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Abstract: For the purpose of applying laws or principles originated from thermal systems to granular 

athermal systems, we may need to properly define the critical “temperature” concept in granular 

powders. The conventional environmental temperature in thermal systems is too weak to drive 

movements of particles in granular powders and cannot function as a thermal energy indicator. For 

maintaining the same functionality as in thermal systems, the temperature in granular powders is 

defined analogously and uniformly in this article using kinetic energy connections. The newly 

defined granular temperature is utilized to describe and explain one of the most important 

phenomena observed in granular powders, the jamming transition, by introducing jamming 

temperature and jamming volume fraction concepts. The predictions from the equations of the 

jamming volume fractions for several cases like granular powders under shear or vibration are in line 

with experimental observations and empirical solutions in powder handlings. The equations are 

mainly for hard sphere systems without frictional forces among particles, but can be easily extended 

to frictional granular systems with frictional energy term included in. The goal of this article is to lay 

a foundation for establishing similar concepts in granular powders, allowing granular powders to be 

described with common laws or principles we are familiar with in thermal systems. Our intention is 

to build a bridge between thermal systems and granular powders to account for many similarities 

already found between these two systems. 
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1. Introduction 

As we already know, thermal energy can drive an atom or a molecule’s movement in gases, 
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liquids and solids. In colloidal suspensions where small particles are dispersed in a liquid medium, 

thermal energy can also drive particles movement too; such a phenomenon is called the Brownian 

motion if the particle size is smaller than 1 micron. For granular powder systems where there is no a 

dispersing medium except air staying in the interstitial spaces between particles, thermal energy 

usually is too weak to move the particles, making any contributions to particle movements negligible. 

This is one of the big differences between conventional thermal systems and granular powder 

systems. However, there are many articles demonstrating both experimentally and theoretically that 

granular materials behave like molecular thermal systems [1–7]. In the article titled “Theory of 

Powders”, Edwards [2] formulated a theory of granular powders anologically with the statistical 

mechanics and transport theories of regular thermal systems, and introduced the “compactivity” 

concept of a similar functionality of the temperature in thermodynamics. This approach was futher 

extended to powder mixtures where the statistical mechanics was applied to map out phase 

separations [1], phase diagrams [8,9], jamming transition and mixing separation [8,9]. In Edwards’ 

analogous statistical mechanical approach, the roles of energy traditionally played in thermal systems 

were replaced by the volume per particle in granular powders, which was found to be capable of 

predicting phase diagrams of jammed granular matter [9] and agreed with the experimental    

results [10]. For example, the force fluctuations in packed beads were experimentally found to obey a 

simple exponential law [11] and can be elegantly predicted with similar Edwards’ approaches [12,13]. 

The extended stress ensemble mirroring the equilibrium statistical mechanics was well applied to the 

deformable grains [14,15] for addressing particle packings and jamming transitions, with 

experimental confirmation [16]. Not only the stress but also the force-tile area were argued to play an 

important role in addressing the stress distribution [17,18], though an angularly anisotropic 

orientation correlation was experimentally found to be critical, too [19]. Clearly, both the 

experimental and theoretical evidences suggest that granular powders can be analogously treated 

with the principles or laws extracted from thermal systems, though the traditional temperature 

concept should be modified accordingly for granular powders.  

In thermodynamics, the temperature may be expressed as: 

  
  

  
                                      (1) 

where E is the internal energy, and S is the entropy. In the Edwards’ theory, the energy was replaced 

by the volume actually taken by the powder, V, thus Edwards’ granular temperature was defined as: 

    
  

  
                                   (2) 

Since     indicates that the volume of power is not going to change with the entropy, the most 

compacted case, while     represents the least, Edwards called this parameter as the 

compactivity of powders. Nonetheless, Edwards’ granular temperature is not easy to be estimated 

due to the difficulty of obtaining the entropy dependence information. In addition, the temperature 

defined with Eq 2 will acquire a different unit than the traditional temperature, not very intuitive to 

analogously utilize the thermodynamic laws. By constructing analogous entropy and internal virial 

functions in granular powders that are equivalent to the entropy and the energy in thermal systems, 

the granular temperature was defined very similarly to that in thermal systems as [14]: 
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                                   (3) 

Again S is the entropy,   represents the internal virial equivalent to energy, and   denotes the 

pre-factor in front of   in Boltzmann distribution. This kind of temperature definition is frequently 

used in nonequilibrium thermodynamic processes [20,21]. Although the temperature definitions 

shown in both Eqs 2 and 3 is in line with the traditional thermodynamic temperature definition 

shown in Eq 1, maintaining the original meaning of temperature is still difficult, as the kinetic energy 

term is missing in granular powders, in contrast with that in thermal systems where the kinetic 

energy is always clearly associated with temperature. Experimental and numerical results have 

verified that this kind of temperature definition only works for the granular systems of slowly 

moving particles [9,22–24]. 

For the granular systems of fast moving particles, the granular temperatures are usually defined 

in consistent with that in ideal gases using the kinetic energy connection, 
 

 
     

 

 
   , where    

is the Boltzmann constant, m is the mass of the particles, and v is the velocity of particles [25–28]. 

This kind of granular temperature definition can be easily traced back to the conventional 

temperature concept in thermal systems, thus the Boltzmann equation can be applied to such fast 

moving particle systems. Nonetheless, the distribution function is found to be reproducible, but often 

not Gaussian [29]. Undoubtedly, no matter which approaches are used, the definition of granular 

temperature is always centered. Properly addressing the granular temperature would definitely create 

a bridge easily connecting the traditional thermodynamic principles to nonequilibrium even athermal 

systems like granular powders. 

In this article, the granular temperature is defined with the second approach mentioned above, 

i.e., borrowing the exact ideas from traditional thermodynamics and utilizing the kinetic energy 

connection shown earlier. The energy injected into granular system rather than the average velocity 

of each individual particle is employed, which slightly is different from previous literature. There are 

two reasons that this approach is preferred: First, defining granular temperature only in this manner 

may allow us to apply the fundamental Boltzmann distribution equation to granular powders; 

Secondly, this approach may create a simplistic route without introducing mystery parameters like 

entropy and internal energy, most time hard to be determined in granular systems. For avoiding any 

confusions and easily distinguishing granular powders from traditional thermodynamics systems, we 

may term the “temperature” in granular powders as the granular temperature in this article, which 

will be expressed as Tgp rather than Tg, as the latter is frequently referred to glass transition 

temperature in polymeric and ceramic materials fields. My previous articles [30,31] have 

demonstrated that the popular powder flowability criteria scaled with Carr index or Hausner ratio and 

the rich powder flow behaviors including jamming phenomena can be well understood with the aid 

of the properly defined granular temperatures via kinetic energy approaches for simple sheared 

granular powder systems. The same temperature definition approach will be further expanded to 

other popular granular powder systems like powders under a vibration shaker or free flowing on a 

slope. The ultimate goal is to find the jamming temperatures at which the granular systems start to 

jam in a uniform manner and thus the jamming phenomena can be well understood. The physical 

treatments of jamming phenomena in granular powders are thus unified with the uniformed granular 

temperature definitions across all popular granular powder flowing cases.  

