140]. The evolutions of both 
the width of electronic localized states Eels and the bandgap Eg as a function of Ts and as a function of 
p(O2) for e-beam evaporated V2O5 films are shown in Figure 10a,b respectively. These results show 
that stoichiometric films were obtained at p(O2) > 5 mPa and Ts < 100 ℃ [79]. 

        

Figure 10. Evolution of both the width of electronic localized states Eels and the bandgap 
Eg as a function of Ts and as a function of (a) p(O2) and (b) Ts for e-beam evaporated 
V2O5 films (from Ref. [81]). 

Song et al. [141] determined the work function of the annealed V2O5 films synthesized by 
VTOP-based ALD method at 135 ℃ using valence-band ultraviolet photoelectron spectroscopy 
(UPS). The results showed that the valence band maximum (Ev) is located at ∼2.45 eV below the 
Fermi level (EF) and gave evidence of an indirect bandgap (Eg) of ~2.63 eV for V2O5 film annealed 
at 500 ℃ for 1 h in air. Irani et al. [89] investigated the structural and optical properties of 
nanostructured V2O5 thin films deposited by spray pyrolysis technique. The substrate temperature Ts 
appears to be the key growth along the (001) direction with an orthorhombic structure. It was pointed 
out that crystallites increased with elevating Ts, reached a maximum at Ts = 450 ℃ and decreased for 
Ts > 450 ℃. Optical characterizations showed that the highest transmittance occurs for Ts = 550 ℃ 
and the absorption edge shifts from 2.5 to 2.8 eV due to the formation of chemical bonds at the 
interface between V2O5 film and substrate. 

(a) (b) 
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Beke et al. [73] determined a bandgap of 2.52 eV for PLD V2O5 films prepared onto amorphous 
glass substrate with p(O2) = 13.3 Pa and Ts = 220 ℃ but did not distinguish between indirect allowed 
(n = 1/2) and direct forbidden (n = 3/2) transitions. Luo et al. [142] reported the indirect allowed 
transition (n = 2) that leads a decrease of Eg from 2.29 to 2.02 eV with increasing Ts from 275 to 
320 ℃ for d.c. magnetron sputtered films. Similar trends were obtained on PVD films [143]. 
Ramana et al. [72] investigated the effect of the grain size on the optical properties of PLD films. 
The increase of grain size from 0 to 300 nm produces a red shift of the absorption edge (decrease of 
Eg) from 2.47 to 2.12 eV following a parabolic behavior that is attributed to the imperfections at 
grain-boundary regions. The optical absorption was explored on e-beam deposited V2O5 films grown 
at 200 ℃ on glass substrate with various thicknesses (~0.8–1.2 µm) [84]. The authors elucidated the 
role of film thickness; the indirect optical bandgap Eg = 2.36 eV is found for thicker films. Optical 
constants of V2O5 films, i.e., refractive index nopt, extinction coefficient k, and plasma frequency ωp 
have been investigated by Akl [144]. Determination of the optical bandgap of 2.25 eV was obtained 
after roughness correction for d.c. magnetron reactive-sputtered α-V2O5 films after heating at 500 ℃ 
for 1 h in oxygen atmosphere [145]. Ellipsometry measurements were performed as a function of 
incident angles on (001) oriented sputtered films yield the values of the refractive index n = 2.67, 
optical absorption coefficient k = 0.0011 and thickness d = 165 nm [146]. 

3.3. X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is the common technique to investigate the 
composition of the V2O5 surface and the oxidation states of elements [79,97,147–150]. The typical  
V 2p and O 1s XPS spectra recorded in the energy range of 510–540 eV for V2O5 thin films 
deposited by EBD technique at various Ts are displayed in Figure 11. The clear evolution of the 
spectral response corresponds to the V/O ratio in VOx lattices. Analysis of the XPS spectrum of a 
V2O5 film deposited at Ts = 400 ℃ under oxidizing atmosphere p(O2) = 0.01 mPa is presented in 
Figure 12. The binding energies of the V 2p levels are 516.9 and 524.5 eV for V 2p3/2 and V 2p1/2, 
respectively, with a splitting of 7.6 eV, whereas the binding energy of the O 1s level is 529.6 eV. For 
more detailed information, the background corrected spectrum was fitted by Gaussian profiles. 
Different V 2p and O 1s components are detected upon deconvolution by the fit by six Gaussian 
functions at binding energies of 514.8, 516.9, 520.8, 524.2, 529.7 and 532.5 eV that correspond to 
V4+ 2p3/2, V

5+ 2p3/2, O 1s’ satellite of O2−, V5+ 2p1/2, O 1s of O2−, and O−, respectively, as shown in 
Figure 12. From these results, the relative amounts of ions in different chemical states could be 
calculated by taking into account the atomic sensitivity factors: 1.41 for V 2p3/2 and 0.63 for O 1s. 
Note that the energy splitting between V 2p3/2 and V 2p1/2 levels is Δ = 7.3 eV for stoichiometric 
VO2.5 film. 

The chemical composition and topography of V2O5 thin films at different steps of Li 
insertion/de-insertion have been investigated by quantitative XPS and AFM analyses [151–154]. 
From the first cycle, a solid electrolyte interface (SEI) layer has grown on the whole electrode 
surface, which consists of Li2CO3 aggregates. XPS analysis shows that various chemistries appeared 
during the cycle of charge/discharge such as partial dissolution of the initial Li2CO3 layer, residual 
deposit of ROLi (R = radical), PEO and oxalates. The overall dissolution/residue deposit process 
explains the capacity loss noticed at the end of the first cycle. Time flight secondary ion mass 
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spectroscopy (ToF-SIMS) was carried out to analysize the ion distribution in V2O5 thin  
films [150,155]. 

 

Figure 11. XPS spectra of V2O5 films prepared by e-beam deposition for various 
substrate temperatures 25 ≤ Ts ≤ 200 ℃. 

 

Figure 12. Analysis of the XPS spectrum of a V2O5 film deposited at Ts = 400 ℃ under 
oxidizing atmosphere p(O2) = 0.01 mPa. 

3.4. Vibrational spectroscopy 

Among the local probes, Raman scattering (RS) and Fourier transform infrared (FTIR) 
spectroscopy are techniques sensitive to the short-range environment of oxygen coordination around 



368 

AIMS Materials Science                                                            Volume 5, Issue 3, 349–401. 

the cations [156]. As a first approximation, the spectra consist of a superposition of the components 
of all local entities present in the same material in contrast to diffraction data, which give a weighted 
average. As a rule, the frequency and relative intensity of the bands are sensitive to coordination 
geometry and oxidation states [157].  Both FTIR and RS spectroscopies are also probing the 
stoichiometry of films (Figure 13). The vibrational spectra of V2O5, which crystallizes in the 
orthorhombic system (Pmmn space group) with D2h

13 spectroscopic symmetry, are composed of 
internal modes of the V2O5 layer in the ab crystal plane and the external mode in the low-frequency 
region (~144 cm−1) [158]. V2O5 has the spectroscopic D13

2h symmetry with the Wyckoff 4f position 
for the vanadium, vanadyl and chain oxygen atoms whereas the bridge oxygen occupies the Wyckoff 
2a position [124]. The vibration modes associated to the D2h factor group decomposed as: Γopt =  
7Ag + 7B1g + 3B2g + 4A3g + 3Au + 3B1u + 6B2u + 6B3u. According this decomposition, 21 modes of 
vibration are Raman active (7Ag + 7B1g + 3B2g + 4A3g) and 18 modes are infrared active (3Au +  
3B1u + 6B2u + 6B3u) [158,159]. 

 

 

Figure 13. Vibrational spectra of V2O5 crystalline films prepared by pulse laser 
deposition. (a) FTIR spectrum of film deposited onto Si wafer. (b) Raman spectrum of 
film deposited onto glass substrate. 

Ex situ and in situ FTIR spectra of V2O5 crystalline films prepared by dip-coating from V-
oxoisopropoxide sols have been investigated as a function of the degree of Li+ intercalation and 
analyzed in terms of dispersion analysis (LO and TO phonons) [160]. A diagnostic test to 
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differentiate the safe region upon intercalation has been established by the red-shift of the V–OA 
stretching frequency at 1016 cm−1 and the disappearance of the bridging V–OB–V stretching mode at 
795 cm−1. 

