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Abstract: Peptoids, or poly-N-substituted glycines, are synthetic polymers composed of a protein 

backbone with side chains attached to the nitrogen atoms rather than the α-carbons. Peptoids are 

biomimetic and protease resistant and have been explored for a variety of applications including 

pharmaceuticals and coatings. They are also foldamer-type materials that can adopt diverse 

structures based on the sequences of their side chains. Design of new peptoid sequences may lead to 

the creation of many interesting materials. Given the large number of possible peptoid side chains, 

computer models predicting peptoid structure-side chain relationships are desirable. In this paper, we 

provide a survey of computational efforts to understand and predict peptoid structures. We describe 

simulations at several levels of theory, along with their assumptions and results. We also discuss 

some challenges for future peptoid computational research. 
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AMBER   Assisted Model Building with Energy Refinement 

B3LYP   Becke, 3-parameter, Lee-Yang-Parr hybrid functional 

CHARMM   Chemistry at Harvard Macromolecular Mechanics 

BCC   Bond-Centered Charges 

CD   Circular Dichroism 

GAFF   General AMBER Force Field 

GBSA   Generalized Born Surface Area implicit solvent model 

HF   Hartree-Fock  

IEFPCM   Integral Equation Formalism for the Polarizable Continuum Model 

MF-CG-TOID  Molecular Foundry Coarse-Grained Peptoid model 
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MFTOID   Molecular Foundry Peptoid Force Field 

MP2   Møller-Plesset perturbation theory 

NMR   Nuclear Magnetic Resonance spectroscopy 

PCM   Polarizable Continuum Model 

PPI Helix    Polyproline type I Helix 

PPII Helix   Polyproline type II Helix 

REMD    Replica Exchange Molecular Dynamics 

 

1. Introduction 

Peptoids are synthetic, protein-like polymers composed of poly-glycine backbones with side 

chains attached to their backbone nitrogen atoms [1,2] (See Figure 1). Peptoids are protease resistant 

and biocompatible and can be designed to mimic peptides [3], diffuse through membranes [4], and 

bind biological targets [5]. They have potential applications as drug molecules [6], antimicrobials [7], 

lung surfactants [8], and catalysts [9]. Peptoids can be synthesized with specific sequences in a step-

by-step approach. Their synthesis, applications, and experimental characterizations have been 

extensively reviewed elsewhere [1,2]. 

 

Figure 1. A Peptoid (a) and a peptide (b) Peptoids and peptides share the same backbone, 

but peptoids have side chains attached to their nitrogen atoms. This removes backbone 

chirality and backbone hydrogen bonding capability. The repeat unit of the peptoid 

backbone resembles the amino acid glycine, with a side chain replacing the nitrogen-

bound hydrogen atom. Due to this, peptoids are also called poly-N-substituted glycines. 

Peptoids are a kind of foldamer [10], i.e., linear polymers that fold into diverse 3D structures 

depending on the sequence of their attached side chains—just as amino acids combine to yield a 

diverse library of proteins. Single peptoid chains have been shown to adopt ordered structures 

including polyproline type I helices (PPI) [11], polyproline type II helices (PPII) [12], a threaded 

loop [13], flat “ribbons” [14] and “Σ-strands” [15], which are shown in Figure 2. Groups of peptoid 
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chains can further self-assemble into nanostructures including microspheres [16], superhelices [17], 

and thin, bilayered nanosheets [18]. The chief focuses of this review are simulation studies that 

enhance our understanding of peptoids as foldamers, i.e., those studies that describe the relation 

between side chains and backbone conformations.  

As researchers attempt to develop peptoids into useful materials, a key challenge is identifying 

side chains, and combinations of side chains, that drive backbone folding in a predictable way. This 

challenge is closely related to the well-known protein folding problem [19], whereby researchers 

aspire to predict folded protein structures from sequences of amino acids. Peptoid researchers have 

mainly approached this problem by identifying side chains expected to exert local structural 

preferences through sterics [11,12], electrostatics [20], hydrogen bonding [21], or n–π* bonding [22]. 

These candidates are then synthesized into peptoid polymers and characterized using experimental 

methods such as X-ray crystallography [23], circular dichroism [24], and NMR [25].  

Molecular modeling has played a prominent role in understanding the folding behavior of 

peptoids. Modeling studies have helped characterize and even predict some of the structures 

described above. Given the large number of possible peptoid side chains (potentially synthesized 

from over 300 commercially available primary amines [2]), and thus the astronomical number of 

possible combinations of side chains, molecular simulations will continue to play a crucial role in 

peptoid development, and will benefit from the extensive body of work devoted to the protein 

folding problem.  

Computational approaches to the protein folding problem consist of methods, models, and 

algorithms that read in amino acid sequences and return 3-D structure predictions. These predictions 

can be based on physical, force field models with parameters derived from theory or tuned to 

experimental data [26,27], and/or they can be heuristically scored according to similarity with 

existing sequences [28,29,30]. We focus our discussion on the former approach, as it is most 

transferrable to peptoids: little experimental data exists for most side chains and theoretical data is 

easier to obtain. 

Protein folding can be studied at several scales of complexity. Quantum mechanical modeling 

can determine small molecule, monomer-level energy preferences, at high resolution but also high 

computational costs. All-atom methods model molecules as combinations of atoms that interact via 

potential energy functions (“force fields”), whose parameters describe atomic-scale interactions such 

as covalent bonds, hydrogen bonds, van der Waals forces, electrostatics, and solvent effects. These 

force fields may be tuned to both ab initio and experimental data. They are utilized with computer 

algorithms that intensively search for favorable folded structures. Finally, coarse-grained models 

blend multiple atoms into a single sub unit or “bead” and define force field parameters that describe 

interactions of these beads. Coarse-grained studies have reduced resolution compared to all-atom 

studies but are also less computationally intensive. Because of this, they are more practical to study 

larger simulations involving multiple chains, such as aggregation. More details on the different levels 

of molecular models can be found in [31] and [32]. 