The article is arranged as follows: We first examine if the four thermodynamic laws can still 
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hold for granular powders; We then consider several common cases of granular matter and define 

granular temperatures using the kinetic energy approach across all cases with an uniform and 

consistent manner; The important jamming phenomena are discussed right after the granular 

temperatures are defined; The temperatures at jamming points are extensively addressed and defined 

consistently by assuming that the jamming is caused by particles incapable of moving within the half 

distance of the inter-particle spacing available in granular powder systems. The particle volume 

fraction thus starts to play a role in jamming phenomena and the jamming volume fraction equations 

are therefore obtained by assuming that the ratio of the granular temperature to the jamming 

temperature equals to one. The reason behind this assumption is very simple: if the granular 

temperature is analogously assumed to be the environmental temperature and the jamming 

temperature is assumed as the “solidifying” temperature in thermal systems, granular systems start to 

jam when the environmental “granular temperature” is equal to the jamming temperature. The 

predictions from the jamming volume fraction equations are qualitatively compared with the 

experimental observations or results available in literature. The future attempts based on the newly 

defined granular temperatures will be discussed and the final summary and conclusions will be 

presented in the end. 

2. Theory 

2.1. Four laws of thermodynamics 

In thermodynamics, there are four laws generally applied to any thermal system [32,33]. The 

zeroth law of thermodynamics states that if a thermal system A is in thermal equilibrium with a 

thermal system B and the thermal system B is in thermal equilibrium with a thermal system C, then 

thermal system A will be in thermal equilibrium with the thermal system C. The underlying 

implication is that if we want to know two thermal systems are at the same temperature. It is 

unnecessary to bring those two systems together in contact to wait for equilibration. It can be told by 

a third temperature medium, a thermometer that can measure the temperature. Back to granular 

systems, we should be able to tell if two granular systems are in equilibrium state via a granular 

temperature parameter defined in such a way that the granular temperature has the same functionality 

as the temperature in thermal systems. The first law of thermodynamics is about the conservation of 

energy: the change of internal energy of a closed system is equal to the change of the heat that the 

system adsorbed or given off plus the work that is done on the system or by the system. In other 

words, the energy cannot be created without the expense of other forms of energy or destroyed 

without the creation of other forms of energy. This should be true for granular systems, too, though 

many granular systems have a dissipative nature due to the interparticle frictional forces and inelastic 

collisions [7]. The second law of thermodynamics is about entropy that scales the degree of disorder 

or a randomness of a system. The entropy should increase over time in an isolated thermal system, 

approaching to a maximum value. In granular systems under a vibration or a shear field, the entropy 

should increase with time, too, as more particles would participate the movements due to 

interparticle interactions and continuous application of an external excitation. The third law of 

thermodynamics states that the absolute zero temperature is unattainable, as thermal motions never 

can stop. Unlike an ideal gas system, the particles in a granular powder cannot move freely without 

any external mechanical perturbation, if they are not aerated or cannot flow by themselves due to 
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gravity. As we know in ideal gas systems, the gas molecules can fly around due to the thermal energy, 

as the weights of molecules are negligible. However, in granular systems the driving force expelling 

particles to move is the external mechanical force or the gravitational force from particles themselves. 

The driving force is zero if there is no such an external mechanical force or the particles sit 

quiescently, due to the cancellation of the gravitational force of particles resulted from the supporting 

particles that hold the particles unmovable. This by no means indicates that there is no pressure on 

the wall of the container and the granular temperature is zero.  

Consider a granular powder sitting inside a cylinder shown in Figure 1. As indicated by 

Janssen’s equation [34,35], the pressure on vertical direction,   , may be expressed as: 

   
   

   
        

    

 
                              (4) 

where   is the true density of the particle material, g is the gravity constant, D is the diameter of the 

cylinder,   is the frictional coefficient between the particles and the wall of the cylinder, z is the 

depth where the pressure is considered, and K is the ratio of the horizontal pressure to the vertical 

pressure with the relationship: 

  
  

  
                                      (5) 

 

Figure 1. A granular powder sits inside a cylinder without any movement. 

The pressure on the bottom of the cylinder should be: 

    
   

   
        

    

 
                             (6) 

where h is the height of the powder bed. Note that the horizontal pressure at the top is equal to zero 

and at the bottom can be simply estimated with Eqs 5 and 6. Since the horizontal pressure is 

dependent on the powder depth, the average pressure may be approximately expressed as 

    
   

  
        

    

 
                             (7) 
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by simply adding the horizontal pressures at the top and at the bottom and then divided by two. The 

average pressure on the cylinder surfaces may be written: 

    
       

 
 

        

    
        

    

 
                        (8) 

We will use this average pressure to define the granular temperature for giving readers an idea 

on how the newly defined granular temperature looks like, without knowing the depth or position of 

the particles in the bins. As the pressure is dependent on the depth, the granular temperature is not 

uniform and should have a gradient. An approximated average granular temperature is thus for 

concept demonstration purpose. There are extensive publications on utilizing kinetic gas theory to 

treat granular powders and the theoretical treatments are aligned with experimental          

results [4,7,36–46], implying that we may be able to define granular temperature analogously with 

kinetic gas theory. According to the kinetic theory of gases [47], the pressure of a gas may be 

expressed as: 

  
      

 

 
                                    (9) 

where n is the number density of molecules,      , with N is the number of the molecules, V is 

the volume, m is the mass of a molecule, vrms is the root-mean-square velocity. In addition, the kinetic 

energy of a molecule may be expressed as: 

Tkmv Brms
2

3

2

1 2                                (10) 

where kB is the Boltzmann constant. Combing Eqs 9 and 10, one may obtain the relationship between 

the pressure and the temperature as: 

                                        (11) 

Equation 11 is the ideal gas law. If one considers that the pressure expressed in Eq 8 in granular 

systems is caused by the imaginary particle movement, then the granular temperature may be defined 

similarly as: 

     
        

       
        

    

 
                         (12) 

Since granular temperature is defined analogously with the kinetic energy connection 

  
 

 
     

 

 
     

 , the Boltzmann constant, kB, remains the same physical meanings as in 

thermodynamics, i.e., a parameter scales the thermal energy in thermal systems with regular 

temperature and the analogous “thermal” (or kinetic) energy in granular systems with the granular 

temperature. Also, n should be a very large number,      is expected to be very small, close to zero, 

which seems to be reasonable, as at such conditions there is almost no particle movement in the 

system. Under this temperature definition, one may claim that the absolute zero granular temperature 

is unattainable, even when a whole granular system is in a stationary state, which is very similar to 

the third law of thermodynamics. In summary, the four laws of thermodynamics may be analogically 

applied to granular systems with apparently different but essentially the same definition of 
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temperatures. A comparison between thermal systems and granular powders is given in Table 1. Note 

that the granular temperature is defined in the same manner as the regular temperature in 

thermodynamics, the parameter “Q” in granular powders maintains the same physical meaning as in 

thermal systems. Again, this is the “beauty” of defining granular temperatures using the same 

approach as defining the regular temperature. Many parameters maintain the same meanings and the 

familiar thermodynamic principles can thus be applied to granular powders, which is the main reason 

that I prefer to use the kinetic energy connection approach to define the granular temperatures.  

Table 1. Four laws of thermodynamics in thermal systems and granular powders. 

 Thermal systems Granular powders 

The zeroth law If            , then       Same 

   
     

  

The first law Conservation of energy,       

   , where Q is heat and W is 

work.  