Numerous studies of the Raman spectroscopy of V2O5 films have been performed on as-
deposited, heat-treated, and Li-intercalated samples [9,99,161]. The typical Raman spectrum exhibits 
more or less well-defined internal and external modes, indicative of the film purity and 
crystallization (Figure 13b). The internal modes (in the high-frequency region) are the V=O bending 
vibration at 283 and 405 cm−1 and the bending vibration of the bridging V–O–V bonds at 485 cm−1, 
the V–O stretching mode at 525 cm−1 that results from the corner-shared oxygen atoms, and the 
vanadyl terminal oxygen stretching mode at 993 cm−1. The external modes are generated by the 
motions of two V2O5 layers of the elementary unit cell; these translational vibrations occur at 144 
and 196 cm−1 (skeleton vibrational modes) [71,76]. The RS spectra of V2O5 films deposited by flash-
evaporation onto silicon substrate show frequency shift of the vanadyl mode at 995 cm−1 (due to the 
shortest (1.58 Å) V=O double chemical bond stoichiometry) in relation with the stoichiometry of the 
film [9,161]. Ramana et al. [71] reported a frequency shift of the vanadyl vibration at 993 cm−1 with 
the substrate temperature for V2O5 films prepared by PLD technique at 200 ≤ Ts ≤ 500 ℃, which is 
attributed to the stress developed in the film. As XRD patterns indicate that the films deposited at 
Ts > 200 ℃ are polycrystalline with a preferred orientation along the c-axis, the shift of the vanadyl 
mode suggests a structural organization that introduces a stress associated to a compression in the 
layered structure. Raman spectroscopy was utilized to characterize the microstructure of V2O5 films 
prepared by d.c. magnetron sputtering on Si (111) wafer. Optimized films with a mere desirable 
layer-like lattice were obtained for a gas flow ratio O2/Ar of 3/2 [162]. Several works investigated 
the microstructure of amorphous V2O5 thin films by means of Raman [30,163,164] and FTIR [75] 
spectroscopy. Lee et al. [163] reported the spectral fingerprint of as-deposited amorphous V2O5 films, 
which exhibit two broad bands at ca. 520 and 650 cm−1 assigned to the stretching modes in a 
disordered V–O–V lattice. The absence of the skeleton mode at 144 cm−1 is due to the lack of long-
range order. Flash-evaporated V2O5 thin films at 25 ≤ Ts ≤ 200 ℃ display a poor crystallization 
observed by the Raman features, which result in the appearance of the intense external mode at  
144 cm−1 and ill-resolved internal Raman modes in the high-frequency region [30].  

3.5. Electrical properties 

V2O5 is a n-type semiconductor. Its semiconducting properties are mainly due to the oxygen 
non-stoichiometry, which are the consequence oxygen vacancies V2O5−δ. The electrical conductivity 
of V2O5 thin films have been investigated by means of d.c. four-point probe method and a.c. 
impedance spectroscopy as a function of the deposition parameters and post-annealing  
treatment [165]. The temperature dependence of the conductivity follows an Arrhenius law in a large 
range of temperatures. The general condition for semiconducting behavior is that the transition-metal 
ion could exhibit several valence states such as V4+ to V5+ in V2O5, so that electron hopping takes 
place between these two levels. If C = V4+/(V4+ + V5+) is the ratio of the concentration of low 
valence ions with the total concentration of transition metal ions and A is the average hopping 
distance, one can estimate the number of charge carriers N = CA−3. Using C ~ 0.02 and A = 0.384 nm, 
the carrier mobility is quite low lying between 10−7 and 10−2 cm2 V−1 s−1 [166]. Murawski et al. 
showed that the electrical transport arises from thermally activated hopping that takes place between 
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the electronic states for V2O5 films made by PVD at 840 ℃ [167] and for amorphous V2O5 films 
obtained by flash evaporation [31]. In V2O5, the V4+/V5+ ionic pair is bound to positively charged 
defects, i.e., oxygen vacancies. The removal of an electron from the vacancy and produce a free 
carrier requests an energy e2/κd. The electrical conductivity is usually described in terms of Mott’s 
theory for electronic transport in transition-metal glasses [168]: 
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where νo is a phonon frequency, and α is the rate of the wave function decay. The thermal activation 
energy can be expressed as 

W = W h+ W d /2
 (11)

where Wh corresponds to the small polaron formation and Wd to the disorder energy arising from the 
energy difference of neighboring sites. The separation of W into a polaron and a disorder term is a 
rather difficult task, which can be partly solved using data taken at low temperatures.  
Julien et al. [166] reported that oxygen-deficient V2O5 films grown at high substrate temperature  
(Ts ≈ 250 ℃) are highly conductive with σe = 10−2 S cm−1 due to the quenching rate ΔT of the films.  

Figure 14a,b present the Arrhenius plots of the electrical conductivity σ and the activation 
energies of flash-evaporated films as a function of the substrate temperature and annealing conditions. 
These results show that (i) the σ of films deposited at Ts = 25 ℃ is always lower than that of films 
deposited at higher temperature even after a heat treatment, and (ii) there is a hierarchy in the 
conductivity such as σad < σarg < σox, where σad, σarg and σox are the conductivities of films as-
deposited, annealed in Ar, and annealed in O2, respectively. The resistivity of an as-grown film at  
Ts = 25 ℃ is ρ = 5 × 104 Ω cm with an activation energy Ea = 0.43 eV, whereas that of a film heat-
treated in O2 atmosphere is ρ = 0.62 Ω cm with Ea = 0.15 eV. We expect that C is a function of Ts 
and Ta due to the preferable desorption of oxygen during the growth. The increase in σ is attributed to 
the primary consequence of the structural modification from amorphous to polycrystalline state, and 
from oxygen deficiency of films grown with smaller O/V ratio at high substrate temperature. Similar 
effect was observed on the activation energy of the electrical conductivity which decreases with the 
increase of Ts. Sanchez et al. [167] reported a conductivity of 1.4 × 10−5 S cm−1 at 25 ℃ with an 
activation energy of W = 0.41 eV and a disordered activation energy Wd = 0.16 eV for flash-
evaporated films. Kumar et al. [82] reported that thermally deposited films at Ts = 300 ℃ exhibit an 
electrical resistivity of 3.6 Ω cm. Luo et al. [142] studied the impact of the substrate temperature on 
the electrical properties of sputtered nanostructured films having semiconducting character. Four-
point probe measurements show that the square resistance of film decreases exponentially from 46 to 
33 kΩ/ with the increase of Ts from 230 to 320 ℃. 

Rosaiah et al. [83] reported the effect of Ts on the electrical conductivity of e-beam deposited 
V2O5 films onto ITO-coated flexible Kapton substrate. They showed that σ increases from 2 × 10−6 
to 3 × 10−2 S cm−1 by the increase of Ts from 30 to 300 ℃. Crystalline V2O5 thin films (26 nm grain 
size) deposited by thermal evaporation and annealed at 500 ℃ exhibited thermoelectric properties 
with a maximum Seebeck coefficient of −218 µV K−1 and electrical conductivity of  
0.055 S cm−1 [28]. The electrical conductivity was ~10−7 S cm−1 with a high activation energy Ea = 
0.9 eV for sputtered V2O5 films (85 nm thick) obtained in O2/Ar ratio of 20% [169]. Wang et al. [170] 
demonstrated that a rather thick (200 nm) crystalline V2O5 films can work properly as hole-
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extraction slab for organic photovoltaic devices. V2O5 thin films grown via r.f. reactive sputtering on 
fused silica substrates showed good electrical response for use as sensors methane and propane  
(50–3000 ppm) with an activation energy of 0.153 eV and a CPE exponent of n = 1.046, which 
approximates a CPE due to Debye-like capacitor [171]. 

       

Figure 14. (a) Plots of σT vs. 1/T for flash-evaporated V2O5 films obtained in various 
conditions. (1) as-deposited at Ts = 25 ℃, (2) as-deposited at Ts = 250 ℃, (3) grown at  
Ts = 25 ℃ and annealed in O2, (4) grown at Ts = 25 ℃ and annealed in Ar, (5) grown at 
Ts = 250 ℃ and annealed in O2 and (6) grown at Ts = 250 ℃ and annealed in Ar. The 
annealing treatment was carried out at 300 ℃ for 48 h. (b) Plots of σRT and Wh vs. Ts. 

