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Abstract: The full scenario of the degradation of solids under mechanical loading is described by
modelling the gradual loss of rigidity. This common approach is purely local. Another way to describe
the damage evolution is to consider the propagation of the surface separating sound material and dam-
aged material. When this surface is moving, a flux of matter is induced, that is useful for describing the
loss of material during wear mechanisms or brittle fracture. The article proposes modelling of moving
surface and interface in order to describe such behaviours. The problem of evolution is written, anal-
ysis of stability and bifurcation of the propagation is also presented. Applications to brittle fracture,
transition from fracture to damage and wear contact are briefly investigated.
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1. Introduction

Two main families of methods exist to model failure of quasi-brittle structures. One is based on
crack models, another one uses continuous damage approach that leads to a local loss of stiffness.
Initiation of crack can be investigated using Griffith law an a criterion of global stability as proposed
in [1], but fracture mechanics is generally not sufficient to model the full scenario of the degradation
of solids. Another point of view is adopted here based on damage modelling.

The full scenario of the degradation of solids under mechanical loading is described by modelling
the gradual loss of rigidity. This common approach is purely local. Generally local damage induces
localization. Several models were proposed to avoid spurious localization: non local approaches and
higher order, damage based, gradient models. These approaches are compared in [2]. Other new
approaches are also proposed, the phase field approach [3] and the so-called variational approach [4].

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/journal/Materials/
http://dx.doi.org/10.3934/matersci.2016.3.881


882

Another way to describe the damage evolution is to consider the propagation of the surface separat-
ing the sound material and damaged material, as proposed for brittle material in [5, 6]. This point of
view is adopted here.

The propagation of surface inside a body is analysed. The moving surface here is associated with a
change of mechanical properties. This framework is used to describe damage or phase transformation.
Variational formulations were performed to describe the evolution of the surface between undamaged
and damaged material. Connection with the notion of configurational forces can be made [7]. When
this surface is moving, a flux of matter is induced, that is useful for describing the loss of material
during wear mechanisms or brittle fracture [8].

For elastic brittle material the evolution of the interface separating the undamaged material (d = 0)
from the total damaged (d = 1) have been studied using an energetic description of the propagation of
damage [9, 10]. In this description the damage parameter jumps from 0 to 1.

The interface has no thickness and mechanical quantities present strong discontinuities. The evo-
lution in terms of rate of displacement and velocity of propagation of the surface is governed by a
variational inequality. Criteria of stability and uniqueness have been established. For example, nu-
cleation of defects in this modelling can be considered as a bifurcation of equilibrium solution [11].
Description of moving interfaces and of moving layers is also a manner for studying loss of mate-
rial. Such a description of thin or thick layers permits to describe complex processes of wear contact
between two bodies in relative motion [8, 12]. In a more recent paper [13], the transition between un-
damaged material to damaged material is continuous through a layer of finite thickness. The evolution
of damage is then associated to a moving layer.

Two cases have been considered: the propagation of a interface and the propagation of a moving
layer of finite thickness.

For sharp interface, the transition zone is very thin, the damage parameter has a discontinuity, it
jumps from 0 to 1. The driving force associated to the propagation of the interface is a local release
rate of energy G(s) as in [14]. Moreover, stability and non bifurcation conditions of the evolution
are given when a normality rule based on G(s) governs the propagation of the interface. When an
additional surface energy is considered along the interface, the propagation is more stable [15].

For a moving layer, the transition is more regular. The thickness of the transition provides a length
scale in the model. For specific definition of the damage, a local condition of steady state is induced
and a generalisation of the local energy release rate is obtained. This is the driving force associated to
the motion of surface separating the sound material from the damage one.

The main ideas of the model is to consider that the strain energy changes from a sound material
to a damaged one depending on a damage parameter, which is continuous or not, and to describe the
motion of the interface by a complementary law. For particular description, the motion of the interface
induces a dissipation depending on an energy release rate. A normality rule is then proposed to govern
the propagation of the interface based on this mechanical quantities. This choice generalizes classical
Griffith’s law.