Same 

          

The second law Entropy tends to increase,      Same 

     

The third law Absolute zero temperature is 

unattainable,     

Same 

      

2.2. Granular temperatures of common powder flows and tapping processes 

Common powder flows and tapping processes are schematically illustrated in Figure 2: (a) a 

powder under a simple shear; (b) a powder rolling on a slope; and (c) a box of a powder under a 

vibration. For all treatment below, we have made an assumption that all particles are hard spheres 

and there is no frictional force among particles. This means that energy injected from outside into 

granular systems will fully contribute to kinetic motions of particles, i.e., granular temperature. We 

will start with the case (c), as this case is relatively complicated and was already addressed in my 

previous publication. Let’s consider a very simple granular system—a box of the volume V with 

many spheres sitting inside as shown in Figure 2c. Since the spheres have weights, they will generate 

a pressure on the bottom of the box and the sides of box, too. As shown earlier in Eq 4, the pressures 

on the sides should differ from the total weight of all spheres. The whole box is fixed on a plate that 

can move horizontally back and forth with a vibration expressed as  tiLL exp0  [48], where L0 is 

the amplitude of vibration,  is the angular frequency, and t is the time. When an external vibration is 

not applied to the granular system, all particles are stationary and at this moment the granular 

temperature is very close to zero, as indicated in Eq 12. The entropy of the whole system should be 

very small, too. When an oscillatory vibration is applied as  tiLL exp0 , the energy flow rate to 

the granular system may be calculated as [49]: 

)()( tvtFE 


                                (13) 
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where F(t) and v(t) are the force and velocity at the interface, respectively. One may assume that 

MgtF )( , i.e., the force is equal to the weight of whole spheres inside the box,   
 

 
     , g is 

again the gravity constant,   is the true density of particles. The term v(t) may be assumed as a 

constant, expressed as the amplitude divided by the time within a cycle: 

  



 22//1
)( 00 LL

tv                              (14) 

 

Figure 2. Granular systems under (a) a simple shear, (b) rolling by themselves on a slope, 

(c) under a horizontal vibration  tiLL exp0 .  

Please note that the vibration shaker discussed in the article is different from the regular 

mechanical vibration with a spring. If it is connected with a spring, the velocity should be time 

dependent, as the movements have to follow the Hook’s law. However, for a vibration shaker, since 

there is no a spring attached, the velocity is thus assumed to be a constant, which is very close to the 

real situation in vibration shaker experiments. The energy flow rate from the vibration shaker to the 

granular system is thus expressed as: 





2

0MgL
E 


                                 (15) 

If the number of vibrations is assumed to be   , then the total time spent in vibration may be 

expressed below: 

      
 

    
  

    

 
                           (16) 

The total energy flowing into the powder system may be expressed as: 

 
V P 

 tiLL exp0

h 

A 

(a) Simple shear 

(c) Vibration shaker 

 

(b) Rolling on a slope 



L 
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

E     0L                                (17) 

Equation 17 may indicate that the total energy transferred into the powder system seems to be 

independent of the frequency of vibration, and only dependent on the amplitude of vibration. 

However, please note that Eq 16 tells 
  

 
 

 

  
, implying that     is dependent on the vibration 

frequency, thus the energy input is also dependent on the vibration frequency. According to the 

kinetic theory of gases [47], the kinetic energy of a molecule may be expressed as Eq 10. If the 

number of molecules is N, then the total kinetic energy is 

TNkNmvE Brms
2

3

2

1 2                           (18) 

As indicated earlier, there are a large number of theoretical treatments of granular flows using 

the analogy of molecular fluids via standard statistical mechanics and kinetic theory, which are 

generally in a good agreement with the experimental results [4,7,36–46,50–54]. We thus continue to 

utilize the kinetic theory to analogously define the granular temperatures. Assume that the energy 

flowing to a granular system contributes to the movement of particles inside the box without any loss. 

Replacing the temperature in Eq 18 with the granular temperature, one may easily reach  

gpBv TNknMgLE
2

3
0                             (19) 

If the particles have the true density of  and radius r, then  

 3

3

4
rNM                                  (20) 

Substituting Eq 20 into Eq 19 and re-arranging may lead to the granular temperature of particles 

under a vibration: 

B

v
gp

k

ngLr
T 0

3

9

8 
                               (21) 

Note that Eq 21 is obtained on the assumption that there is no frictional force among particles 

and the particles are hard spheres. If the frictional forces cannot be ignored and the frictional energy 

between two pair of particles is Ef, Eq 21 should be rewritten as 
B

f

B

v
gp

k

E

k

ngLr
T

39

8 0

3


 , a lower 

granular temperature. The granular temperature defined in Eq 21 has a unit of Kelvin, same as the 

regular temperature for thermal systems. For one micrometer sized particles of density 1 g/cm
3
 under 

a vibration,        ,         , the granular temperature expressed in Eq 21 is equal to  

1.98   10
10

 K, a very high temperature in comparison with the temperature in thermal systems, 

However, in thermal systems the molecules or particles usually travel in sub-micrometer scaled 

distances, while in vibrated granular powder systems particles may travel in a full distance of the 

vibration amplitude, a centimeter scaled distance. The traveling distance difference between those 

two movements is approximately in the order of 10
5
~10

7
, which makes the granular temperature 
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relatively on par with the conventional thermal temperature.  

Note that the temperature defined above is only appropriate for granular systems with an 

external vibration excitation. If a granular system is under a simple shear as shown in Figure 2a, the 

granular temperature should be defined differently, as the energy flowing into the granular system is 

different. Suppose that the shear stress is  and the shear rate is 


 , then the force F and the velocity 

v may be expressed as: 

,AF     


                                  (22) 

where A is the area of the sample and h is the thickness of the sample. On the basis of Eq 13, the 

injected energy flowing rate from a simple shear field may be expressed as: 

VAhFvE


                              (23) 

where V is the volume of the granular system, 
bb NrMV  /

3

4
/ 3 ,  and b  are the true 

and bulk density of the granular powder, respectively. Using Eq 19, the granular temperature of a 

sheared powder after a time period of t may be expressed as: 

bB

gp
k

tr
T







3

9

8
                               (24) 

Again, Eq 24 is for hard spheres without any frictional forces. Otherwise, a lower granular 

temperature should be defined, 
B

f

bB

gp
k

E

k

tr
T

39

8 3








. Please note if the “granular temperature” is 

defined as the mean squared grain speed fluctuation, rather than the kinetic energy connection used 

in this article, the obtained granular temperature would be scaled with the square of shear rate [55], 

rather than the linear relationship shown in Eq 24. Since the mean squared grain speed fluctuation is 

hard to estimate in granular systems and the total energy input is easy to obtain, I prefer to define the 

granular temperatures via energy input, which is totally different from the time-average velocity 

approaches [56]. Please keep in mind that the kinetic energy   
 

 
   , clearly shows there is a 

“square” difference between energy and speed, ultimately resulting in different shear rate 

dependencies of the defined granular temperatures. In my definition, the granular temperature should 

be linearly dependent on shear rate. Again, assuming one micrometer sized particles of true density  

1 g/cm
3
, bulk density 0.3 g/cm

3
, under a shear field,        



      , and shearing for 5 min, 

       , the granular temperature expressed in Eq 24 is equal to 2.02   10
8
 K, still a very high 

temperature.  

If granular spheres flow over a slope as shown in Figure 2b, the granular temperature should be 
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defined differently, too. The force that drives spheres to move downward should be sinmg , where 

m is the mass of a sphere,  is the angle of slope. If the friction coefficient between the particles and 

the slope surface is µ, the frictional force should be        . The net force on a particle may be 

expressed as: 

                                            (25) 

According to Newton’s second law, maF  , where a  is acceleration, one may find 

  cossin  ga                               (26) 

The initial velocity of a sphere at the top of the slope is zero and at the time t the velocity is assumed 

to be v, thus 

a
dt

dv
                                    (27) 

which is the definition of acceleration. Using the energy defined in Eq 17, i.e., the energy is the 

energy rate multiplied by the time, leads to: 

                                                (28) 

Equation 28 gives the energy of one single particle. For a granular powder containing N particles, the 

total energy may be expressed as: 

                                               (29) 

Using Eq 19 again, one may obtain granular temperature for spheres on a slope  

    
 

   
                                        (30) 

For particles of radius r,   
 

 
    , so Eq 30 may be further written as: 

    
     

   
                                         (31) 

Again, Eq 31 is applicable for hard sphere systems without any frictional force among particles. 