3.6. Intercalation of V2O5 films 

The Li+ intercalation into V2O5 films has been widely studied on specimens grown on various 
substrates using all deposition techniques described above. The insertion/de-insertion process occurs 
in a large potential window 3.5–1.5 V vs. Li+/Li according the reaction: 

V2O5 (orange)+ x Li+  + x e-↔Lix V2 O5(green)
 (12)

where x is the molar fraction of ions and electrons inserted in the host lattice. About 3e− per mole of 
V2O5 could be reached at the end of the discharge (1.5 V), providing a theoretical specific capacity of 
442 mAh g−1. The insertion of 3Li+ implies the formation of several lithiated phases during discharge 
with the transitions α→ε (0 < x < 0.5), ε→δ (0 < x < 0.5), δ→γ (0 < x < 0.5) that are characterized by 
voltage plateaus at 3.4, 3.2 and 2.3 V vs. Li+/Li, respectively. This is illustrated in Figure 15a for film 
formed by 50-nm grain size cycled at C/20 rate (20 mA g−1 current density). The corresponding 
cyclic voltammogram is shown in Figure 15b. The irreversible ω-Li3V2O5 is formed at the end of the 
discharge (1.85 V). Subsequent charge appears as a smooth S-shaped voltage profile with a mid-
voltage at 2.67 V. As displayed in Figure 15b, four distinctive peaks are observed at 3.30, 3.05, 2.15 
and 1.85 V vs. Li+/Li during a cathodic scan, which is a multi-step Li+-ion intercalation process. The 
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corresponding phase transforms from α-V2O5 to ε-Li0.5V2O5 (3.30 V), δ-Li1V2O5 (3.05 V), γ-Li2V2O5 
(2.15 V) and ω-Li3V2O5 (1.85 V) represented by the relations: 

V2O5  + 0.5Li  + 0.5 e- →Li0.5 V2 O5  (13)

Li0.5 V2 O5+ 0.5Li++ 0.5e- →LiV2 O5   (14)

LiV2 O5+ 1Li++ 1e- →Li2 V2 O5   (15)

Li2 V2 O5+ 1Li++ 1e- →Li3 V2 O5   (16)

In the following anodic scan, one peak is recorded at 2.67 V vs. Li+/Li corresponding to the 
delithiation of the ω-Li3V2O5 phase. 

       

(a)          (b) 

Figure 15. (a) Discharge-charge of Li//V2O5 thin-film cell carried out in the potential 
range 3.6–1.5 V vs. Li+/Li at C/20 rate (20 mA g−1 current density). (b) Cyclic 
voltammogram showing the formation of the LixV2O5 phases. 

The early work of Park et al. [172] showed that spin-coated V2O5 xerogel films can 
accommodate up to 3.3 moles Li/mole V2O5 in the potential range 3.8–1.9 V vs. Li+/Li. The films are 
highly reversible hosts and deliver a specific energy density 1137 Wh kg−1 and specific capacity 
1682 C g−1. The Li+ insertion into V2O5 films deposited by CVD, rf-sputtered and ALD techniques 
onto various substrates such as Pt, Ti, stainless steel, glass and F-doped SnO2 was studied by  
Groult et al. [34,35,126,106,108]. Films grown on stainless steel and heat treated at 350 ℃ show a 
discharge capacity of 115 mAh g−1 at C/23 rate in the potential range 3.8–2.8 V vs. Li+/Li. The best 
performances (200 mAh g−1 at C/23 rate) were obtained in the electrochemical window 3.8–2.2 V for 
V2O5 deposited onto Ti foil. Jourdani et al. [173] reported an increase of the optical absorption edge 
from 2.3 to 2.8 eV and the (110) Bragg reflection shift from 2θ = 24.8° to 25.2° for spin coated V2O5 
intercalated at −0.4 V vs. SCE. 
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The structural evolution of Li-intercalated V2O5 films has been investigated by in situ and ex 
situ XRD, FTIR and Raman spectroscopy [174–176]. Meulenkamp et al. [177] investigated the 
different phases of lithiated sol-gel V2O5 films in the range 0 ≤ x ≤ 1.4 using in situ X-ray diffraction 
measurements and compared the structural changes with those of V2O5 films prepared by other 
techniques. Spectroscopic studies of Li-intercalated V2O5 polycrystalline films have been reported by 
several groups [71,174,178–180]. Cazzanelli et al. [99] analyzed the Raman spectra of xerogel films 
intercalated with lithium that showed a significant effect of the water content in the interlayer space 
inducing new Raman bands at 800 and 950 cm−1. Julien et al. [174] investigated the vibrational 
modifications of Li intercalated V2O5 films deposited by flash evaporation. They proposed that the 
tensile stress in the LixV2O5 film affects the Raman skeleton mode which shifts from 145 to 154 cm−1 
due to an increase in the restoring force (Figure 16). Jung et al. [175] confirmed this hypothesis by 
the correlation of the spectral shift of the Raman mode at 145 cm−1 with the stress change as a 
function of the degree of intercalation in the LixV2O5 lattice.  

 

Figure 16. Frequency shift of the Ag vanadyl mode as a function of the lithium insertion 
in V2O5 films grown on Si (1000) wafer. The vibrational spectra reveal that the LixV2O5 
phases possess considerably different local symmetry (from Ref. [71]). 

Micro-Raman spectroscopy was used to study of electrochemically intercalation LixV2O5  
(0 ≤ x ≤ 1.8) samples obtained from V2O5 films deposited by various techniques, i.e., ALD and r.f. 
sputtering. Results showed the phase transformation from α-LixV2O5 to γ-LixV2O5 via ε and δ phases. 
A linear correlation exists between the V–O1 stretching (vanadyl) mode frequency and the V–O1 
bond length in V2O5 ALD film [179,180]. Careful examination of the high-frequency region of RS 
spectra of LixV2O5 shows that, for the Li-rich phase (0 ≤ x ≤ 0.5), the vanadyl stretching mode at  
984 cm−1 splits into two components, the first one at 975 cm−1, the second at 957 cm−1 for x ≥ 0.7. 
This is due to the evolution of the local environment of oxygen atoms, i.e., the continuous increase of 
the interlayer distance with x and it reflects the existence of two different lithium sites [159].  
Ramana et al. [71] analyzed the Raman features of the LixV2O5 films prepared by PLD technique in 
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the range 0.00 ≤ x ≤ 1.25. Crystalline V2O5 thin films synthesized by means of r.f. sputtering without 
post-heating treatment were obtained with different crystallographic preferential orientations by 
changing the growth parameters (Ts and deposition rate) as follows: (i) h00-oriented films (ab planes 
perpendicular to the substrate) were prepared at Ts = 300 ℃ for short time td, (ii) longer deposition 
time at low Ts leads to 110-oriented films and (iii) the 001-oriented films were obtained at high Ts 
irrespective on td [45]. Electrochemical tests of the h00-oriented films in Li/EC-DEC–LiPF6/V2O5 
cells showed specific discharge capacities >300 mAh g−1 in the potential range 3.8–1.5 V, with a 
capacity fading of 3% at C rate over 70 cycles. 

Numerous studies of the electrochemical insertion reactions of Li+ ions in the V2O5 film lattice 
were tested in Li cells with aprotic electrolyte such as 1 mol L-1 LiClO4 in propylene carbonate (PC) 
solution or 1 mol L−1 LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) (1:1)  
solution [58,181–186]. Park et al. [187] investigated the discharge capacity of V2O5 film cathode as a 
function of the thickness. Films (230 nm thick) obtained by sputter deposition at power of 100 W in 
working pressure of 1.3 Pa delivered a specific capacity of ~105 µAh cm−2 s−1 at current density  
500 µA cm−2 s−1. Lithium microcells with optimized V2O5 films sputtered in O2/Ar (50/50) 
atmosphere were investigated by Yoon et al. [58]. When cycled in the range 1.5–3.7 V vs. Li+/Li, the 
cell delivered a specific capacity of 125 µAh cm−2 µm−1 after a first cycle of formation. Nano-porous 
crystallized V2O5 films (~35 nm crystallite size) fabricated by gel electrodeposition with the addition 
of block copolymer Pluoronic P123 delivered a specific discharge capacity of 240 mAh g−1 at  
300 mA g−1 current density after 40 cycles [188]. Electrochemical studies of V2O5 films deposited by 
spin coating of vanadium-tri(isopropoxide)oxide gel show that the specific capacity and Li+ diffusion 
coefficient increased from 4.2 × 10−12 to 6.8 × 10−10 cm2 s−1 in the non-stoichiometric films [189]. 
Nanostructured V2O5 thin films made by anodic deposition from V2O5/H2O2 solution displayed a 
large discharge capacity of 596 mAh g−1 at a current density of 1.08 A g−1 and a fading rate of 1% 
per cycle in a cell using 1 mol L−1 LiClO4 in PC as the electrolyte and a Pt plate as the counter 
electrode [190]. The V2O5 thin film cathode with thickness of ~30 nm fabricated using biological 
templates delivered specific capacities of ~12 µAh cm−2 which is 7–8 times higher than that of planar 
V2O5 cathodes [191]. The effects of ageing on Li intercalation in V2O5 films, i.e., the evolution of the 
SEI, were investigated by a combination of techniques such as cyclic voltammetry, XPS, RBS and 
AFM for more than 3000 cycles [192]. 