The purpose of this article is to describe the motion of a surface or interface, to propose an evolution
law for this motion in terms of the local energy release rate. The rate boundary value problem is then
analysed and conditions of stability and bifurcation are given. Some applications and comments of this
modelling are proposed in the last section.
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2. General Preliminaries

Consider a body Ω. The external boundary ∂Ω is decomposed in two complementary parts:
∂Ωu where the displacement u is prescribed ud(t) and ∂ΩT where the loading T d(t) is applied:
∂Ω = ∂Ωu∪∂ΩT , ∅ = ∂Ωu∩∂ΩT . The displacement u is continuous across the surface Γo, separating
the undamaged material and the damaged material. The internal state of stress σ is such that the stress
vector is also continuous along the surface Γo. Then we have the relations of continuity:

[u]
Γ

= 0, [σ]
Γ
.ν = 0, (1)

where ν is the normal vector to the interface. When the surface is moving, these conditions must be
preserved.

2.1. The geometry of a surface

Consider the surface Γo separating the sound material from the damaged material. The surface is
parametrized by two parameters sα. For Mo on the surface, the tangent space is determined by the local
basis Tα. The normal vector to the tangent space is ν. Then we have

Tα =
∂Mo

∂sα
= ∇αMo, ∇αν = −K.Tα, (2)

where K is the curvature tensor at point Mo.
When this surface is moving the local basis changes accordingly. At time t the point Mt

o belongs to
the surface, it satisfies the equation φ(Mt

o, t) = 0 defining Γo.
At time t+ = t + dt, the geometrical point Mt

o comes in Mt+
o such that φ(Mt+

o , t
+) = 0 then the new

position is Mt+
o = Mt

o − dt a(sα) νt where the normal speed a satisfies the relation

∂φ

∂t
− a∇φ.νt = 0. (3)

Any quantities f defined at Mo is varying during the motion. Introducing the derivative of f following
the motion of Γo by

Da f = lim
∆t→0

f (Mt+
o , t

+) − f (Mt
o, t)

dt
. (4)

We obtain for the evolution of the geometry

DaTα = −∇αa ν, Daν = ∇a DaK = −∇∇a − K.Ka. (5)

When f is the value at Mo of a field defined on Ω, then the derivative Da f is the classical convective
derivative

Da f =
∂ f
∂t
− a∇ f .ν. (6)

This expression is useful for written conservation laws and continuities along the surface Γo.
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Hadamard’s relations. On account of perfect bounding between phases, displacement and stress
vectors are continuous along Γo. Their rates have discontinuities according to the general compatibility
conditions of Hadamard. These conditions are rewritten in terms of convected derivative:

0 = [u]
Γ
, Da([u]

Γ
) = [v]

Γ
− a [∇u]

Γ
.ν = 0, (7)

0 = [σ]
Γ
.ν, Da([σ]

Γ
.ν) = [σ̇]

Γ
.ν + divΓo[aσ]

Γ
= 0. (8)

The last equation is obtained by taking account of the conservation of the momentum. Indeed we have

Da([σ]
Γ
.ν) = Da[σ]

Γ
.ν + σ.Da(ν) = 0, (9)

using the conservation of the momentum in the local frame relatively to Γo

Tα.∇.σ.Tα + ν.∇σ.ν = 0, (10)

and the expression of the surface divergence

divΓo f = div f − ν.∇ f .ν, (11)

the required result is obtained.

In two dimensions. In two dimensions the expressions are:

DaT = −
da
dS

ν, Daν =
da
dS

T , DaK = −
d2a
dS 2 − K2 a, (12)

0 = [v]
Γ
− a∇u.ν, 0 = [σ̇]

Γ
.ν +

d
dS

([σ.T ]
Γ
a). (13)

3. The Sharp Interface

The domain is composed of two distinct volumes Ωo and Ω1, which are occupied by two materials
with different mechanical characteristics. The perfect interface between them is assumed to be a regular
surface and is denoted by Γo. Material 0 changes into material 1, along Γo by an irreversible process.
Hence, Γo moves with a normal velocity a, the irreversibility is given by the positivity of a for a
propagation in the direction external to 2.