Otherwise, Eq 31 should be written as     
     

   
                  

  

   
. Assuming one 

micrometer sized particles of true density 1 g/cm
3
,      ,               , then the granular 

temperature defined in Eq 31 is equal to 4.76   10
11

 K, even much higher temperature than the one 

defined in vibration conditions. Note that this definition is suitable for idealized conditions where 

there are no interparticle collisions and the particle can move freely under the gravitational force, 

which leads to a very high granular temperature. The actual net force and acceleration should be 

much smaller than that indicated in Eqs 25 and 26. If there is a 10% reduction in both force and 

acceleration due to the resistance from other particles, the obtained granular temperature would be 

100 times smaller, which sets the granular temperature on par with that defined in vibration and shear 

cases. 
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3. Particle jamming and associated temperatures 

Jamming is a very common phenomenon in granular powders, where particles suddenly stop 

moving due to the strong connectivity or interaction between particles in a constrained        

space [9,57–60]. There are two kinds of jamming phenomena: static jamming occurring in dense 

systems due to the spatial congestions and dynamic jamming due to the complications and 

competencies between the shearing and crowdedness in confined spaces. The jamming phenomena 

are very similar to the first order phase transition observed in thermal systems, where a liquid state 

transitions to a solid state due to the temperature drop, and the whole system changes from a free 

flow state to a solidified stationary state [28,60,61]. However, physically the jamming acts more like 

the second order phase transitions such as glass transitions and percolation transitions. In this article, 

the jamming is defined as the immobility of particles due to the low kinetic energy (low granular 

temperature) and the spatial crowdedness (the very small free volume) in the systems. It would be 

interesting to evaluate the granular temperatures at jamming points based on the definitions proposed 

earlier. Since the granular temperature attains a very similar functionality as the conventional 

temperature, we may analogously assume that the “thermal” energy from the granular temperature is 

the source of particle motions and thus associated with particle jamming, too. The jamming will be 

defined as a phenomenon when particles are unable to travel the allowed free distance on the basis of 

free volume in a granular system. The interparticle spacing (IPS) of a granular powder may be 

expressed as [62,63]: 

IP      m   
 

   r                               (32) 

where  m is the maximum packing fraction,   is the particle volume fraction, and r is the particle 

radius. At a free flowing un-jammed state, particles are supposed to have the energy capable of 

travelling the full distance shown in Eq   . However, at jammed states, particles don’t have 

sufficient energy and are assumed to be capable of “vibrating” within the half of the distance 

expressed above. Note that the IP  equation above is derived on the basis of Kuwabara’s cell  

model [64] and the half the IPS distance means that there is a great extent of virtual cell overlap 

between two particles, implying that these two particles touch each other. Theoretically, this is the 

perfect jamming state, as at this point the free volume reaches the lowest possible values. Under such 

a definition of jamming state, the energy required for N particles to move a half the IPS distance may 

be expressed as: 

        m        r                            (33) 

where    is the particle volume fraction when particles are jammed. Extra energy is needed if 

frictional forces among particles should be considered,          m        r  
   

 
. According 

to Eq 18, the energy shown in Eq 33 should be equal to the kinetic energy for particles, which has 

been used in this article many times for defining the granular temperatures. Therefore, the granular 

temperature at jamming points may be expressed as: 
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      m     

 
    

   
                               (34) 

where    is the granular temperature at a jamming point. Or, Eq 34 must be written as    

      m     
 

       

   
  if the frictional forces among particles must be considered. Since   

 

 
     

by definition, Eq 34 may be further written as: 

   
       m     

 
     

   
                              (35) 

Or,    
       m     

 
     

   
 

  

   
 , if interparticle frictional forces must be considered. Since  m is 

only related to the packing structure for mono-dispersed particle systems [57,65], one may infer that 

jamming transition temperature is dependent on the true density of the particulate materials, the 

radius of the particles, and the particle volume fractions at jamming points. For obtaining an intuitive 

idea how jamming transition temperatures change with the particle volume fractions at jamming 

points, we schematically plot Eq 35 against both particle volume fraction at jamming points and 

particle radii in Figure 3, under assumption that   = 1 g/cm
3
 for typical true density of polymer 

materials,  m       for cubic or hexagonal close-packed systems. The jamming temperature 

generally decreases with the increase of particle volume fractions at jamming points and are strongly 

dependent on the particle sizes. There are several orders of magnitude difference among the jamming 

temperatures when the particle sizes only increase 10 times. This is probably due to the fact that the 

jamming temperatures are directly proportional to the 4
th

 powers of the particle radius as indicated in 

Eq 35. When the particle volume fractions at jamming points approach the maximum volume 

fraction, the jamming temperatures quickly drop to a very low temperature, regardless if the particle 

sizes are large or small. Such low jamming temperatures thus imply that whole granular systems are 

fully jammed and solidified. We may analogously call them “frozen points” as observed in thermal 

systems, and all particles are locked at certain sites without any movement. This is the beauty of 

defining granular temperature analogously and consistently using the kinetic energy connections, 

where both granular temperature and traditional temperature attain a similar physical meaning and 

thus granular temperature is easily to be comprehended. Another apparent benefit is that we may 

possibly employ the theoretical framework like Eyring’s rate process theory and free volume concept 

originated from thermal systems to treat granular powders, unifying both systems with a single 

approach [30,31,63,66]. In addition, Figure 3 shows small particles tend to jam at very low granular 

temperatures, which is understandable and consistent with practical observations: large granules 

usually flow much better than small particles. When particles become smaller and smaller, 

interparticle forces become more important and particles tend to aggregate or bridge very easily, 

resulting in very poor flowability. As one may tell, for particles of radius about 0.1 micron, the 

jamming transition temperature is little below one Kelvin, an extremely low temperature. 
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Figure 3. Jamming transition temperature vs. the jamming volume fractions and particle 

radii based on Eq 35, under assumption that   = 1 g/cm
3
,  m      . 

While in comparison, 10 micron sized particles tend to jam at a very high temperature, about 

10
7
 K. This directly stems from how the jamming temperature is defined: the external energy is 

strong enough to overtake the weight of particles within a certain distance and drive particles move 

around. This prediction seems to qualitatively agree with the experimental observation on the 

superheating phenomena of monodispersed metal beads of diameter 3.15 mm reported in   

literature [6]: Under a vigorous vertical shaking, a hexagonal closed packed crystal structure was 

observed and eventually melted away (or called evaporate in the literature) after a period of time. As 

stated earlier, a granular powder under a vibration may have a very high granular temperature. Based 

on Eq 21, the granular temperature of such a metal beads system is in the order of 10
20

 K, and also, it 

is time dependent. Longer time vibrations will create higher granular temperatures, which could be 

the reason that the crystal structure was finally evaporated after a relatively long vibration. For 

particles of size about 0.1 micron, jamming should happen at much lower granular temperatures 

about one Kelvin based on Figure 3. Such a low granular temperature may correspond to a quiescent 

state where no apparent motions are obviously detected. In reality, submicron or nanometer sized 

powders of low densities typically tend to have a very poor flowability and easily form arching 

structures [67,68]. The newly defined granular temperatures seem to agree well with the empirical 

observations.  