Peptoid modeling can be approached using a similar framework: using quantum methods to 

characterize monomer subunits, and building these into force fields that can describe longer chains, 

or systems of chains. Protein force fields may sometimes be used for peptoid simulation because the 

backbones of peptides and peptoids are composed from the same atoms. However, some key 

differences between peptoids and peptides can limit this transferability. Force fields for peptoids 

should be carefully verified and parameterized when appropriate.  
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Three key features of peptoid backbones can grant them local folding behavior significantly 

different from that of proteins: (1) peptoid backbones do not form hydrogen bonds, (2) their 

backbones are achiral, and (3) the peptoid sp
2
 amide bond can isomerize and exist as both a cis or a 

trans conformer. In proteins, hydrogen bonding between nearby backbone amide and carboxyl 

groups stabilizes highly ordered, localized secondary structures, including α-helices and β-sheets. 

Because the peptoid side chain replaces the amide hydrogen, peptoids do not form the same 

secondary structures. Furthermore, in proteins, each Cα atom (with the exception of glycine) is a 

chiral center with (L) chirality, granting the rotational directionality to the backbone seen in the 

handedness of α-helices and the twists of β-sheets. Peptoid backbones resemble glycine, the only 

achiral amino acid. Therefore, unless chirality is added via a chiral side chain, peptoids do not favor 

a specific twist. Moreover, it is possible to build peptoids with side chains of alternating handedness, 

leading to unique secondary structures [15]. Finally, in proteins, the sp
2
 amide bond is almost always 

in a trans configuration, where the carboxyl oxygen and amide hydrogen rest on opposite sides of the 

peptide bond, as the cis conformation leads to a steric clash between side chains. The peptoid amide 

bond, in contrast, can exist as a cis or a trans conformer, generally determined by the size of the side 

chain residue.  

The differences mentioned above must be addressed when developing peptoid models. In the 

case of chirality and hydrogen bonding differences, this can be achieved by careful adaption of 

protein models. Protein force field parameters can be tuned to favor secondary structures not present 

in peptoids [33], so protein force fields transferred to peptoids should be verified and tuned against 

peptoid experimental data. Addressing the amide bond isomerization can be more challenging. The 

effect of a side chain on a peptoid secondary structure can differ depending on the isomerization state 

of the peptide bond. Due to this issue, all ab initio characterizations of side chain energetics should 

be examined in both the cis and the trans states. Ideally, parameters in all-atom and coarse-grained 

force fields should be tuned to accurately represent both configurations.  

Properly sampling peptoid cis/trans isomerization is an unsolved challenge. Isomerization itself 

is a rare event that can have an activation barrier of 15 kcal/mol [34] and characteristic times slower 

than a microsecond [35]. The physical mechanism of isomerization involves breaking the peptoid 

double bond and rotating through a partial-sp
3
 transition structure [36]. Force field parameters 

enforce this high energy barrier, and in molecular dynamics, a simulation method where Newton’s 

equations of motion are integrated in time to explore the conformational space [31], the high-energy 

peptide bond isomerization is unlikely to occur at room temperature. Therefore, to make 

comparisons between cis and trans structures, this isomerization must be studied through enhanced 

sampling techniques that force the system across the barrier. These include umbrella sampling [37] 

and replica exchange molecular dynamics [38].  

In this paper, we survey the literature on modeling studies of peptoids in light of the issues 

discussed above. We have organized this review as follows: In section 2.1, we describe insights into 

monomer-level backbone energetics found from ab initio studies. These include studies that describe 

differences between peptoid and peptide structures, and studies characterizing the effects of specific 

side chains on the peptoid backbone. In section 2.2, we discuss the predictive power of peptoid 

modeling using combined all-atom/semi-empirical and combined all-atom empirical techniques. 

Section 2.3 describes studies using all-atom simulations of peptoid chains. These studies have two 

goals: to characterize the transferability of protein force field models to peptoid systems and to 

identify peptoids that form local secondary structures. In section 2.4, we review a coarse-grained 



1033 

AIMS Materials Science                                                             Volume 4, Issue 5, 1029-1051. 

model for peptoids. Section 2.5 describes how peptoid residues were added to the protein structure 

prediction program ROSETTA. Finally, we summarize the current state of peptoid modeling, and 

suggest future directions for computational studies of peptoids.  

 

Figure 2. Known Peptoid Secondary Structures. (A) The PPI helix (shown here as (S)-N-

(1-napthylethyl)glycine) [11,39], (B) the N-(phenyl)glycine PPII helix [12], (C) the 

peptoid ribbon [14], (D) the threaded loop [13], and (E) the Σ-strand [15]. A, C, and D 

are shown without their backbone hydrogen atoms, and E is shown without its side 

chains. The secondary structures are characterized by their patterns of φ and ω dihedrals 

defined in Figure 3. The PPI and PPII helices have repeating (φ = (−)75°, ω ~ 0°) and (φ 

= (−)75°,ω = 180°) dihedrals, respectively. The threaded loop (D) is created by 9-mer 

NSPE peptoids and is stabilized by a hydrogen bonding interaction between side chains 

and their NH2 groups. The ribbon (C) has alternating ω = 0° and ω = 180° dihedrals and 

the Σ-strand (E) has ω = 180° and alternating φ = −90°, ψ = 120° and φ = −120°, ψ = 90° 

dihedrals. Structure A Reprinted with permission from Stringer et al. [39]. Structure B 

reprinted with permission from Shah et al. [12]. Structure C reprinted with permission 

from Crapster et al. [14]. Structure D Reprinted (adapted) with permission from Huang et 

al. [13]. Structure E reproduced with permission from Mannige et al. [15]. Copyright (A: 

2011, B: 2008, D: 2006) American Chemical Society. 