Kinetics of Li+ ions in the lattice of V2O5 films has been widely studied. Li-ion transport, i.e., 
ionic conduction (σion) and diffusion coefficient (DLi) have been investigated using cyclic 
voltammetry, galvanostatic titration and electrochemical impedance spectroscopy  
(EIS) [106,193,194]. DLi varies in the range 6 × 10−10–2 × 10−11 cm2 s−1 in  sol-gel crystalline V2O5 
thin films (1–3 µm thick) obtained by impedance spectroscopy [195]. Miyazaki et al. [196] 
investigated DLi of sputtered films oriented along the a- and b-axis using the chronoamperometry 
method. Kinetics along the a-axis DLi ≈ 10−11 cm2 s−1 was larger than along the b-axis 10−13 ≤ DLi ≤ 
10−14 cm2 s−1. McGraw et al. [197] obtained DLi vs. x(Li) in amorphous V2O5 films by PITT 
measurements on an h00 and 110 oriented films made by PLD method. DLi was initially  
5 × 10−13 cm2 s−1 and decreased steadily from 1.2 × 10−13 cm2 s−1 at x = 0.4 to 5.52 × 10−14 cm2 s−1 at 
x = 1.5 in LixV2O5. Lantelme et al. [106] analyzed the phase transition process controlled by 
diffusion in V2O5 films deposited by CVD method. The component diffusion was estimated as a 
function of the film thickness: DLi = 0.48 × 10−12 cm2 s−1 for a semi-infinite configuration. DLi was 
also estimated from both PITT and EIS measurements using a semi-infinite diffusion model [198]. 
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Evolution of the diffusion coefficient DLi in V2O5 film (160 nm thick) as a function of the electrode 
potential is shown in Figure 17. This figure indicates a good agreement between the two techniques. 

 

Figure 17. Evolution of the diffusion coefficient of Li+ ions in the V2O5 thin film lattice 
determined by EIS and PITT assuming a semi-infinite diffusion model (from Ref. [198]).  

Pyun and Bae reported a decrease of the diffusion coefficient of xerogel films from 10−10 to 
10−12 cm2 s−1 as the electrode potential fell from 3.0 to 2.2 V vs. Li+/Li [193]. The transport 
mechanism was described as a transition from the diffusion-controlled insertion to an interfacial-
controlled reaction due to a change of the lattice versus water in V2O5ꞏnH2O xerogel. Ultrathin  
(17 nm) V2O5 thin were fabricated by spin coating and annealed at at 250 ℃ for 3 h in a muffle 
furnace. In the potential range, these films deliver a specific capacity of 262 mAh g−1 corresponding 
to Li1.78V2O5 when discharge in the potential range from +1 V to −1 V vs. SCE. The capacity loss is 
0.03% per cycle over 600 cycles [199]. The effect of porosity on anomalous behavior of the Li 
intercalation into V2O5 film prepared by the polymer (Tergitol from Sigma-Aldrich Co.) surfactant 
templating method has been studied by AFM and EIS [200]. The diffusion impedance Zd, which 
displays a constant phase element (CPE) response can be expressed by: 
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where L is the film thickness, n the valence of inserted ion, A the active surface, F the Faraday 
constant, ∂E/∂C the slope of the coulometric titration and αd the CPE exponent. Analysis showed that 
αd is constant in the frequency range 0.63–0.10 Hz is significantly affected by the surface roughness 
and the formation of pores with a large size. The chemical diffusion coefficient of 1 × 10−11 cm2 s−1 
was suggested. Thin films fabricated by electrostatic spray deposition (ESD) followed by heat 
treatment at 350 ℃ in air demonstrated a high energy efficiency. Ultra-high rate capability is 
obtained at 56C rate with a specific capacity of 86.7 mAh g−1 in the potential range 2.5–4.0 V vs. 
Li+/Li corresponding to the transitions of three phases: α ↔ ε ↔ δ. When cycled below 2.5 V, these 
ESD films have poor electrochemical performance due to irreversible structure degradation of the γ-
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phase [201,202]. Mui et al. [203] established a relationship between microstructure and kinetics in 
as-deposited and heat-treated sputtered V2O5 thin-film cathodes. DLi was determined by the GITT 
method for two submicrometric films: finer-grained 80 nm size and coarsed-grained 250 nm size. 
Both samples display similar values of DLi of 1 × 10−11 for the α-Li0.03V2O5 phase and  
5 × 10−12 cm2 s−1 for the ε-Li0.35V2O5 and δ-Li0.9V2O5 phases, whereas DLi in finer-grain film 
decreases to 1 × 10−13 and 1 × 10−15 cm2 s−1 for the α–ε and ε–δ two-phase systems, respectively. Li+ 
diffusion coefficients of electrochemically inserted V2O5 films (0.6–3.6 µm thick) deposited by r.f. 
sputtering with h00 or 110 preferred orientation was studied using EIS measurements [194,204]. The 
easy diffusivity of Li+ ions (2 × 10−11≤ DLi ≤ 3 × 10−10 cm2 s−1) along the b-direction is due to the 
lattice expansion along the c-axis. The plot DLi vs. x(Li) displays two minima at x = 0.14 and 0.6 
that confirm the results of Lu et al. [198]. An energy barrier of 0.98 eV along the b-direction was 
found from the Arrhenius plot of DLi vs.1/T. 

4. Doped V2O5 films 

The poor electrochemical performance of V2O5 films during long term cycling attributed to low 
electronic conductivity can be improved by replacing a dopant for one of the V atoms forming V4+ 
cations [205,206]. Grégoire et al. [207] showed that octahedral chains are formed with metal dopant 
atoms making stable the structure during electrochemical process. The EXAFS analysis of Cu- and 
Zn-doped V2O5 showed that the environment of vanadium atoms is not altered by the doping atoms 
(M), while new V–O–M interactions are triplets [208]. The enhanced stability of M-doped vanadium 
pentoxide films used as electrode for lithium microbatteries and electrochromic devices comes from 
the distorted V2O5 layered structure. For example, the introduction of Ti dopant in spin-coated V2O5 
films results in a disturbance of the diffraction peaks of (001) and (002) planes. The formation of V–
O–Ti bond opens the interlayer space, distorts the lamellar structure and reduces the oxidation state 
of V [209]. Numerous metallic ions have been investigated as dopants, including Ag, Fe, Mo, Ta, 
Mg, Mn, Ti [17,66,93,202,209–214]. 

Dip-coated Ag-doped V2O5 xerogel films with a molar ratio Ag/V in the range 0.005–0.5 
showed an increase of the electronic conductivity by 2–3 orders of magnitude that allowed an 
insertion capacity of 4 Li per mole of AgxV2O5 with an excellent reversibility [215]. AgyV2O5 thin 
films were prepared by rf magnetron co-sputtering in 14% partial oxygen pressure pO2 = 14% from 
metallic Ag and V2O5 targets. Ag0.26V2O5 films were amorphous and showed improved intercalation 
properties due to the porosity and the additional influence of Ag+ ions to the redox reaction [205]. 
Nam et al. [216] investigated the electrochemical properties of copper-doped V2O5 thin film prepared 
by d.c. reactive magnetron co-sputtering within atmosphere O2:Ar ratio of 10:90. These films were 
tested as cathode materials in CuxV2O5/Lipon/Li cell and showed stable cycleability beyond 500 
cycles with average capacity of 50 µAh cm−2 µm−1. Mo-doped V2O5 films were grown by thermal 
evaporation technique onto Ni substrates maintained at Ts = 250 ℃ and applied as electrode in 
supercapacitor with 1 mol L−1 KCl solution electrolyte. A maximum specific capacity of  
175 mF cm−2 was obtained for 4 at.% Mo-doped V2O5 films [17]. The effect of the annealing 
temperature on the structure of Mo-doped V2O5 films electrochemically deposited resulted in the 
increase of the interlayer distance from 1.16 nm for as-deposited to 1.38 nm for film annealed at 
250 ℃ that enhanced the Li+ ion motion in the electrochromic matrix [217]. 
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Tantalum-doped V2O5 thin films were deposited by sol-gel dip-coating method using anhydrous 
isopropyl alcohol as solvent [211]. 5 mol% Ta doped films as counter-electrode for electrochromic 
device exhibited a charge density of 70 mC cm−2 with high stability up to 1500 cycles. Mg-doped 
V2O5 films deposited by RF magnetron reactive sputtering onto SnO2-coated glass substrates were 
studied for various amount of dopant. Low Mg content (2 at.%) enhanced the specific discharge 
capacity and the diffusion coefficient of Li+ inserted ions, while high Mg content (15 at.%) favored 
the electrochromic window and the switching response time [212].  