The subscript i is used to denote material i. The actual state is characterized by the displacement

field u. The strain field ε is given by ε(u) =
1
2

(∇u + ∇T u).
To simplify the presentation, we consider here that the materials are linear elastic. The total potential

energy of the structure has the following form:

E(u,Γo) =
∑

i

∫
Ωi

ψi(ε(u)) dΩ −

∫
∂ΩT

T d.u dS , (14)

where ψi(ε) denotes the density of strain energy in the domain i: ψi(ε) =
1
2
ε : Ci : ε.

It is important to point out that the potential energy represents the global free energy in a thermo-
dynamic description; then the position of the interface is an internal parameter for the global structure.
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The displacement u is kinematically admissible, it satisfies particular boundary condition:

u(x, t) ∈ C =
{
u/u(x, t) = ud(t), x ∈ ∂Ωu, [u]

Γ
= 0, x ∈ Γo(t)

}
. (15)

At any time, when the position of the interface is known, the behaviour of the body is those of a
composite bi-materials, with perfect contact between two material phases. Then the solution of the
problem of equilibrium is determined by the minimization of the total potential energy with respect to
the displacement u among the set of admissible fields C.

Characteristic of an equilibrium state. For a state of equilibrium (a = 0) the variations with respect
to u are

∂E

∂u
.δu =

∑
i

∫
Ωi

σ : ε(δu) dΩ −

∫
∂ΩT

T d.δu dΩ. (16)

A state of equilibrium is defined by displacement u such that

σ = Ci : ε(u), in Ωi, divσ = 0, σ.n = T d along ∂ΩT . (17)

Variations with respect to the position of the interface. The total variation of E near a position of
equilibrium, must take into account of the continuity condition. The variations of the displacement and
the variations of the position of the surface are coupled by Hadamard’s relation.

[δu]
Γ

+ δa[∇u]
Γ
.ν = 0. (18)

The total variation of the potential energy is:

∂E

∂u
.δu +

∂E

∂Γo
.δΓo =

∫
Ω

σ.ε(δu) dΩ −

∫
Γo

[ψ]
Γ
δa dΩ −

∫
∂ΩT

T d.δu dS . (19)

Taking account of the equilibrium, the total variation of E near an equilibrium point is reduced to

−
∂E

∂Γo
.δΓo =

∫
Γo

δa
(
[ψ]

Γ
− ν.σ.[∇u]

Γ
.ν
)

dS =

∫
Γo

G(Mo)δa(Mo) dS = Dm. (20)

This corresponds to the dissipation Dm of the system as pointed out in [10, 12]. We recover the results
of [7, 14, 16]. The definition of the release rate of energy can be written in a simpler form, taking
account of continuity of the stress vector and of the fact the discontinuities of strain and stress are
orthogonal [17]:

[σ]
Γ
.[∇u]

Γ
= 0, (21)

then the release rate of energy G takes the final expression:

G = [ψ]
Γ
− σ : [∇u]

Γ
. (22)

The release rate of energy depends upon the position of the point Mt
o and on the loading.
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3.1. The quasi-static evolution

From a position of equilibrium, we applied an amount of loading. The body is deformed an si-
multaneously, the surface Γo is moving accordingly some constitutive law. A kinetic law defined by a
direct relation between a and G can be chosen as proposed in [16]. To describe the irreversibility of
the motion, we specify here a different relation.

The propagation law. Based on the form of the dissipation, a criterion on G is chosen as a gener-
alized form of the well-known theory of Griffith. We assume a normality rule to govern the speed of
propagation a

a ≥ 0, G ≤ Gc, (G −Gc)a = 0. (23)

The subset of Γo where the critical value Gc is reached is denoted Γ+
o . Then the propagation is only

possible on point of Γ+
o where G(Mt

o, t) = Gc, this is equation of a surface.
When the interface is moving, the consistency condition associated to the motion is given by the

convected derivative of G: during the motion DaG = 0. This leads to the consistency condition written
for all points belonging to Γ+

o :