2. Modeling Studies of Peptoids 

2.1. Ab Initio Studies of Peptoids 

Ab initio simulations can be used to calculate highly accurate energy minimized structures for 

small molecules and have been used to characterize monomer-level structural preferences for 

peptoids. An advantage to this approach is that ab initio calculations are based wholly on quantum 
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theory and do not rely on system-specific force field parameters or tuning to experimental data. A 

disadvantage is that ab initio simulations are computationally expensive for all but the smallest 

molecules. Therefore, ab initio peptoid modeling has mostly been used to characterize short-range 

energy preferences of peptoid monomers and to refine structure predictions from all-atom 

simulations (see section 2.2). This section focuses on ab initio characterization of peptoid monomers, 

but also describes the ab initio characterization of the binding structure of a peptoid trimer.  

Ab initio peptoid simulations frequently describe peptoid backbone energetics by calculating 

Ramachandran plots. Widely used to visualize protein secondary structure preferences, 

Ramachandran plots describe peptoid conformations in terms of the backbone dihedrals φ and ψ [40]. 

These dihedrals, a peptoid Ramachandran plot, and the locations of key peptoid structures are shown 

in Figure 3. Peptoid Ramachandran plots can look different from those of proteins due to structural 

differences between peptoids and peptides and due to plotting conventions. Because of their achiral 

backbones, peptoid Ramachandran plots can have energy minima with both positive and negative φ. 

Protein φ dihedrals are almost always in the −180°–0° range because almost all amino-acids are (L) 

chiral. Additionally, peptoid Ramachandran plots should be plotted in pairs, with separate φ–ψ plots 

for the cis and trans conformers. A 3
rd

 backbone dihedral, ω, describes the cis/trans isomerization. 

To compare cis (ω = 0°) and trans (ω = 180°) probabilities in the same figure, plots of ω versus φ or 

ω versus ψ, may be more appropriate (See Figure 4) [41]. By convention, peptoid Ramachandran 

plots may also be plotted on 0°–360° axes rather than −180°–180° axis so that the αD minimum is 

centered.  

  

Figure 3. The peptoid backbone dihedrals and a peptoid Ramachandran plot. (A) Peptoid 

backbone conformations can be described by the dihedrals φ, ψ, and ω. The dihedral ω 

describes the isomerization of the planar peptoid bond. In the cis (ω = 0°) configuration, 

the side chain and the carbonyl oxygen are on the same side of the bond. In the trans  

(ω = 180°) configuration (shown) the side chain and the oxygen lie on opposite sides of 

the amide bond. The ρ dihedral, closely related to φ, is an additional parameter used to 

parameterize peptoid force fields, and is also shown. Ramachandran plots (B) are used to 

show backbone (φ–ψ) conformational preferences. Ramachandran plots are 2-D 

histograms that graph either the probability or the conformational energy of each φ/ψ pair 

of dihedrals. The figure shown corresponds to the trans isomer. This figure is based on 

data from Butterfoss [41]. 
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Figure 4. A partial summary of the peptoids described in this work. (A) Sarcosine (B) N-

(1-methoxyethyl)glycine, (C) (S)-N-(1-phenylethyl)glycine, (D) N-Methylacetanlide or 

N-(phenyl)glycine, (E) The aryl trimer studied by Butterfoss et al., (F) (N-(2-phenylethyl) 

glycine)3, (G) (R)-N-(1-cycloheyl-ethyl), (H) N-(2-nitro-3-hydroxyl phenyl)glycine-N-

(phenyl)glycine, (I) (N-(2-aminoethyl)glycine-N-(2-phenylethyl) glycine)N/4-(N-(2-

carboxyethyl)glycine-N-(2-phenylethyl)glycine).  

Möhle and Hoffman [42] performed the first ab initio studies of a peptoid in 1996, comparing 

monomer conformations of the peptoid sarcosine (N-methylamide) to the small peptides glycine and 

alanine. Using HF-6-31G* and MP2-6-31G* calculations, they identified and named two vacuum-

phase minimum energy conformations that are unique to peptoids, C7β (φ ~ 130°, ψ ~ 78°) and αD  

(φ ~ 75°, ψ ~ 170°), and observed a local minimum at the α-helical (α) dihedrals (φ ~ 55°, ψ ~ 55° 

and φ ~ 305°, ψ ~ 305°, ω ~ 180°) or (φ ~ 55°, ψ ~ 55° and φ ~ 305°, ψ ~ 305°, ω ~ 0°). All three 

minima exist for both the cis and trans sarcosine conformers. Möhle and Hoffman found that C7β and 

αD are the lowest energy conformations for trans sarcosine, and cis αD is the global minimum in the 
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vacuum phase. Using a polarized continuum model [43,44] to represent solvation effects, they 

showed that the solvation stabilizes the αD minimum in both cis conformations and that the cis and 

trans configurations are equally favorable in polar solvents. 

Butterfoss et al. expanded on Möhle and Hoffman’s work by exploring how longer backbones 

and more complex side chains affect the features of the peptoid energy surface [41]. Using the 

B3LYP//HF-6-31G* level of theory, they created Ramachandran plots for a sarcosine dimer and for 

monomers with N-(methoxyethyl) (Nmeo) and (S)-N-(1-phenylethyl) (NSPE) side chains. Chemical 

structures of these side chains are shown in Figure 4B and 4C. They overlaid these plots with 

experimental dihedral measurements from X-ray crystallographic and NMR studies of a variety of 

peptoid oligomers. To ensure that the Ramachandran energies were calculated with sufficient 

accuracy, Butterfoss et al. compared minimum energy surfaces calculated at the MP2-6-31G*//HF-6-

31G* and B3LYP/6-31G*//HF/6-31G* levels of theory. They found that these scans were very 

similar, particularly around the energy minima, suggesting that B3LYP/6-31G* calculations are 

sufficient for calculating peptoid structure energies. 

Butterfoss et al.’s results showed that peptoid side chains exert strong control over the peptoid 

backbone dihedrals. As in Möhle and Hoffman’s work, Butterfoss et al.’s sarcosine Ramachandran 

plot featured C7β and αD minima. These same minima were present for the NSPE and NMeo 

monomers, however, with the larger side chains, the αD minimum was increasingly favored over C7β. 