Molybdenum acts as a n-type dopant in V2O5 that results in an increase of the carrier 
concentration and a shift of the absorption edge towards shorter wavelengths [93]. Several 
techniques were used to prepare V2O5 doped with Mn such as electrodeposition [218], e-beam 
evaporation [219], and dip-coating [213]. 

Mn-doped V2O5 films were fabricated by dip-coating route with post-annealing at 250 ℃ in air 
for 3 h using ~1.67% of Mn(Ac)2ꞏ4H2O as Mn2+ source. Structural and elemental analyses showed 
that: (i) Mn doping suppresses the orthorhombic symmetry, (ii) V4+ and V5+ coexist, (iii) the 
formation of oxygen vacancies is due to the increase in the Mn2+ cation size. The suggested formula 
was (Mn,V)2O4.74(VÖ)0.26. The intercalation/deintercalation process is enhanced by the oxygen 
vacancies that eliminate the phase transition and reduce the irreversible capacity [182,213].  

Sn-doped V2O5 films were obtained by drop-casting and further heat treatment at 450 ℃ in air 
for 2 h. As measured by XPS experiments, the 10% Sn4+ ions accommodation is compensated by the 
reduction of V+5 to V4+ ions. The introduction of Sn atoms causes a slight expansion of the unit 
volume due to the small lattice expansion along a- and c-direction, which indicates the presence of 
Sn4+ ions between the VO5 layers, forming SnO6 octahedra [220]. Ce-doped V2O5 films prepared by 
sol-gel route and annealed at 400 ℃ showed a phase transition from α-V2O5 orthorhombic to β-V2O5 
tetragonal structure. Film doped with 1 mol.% Ce exhibited the best ion storage capacity of  
~207 mC cm−2 [221]. Titanium doped V2O5 films have been widely investigated as intercalation 
hosts for electrochromic devices [209,214,222–225]. Sol-gel dip-coated (100 − x)V2O5ꞏxTiO2 films 
as electrochromic electrodes were formed with Ti content up to 20 mol.% by reacting vanadium and 
titanium tetra-isopropoxide as precursors [214]. The best results were obtained for the proper amount 
of Ti dopant (5 mol.%) showing that 550 nm-thick films switched with a coloration from pale yellow 
to a greenish state when reduced with 5.4 mC cm−2 of lithium. Wei et al. [209] reported a remarkable 
improved stability of the WO3-based electrochromic devices using Ti-doped V2O5 films. The device 
utilizing the optimized V2O5:Ti electrode (V:Ti = 2:1) lasted 200,000 cycles in the transmittance 
range 2–62% without degradation. An increase of the Li intercalation capacity from 14 to  
27 mC cm−2 for 5% Ti-doped V2O5 films prepared by spin coating of inorganic sol-gel precursors 
was attributed to the non-stoichiometry and the smaller grain size [222]. Lee and Cao [223] 
demonstrated an Li+ intercalation performance improved by 100% in 20 mol.% Ti-doped V2O5 
polycrystalline films that results from interaction force between adjacent V2O5 slabs. Highly stable 
V2O5–TiO2 films fabricated by sol-gel electrodeposition [224,225] were proposed as electrochromic 
windows using PProDOT-Me2 that is poly (3,3-dimethyl-3,4-dihydro-2H thieno[3,4b][1,4]-di-
oxepine). Tungsten-doped V2O5 films were deposited by rf magnetron sputtering on non-alkali glass 
substrate. Due to their good thermal insulation function, these films were applied as self-cleaning 
windows or anti-fogging glasses. The optimal thermal insulation temperature is 19.3 ℃ for 3 wt.% 
W-doped V2O5 thin films [226]. 



378 

AIMS Materials Science                                                            Volume 5, Issue 3, 349–401. 

5. Nanocomposite films 

V2O5-based nanocomposite films have been fabricated for several applications, such as 
electrochromic devices and gas sensors. Such a nanocomposite was obtained with V2O5 obtained 
from an aqueous solutions of equimolar vanadium chloride and ammonium tungstate and F-doped 
SnO2-coated glass substrates maintained at Ts = 400 ℃. Coloration efficiency (CE) of ~49 cm2 C−1 
was obtained for a film mixed with 15% WO3 which is stable up to 1000 cycles [227]. Thin (240 nm) 
and thick (485 nm) V2O5–MoO3 films were deposited on conducting (SnO2:F) glass by e-beam (3 kV) 
and thermal vacuum deposition (EBD and TVD, respectively) for opto-electronic applications [228]. 
A specific capacity of 80 µAh cm−2 s−1 after 70 cycles in the potential range 1.5–3.9 V vs. Li+/Li was 
delivered by MoO3–V2O5 nanocomposite thin film electrodes deposited by r.f. sputtering from dual 
targets [229]. Mixed V2O5–WO3 thin films were deposited by pulsed spray pyrolysis technique onto 
glass [227]. Sol-gel deposited (1 − x)WO3ꞏxV2O5 films at x = 0.035 showed the best electrochromic 
performance with a brownish blue [230]. Thin films of (V2O5)1−xꞏ(MoO3)x (0 ≤ x ≤ 1) were 
fabricated by e-beam evaporation in p(O2) = 2 × 10−2 mPa and Ts = 150 ℃. The optical bandgap 
increases and the electrical conductivity decreased with the increase of composition x [231]. V2O5–
28 at.% MoO3 TVD thick films deposited onto borosilicate glass were amorphous, while thin films 
were crystalline (crystallite size 38 nm) with strong reflections along (131), (160) and (270) direction. 
The bandgap varies linearly with the atomic wt.% of MoO3 in V2O5–MoO3 EBD thin films, i.e., from 
2.35 eV for 10 wt.% to 2.70 eV for 90 wt.%. Composite V2O5 xerogel films assembled with 
polypyrrole (PPy) showed high electrical conductivity and fast electrochemical response that makes 
them candidates for redox sensor in flow injection analysis [232]. Graphene/V2O5/MoO3 
nanocomposite film was synthesized by dip-coating via sol-gel preparation of the precursors. This 
composite shows fast switching electrochromic performances with bleaching time of 1.25 s and the 
coloration time of 1.40 s [20]. V2O5/graphene nanocomposite films prepared by direct intercalation 
method using V2O5 sol and graphene were developed for their use in fast switching electrochromic 
devices. The intercalation of graphene improves the stability and the optical reversibility of the films, 
i.e., 1.5 times larger than that of V2O5 xerogel, due to the fast electron mobility of  
1.5 × 104 cm2 V−1 s−1 in graphene [233]. Thin film electrodes for supercapacitors were made of 
V2O5/carbon nanotubes composites. A symmetric capacitor formed by identical V2O5/CNT 
electrodes operates in a wide potential range of 1.6 V in aqueous electrolyte delivering a volumetric 
energy density of 41 Wh dm−3 [234]. V2O5 xerogel films were modified by poly(ethylene-oxide) 
(PEO). The inserted structure is modified the interaction of hydrogens with oxygens of the V–O 
bonds that shields the interaction between Li+ ions and V2O5 slabs resulting in an improved anodic 
electrochromic property [235]. 