(a − a∗) DaG ≥ 0, ∀a∗ ≥ 0 on Γ+
o . (24)

Evaluation of DaG. To calculate the convected derivative, we derive term by term, using the
Hadamard’s relations on velocities

vo + a∇uo.ν = v1 + a∇u1.ν. (25)

The first term of G is the jump of energy

Da[ψ]
Γ

= −σ1 : (∇v1 + a∇∇u1.ν) + σo : (∇vo + a∇∇uo.ν). (26)

Then we get

DaG = [ψ]
Γ
− Daσ1 : [∇u]

Γ
− σ1 : [Da∇u]

Γ
= [σ]

Γ
: ∇vo − σ̇1 : [∇u]

Γ
− aGn, (27)

where Gn = −[σ]
Γ

: ∇∇u1.ν + ∇σ1.ν : [∇u]
Γ
.

The rate boundary value problem. A solution (v, a) of the problem of evolution must satisfy

• the constitutive law :
σ̇ = Ci : ε(v) in Ωi, (28)

• the compatibility of the velocity :

ε(v) =
1
2

(∇v + ∇tv), (29)

and the boundary condition v = vd on ∂Ωu,
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• the conservation of the momentum:

div σ̇ = 0, in Ω, (30)

and σ̇.n = Ṫ d on ∂ΩT ,
• the compatibility conditions on the moving interface:

[Dau]
Γ

= 0, [Da(σ.ν)]
Γ

= 0, (31)

• the consistency condition:

∀a∗ ≥ 0 on Γ+
o , (a − a∗)DaG ≥ 0. (32)

Theorem 1. The evolution is determined by the variational inequality

∂F

∂v
.(v∗ − v) +

∂F

∂a
(a∗ − a) ≥ 0, (33)

among the set K.A of admissible fields (v∗, a∗):

K.A =
{
(v, a)|v = vdon ∂Ωu, [v]

Γ
+ a[∇u]

Γ
= 0, a ∈ K

}
,

K =
{
a|a ≥ 0 on Γ+

o , a = 0 otherwise
}
,

and the functional F (v, a, Ṫ d) is defined as

F =
∑

i

∫
Ωi

1
2
ε(v) : Ci : ε(v) dΩ −

∫
∂ΩT

Ṫ .v dS −
∫

Γo

a[σ]
Γ

: ∇v1 dS +

∫
Γo

1
2

a2Gn dS . (34)

The equations (28,29,30) are those of a classical problem of elasticity with non classical boundary
conditions (31) on Γ+

o . Assume that a is a given function on Γ+
o then the problem can be solved with

respect to v. This solution v is a function of the boundary conditions and of the distribution of the
speed a along the interface. We can defineW(a) the value of F for this solution then:

W(a) = F (v(a, Ṫ d
, ud), a, Ṫ d), (35)

and finally the problem of evolution is defined as a variational inequality based on W. It is obvious
thatW is quadratic in a and we have the properties

Stability If a.
∂2W

∂a∂a
.a ≥ 0 for all a ≥ 0 over Γ+

o , the position a = 0 is stable.

No- bifurcation If a.
∂2W

∂a∂a
.a ≥ 0 for all a over Γ+

o , there is no bifurcation.

When an additional surface energy is present on the interface Γ+
o the release rate of energy is changed

for a motion of the surface

δ

∫
Γo

β dS =

∫
Γo

βTr Kδa dS , Gβ = Go − βTr K. (36)
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4. A Continuous Transition

Now, we consider that the interface has a finite thickness. The damage parameter varies from 0 to
1 continuously. The material of the body has an elastic linear behaviour with moduli evolving with
damage. Then the local free energy ψ(ε, d) is a function of the strain and of the damage parameter d.
The state equations are defined classically as:

σ =
∂ψ

∂ε
= C(d) : ε, Y = −

∂ψ

∂d
. (37)

The elastic moduli are known functions of d. Driving force Y is associated to the damage parameter
and the dissipation of the whole system is reduced to

Dm =

∫
Ω

Y ḋ dΩ. (38)

When damage is established, the whole body is decomposed in three parts: the undamaged body Ωo

where d = 0, the transition zone Ωc and the damaged material Ω1 where d = 1.
On the boundary ∂Ωc ∩ ∂Ωo = Γo the moduli of elasticity are continuous, the displacement and

the stress vector being continuous, the strain is also continuous then the free energy is continuous.
Therefore, when the surface Γo is moving, there is no dissipation along the boundary of this layer.