The chiral N side chain imparts a twisting structural preference on the peptoid backbone. This causes 

the Ramachandran plot to become asymmetric, as shown in Figure 5. In accordance with Möhle and 

Hoffman’s solvated simulations, the experimental dihedrals summarized in Butterfoss et al. were 

largely localized to the αD minima, confirming that it is the most common solvated conformation. In 

fact, the trans C7β minimum was only observed experimentally as part of a strained turn in a cyclic 

tetramer.  

 

Figure 5. Ab initio Ramachandran plot for cis (A) and trans (B). Both plots represent 

data at the HF-6-31G* level of theory. The “o” and “+” markers represent cyclic and 

linear experimental data. Adapted with permission from Butterfoss et al. [41]. 
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Both Butterfoss and Möhle found that the peptoid nitrogen is slightly pyramidal, causing the ω 

dihedral to deviate from 0° or 180° in these cis and trans configurations. Butterfoss and coworkers 

observed this aplanarity in both their experimental and computational results. This flexibility can be 

seen in traditional Ramachandran plots in the form of wider, flatter contours, or it can be plotted 

explicitly in φ–ω and ψ–ω plots as shown in Figure 6. 

 

Figure 6. ψ–ω and φ–ω ab initio Ramachandran plots. φ–ψ Ramachandran plots are 

unable to describe isomerization of the ω dihedral. Butterfoss generated these (A) ψ–ω 

and (B) φ–ω plots as an alternative (ab initio HF-6-31G* data). ω dihedrals which 

deviate from 0° or 180° describe pyramidal nitrogen atoms. The “o” and “+” markers 

represent cyclic and linear experimental data. Adapted with permission from Butterfoss 

et al. [41], copyright (2009) American Chemical Society.  

While most ab initio peptoid simulations have been used to characterize backbone energies, 

Parker et al. [45] used ab initio simulations for a different purpose: to understand the binding 

structures of a uranyl chelating peptoid. Parker et al. sought to identify peptoids that could 

selectively bind and extract uranyl (UO2
2−

) ions from seawater. Using a combinatorial screening 

approach, they identified peptoids with three consecutive carboxyl side chains as strong uranyl 

binders. They then used B3LYP/6-31G(d,g) calculations to find energy minimized structures, and the 

integral equation formalism for the polarizable continuum model (IEFPCM) to calculate solvation 

free energies [46]. Parker et al. identified several possible uranyl binding conformations for a 

carboxyl peptoid trimer. Two of them are shown in Figure 7. Carboxyl groups and water molecules 

can bind to uranyl around the linear ion’s equatorial plane. Parker et al. identified and minimized 

binding configurations where the trimer binds uranyl through 1, 2, or 3 carboxyl groups. They 

suggested that the binding free energy of these complexes results from a tradeoff between binding 

enthalpy of each group and lost chain entropy due to conformational restriction.  
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Figure 7. Two possible binding configurations for a uranyl chelating peptoid. The 

peptoid can bind the uranyl ion with one, two, or three carboxyl groups. The binding 

enthalpy released on additional carboxyl binding is counteracted by the entropy loss in 

the restricted backbone chain. Adapted with permission from Parker et al. [45]. 

Copyright (2016) American Chemical Society. 

2.2. Peptoid Structure Prediction with Combined Methods 

Attempts to study longer peptoid chains with available models pose a problem: ab initio 

methods are computationally expensive for all but the smallest molecules, while existing all-atom 

force fields may not adequately model peptoid energetics. A productive solution has been to conduct 

simulation studies combining different levels of theory. In this approach, existing all-atom force 

fields are used to explore many possible conformations and identify potential minima, then semi-

empirical or ab initio methods are used to more precisely characterize these minimum energy 

structures. This kind of approach has played a role in the prediction and discovery of novel peptoid 

secondary structures, including the (S)-N-(1-phenylethyl)glycine (NSPE)-induced polyproline I helix 

(PPI) [11] and the N-(phenyl)-glycine-induced polyproline II helix (PPII) [12], and in the NMR 

characterization of the peptoid ribbon [14].  

Armand et al. [11] predicted the structure of the NSPE PPI helix in 1997, using the AMBER all-

atom force field [47], and the AMSOL [48] semi-empirical force field with the AM1 parameter set. 

Previous experimental studies of peptoids with repeating NSPE side chains had resulted in Circular 

Dichroism (CD) spectra consistent with helical secondary structures [24]. With this knowledge, 

Armand et al. performed conformational searches of NSPE octamers by varying each of the φ and ψ 

dihedrals over a range of 0–360°. They calculated conformational energies using the torsional and 

nonbonded parameters of the AMBER force field, holding the molecule’s angles and bond lengths 

fixed. To refine their structure characterization, they used AMSOL to minimize NSPE dimers.  

Armand et al. showed that (NSPE)8 favored a PPI structure with cis (ω = 0°) peptoid bonds and 

a negative (−120° < φ < −75°) twist, and identified the steric interactions that stabilize this 
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conformation. In particular, they suggested that steric clashes between the bulky side chain and the 

peptoid backbone enforce a preference for the cis isomer, and that the chiral center orients to 

minimize steric clashes between its bulky benzene and methyl groups and the neighboring carbonyl 

oxygen. Through these interactions, the chiral side chain stabilizes a negative φ for NSPE but 

positive φ for its isomer (R)-N-(1-phenylethyl)glycine (NRPE).  

In a later paper, Shah et al. used a combination of all-atom and semi-empirical studies to show 

that peptoids with simple benzene side chains (Figure 4D) form PPI helices (Figure 2) [12]. 