6. Applications 

The early potential applications of nanostructured V2O5 were found in the field of lithium-ion 
batteries [236,237], thin-film microbatteries [12,108,238], actuators [239], catalysis [240], humidity 
sensors [241], electrochromic display devices [139,242], optical switching memories [243], 
antirelection coating [81]. 
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6.1. Li microbatteries 

Since the work of Bates et al. [12], V2O5 thin films have been extensively investigated as 
positive electrodes (so-called cathodes) in rechargeable lithium microbatteries constituted by a 
lithium metal anode, an amorphous inorganic electrolyte and amorphous or crystalline V2O5 [244]. 
The most popular solid-electrolyte thin film Li2.9PO3.3N0.46 (named Lipon) was deposited by r.f. 
magnetron sputtering of Li3PO4 in N2 ambient. Its ionic conductivity is 2 × 10−6 S cm−1 at  
25 ℃ [245,246]. A typical solid-state battery (SSB) is built by 1 µm thick amorphous V2O5 film 
deposited at 25 ℃, a 1 µm thick solid electrolyte and 5 µm thick lithium film (5 times in  
excess) [247,248]. Currently, thin-film cells are evaluated at different current densities and their 
delivered capacity is expressed by surface and thickness in mC cm−2 µm−1 or µAh cm−2 µm−1. 
Considering the theoretical specific capacity of 440 mAh g−1 for LixV2O5 with uptake of 3 Li per 
formula and the density d = 3.36 g cm−3 of V2O5, the theoretical specific capacity is Qth =  
147.8 µAh cm−2 µm−1 for a film as dense as the crystalline material. The schematic cross-section of a 
thin-film lithium microbattery is presented in Figure 18. 

 

Figure 18. Schematic cross-section of a thin-film lithium microbattery. 

Prior Li//V2O5 cell cycled in the potential window 3.6–1.5 V delivered a capacity  
~100 µAh cm−2 µm−1 at 10 µA cm−2 [12]. Vanadium oxide films (VOx) prepared by several 
techniques such as PECVD, PLD, rf-sputtering at the National Renewable Energy Lab. (USA) 
exhibit high discharge capacity and are highly stable during electrochemical cycling. Both crystalline 
and amorphous PLD V2O5 films (Ts = 200 ℃) deliver a discharge specific capacity of 380 mAh g−1, 
while for the most stable films prepared by PECVD and exhibiting an O/V ratio close to that of 
V6O13 (0.5 μm thick) the discharge capacity exceeds 408 mAh g−1 over 4400 cycles. These results 
indicate that the PECVD technology is very attractive for manufacturing rechargeable lithium 
microbatteries [62,67]. Typical experimental conditions for the deposition of a thin-film battery 
made by r.f. sputtering are summarized in Table 2 [249,250]. A solid-state film cell including a 
crystalline V2O5 cathode (2.4 µm thick), a Lipon electrolyte film (1.4 µm thick) and a lithium metal 
film (3.5 µm thick) operated in the potential 3.8–2.15 V vs. Li+/Li. Figure 19 displays the discharge-
charge profiles of the SSB at 10 µA cm−2 current density. After the first cycle of formation (SEI 
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formation), a stable specific capacity of 30 µAh cm−2 was obtained with a cathode film 2.4 µm  
thick [250]. 

Table 2. Experimental conditions for the deposition of thin-film battery active materials [250]. 

Component Target Power density (W cm−2) Gas (sccm) Deposition pressure (Pa) 

V2O5 Vanadium 4.5 Ar:O2 (50:5) 0.55 

Lipon Li3PO4 2.2 N2 (80) 2 

Lithium Li Thermal evaporation 

 

Figure 19. Discharge-charge profiles of a c-V2O5/Lipon/Li SSB cycled between 3.8 and 
2.15 V at 10 µA cm−2 current density (from Ref. [250]). 

Optimized  conditions for rf-sputtering deposition (Ts = 250 ℃, Pw = 50 W) provide discharge 
capacity of 30.2 µAh cm−2 µm−1 with two potential plateaus at 3.5–3.6 V that corresponds to the Li 
uptake 0 < x < 1 in LixV2O5. Assuming a gravimetric density of 2.5 g cm−3 for rf-sputtered films, the 
discharge capacity is 121 mAh g−1. A capacity loss of 0.0076% per cycle was reported over 2000 
cycles [251]. V2O5 thin films obtained by electrostatic spray-deposition (ESD) onto Pt substrates 
from triisopropoxy-vanadium oxide in 0.05 mol L−1 ethyl alcohol solution were tested in Li cells 
with 1 mol L−1 LiClO4/propylene carbonate (PC) as electrolyte. The crystallized films annealed at 
275 ℃ exhibit a good cycleability and high capacity of 270 mAh g−1 at a current rate of 0.2C. After 
25 cyles at 1C rate the capacity remains stable at 260 mAh g−1 [252]. Navone et al. [253] reported the 
fabrication of all-solid-state lithium microbatteries using crystalline sputtered V2O5 thin film (1.2 µm 
thick) as cathode and lithium phosphorus oxynitride (Lipon) (1 µm thick) as solid electrolyte. The 
electrochemical performances are strongly affected by the cathode morphology; its porosity depends 
on the oxygen flow during the film deposition; thus, a 0.6 µm thick porous film was optimized using 
an oxygen flow of 12.5 sccm (p(O2) = 0.05 Pa). Such a microcell film showed a stable discharge 
capacity of 35 µAh cm−2 at a current density of 10 µA cm−2 between 3.8 and 2.15 V vs. Li+/Li. 
Electrochemical performance of 50 µAh cm−2 was obtained with the use of a 1 µm thick dense film. 
All-solid-state thin-film lithium cells with the configuration Li/Lipon/LixV2O5/Cu were fabricated on 
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stainless steel (SS) substrate using sequential deposition techniques. The amorphous V2O5 cathode 
film was lithiated by vacuum evaporation of pure Li metal to form the Li1.3V2O5 cathode film  
(500 nm thick). The microbattery was formed during the first charging cycle, where lithium anode 
was electroplated in between the Lipon electrolyte layer and the stainless-steel substrate. These “Li-
free” cells (1 cm2 active area) delivered a specific capacity of 43 mAh cm−2 µm−1 at a current density 
of 0.1 mA cm−2 in the potential range 3.8–1.8 V vs. Li+/Li and showed a good stable cycleability up 
to 770 cycles at 0.1 mA cm−2 current density [254]. All-solid-state microbatteries Li1.5V2O5/Lipon/Li 
were fabricated by the successive deposition of active elements on Si/Ti substrate as follows: (i) the 
substrate was first coated with 0.2 m thick gold film to form a current collector; (ii) crystalline 
LixV2O5 films with x = 0.8 and 1.5 (1 µm thick) were prepared by thermal evaporation of metallic 
lithium (0.2 µm thick) deposited on a magnetron sputtered pristine material. This cathode element 
was keep at rest for 5 days to ensure the diffusion of Li ions into the V2O5 matrix; (iii) the in situ 
solid electrolyte film was obtained by reactive sputtering of Li3PO4 in N2 atmosphere (p(N2) = 2 Pa) 
at a power of 350 W to ensure a deposition rate of 034 µm h−1; (iv) the Li anode (3.5 µm thick) was 
obtained by thermal evaporation at growth rate of 150 nm min−1. The all-solid-state microbattery 
delivered a typical specific capacity of 50 µAh cm−2 in the potential range 2.15–3.80 V vs.  
Li+/Li [255]. 

V2O5 thin films prepared  by means of cathodic deposition from V2O5 and H2O2 in aqueous 
show excellent electrochemical properties as cathodes. The films had a specific discharge capacity of 
240 mA h g−1 retained after 200 cycles with a 1.3C rate (200 mA g−1) that corresponds to an energy 
density of 723 Wh kg−1. Even at high 70C rate, V2O5 film electrodes retained a good discharge 
capacity of 120 mAh g−1 [104]. Ostreng et al. [113] reported remarkable electrochemical properties 
of strongly structured ALD V2O5 films as cathodes in Li microbatteries. The best performance was 
obtained a discharge rate of 120C for more than 1500 cycles for 10-nm nanostructured film.  
McGraw et al. [197] investigated the intercalation mechanism in LixV2O5 thin films deposited by by 
pulsed laser deposition and estimated the chemical diffusion coefficients D̃ of Li+ ions from 
potentiostatic intermittent titration technique (PITT) measurements. D̃ varies in the range from  
1.7 × 10−12 cm2 s−1 to 5.8 × 10−15 cm2 s−1 in crystalline PLD films, while D̃ = 5 × 10−13 cm2 s−1 in 
amorphous V2O5 films. The general trend is a decrease of D̃ upon Li intercalation in the host lattice 
reaching the final value of 5.5 × 10−14 cm2 s−1 at Li1.5V2O5 (δ phase). The specific discharge capacity 
334 mAh g−1 of 10% Sn-doped V2O5 film is twice that of pure V2O5 film [220]. This superior 
electrochemical performance is attributed the stabilization of VO5 slabs by Sn4+ ions that produces 
higher diffusion coefficient of Li+ ions. High-rate V2O5-based Li-ion thin film polymer cells show 
outstanding long-term cyclability. Cathode thin film growth was performed by r.f. sputtering (power 
100 W) in high vacuum (1 mPa) at the 1.3 Pa partial pressure of the Ar/O2 gas mixture  
(ratio 2:1) [256]. The V2O5/solid polymer/Li cells were electrochemically tested in the potential 
range 2.5–3.8 V at current regimes ranging from 1.5C to 10C. Stable specific capacity of  
100 mAh g−1 was maintained up to 5C after 300 cycles. 