The level-set φ = 0 gives the position of Γo. We assume that the damage d is a continuous explicit
function d(φ) of the distance φ to the surface Γo. In the domain Ω the damage parameter satisfies

0 ≤ d(φ) ≤ 1,


d = 0, φ ≤ 0,
d′(φ) ≥ 0, 0 ≤ φ ≤ lc,

d(φ) = 1, lc ≤ φ.

(39)

The surface iso-damage d(M, t) = do is a level-set, it corresponds to the level-set φ(M, t) = z. The
evolution of this level set is those of the motion of a surface then

φ̇ + a∇φ.ν = 0, (40)

as φ is a function distance ν = ∇φ, ||ν|| = 1 and φ̇ + a = 0 and we have

ḋ + a∇d.ν = ḋ + a d′(φ) = 0, d′(φ) = ∇d.ν. (41)

4.1. On geometry of the layer

A point of the layer is described by the parameters sα along Γo and the distance to Γo.

M = Mo + zν. (42)

At point M the local basis is (tα, ν) with

tα = Tα − zKβ
α T β. (43)

Reciprocal basis is tα such that tα.tβ = δαβ . To simplify the analysis we consider now that the tangent
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ν(S)

Γ0

dS

dSM

Γz Γ1

z

tα

Tα

M

Figure 1. The geometry of the layer, the unit area at point M depends on the curvature
of Γo.

vectors Tα are eigenvectors of the curvature K, then

t1 = (1 − zK1)T 1, t2 = (1 − zK2)T 2. (44)

The metric tensor in this basis is then

g11 = (1 − zK1)2, g22 = (1 − zK2)2, g12 = 0. (45)

And the curvature at point M is determined by

∇ν =
∂ν

∂sα
⊗ tα = −Kβ

αT β ⊗ tα = −
∑
α

Kα

1 − zKα

Tα ⊗ Tα = −καtα ⊗ tα. (46)

We recover the classical result: Tr∇ν = ∆Sφ = −Tr κ. We define the covariant derivative of any
quantity f by

∇S f =
∂ f
∂sα

tα = gαβ
∂ f
∂sα

tβ = ∇α f tα, (47)

then we obtain:

∇S∇S f = ∇γ(gαβ
∂ f
∂sα

tβ) ⊗ tγ, (48)

∆S f =
1
√

g
∂

∂sα
(gαβ
√

g
∂ f
∂sβ

), (49)

g = det(g), Γααβ =
1
√

g
∂
√

g
∂sα

, (50)

dΩ =
√

gds1ds2dz. (51)

Where Γαβγ are the Christoffel symbol associated to the tangent frame :

∂tα
∂sβ

= Γ
γ
αβtγ + καβν. (52)

When the surface Γo is moving with normal velocity a(sα) the local basis is changing accordingly
and in particular

Daν = −∇a, Daκ = κ.κ a + ∇S∇S a, Da( dΩ) = Da(
√

g) dΩ. (53)
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In the same spirit φ(Mo+zν, t) = z. As Da(Mo+zν) = −aν+zDaν the velocity of the level-set φ(M, t) = z
for the point M = Mo + zν is the same than at the point Mo. All point on the normal direction to Γo

has the same normal velocity a. Then the damage parameter d satisfies ḋ + a∇d.ν = 0. The profile of
damage d is conserved along the normal direction d′ = ∇d.ν.