Experimental studies show that phenyl side chains promote the trans isomer of peptoid  

monomers [49]. Shah et al. were interested in other possible structural preferences imparted by this 

side chain. They generated an ab initio Ramachandran plot at the B3LYP/6-311+G(2d,p)//HF/6-

31G* level of theory for an N-methylacetanilide dimer in the trans configuration. This scan 

identified minima in the φ–ψ energy surface at (φ = 60°, ψ = −150°) (+φ) and (φ = −60°, ψ = 150°) 

(−φ). To understand if these local energy preferences resulted in long-range order, Shah studied N-

methylacetanilide hexamers whose units had different combinations of these minima. The structures 

of these hexamers were then optimized using the Sigma simulation package [50] with the cedar all-

atom potential [51]. These calculations showed that steric clashes prohibited sequences with 

mixtures of residues in the +φ and −φ conformations. The minimum energy structures were helices 

with repeating −φ or +φ turns. 

In a similar study, Butterfoss et al. attempted blind structure prediction for three peptoid 

oligomers [52]. Each oligomer, (E, F, and C in Figure 4) contained side chains that stabilized its 

crystals via different forces: (E) a trimer with three bulky, ortho-substituted benzene side chains that 

stabilize its structure via side chain steric effects, (F) (Npe)3, a trimer with three N-2-phenylethyl 

side chains whose crystals are stabilized by π–π interactions between benzene rings in neighboring 

molecules and by end group effects, (C) a cyclic (NSPE)9 molecule that forms needle like crystals 

whose side chains encage a single ethanol molecule. Prior to simulations, newly solved crystal 

structures for these chains were hidden from the modelers. Butterfoss et al. ran all-atom simulations, 

using parameters from the generalized amber force field (GAFF) [53] and represented solvent effects 

using the Generalized Born implicit solvent model [54]. To overcome cis/trans barriers and allow 

sampling of all ω conformations, they used replica exchange molecular dynamics (REMD) [38]. For 

the trimers, quantum structure calculations were performed, independent of the REMD, at the 

HF/3-21G* level with energies calculated at the M052X/6-311G** level. For the nonamer 

characterization, REMD and low-level quantum mechanics calculations were performed sequentially, 

using quantum mechanics to optimize the minimum energy structures identified by REMD. 

Butterfoss et al. showed that the success of computational structure predictions with GAFF 

depends heavily on the particular forces that stabilize a peptoid structure. Both REMD and QM 

successfully predicted the crystal structure of the aryl trimer but identified a highly degenerate set of 

low energy conformations for (Npe)3. This is likely because the crystal structure of (E) is stabilized 

by its own side chains, while that of (Npe)3 is stabilized by interchain interactions. The cyclic 

(NSPE)9 simulations predicted the correct cis/trans patterning of the backbone ω dihedrals but failed 

to predict trends in the φ dihedrals and the orientations of the side chain dihedrals. Butterfoss re-ran a 

DFT calculation of NSPE including an explicit ethanol molecule, and showed that this predicted the 

correct structure. This suggests that, in this case, and other cases where complexation between 

solvent molecules and the peptoid side chains may be possible, the solvent must be explicitly 

included in the structure calculation.  
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2.3. All-atom Molecular Dynamics Studies of Peptoids 

Quantum studies can precisely describe the properties of very small peptoids, but all-atom 

molecular dynamics (MD) studies are necessary to characterize longer peptoid chains. The quantum 

studies described previously were able to use monomer level energy preferences to predict structures 

for peptoids composed of the same repeated side chain. The next step in rational peptoid design is to 

predict how sequences composed of differing side chains combine to lead to folded structures or 

nanomaterials. All-atom simulations can build upon quantum work by making such predictions.  

All-atom force fields extend the range of size and length scales accessible to simulation by 

using effective interaction potentials between the atoms in the system. The parameters in these 

effective potentials can be fitted to experimental data and also to reproduce the results of quantum 

calculations, thus bridging the gap between the electronic and the atom-wise description of the 

system. The literature on force field development is extensive and methods vary depending on the 

force field, for an introduction to the subject the reader is referred to force field specific  

references [53,55,56,57].  

The quality of all-atom simulation results is dictated by the quality of the all-atom force field 

used. Most peptoid MD simulations have been performed with either protein-specific force fields 

such as those of CHARMM [55] or AMBER [56], or generalized force fields such as OPLS [57] or 

GAFF [53]. A priori, both of these classes of force fields should not be expected to represent peptoid 

structures accurately, as protein force fields may result in an unrealistic preference for protein-

specific secondary structures, such as α-helices, and general force fields may need extra tuning to 

correctly predict peptoid-specific structures. More recently, newer, peptoid-specific force fields have 

been developed to address these concerns.  

Möhle and Hoffman ran the first all-atom simulations of sarcosine monomers, comparing these 

MD calculations against their ab initio results described in section 2.1 [58]. Using the CHARMM22 

force field, they simulated sarcosine molecules both in vacuum and explicitly solvated with TIP3P 

water [59], and used holonomic constraints [60] to calculate relative free energies for the sarcosine 

minimum energy structures. In these simulations, CHARMM22 replicated the ab initio trans vacuum 

phase minima αD and C7β but overstabilized cis α. In spite of this, both cis and trans simulations in 

water replicated the ab initio results. The solvated simulations showed that both trans and cis 

conformers preferred the αD minimum when solvated in explicit water.  

Voelz et al. sought to determine whether the GAFF all-atom force field [53] could simulate the 

dihedral preferences of small peptoids. Their work targeted the ab initio and experimental data 

published by Butterfoss et al. [41] and described in section 2.1. They parameterized GAFF for 

peptoids using Antechamber automatic typing [61] and AM1-BCC charge fitting [62]. To ensure that 

both cis and trans configurations of the amide bond were explored, they used REMD to overcome 

high energy barriers [38]. GAFF’s ability to recreate the ab initio peptoid dihedrals was compared to 

other AMBER force fields and to the OPLS force field in implicit and explicit solvent. GAFF 

simulations using the generalized Born surface area (GBSA) solvent model [54] predicted peptoid 

dihedrals better than other force fields and better than explicitly solvated simulations. GAFF 

recreated most of the ab initio dihedrals well but failed to reproduce the −φ preference observed for 

NSPE. GAFF was able to successfully reproduce the cis/trans patterning of the peptoid oligomers 

(Sar)8, a (R)-N-(1-cyclohexyl-ethyl)glycine pentamer (Nrch)5, and an N-(2-nitro-3-hydroxyl 

phenyl)glycine-N-(phenyl)glycine (Nnp–Nph) dimer (Figure 4A, G, and H).  