Recent developments of V2O5 thin films as cathode elements of rechargeable microbatteries 
shows the general trends of amorphous films. Zeng et al. [257] reported that films prepared via sol-
gel and liquid deposition method show a gradual activation upon cycling that yields higher capacity 
(~200 mAh g−1 after 200 cycles) and faster kinetics. This good performance was attributed to the 
novel nanostructure obtained from mild synthesis conditions. Mattelaer et al. [258,259] prepared 
amorphous films by ALD technique based on tetrakis[ethylmethylamino]vanadium in combination 



382 

AIMS Materials Science                                                            Volume 5, Issue 3, 349–401. 

with water and ozone. Galvanostatic charging and discharging performed at 1C in the potential range 
3.5–2.9 V (LiV2O5) and 4.0–1.5 V (Li3V2O5), the thin films cells deliver volumetric capacities of 488 
and 810 mAh cm−3, respectively. Chae et al. [260] compared the electrochemical features of 
amorphous (a-V2O5) and crystalline (c-V2O5) films. The high performance of a-V2O5 with a 
reversible specific capacity >600 mAh g−1 at 13C rate was attributed to the absence of irreversible 
phase transitions and lithium ions trapping. This remarkable rate property for a-V2O5 films is due to 
the vacant sites that open the Li+ diffusion pathways [261]. Zhang et al. [238] made a all-solid-state 
battery V2O5/Lipon/LiCoO2 prepared by r.f. magnetron sputtering in which the V2O5 (200 nm thick) 
acts as anode film. This microbattery (1.03 µm thick) delivered a volumetric capacity of  
9.5 µAh cm−2 µm−1 after 40 cycles. 

6.2. Supercapacitors 

Electrochemical capacitors (ECs) known as “supercapacitors” employ the electrical double-
layer phenomenon to store energy. There are two subclasses of ECs: the electrochemical double-
layer capacitors (EDLCs) having a non-faradaic charge character and the pseudocapacitors based on 
faradaic electrochemical redox reaction. Among transition-metal oxides used as ECs electrode, V2O5 
has attracted attention because of its pseudocapacitive features, broad oxidation states and high 
specific capacitance 294 F g−1. Reports on the properties of V2O5 thin films as electrodes for 
supercapacitors are rather sparse [17,234,262,263]. Films deposited onto Ni substrates by dc-
magnetron sputtering in O2:Ar (1:8) atmosphere and grown with predominant (001) orientation are 
composed of 32-nm grain size and surface roughness of 14 nm. These films exhibit high specific 
capacitance of 238 F g−1 at current density of 1 mA cm−2 [263]. 4 at.% MoO3-doped V2O5 films 
obtained by thermal evaporation on Ni substrates, in which Mo atoms substitute for V, exhibit a 
specific capacitance of 175 F g−1 [17]. Wu et al. [234] fabricated V2O5/CNT films in three steps: (i) 
mixture of carbon nanotubes (CNTs) and V2O5 with ethyl cellulose in ethanol and terpilenol as 
uniform and viscous slurry, (ii) evaporation of ethanol and “doctor blade” coating onto alumina 
substrate and (iii) annealing at 350 ℃. Reversible redox reaction was evidenced by cyclic 
voltammetry providing a specific capacitance of 216 F g−1 at 5 mV s−1 that is 5.2 times of that of 
CNTs (41 F g−1) and a volumetric capacitance of ≈460 F cm−3. This electrode maintains a power 
density of 22.2 kW L−1. 

6.3. Electrochromic devices 

A typical electrochromic device (ECD) includes an electrochromic layer, an electrolyte layer 
and an ion storage layer. Both electrochromic and storage layers are deposited on transparent 
substrates coated by transparent conductive film. ECDs operate by a change in optical properties 
between different colors. V2O5 is utilized as a counter electrode material in  
ECDs [22,65,96,264–269]. During the optical switching, it provides electrochemical redox reactions 
that balance charge transfer at the electrochromic working electrode. The typical electrochromic 
reaction of V2O5 can be expressed by the double injection of ions and electrons (Eq 12). The 
transmittance variance (ΔT) is defined by [270]:  

Δ T (%)= T b− T c   (18)
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where Tb and Tc are the transmittances (in %) of bleached and colored states, respectively. The 
coloration efficiency (CE) is defined as the change in the optical density (ΔOD) per unit of electrode 
area (A) at a given wavelength, as follows: 

CE= Δ OD /(q/ A)= log (T b/T c)/(q / A)
  (19)

where q is the inserted charge capacity and the color efficiency (η) is defined by:  

η= Δ OD /q   (20)

Following the work of Sarminio et al. [271] there is a close correlation between the stress 
change in the crystalline film and the electrochromic properties. Tensile stress varies with the x(Li) 
composition, the largest obtains with the δ-LiV2O5 phase. V2O5 thin film electrochemically deposited 
onto ITO glass from a poly-vanadic acid sol were used in ECD cell [272]. The cell was tested more 
than 8 × 104 times and its response time was 2–20 s, depending upon the cell voltage.  
Shimizu et al. [273] developed an electrochromic display device using V2O5 thin film deposited by 
spin coating of V2O5 powder dissolved into a mixed solution of benzyl alcohol and iso-butanol. The 
films coated onto ITO glass followed by annealing at Ta > 300 ℃ are crystalline and exhibit 
excellent reversibility of the electrochromism. Mesoporous V2O5 films prepared by hydrolysis of 
vanadium tri-isopropoxide in the presence of polyethylene glycol (PEG) have shown that the 
surfactant promotes the formation of micrometric crystallites highly suitable for the development of 
advanced ECDs [274]. V2O5 thin films deposited by means of microwave plasma MOCVD have a 
transmittance of 70% at 400 nm absorption edge. The reversible Li intercalation reaction occurs with 
a change in the film color from yellow (V2O5) to blue (LiV2O5) [37]. The addition of the organic–
inorganic template 3-isocyanatopropyltriethoxysilane (ICS) and poly(propylene glycol) bis-
2(ammino-propyl-ether) (2-APPG) in sol-gel deposited V2O5 electrochromic thin film implements 
the storage capacity and increases the diffusivity of Li+ ions by modification of the surface structure 
of the film [275]. Magnetron sputtered V2O5−z thin films onto flexible polyethylene 
terephthalate/indium tin oxide (PET/ITO) substrates at oxygen flow rate of 2 sccm were oxygen 
deficient with z = 0.169 and offered a light modulation of 43.3%. After 200 cycles, at wavelength of 
400 nm, an optical density change and color efficiency of 0.38 and 102.5 cm2 C−1 were obtained, 
respectively [276]. Similar ECD devices were fabricated at 23 ℃ by Lin and Tsai [19], showing an 
oxygen deficiency z = 0.13 and a transmittance modulation of 36.5% at wavelength of 400 nm. 

Recent studies show that high switching speed and coloration efficiency are obtained for 
titanium-doped V2O5 thin film electrochromic devices [277] and spray-deposited lithium-doped 
V2O5 [278]. The ammonium intercalated V2O5 xerogel thin film prepared at 50 and 85 ℃ show two-
step color changes: yellow/green and green/blue related to the redox process of V4+/V5+ states [96].  