It would be valuable to explore at what conditions jamming could happen by simply using the 

granular temperatures defined earlier at several common cases divided by the jamming granular 

temperature defined in Eq 35. The ratio equal to one gives the jamming conditions for particular 

granular systems. For a simple shear case shown in Figure 2a: 

   

  
 

    

   m     
 

  )gr  

                              (36) 

Thus one may easily get: 
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 gr      

 gr         
 

  

       (gr      
                       (37) 

Of course, if the interparticle frictional forces must be considered, Eq 37 must be written as 

   
  

       (gr                   
  . Equation 37 defines the conditions that the jamming happens at a 

simple shear case. It clearly tells that the particle volume fractions at the jamming points are 

dependent on the shear stress, shear rate, and surprisingly the radius of the particles. For illustrative 

purpose,    is plotted against    and particle size over a wide range and shown in Figure 4, under 

the assumption that        ,             , t = 60 s,     Pa. Note that there are two 

regions where    is insensitive to shear rates, very high shear rates above 10 s
−1

 (blue area) and 

very low shear rates below 10
−5

 s
−1

 (red area). In the shear rate regime between 10
−5
–10 s

−1
,    

dramatically increases with the decrease of shear rates. In other word, the jamming may happen at 

lower particle volume fractions when the shear rate increases, which is consistent with experimental 

observations [58,69]. When the shear rate is smaller than 10
−5

 s
−1

, the system may only jam at high 

particle volume fractions; when the shear rate is about 10
−5

 s
−1

, the volume fractions at jammed 

points become lower and lower under higher and higher shear rates. The system starts to completely 

jam when the shear rate is about 10 s
−1

. The big drop between 10
−5
–10

−2
 s
−1

 may indicate that a shear 

induced structure change happens in this area. These two regions are very similar to the “fragile 

states” and “shear-jammed states” observed experimentally [58,69], where the “fragile states” 

correspond to a strong network structure percolated in one direction and the “shear-jammed states” 

correspond to a strong network percolated in all directions. Back to Figure 4, the “fragile states” is 

somewhat similar to the big fall region between 10
−5
–10 s

−1
, while “shear-jammed states” is the 

region where the shear rate is above 10 s
−1

. The qualitative agreement with the experimental 

observation may imply that the granular temperature defined in a consistent manner with the 

conventional temperature in thermal systems actually works.  

 

Figure 4. The particle volume fraction at the jamming points,   , is plotted against the shear 

rate,   , and particle size, r, from Eq 37 under the assumption that  m      ,             , t 

= 60 s,     Pa.  
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The particle radius has a clear impact on the jammed volume fraction, too, based on Eq 37 and 

Figure 4. Smaller particles can only jam at lower shear rates and melt at higher shear rates. Large 

particles won’t jam at lower shear rates, unless the particle volume fractions are close to the 

maximum packing fraction. According to Eq 37, the jamming volume fraction can be very small 

when the shear rate is very high, but never can be zero. In stationary conditions, the jamming can 

only occur in dense systems. However, Eq 37 is again for dynamic systems under a continuous shear 

rather than stationary systems. What Figure 4 tells us is that jamming may occur at low particle 

volume fractions if shear rates are high, which is quite similar to shear thickening phenomena 

observed in colloidal suspension systems. When the particles have a size in micron ranges, the 

jamming can happen in a very wide shear rate range from 10
−6

 to 10
2
 s

−1
 no matter what particle 

sizes are. In other words, high shear rates would possibly induce jamming easily. When particle 

volume fractions are close to the maximum packing fraction, particles may always jam no matter that 

they have a large or small particle size. Since there are two regions insensitive to shear rates, shear 

rates may not be a dominate factor in jamming process. 

Shear stress may play a critical role in jamming process. The particle volume fraction at the 

jamming points,  j, is plotted in Figure 5 against shear stress and particle radius, r, under the 

assumption that        ,  
b
     g cm 

, t = 60 s, and    = 0.5 s
−1

. As one may tell, particle 

volume fractions at jamming points are strongly dependent on both shear stress and particle size. At 

low shear stress and large particle size regions, granular systems may only jam at very high particle 

volume fractions close to the maximum packing fraction; with the increase of shear stress, granular 

systems may jam at lower and lower volume fractions, implying that the shear induced thickening 

phenomena occurs, if shear stress is high enough. Comparing Figure 5 with Figure 4, one may easily 

find that, at very low shear rates about 10
−8

 s
−1

, granular systems are only going to jam when particle 

volume fractions are close to the maximum packing faction, no matter what the particle sizes are. 

This seems to contradict with what is shown in Figure 3, where jamming temperatures are strongly 

related to particle sizes. The discrepancy may result from low shear rates about 10
−8

 s
−1

 and 

especially, low shear stress 1 Pa assumed in the calculation. In reality, we may be unable to apply 

such a weak shear field to granular systems and anticipate that it will drive particles to move. In 

contrast, particle volume fractions at jamming points are continuously changing with particle sizes in 

Figure 5 under a wide shear stress range. Although large particle sizes correspond to high jamming 

temperature, a strong shear stress could “cool down” granular systems and thus they can jam at 

relatively high granular temperature based on Eqs 35 and 37. For better demonstrating the roles of 

both shear stress and shear rate in jamming process, the particle volume fractions at jamming points 

are plotted against both shear stress and shear rate in Figure 6. At very high shear stress like 10
3
 Pa, 

shear rate seems unable to control when jamming is going to happen and everything is dominated by 

the shear stress: granular systems could jam at very low particle volume fractions irrelevant to shear 

rate; at very low shear stress like 10
−3

 s
−1

, there are two distinctive regions against shear rates: 

jamming at either low or high shear rates but independent of shear rate, and a narrow transition 

“fragile” region in the middle. Clearly, one may reach a conclusion that jamming actually is mainly 

dominated by the shear stress, rather than shear rate, which is consistent with experimental 

observations [58,70]. 
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Figure 5. The particle volume fraction at the jamming points,   , is plotted against shear 

stress    and the particle radius, r, obtained from Eq 37 under the assumption that 

 m      ,             , t = 60 s, and    = 0.5 s
−1

. 

 

Figure 6. The particle volume fraction at the jamming points,   , is plotted against shear 

stress    and shear rate, obtained from Eq 37 under the assumption that  m      , 

            , t = 60 s, and particle size r = 10
−5

 m.  

Similarly, one may find the jamming volume fraction conditions for granular powders under a 

vibration. Replacing    with Eq 16, using Eq 21 divided by Eq 35 and assuming that it equals to 1 

leads: 
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      m     
 

   )

                               (38) 

Thus the particle volume fraction at jamming points may be expressed as: 

   
 m 

                
                             (39) 

Again, if interparticle frictional forces must be considered, Eq 39 should be written as 

   
 m 

                             
 . Equation 39 indicates that the particle jamming volume fractions 

are dependent on the amplitude and frequency of the vibration, the time, and the particle radius. For 

clearly illustrating the relationship among   , vibration amplitude, particle radius, these parameters 

are plotted in Figure 7 based on Eq 39 under the assumption that  m      ,            , t =  

60 s. Particles tend to easily jam at very low particle volume fraction at most regions, the blue area. 

Particles of larger sizes tend to jam at very low vibration amplitudes if particle volume fractions are 

high enough, close to maximum packing fraction. Comparing Figure 7 with Figure 5, one may come 

to the conclusion that vibration amplitude functions similarly as shear stress in shearing case. 

Consider a granular system initially unjammed due to low particle volume fractions below jamming 

points: when the vibration amplitude increases, particles tend to jam at lower particle volume 

fractions and the system would finally reach the jamming point; further increase of vibration 

amplitude would keep the system jammed all the time, unless vibration can cause particles dispersed 

in a larger space and the particle volume fraction is lowered. Once the particle volume fraction is 

below the jamming volume fraction, the jammed particles start to melt and would jam again under 

higher vibration amplitudes. This “melt-jam” meta-stable region could span a large region as 

demonstrated in Figure 7. Since the vibration frequency bonds together with the vibration amplitude 

in Eq 39, a very similar dependency of the jamming particle volume fractions on the vibration 

frequency is expected, i.e., high vibration frequencies may melt the jammed particles, too. In 

chemical, pharmaceutical, and civil engineering industries, vibration conveyors with controllable 

amplitudes and frequencies are frequently employed to transport granular powder materials. The 

results expressed in Eq 39 and demonstrated in Figure 7 seem to be consistent with this practical 

solution of transporting powders adopted for a long time. For clearly demonstrating the role of 

vibration frequency, particle volume fractions at jamming points is plotted in Figure 8 against 

vibration amplitude and frequency under assumption that the assumption that  m      , 

         , t = 60 s. Vibration amplitudes cannot effectively lower jamming volume fraction until 

they are high enough, more than 10
−3

 m in Figure 8. In contrast, vibration frequency seems to have 

more pronounced impact on the jamming volume fraction, bringing it down to a lower volume 

fraction even at low frequency; the effect is even more dramatic when vibration amplitudes are high. 