1041 

AIMS Materials Science                                                             Volume 4, Issue 5, 1029-1051. 

Following up on Voelz’s study, Mukherjee et al. developed a tuned force field, called GAFF-φ, 

to improve GAFF’s sampling of the NSPE peptoid helix [63]. To create GAFF-φ, Mukherjee et al. 

added a single additional φ dihedral parameter to GAFF. This was sufficient to fix the φ distributions 

for NSPE residues. REMD simulations of chains of 3 to 15 NSPE residues showed that, in addition 

to improving the φ sampling, the ratio of cis and trans ω orientations was closer to experiment for 

GAFF-φ than for unfitted GAFF. This suggests that peptoid φ and ω energies are correlated.  

Using GAFF-φ, Mukherjee et al. characterized the cooperative folding of the NSPE helix. To do 

this, they adapted the Lifson-Roig helix-coil theory [64] to describe peptoid helix formation. Briefly, 

the Lifson-Roig theory for proteins categorizes a chain’s residues, based on their dihedrals, as either 

α-helical helical or non-helical coiled. A statistical weight for nucleation or elongation is then 

assigned to each helical residue. Which type of weight is assigned depends on whether one or both of 

the residue’s neighbors are also helical. The combination of residue weights can then be used to 

calculate a chain’s thermodynamic properties including the enthalpy of helix formation. Mukherjee 

sought to study the formation of PPI helices by NSPE peptoids, and defined helical conformations 

using the PPI dihedrals (|ω| < 90º with the –φ conformation defined in section 2.2). They then fit LR 

nucleation and elongation weights to their GAFF-φ simulation data and used these weights to 

calculate the enthalpies and entropies of helix formation. The results showed that helix formation of 

1-NSPE is entropically favorable, likely driven by steric interactions between the bulky side chains.  

More recently, Mirijanian et al. [65] developed the MFTOID (short for Molecular Foundry 

Peptoid) force field, a CHARMM-based all-atom force field parameterized specifically for peptoids. 

CHARMM [55] is an additive force field, whose energy function includes contributions from 

charges, van der Waals forces, and bonded terms including bonds, angles, dihedrals, and improper 

dihedrals. Mirijanian transferred most MFTOID parameters from the CHARMM22 force field by 

assigning peptoid atoms parameters from similar atoms in the peptide backbone. The Lennard-Jones, 

bond, and angle parameters for the peptoid nitrogen were transferred from the secondary peptide 

backbone nitrogen. Mirijanian et al. fit the charges of the amide nitrogen and carboxyl carbon, as 

well as the Lennard-Jones parameters of the carboxyl carbon. They also refit the ω dihedral potential 

to allow cis/trans isomerization of the amide bond, and the ρ dihedral potential, which is closely 

related to φ (see Figure 3A). All other bonded parameters, including the φ and ψ dihedral potential 

terms were left unchanged. 

To validate MFTOID, Mirijanian et al. carried out two different types of simulations. First, they 

used umbrella sampling [37] to create solvated and unsolvated free energy Ramachandran maps of 

sarcosine dipeptoids. These maps showed qualitative agreement with previous studies of sarcosine: 

the vacuum phase minima included αD, C7β and α-helix, and the trans αD configuration was stable in 

solvent. Unfortunately MFTOID over-stabilizes the cis α-helical conformation, the same effect 

observed by Möhle et al. [42] in their vacuum phase, CHARMM22 simulations of sarcosine. In 

MFTOID, the α conformation is also a global minimum in solvent. Mirijanian et al. also ran 

molecular dynamics simulations of N-2-phenylethyl trimer crystals. These simulations used 

experimental crystal structures composed of 256 trimers as starting configurations. They showed that 

after a 10 ns simulation at 300 K, MFTOID reproduces the starting crystal structure with a Root 

Mean Square Deviation (RMSD) of approximately 1.0 Å. 

MFTOID parameters were tuned exclusively to sarcosine, and the transferability of the 

parameters to other peptoids is a potential issue. Prior work suggests that transferability should be 

high: Butterfoss’s quantum results show that side chains bound to the backbone through a methylene 
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group have similar dihedral minima to sarcosine. Additionally, Voelz’s work with GAFF showed 

that many sterically dominated peptoid structures may not require precisely-tuned parameters to 

reproduce the correct minimum energy structures. However, peptoids with certain side chains, for 

example N-alkoxy-glycines [66] whose side chains attach to the backbone through a nitrogen-oxygen 

bond, exhibit different backbone behavior than sarcosine, and will likely need to be reparameterized.  

Mannige et al. [15] used MFTOID in combination with experimental data to explore the 

structure of bilayered peptoid microsheets. The work focused on microsheets previously described 

by Nam et al. [67] composed of diblock peptoid oligomers of alternating charged and hydrophobic 

side chains of the form (Nae–Npe)n/4–(Nce–Npe)n/4) (Figure 4I). In water, these peptoids form large 

sheets, two chains thick, with the hydrophobic phenyl-ethyl side chains sequestered inside. MFTOID 

quantitatively and qualitatively reproduced the features of these sheets. It reproduced X-ray and 

NMR data describing sheet thickness and strand separation to an RMSD within 1 Å.  

In the same work, Mannige et al. recognized a novel peptoid secondary structure defined by 

residues with an alternating pattern of dihedrals. They dubbed this structure a “Σ-strand” and 

suggested that it was the first of a class of possible peptoid secondary structures described by the 

alternating conformations of two residues rather than a single repeating dihedral motif. A 

Ramachandran scheme for this type of secondary structure is shown in Figure 8. 