6.4. Gas sensors 

Because of their excellent catalytic properties, V2O5 thin films have attracted great interest as 
gas sensors. The adsorbtion of gaseous molecules and catalytic reactions are due to the active sites 
formed by V5+ ions with d0 electronic configuration [279,280]. Especially in thin film form, V2O5 is 
used in sensor of volatile organic compounds (VOCs) emitted by industries such as benzene, toluene, 
acetone, methanol, xylene, etc. that are hazardous substances to human health [70,281–287]. For a 
short review of V2O5-based resistive gas sensors, see Ref. [171]. Nanocrystalline V2O5 thin films 
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deposited by a spray pyrolysis technique at Ts = 300 ℃ had a preferential orientation along the (001) 
direction and revealed the highest sensing response in the presence of ethanol vapor [280]. 
Nanocrystalline V2O5 thin films synthesized by the ethanol suspension were developed as solid-state 
sensors. A reversible reaction occurs with ammonia with the formation of ammonium metavanadate 
(bleaching), which is turn back to the starting state after annealing in air at 350 ℃ [279]. The 
polycrystalline V2O5 films prepared by spray pyrolysis were found to be highly sensitive towards 
VOCs. The selective nature of the films deposited at Ts = 300 ℃ are shown in Figure 20 [92].  

 

Figure 20. Response of V2O5 films prepared bybspray pyrolysis at Ts = 300 ℃ for 
different VOCs vapors at concentration of 100 ppm (from [92]). 

V2O5 films fabricated by PLD technique were characterized as ammonia sensors even in the 
presence of NO used in diesel engine exhaust [70]. V2O5 thin films 200–600 nm thick were 
fabricated at 290 ℃ on fused silica and alumina by means of rf reactive sputtering from a metallic 
vanadium target for use as gas sensor. Thin films exhibit good response towards hydrogen  
(5–300 ppm), methane and propane (50–3000 ppm) [171]. Ultrathin crystalline epitaxial V2O5 films 
(10–90 nm thick) were deposited onto c-Al2O3 by ALD method with oxygen plasma. The films 
exhibiting a (001) preferred orientation are used as humidity sensors [119]. Nanostructured V2O5 
films deposited by dc reactive magnetron sputtering have also been proposed as 2-propanol vapor 
sensors with an excellent response towards 5–200 ppm under ambient atmosphere [287]. 

6.5. Healthy and safety issues 

A very detailed review (210 pages) on the toxicity of V2O5 can be found on the web site [287]. 
In short, V2O5 is toxic, and it is specified on the U.S. National Library of  Medecine [288] that 
probable oral lethal dose for humans is between 5 and 50 mg/kg or between 7 drops and  
1 teaspoonful for a 70 kg (150 lb.) person. In practice, however, there is little occasion to eat such an 
amount of vanadium pentoxide and absorption can occur in humans following inhalation exposure. 
In this case, V2O5 is readily absorbed through the lungs. The effects from exposure may include 
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burns to the skin and eyes, tracheitis, bronchitis, emphysema, pulmonary edema, or bronchial 
pneumonia. The American Conference of Governmental Industrial Hygienists (ACGIH) has 
established a threshold limit value time-weighted average (TLV TWA) of 0.05 mg/cu m for 
respirable dust. When absorbed, V2O5 is eliminated, mainly by urine. In practice, the protection 
against this product thus concerns people who have to manipulate or prepare it in factories since they 
are placed in situation where over-exposure may occur. The hygiene and safety policy of laboratories 
and institutions that are concerned is given in [288]. 

While hygiene  and safety policy practice when handling or dealing with V2O5, this material 
plays an increasing role to make progress in environmental pollution and industrial safety issue, 
owing to its use for gas sensing application, reviewed in [289]. The list of targeted gas is constantly 
increasing [286]. 

7. Concluding remarks 

V2O5 is one of the most  important  material for many applications, including optical switching 
devices, gas and humidity sensors, smart widows, window for solar cell, photocatalysis, for 
electrochromic devices [82], color filters [146], reflectance mirrors, gas sensors, surfaces with 
tunable emittance for temperature control of space vehicles [81,147], thermochromic thin films for 
optoelectronic applications [93]. Nanocrystal V2O5 thin film used as hole-extraction layer in normal 
architecture organic solar cells demonstrated the potential of this material for photovoltaic 
applications [170], and W-doped V2O5 film can be used for thermal insulation [226]. 

So many applications explain the huge amount of works devoted to the preparation of V2O5 
thin films. The difficulty is that their properties are strongly dependent of the mode of preparation, 
the film thickness, the orientation of the film, the crystallinity, the purity, the substrate [84], the 
nature and amount of dopants, the packing density of the film [85], temperature of the  
substrate [142], deposition rate, in short, deposition conditions [96], post-annealing treatment [217], 
the choice of precursors [100], porosity [188,201,262], doping. 

As electrochromic device, Ti-doped V2O5 electrode has lasted 200,000 cyclic switching times 
between the lowest (2%) and highest (62%) transmittance with no significant degradation of 
performance [209]. Nevertheless, V2O5 alone cannot be commercialized as an electrochromic 
device, because of its low electrical conductivity, poor coloration efficiency and narrow color 
variation. However, these drawbacks can be overcome by combining V2O5 with other compounds. 
A recent example is the graphene/V2O5/MoO3 film, which combines the richer colors of MoO3, the 
high conductivity of graphene and the remarkable electrochromic properties of V2O5. Such films 
present multi-electrochromic behavior (yellow → green → blue → gray-brown), excellent 
electrochromic performance, with tranmittence variation of 25.35%, bleaching time of 1.25 seconds, 
coloration time 1.40 seconds. In addition, it demonstrates good cycling [20]. Such films are thus 
very good fast switching electrochromic materials. Recently, the growth of large-scale electrodes by 
atmospheric pressure chemical vapor deposition has been made possible, with good performance for 
electrochromic devices with a change in optical density per unit inserted charge density reaches  
336 cm2 C−1 at 630 nm, with a diffusion coefficient for the lithium as large as  
9.19 × 10−11 cm2 s−1 [33]. 

For use as a supercapacitors, nano-structured V2O5 is needed to increase the surface area. In 
particular, a grain size of 148 nm of the deposited film exhibited a high rate pseudo capacitance of 
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730 mF cm−2 at 1 mA cm−2 of current density [27]. Note the result was also obtained under such 
synthesis conditions that led to a c-axis oriented structure, giving better results than a (201) 
orientation. A film electrode composed of intertwined V2O5 nanowires and carbon nanotubes 
(CNTs) demonstrated a volumetric capacitance of ≈460 F cm−3 [234]. A capacity of 397 F g−1 was 
obtained after ultrasonic weltering [262]. V2O5 thin films with 4 at.% of Mo doping exhibited a 
maximum specific capacitance of 175 mF/cm2 at current density of 1 mA/cm2 [17].  

Regarding the electrochemical properties, high energy density (900 W h kg−1 at 200 mA g−1), 
power density (28 kW kg−1 at 10.5 A g−1), good cyclic stability over 200 cycles have been obtained 
with nanostructured V2O5 thin-film electrodes prepared by cathodic deposition [104,190]. These 
results, as well as results obtained by atomic layer deposition [111,113,114] show so that V2O5 
nano-electrodes can now be used with high power and energy densities for thin film Li-ion batteries. 

V2O5 is also increasingly used as sensor. Fit has been tested for longer time periods up to 100 h 
as ammonia sensors. Very stable behavior was found with detection limit of 80 ppb for NH3 both in 
dry and humid air. The detection limits for NO and CO were 20 ppm and 50 ppm, respectively. The 
results suggest that the vanadium oxide thin-film sensing layers are good candidates for a Selective 
Catalytic Reduction (SCR) process control application [70]. The room temperature gas sensing 
response of V2O5 films was found to be highly selective towards xylene [92]. They also exhibited 
good response towards hydrogen (5–300 ppm), methane and propane (50–3000 ppm) [171]. 
Recently, intrinsic thermochromism of V2O5 films was reported as a perceptible thermally induced 
color change from bright yellow to deep orange [290]. 

All these recent results show the continuous improvement in the synthesis of the films and the 
performance for tehes applications. In most of the works that have been published, however, the 
optimization of the film is made within one deposition technique, for one application. Therefore, 
further works should address two questions. The first one is to determine which deposition 
technique and synthesis parameters are best suited for each application. For instance, 
electrochemical properties of vanadium oxide are reported to be optimized for highly crystallized 
V2O5 [21], but better kinetics and higher volumetric capacities were observed for the amorphous 
vanadium oxides compared to their crystalline counterparts in Ref. [259]. Therefore, further works 
are needed to clarify the conditions that optimize the films for electrochemical applications. The 
second question is which kind of film should be used to optimize the film as a function of the 
application that is targeted. For instance, low Mg-doping (2%) is preferred for lithium ion battery 
applications, but 15% Mg-doping is preferred for electrochromic applications [212]. Only very few 
such reports have been made to relate the synthesis to applications, and further works along these 
lines would be very useful in the near future. 
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