In comparison with shearing cases, these two distinctive regimes are independent of shear rate: in 

both red and blue areas, the particle volume fractions at jamming points don’t change with shear rate, 

and the change only happens in transition regime. Vibration frequency functions comparably to shear 

rate, as demonstrated clearly in Figures 4 and 8. Again, jamming seems strongly dependent on 

vibration amplitude and the particle radii, which is similar to what is demonstrated for granular 

powders under shear. 
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Figure 7. The particle volume fraction at the jamming points,   , is plotted against the 

particle radius, r, and vibration amplitudes from 10
−2

 to 10
−6

 m, obtained from Eq 39 

under the assumption that  m      ,            , t = 60 s.  

 

Figure 8. The particle volume fraction at the jamming points,   , is plotted against the 

vibration amplitude and frequency, obtained from Eq 39 under the assumption that 

 m      ,          , t = 60 s. 

It should be interesting to see how the vibration time would impact the jamming particle volume 

fractions, as longer time means more energy flowing into the systems, as indicated in Eq 21. Figure 9 

shows the particle volume fractions at the jamming points,   , plotted against the vibration time and 



20 

AIMS Materials Science  Volume 5, Issue 1, 1–33. 

the vibration amplitudes from 10
−6

 to 10
−2

 m, obtained from Eq 39 under the assumption that 

 m      ,            , r = 10
−3

 m. Again, the particles may jam at the very beginning of the 

vibration when particle volume fractions are high enough. If particle volume fraction is much lower 

than the maximum packing fraction at the beginning, the system may remain unjammed, but quickly 

enters into “melt-jam” regime with longer vibration time. At lower vibration amplitudes, the system 

remains unjammed for a relative long time, while at high vibration amplitudes, jamming may happen 

in much faster paces at lower particle volume fractions. Again, particle sizes could play a role in 

determining where the jamming points are. Figure 10 shows particle volume fractions at the jamming 

points,   , plotted against the vibration time and particle radii from 10
−6

 to 10
−2

 m, obtained from Eq 

39 under the assumption that  m      ,            , L0 = 10
−4

 m. At such a small vibration of 

amplitude 10
−4

 m, particle sizes are critical: at the beginning of vibration, jamming occurs at low 

particle volume fractions when particles are small, or at high particle volume fraction when particles 

are large. Even for large particles, jamming still may happen at low particle volume fractions after 

vibrated for a long time. If there is no change on particle volume fraction during vibrations, granular 

systems eventually would reach at jammed state; however, in a long time vibration particles either 

pack more tightly of a high particle volume fraction at gentle horizontal vibration condition, or tend 

to take more space of a low particle volume fraction at wild vertical vibration condition. The former 

will lead to jamming and the latter will lead to evaporation at the end. The “melt-jam” process would 

dominate in between, and jammed/melted structures may co-exist in the system. Again, those 

speculations are consistent with experimental observations reported in literature [6], where the 

crystalline structure was observed at the very beginning of a vertical vibration and quickly melt later 

with a continuous vibration. This issue will be addressed in detail in next section.  

Following the same logics and procedures described previously, one may easily obtain the 

particle volume fraction at jamming points for particles rolling on a slope: 

   
 m 

   
   

 
             

                              (40) 

Again, Eq 40 must be rewritten as    
 m 

   
   

 
                           

 , if the interparticle 

frictional forces must be considered. The particle volume fraction at jamming points for particles 

sitting inside a cylinder without any movement: 

   
   

   
       

       
        

    

 
   

                            (41) 

where    
     

  
, is the real particle volume fraction excluding all interstitial empty spaces in the 

cylinder,      . Readers are encouraged to explore the relationships among the particle volume 

fractions at jamming points and other related parameters under those two cases.  
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Figure 9. The particle volume fraction at the jamming points,   , is plotted against the 

vibration time and vibration amplitudes from 10
−6

 to 10
−2

 m, obtained from Eq 39 under 

the assumption that  m      ,            , r = 10
−3

 m.  

 

Figure 10. The particle volume fraction at the jamming points,   , is plotted against the 

vibration time and particle radii from 10
−6

 to 10
−2

 m, obtained from Eq 39 under the 

assumption that  m      ,            , L0 = 10
−4

 m. 
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4. Experimental comparisons 

Experimental evidences related to jamming process have been mentioned occasionally in 

previous section for a quick qualitative comparison. In this section, the predictions inferred from 

newly defined granular temperatures and the particle volume fractions at jamming points will be 

compared more intensively with experimental results available in the literature. The fundamental 

questions important to the jamming process will be addressed for validating the new approaches 

employed to treat the jamming process in this article. Three popular phenomena, crystal structure 

evaporation under a vertical vibration, shear weakening during constant volume shearing, and shear 

jamming, are chosen from literature and discussed below. 

First, let’s turn our attention to crystal structure evaporation under vibration observed in 

literature [6]. In this article [6], 720 steel beads of radius 1.58  10
−3

 m was poured on a Plexiglas 

hexagonal container for obtaining a hexagonal closed packed monolayer. This container was placed 

on a shaker to vertically vibrate for observing the packing structure change. The volume fraction of 

steel beads is 0.87, and the maximum packing fraction of 2D hexagonal monolayer is about 0.91, 

leaving a sufficient free room for steel beads to move. We will use these experimental parameters to 

map out the phase transitions based on Eq 39. Figure 11 shows volume fractions at jamming points 

against vibration amplitude and vibration time computed with Eq 39 with the parameters given in the 

literature [6]. At the beginning when both vibration amplitude and time is small, this system tends to 

form jammed structure. The particle volume fraction is 0.87, very close to the maximum packing 

fraction, 0.91. A crystallized hexagonal structure is thus anticipated, which is observed 

experimentally. When the vibration amplitude is about 10
−3

 m, the system is in “melt-jam” transition 

region; however, since the system is vibrated vertically without a cover, the beads may jump out of 

the  D container and completely “evaporate”. The evaporation starting time points at vibration 

amplitude 10
−3

 m, from Figure 10, are about several hundred milliseconds, which is again in line 

with the experimental observation. Figure 11 also predicts at very low vibration amplitude below 

about 2  10
−6

 m, the hexagonal crystal structure will remain intact within the time of one second. A 

phase diagram against vibration amplitude and frequency is presented in Figure 4 of the literature [6]; 

for comparison, the volume fraction at jamming points is plotted against vibration amplitude and 

frequency in Figure 12, which is amazingly similar to experimental phase diagram. Let’s focus on 

amplitude region between 10
−4

~10
−3

 m shown in the phase diagram in literature [6]: at very low 

vibration frequency below about 4  Hz, the system is in “melt-jam” transition state, both “gas” and 

“crystal” phases co-exist in the system. Above 40 Hz, the system tends to jam all the time even at 

very low volume fraction, i.e., the system enters into “superheated” crystal state; with the increase of 

vibration amplitude, the “superheated” crystal may appear at lower frequency range below 4  Hz, as 

suggested in Figure 12, which is not presented in literature [6] and needs to be confirmed 

experimentally in the future. In a word, we have to say that our predictions agree very well with the 

experimental observations. Since the newly defined granular temperatures are proportional to the 

shearing time, it is easy to understand why the jammed crystal structure is “destroyed” and finally 

“evaporated” with vibration time, naturally due to higher and higher granular temperatures. 
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Figure 11. The particle volume fraction at the jamming points,   , is plotted against the 

vibration time and vibration amplitudes from 10
−6

 to 10
−2

 m, obtained from Eq 39 under 

the assumption that  m      ,                or 60 Hz, r = 1.58  10
−3

 m. All 

these parameters are taken from the literature [6]. 