 

Figure 8. The Σ-strand alternating motif. Mannige et al. [15] described a secondary 

structure of alternating residues with alternating rotational states. Single-point secondary 

structures, like α-helices, contain a single repeating dihedral conformation. Two-point or 

Σ-strand motifs have alternating dihedral pairs, in this example they alternate between the 

C7β and C7β’ conformations. This figure is based on a scheme by Mannige [15]. 
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In subsequent work, Mannige, Kundu, and Whitelam derived a new order parameter called the 

“Ramachandran Number” (R) to describe alternating structures such as Σ-strands [68]. Using a 

thoughtfully chosen gridding of the Ramachandran space, they derived an expression for R that 

combines information about the φ and ψ dihedrals and the radius of rg of the structure. The number is 

obtained by defining a grid of values of φ and ψ in the Ramachandran plot, which is rotated, shifted 

and rescaled so that the important secondary structures are mapped onto unique integer numbers. The 

Ramachandran Number can be plotted as a histogram “barcode” or as a per residue graph allowing 

visualization of patterned peptoid structures including Σ-strands. This is shown in Figure 9.  

  

Figure 9. The Ramachandran Number. The Ramachandran Number R is a parameter 

derived by Mannige et al. which combines a residue’s φ and ψ dihedrals and chain 

compactness into a single number. (A) (a) shows the physical information encoded in R. 

R > 0.5 describes a left handed twist, R < 0.5 describes a right handed twist. R = 0, R = 

0.5, and R = 1.0 describe fully extended backbones, while intermediate values are more 

compact. (b) The distribution of R values for common peptide secondary structures. (c) 

A Ramachandran number histogram or “barcode” representation of the α-helix, (the 

distribution in (b) shown as a heat map). (B) shows different structure visualizations for 

an α-helix (a) and for the alternating Σ-strand (b). (i) A Ramachandran plot, (ii) a barcode 

of the Ramachandran number, (iii) An R versus residue # plot, which, unlike the 

histograms, can show the alternating pattern of dihedrals in the Σ-strand. This figure is 

reproduced from figures in [68]. 

2.4. Coarse-grained Peptoid Simulations 

All-atom simulations are useful for studying the conformational energies of individual peptoid 

chains, however, they are too computationally demanding for studying slow processes involving the 

interactions of many chains. All-atom simulations are best for simulations up to a few microseconds, 

and up to a few million atoms. Simulations of self-assembling peptoid nanomaterials, such as peptoid 
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sheets, require force fields usable across millisecond time scales or longer for many hundreds of 

peptoid chains. One way this type of simulation can be achieved is by using coarse-grained models 

that incorporate many peptoid atoms into a single bead.  

Coarse-grained models extend the range of length and time scales that can be simulated beyond 

the limits of all-atom models by defining larger entities (“beads”) that encompass groups of atoms, as 

the basic building blocks of the system. The interactions between these effective building blocks are 

then fitted to reproduce the results of all-atom simulations of smaller cognate systems. Some of the 

methods used to develop these models include Boltzmann Inversion [69], which builds effective 

potentials by fitting to the all-atom pair distribution functions, Force Matching [70], which fits the 

effective potential to the net forces acting between the building blocks in the all-atom simulations, 

and Relative Entropy Minimization [71], which seeks to minimize the information loss in replacing 

the atomistic description with the coarse grained one. A detailed description of these approaches is 

beyond the scope of this paper, for a recent exhaustive review the reader is referred to [32]. It is also 

possible to build coarse-grained models by directly fitting to experimental data in what is called 

“top-down” coarse-graining, but such approaches have not, to our knowledge, been used for peptoids.  

Haxton et al. [72] developed the first coarse-grained model for peptoids and named it MF-CG-

TOID (short for Molecular Foundry-Coarse-Grained-Peptoid). They developed this model 

specifically to study (Nca–Npe)n/4–(Nae–Npe)n/4 self assembly into bilayered sheets. The  

(Nca–Npe)n/4–(Nae–Nce)n/4 polymers are described in the review of Mannige’s work above. Haxton 

et al. deliberately avoided a coarse-graining scheme based on beads with radially-symmetric 

Lennard-Jones potentials and their bonded interactions, arguing that this way of partitioning the 

model’s potential energy is artificial and non-ideal. Instead, each MF-CG-TOID bead was 

represented by a location (  ) and an orientation parameter (  ). Figure 10 contains a scheme showing 

   and    parameter for a pair of peptoid side chains. 

Haxton et al. parameterized 4 coarse-grained beads: one bead representing a backbone unit, and 

one for each of the 3 side chains in the (Nca–Npe)n/4–(Nae–Npe)n/4 system. Most of the force field 

interaction potentials are functions of these parameters: backbone–backbone and backbone–side 

chain bonded parameters, and nonbonded interactions between like-side chains. Nonbonded 

interactions between unlike-beads and between backbone-beads were represented by hard-sphere 

potentials, which depend only on a size parameter. Parameterization involved fitting 115 parameters 

through direct Boltzmann Inversion of MFTOID and published all-atom data, with 4 parameters fit 

to the target system (phenylethyl side chain size, interaction strength and bonded interaction with the 

backbone, and the backbone bead size). Haxton et al. performed Monte Carlo simulations using their 

force field to model structures in different stages of (Nae–Npe)n/4–(Nce–Npe)n/4 bilayered sheet 

formation [73]. MF-CG-TOID qualitatively represented the globular structure of individual peptoids 

in water, and their unfolding when exposed to an air surface. Using the model, they were able to 

match X-Ray spectroscopy data, such as chain spacing for single layer sheets at the air-water 

interface, and free floating peptoid bilayers. MF-CG-TOID has been used for an additional study of 

(Nae–Npe)n/4–(Nce–Npe)n/4 sheet formation [74]. 