 

Figure 12. The particle volume fraction at the jamming points,   , is plotted against the 

vibration frequency from 0.1 to 100 Hz and vibration amplitudes from 10
−6

 to 10
−2

 m, 

obtained from Eq 39 under the assumption that  m      , t =      , r = 1.58  10
−3

 m. 

All these parameters are taken from the literature [6].  
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Shear-weakening phenomena are observed in beach sand systems in a torsional shear cell [71] 

under constant volume shear condition. The beach sand has a bulk density 1.73 g/cm
3
 and particle 

sizes ranging from 47 to 2000 micron determined with Beckman-Coulter Particle size analyzer. The 

sample was sheared for about 510 seconds under two conditions: constant volume and constant 

pressure. Shear-weakening phenomena were observed in constant volume shear condition. Although 

the whole system is not jammed, we may still use the volume fraction at jamming points to estimate 

if high shear stress is induced, under an assumption that even just partially jammed systems may 

generate high shear stress. Figure 13 shows the volume fraction at jamming points vs. shear rate and 

particle size under the assumption that  m      ,  
 
      g/cm

3
, a typical bulk density for 

beach sand, t =      , shear stress     10
−2

 Pa. These parameters are taken from the literature [71]. 

Take the particle sizes about 10
−4

 m as an example, if the sample is sheared from high to low shear 

rate, the sample may go through from a fully jammed state at very low particle volume fractions, a 

transition region of typical “jam-melt” process, and a later fully fluidic state where jamming may 

only happen at very high particle volume fractions that are unachievable in current beach sand 

systems. The transition regions could be the weakest, as the jamming may only occur at higher 

particle volume fractions and the system basically remains in “melting” state, as the volume is fixed 

and the particle volume fractions are well below jamming points. This scenario is qualitatively 

consistent with experimental observations: from high to low shear rate the measured shear stress 

steeply goes through a dip at very high shear rate regions, arises up gradually at middle shear rate 

regions, and levels off at low shear rate regions. High shear stress corresponds to the jamming state.  

 

Figure 13. The particle volume fraction at the jamming points,   , is plotted against the 

shear rate and particle size, obtained from Eq 37 under the assumption that  m      , 

        g/cm
3
, the bulk density for beach sand, t =      , shear stress    10

−2
 Pa. 

All these parameters are taken from the literature [71]. 
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Shear jamming phenomena were experimentally observed in suspensions of dense cornstarch 

particles dispersed into a density-matched solution of water, glycerol and CsCl without any change 

of packing fraction [70]. Let’s first examine how shear rate will impact jamming phenomena. The 

predicted volume fraction at jamming with Eq 37 is plotted in Figure 14 against both shear rate and 

particle size under a small shear stress, 10 Pa. The maximum packing fraction is assumed to be 0.74, 

the bulk density of cornstarch particles of particle size about 20 micron is 0.673 g/cm
3
 and shearing 

time is only 60 ms, based on the experimental data shown in the literature [70]. Unless experiment 

can be performed at a very wide shear rate range from 10
−8

 to 10
2
 s

−1
, jamming will be considered 

independent of shear rate, as only two distinctive shear regions with a very narrow transition area is 

predicted in Figure 14; in both distinctive regions, particle volume fractions at jamming points are 

independent of shear rate. The “jam-melt” transition region is greatly shifted with the increase of 

particle sizes and therefore mostly dominated by particle sizes rather than shear rate. Shear rate could 

induce jamming at lower particle volume fractions, but this effect quickly diminishes with the 

increase of particle sizes. Therefore, it would be reasonable to say that jamming is mainly dominated 

by particle volume fraction and particle size. Figure 15 shows the volume fraction at jamming points 

vs. shear stress and particle size under conditions that  m      ,  
 
       g/cm

3
, t =       , 

shear rate      10 s
−1

, which are taken on the basis of the literature [70]. As one may easily tell, 

predicted volume fractions at jamming points are strongly dependent on both shear stress and particle 

size. When shear stress goes from 10
−2

 to 10
5
 Pa, the volume fraction at jamming points slowly move 

from high to low, implying that shear jamming could occur at lower particle volume fractions. Unlike 

what we see in Figure  4 where the volume fraction at jamming points doesn’t change with shear 

rate for several orders of magnitudes at both low and high regions, the shear stress induced jamming 

process is continuous until the system hits the fully jammed state. Comparing Figure 15 with the 

phase diagram shown in Figure 3e of the literature [70], one may find similarities between these two 

figures: the blue area at high shear stress and low particle size regions corresponds to fully jammed 

regime, the steep fragile “jam-melt” region corresponds to the “discontinuous shear thickening” 

regime, the less steep fragile “jam-melt” region corresponds to the “shear jamming” regime, and the 

narrow flat region at low shear stress and large particle size corresponds to Newtonian regime. Note 

that particle sizes may have a similar impact as shear stress, if particle sizes can be varied several 

orders of magnitudes, from 10
−8

 to 10
−3

 m. This is a little surprising, as intuitively jamming should 

be dependent on packing fraction and independent of particle sizes. Particle size dependence could 

be understood in this picture: in current article granular temperature is defined to be strongly related 

to particle size and the jamming is defined on the basis of granular temperature. The onset shear 

stress for inducing discontinuous shear thickening could be considered as energy need to break down 

the lubrication between particles, identical to the reduction of free volume available in the system, 

where the interparticle spacing comes to play a role and this is how the jamming temperature is 

defined previously. Such a prediction is consistent with experimental observation that shear jamming 

is induced by shear stress rather than shear rate, due to the energy or free volume requirements for 

granular temperature. 
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Figure 14. The particle volume fraction at the jamming points,   , is plotted against the 

shear rate and particle size, obtained from Eq 37 under the assumption that  m      , 

         g/cm
3
, t =       , shear stress     10 Pa. All these parameters are taken 

from the literature [70]. 

 

Figure 15. The particle volume fraction at the jamming points,   , is plotted against the 

shear stress and particle size, obtained from Eq 37 under the assumption that  m      , 

         g/cm
3
, t =       , shear rate      10 s

−1
. All these parameters are taken on 

the basis of the literature [70]. 
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5. Discussion 

I would like to emphasize that the current article simply is an extension of my two other articles 

published previously [30,31]. The reference [30] is a communication and the reference [31] is the full 

paper. As you may tell, the approach of defining granular temperatures with the kinetic energy 

connection 
 

 
     

 

 
     

  was already employed in these two articles for granular powders 

under a simple shear case, and the theoretical predictions built on this granular temperature are 

consistent with the empirical powder flowability criteria and even with the experimental data. Such 

amazing agreements prompt me to apply the same approach of defining granular temperature to other 

common situations like particles rolling on a slope and particles under a vibration shaker, which are 

the main topics of current paper. Furthermore, since the granular temperature is re-defined for 

granular powders, the corresponding “thermodynamics” for athermal systems is examined against 

the standard thermodynamics. The very common and rich jamming phenomena observed in granular 

powders is therefore addressed with the new granular temperature definitions for validating the new 

concepts and approaches proposed in this article, and most importantly providing some new insights 

on these complicated phenomena. These three articles should be read through together and they 

gradually become much deeper and wider. Nonetheless, the approach used to define the granular 

temperature remains same in principle across all three articles. In addition, I would like to reiterate 

that the approach used in these three articles to analogously define the granular temperatures is not 

originated by me and has been employed in many publications. 