MF-CG-TOID reproduces (Nca–Npe)n/4–(Nae–Npe)n/4 sheets with excellent precision, but using 

it to simulate other peptoid side chains may be challenging, particularly due to the number of 

parameters that must be fit for each new side chain. Its direct Boltzmann inversion scheme requires 

an accurate all-atom peptoid model. Therefore, adding novel peptoids to MF-CG-TOID would 
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potentially require two parameterization steps: one adding the new side chain to MFTOID, and a 

second parameterization using the Boltzmann inversion procedure.  

 

Figure 10. MF-CG-TOID coarse-grained peptoid model. (A) The MF-CG-TOID coarse-

grained model for an (Nae)–(Npe) unit. Each peptoid monomer is represented by two 

coarse-grained sites. Each site is described by two degrees of freedom: a position     

represented in the diagram by spheres and a director    represented by the arrows. All 

bonded and nonbonded interaction parameters in MF-CG-TOID are functions of both 

parameters (              . (B) The all atom structure upon which this model was based. 

Figure reproduced with permission from Haxton et al. [72]. Copyright (2014) American 

Chemical Society. 

2.5. Peptoid Simulations in Rosetta 

For researchers looking to study peptoids with existing protein structure prediction software, 

Drew et al. added peptoids to the Rosetta framework [75].  

Rosetta [76] is a molecular modeling and protein design utility with broad functionality, 

including algorithms for de novo protein structure prediction. Rosetta’s folding algorithm differs 

from the all-atom and coarse-grained approaches described above, which use physics-based models 

and long simulations (or enhanced-sampling methods) to identify minimum energy configurations. 

Instead, Rosetta identifies thousands of possible folded structures through a conformational search 

algorithm based on Metropolis Monte Carlo, first sampling large backbone (φ–ψ) motions and then 

refining the local side chain structure based on a pre-calculated “rotamer library” of allowable side 

chain (χ) dihedral conformations. These structures are then minimized using physics-based molecular 

mechanics models. Candidate structures are those with the lowest minimized energies. 

To incorporate peptoids into ROSETTA, functions for use in the Monte Carlo search and 

energy parameters for the molecular mechanics minimization are needed. Drew defined a peptoid 

backbone unit to have the same backbone atoms as a peptide subunit, determined molecular 

mechanics parameters for over 50 side chains, and modified Rosetta’s conformational search 

algorithms to allow sampling of backbone cis/trans isomerization and nitrogen flexibility. Peptoid 

molecular mechanics parameters were taken from CHARMM. A CHARMM proline nitrogen atom 
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was used to represent the peptoid backbone nitrogen, and dihedral energy parameters were tuned to 

quantum data. To enable conformational search of both cis and trans isomers, Drew et al. modified 

the rotamer creation function to sample both isomers. They then added two types of Monte Carlo 

moves to the search algorithm: one sampling cis/trans flips and one sampling small backbone 

nitrogen pyramidalization by making small adjustments to the ω dihedral.  

In subsequent work, Renfrew et al. [77] developed a peptoid rotamer library for use with 

Drew’s framework and validated Rosetta-derived peptoid structure predictions against known 

experimental structures. Rosetta’s peptide rotamer libraries include sterically allowed configurations 

for the side chain χ1 and χ2 dihedrals (shown in Figure 11). For peptides, these libraries are defined 

with respect to (φ,ψ) conformations and each (χ1,χ2) rotamer is weighted with a probability derived 

from data from the Protein Data Bank. Renfrew showed that peptoid rotamer libraries should be 

defined with respected to (φ,ψ,ω) combinations, to account for peptoid nitrogen pyramidalization. 

They also compensated for the lack of peptoid experimental data by deriving rotamer weights based 

on the Rosetta molecular mechanics force field and quantum mechanical calculations. Renfrew et al. 

validated their model against experimental data for the common peptoid side chains Nph, Nspe, 

Nmeo, and N-(S)-1-Napthylethyl (Ns1e), and showed that the rotamer library was able to represent 

the preferred rotamers of the peptoid within a RMSD of 0.5 Å.  

 

Figure 11. The rotamer dihedrals. Rosetta rotamer libraries describe the side chain 

conformation in terms of the dihedrals χ1 and χ2. Renfrew developed rotamer libraries for 

54 peptoid side chains. 

The peptoid residues included in Rosetta can be used to predict peptoid structures or structures 

of polymers combining peptoid and peptide residues.  

3. Conclusions and Future Directions 

In recent years, computational studies of peptoids have multiplied and progress has been made 

towards predicting peptoid conformations based on the sequence of side chains attached to their 

backbones. Approaches to predict folded peptoid structures depend on the nature of the side chains 

and the length of the chain under study. From quantum chemistry, we can obtain fundamental 

understanding of the peptoid backbone and the influence of individual side chains on its 

conformation, but longer chains cannot be studied due to computational constraints. All-atom models 

can partially overcome these limitations and predict the folding behavior of several short peptoid 

chains, however they are limited by the quality of the all-atom force field used. Existing protein and 
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general force fields have been shown to adequately predict the backbone dihedrals of several solved 

crystal structures, and new peptoid-specific force fields have been developed in the last few years. 

However, peptoid force fields are only parameterized for a limited set of side chains. Finally, coarse-

grained models have shown promise in the study of (Nae–Npe)n/4–(Nce–Npe)n/4 bilayer sheet 

formation.  

While peptoid modeling studies have made much progress in the last 20 years, there is still a 

need to develop and improve peptoid models. This will require expanding the number of side chains 

parameterized for all-atom and coarse-grained peptoid force fields and, at the same time, expanding 

the number of experimentally solved structures available to tune and verify these force fields. 

Additionally, it will require developing simulation techniques that encourage peptoids to explore 

both the cis and the trans peptide bond conformations. This may involve use of enhanced sampling 

techniques such as REMD, umbrella sampling, and metadynamics [78]. Nevertheless, in recent years 

there has been a big improvement in the simulation models available for peptoids, and we expect to 

see much better tools to predict peptoid structure and properties in the near future. 
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