Among many approaches of defining granular temperatures as briefed in the “Introduction” 

section in this article, I personally think that the kinetic energy connection approach is the best, as 

such an approach may allow us to employ the well established thermodynamic principles to treat the 

complicated granular powder materials. For ideal gas systems, the pressure is generated from the 

kinetic movements of gas molecules. To keep self-consistency, the pressure generated from granular 

powders should be analogously considered to be induced from the kinetic energy of particles. 

Equation 12 is obtained under such an assumption with the consistent kinetic energy connection 

approach, rather than simply replacing the usual pressure with Janssen’s equation. I have to say that 

Eq 12 is not obtained with uncertain assumptions; rather it is derived with the same kinetic energy 

connection 
 

 
     

 

 
     

  , which lays the foundation of thermodynamics and has been used in 

granular powder systems for many years.  

Someone may argue that, according to Eq 10, a good definition of granular temperature should 

vanish for an immobile packing of particles. However, per Eq 9 the pressure is induced from the 

kinetic energy and we also know for sure that the pressure in granular powders is not zero. For 

keeping consistent with the granular temperature definitions using the kinetic energy approach, I 

have no choice but to come up Eq 12, though the obtained granular temperature should be very close 

to zero, as expected.  

The granular temperatures defined in Eqs 21, 24, and 30 are obtained under dynamic rather than 

stationary conditions. Equation 21 is for granular powders under a continuous vibration shear, Eq 24 

is for granular powders under a continuous simple shear, and Eq 30 is for the granular powders 

continuously rolling on a slope. The granular temperatures are defined on the continuous energy 

inputs into the systems, thus the time should be a critical parameter in the definition. After the 
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granular temperatures are defined analogously with thermodynamics using the kinetic energy 

connection approach, particles may represent the very fundamental “atoms” of the thermal systems 

and thus thermodynamic principles can be applied to granular non-thermal systems. The goal of this 

article is to validate this approach and to see what predictions can be obtained. As indicated earlier, 

this approach is not originated by me and the success has been demonstrated in my recent four 

articles [30,31,63,66]. Since the granular temperatures are defined with the kinetic energy rather than 

the mean squared grain speed, the statistical framework is therefore not addressed in this article.  

Although my article focuses on the jamming transition at dynamic conditions, the obtained 

equations are suitable for static jamming, too. Take Eq 37 as an example, if there is no shearing and 

thus shear rate is zero, then the jamming volume fraction equals to the maximum packing fraction, 

which is very true at stationary conditions. If the particles cannot be considered as hard spheres and 

the frictional forces among particles cannot be ignored, granular temperatures and jamming 

temperatures must include the frictional energy term. Those equations containing the frictional 

energy term applicable for several particle flow and tapping processes are given in this article but not 

focused on simplicity reasons. The frictional energy term, most times unknown, is not considered in 

illustrative figures. Since free volume is an average term, microscopic frictional interactions are 

therefore not considered in this article, either. 

As one may know, granular powders are athermal systems, utilization of thermodynamics and 

statistical mechanical theories extracted from conventional thermal systems to granular powders is 

found to be in good agreement with experimental results [12,28,63,66]. We thus examine the 

applicability of the four laws of thermodynamics on granular powder systems, and define granular 

temperatures for several granular powder systems in an analogous manner. The key point is to define 

the temperatures in granular powders through the kinetic energy connection with temperature, as 

shown in ideal gases. The main goal is to establish an approach that can facilitate easy applications 

of thermodynamic principles to granular powder systems. Such attempts have been made before for 

addressing both wet particle systems like colloidal suspensions and dry particle systems like granular 

powders. For examples, Hao [62] has successfully used the Eyring’s rate theory [72] and the free 

volume concept for obtaining the viscosity equations of colloidal suspensions and polymeric systems 

with substantial modifications. A very similar theoretical approach is successfully employed to derive 

the two popular empirical tap density equations, the logarithmic and stretched exponential  

equations [63,72]. Recent experimental results using X-ray tomography indicate that granular 

materials flow like thermal system complex fluids [73]. All these successes demonstrated in literature 

imply that both thermal and athermal systems can be well described with common thermodynamic 

principles. What we need is a bridge that can build up a uniform connection between those two 

systems. Future attempts will be made to utilize the Eyring’s rate process theory and free volume 

concept to derive viscosity equations of granular systems under various conditions and to expand to 

other massive granular jamming and flow systems like landslides and earthquakes.  

6. Summary and conclusions 

In summary, the thermodynamics is utilized to define the granular temperatures in granular 

systems in an analogous manner using kinetic energy connections. The key point is to connect the 

kinetic energy to the temperature, and thus the temperature can be defined in a uniformed manner 

across the conventional thermal systems like colloidal suspensions to athermal systems like granular 
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powders. This is a much needed step, as in granular systems thermal energy is too weak to drive 

granular particles to move. New granular temperature definitions are needed for properly applying 

the thermodynamic principles established in thermal systems to granular systems. Several common 

granular systems are analyzed and the defined granular temperatures are summarized in Table 2 for 

hard spheres without frictional forces. For frictional granular systems, additional terms related to the 

frictional energy, 
  

   
 or              , must be included in granular temperatures and particle 

volume fraction at jamming points equations, respectively. The obtained granular temperatures seem 

to be very high in comparison with the temperatures in thermal systems. However, please keep in 

mind that in conventional thermal systems, the molecule movements are in much smaller distance 

scales. Lower temperatures seem to be adequate for thermal systems. On the other hand, the particle 

movements in granular powders are typically very intensive and wild, and higher granular 

temperatures seem to be adequate.  

Table 2. Proposed granular temperatures and the particle volume fractions at jamming 

points predicted in several granular systems. 

Granular 
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Granular temperatures Typical values 

(K) 

Conditions Particle volume fractions at jamming 
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n is a very large 

number 

  

 
   

   
       
       

        
    

 
   

  

Powders in 

vibrations 

B

v
gp

k

ngLr
T 0

3

9

8 
  

1.98   1010 r = 1 µm, 

  = 1 g/cm3, 

         

        

   
 m 

                
 

Powders 

under a shear 

bB

gp
k

tr
T







3

9

8  

2.02   108 r = 1 µm, 

  = 1 g/cm3, 

b = 0.3 g/cm3, 

         

 


       

        

   
  

       (gr      
 

Particles 

rolling on a 

slope 

   

 
     

   
       

           

4.76   1011 r = 1 µm, 

  = 1 g/cm3, 

     , 

       

      

   
 m 

   
   

 
             

  

Once the granular temperatures are defined, the jamming temperature is analogously defined, 

too. The jamming particle volume fractions are thus obtained by assuming that the ratio of the 
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granular temperatures to the jamming temperature equals to one. Therefore, the jamming points can 

be predicted and the obtained results agree qualitatively very well with experimental observations 

and empirical solutions in powder handlings. The particle volume fractions at jamming points 

obtained at several common cases are listed at Table 2, too.  

The work in this article may lay a foundation for building up the “granular dynamics” on the 

basis of the granular temperatures defined analogously with that in thermodynamics. The four laws 

of thermodynamics are applicable to the granular powders with such definitions. Since the most 

important jamming phenomena in granular powders under a shear and a vibration are intensively 

examined, the results presented in this article may provide further insights on how to efficiently 

control the jamming process that has vast and important applications in industries like soft robotics 

and architecture [57].  
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