4.2. The position of equilibrium

The total potential energy is defined as previously

E(u, d,T d) =

∫
Ω

ψ(ε(u), d) dΩ −

∫
∂ΩT

T d.u dS . (54)

The equilibrium position minimises the potential energy among the set of admissible displacement u

u ∈ C =
{
u|u = ud, over ∂Ωu

}
, (55)

then
σ = C(d) : ε(u), 0 = divσ, σ.n = T over ∂ΩT . (56)

Combining the equilibrium position and the total variations of E, we obtain

−
∂E

∂d
.δd =

∫
Ω

Yδd dΩ = Dm, (57)

which correspond to the mechanical dissipation of the system.

4.3. Dissipation of the system

The dissipation associated to the motion of the layer is associated to the motion of the surface Γo

Dm =

∫
Ω

Y ḋ dΩ =

∫
Ω

Yd′φ̇ dΩ =

∫
Γo

(
∫ l

o
Yd′ j(z)dz)a(Mo) dS . (58)

This relation defines a generalized driving force associated to the motion of the layer ; the local thick-
ness l depends on the point Mo and is limited by lc:

G(Mo) =

∫ l

o
Yd′ j(z)dz. (59)

The volume is described by the geometry of the surface Γo and the distance z to this surface. The tensor
of curvature at Mo is K and the curvature at M = Mo + zν depends on K and z. The unit of area defined
on the surface φ = z is related to the unit of area defined on φ = 0 as

dS M = det(I − zK) dS o. (60)

Choice of a propagation law. The velocity a is determined with respect to an evolution law based
on the driving force G. The integration of the local normality rule:

ḋ ≥ 0, Y ≤ Yc, (Y − Yc)ḋ = 0, (61)

suggests that the velocity a satisfies the generalized normality rule:

a(Mo) ≥ 0, G(Mo) ≤ Gc(Mo) =

∫ l

o
Yc∇d.ν j(z)dz;

(
G(Mo) −Gc(Mo)

)
a(Mo) = 0. (62)
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4.4. The evolution of the layer

Now the problem of evolution is investigated. During the motion of the layer, the critical value on
G is conserved. We are interested by the evolution of integral of a continuous function f like

F =

∫
Ωc

f dΩ→
dF
dt

=

∫
Ωc

(Da f + f Tr∇DaM) dΩ. (63)

As M = Mo + zν, we obtain DaM = aν − z∇a and Tr∇DaM = a Tr∇ν − z∆a.
Consider the particular function f (ε, d) = (Y − Yc)d′ and a virtual velocity fields a∗, then the nor-

mality law implies
d
dt

∫
Ωc

f a∗ dΩ =

∫
Ωc

(Da f + f Tr∇DaM )a∗ dΩ. (64)

Due to the hypothesis d(φ) then Dad = 0 and

Da f =
∂ f
∂ε

: Daε =
∂ f
∂ε

: (ε̇ + ∇ε.DaM) =
∂ f
∂ε

: (ε̇ + a∇ε.ν) − z
∂ f
∂ε

: (∇ε.∇a). (65)

The last term is combined with f Tr∇DaM and taking account of ∇a.ν = 0

(
z
∂ f
∂ε

: (∇ε.∇a) + f (a Tr κ + z∆a)
)
a∗ = ∇(z f∇a a∗) − f z∇a.∇a∗ + z f Tr κ a a∗. (66)

Combining the derivation of equilibrium equations and the consistency condition for the propagation,
we obtain:

Theorem 2. The solution of the problem of evolution is given by the variational inequality

∂F

∂v
.(v∗ − v) +

∂F

∂a
(a∗ − a) ≥ 0, (67)

where

F (v, a) =

∫
Ω

1
2
ε(v).C(d) : ε(v) dΩ −

∫
Ωc

a
∂ f
∂ε

: ε(v) dΩ

+

∫
Ωc

1
2

f (z||∇a||2 − Tr κ a2) −
1
2
∂ f
∂ε

:
∂ε

∂z
a2 dΩ. (68)

The variations with respect to v implies the derivation of 56 with respect to time
σ̇ = C(0) : ε(v), in Ωo,

σ̇ = C(d) : ε(v) − a
∂C(d)
∂d

: ε(u)∇d.ν, in Ωc,

σ̇ = C(1) : ε(v), in Ω1,

(69)

and the conservation of the momentum:

div σ̇ = 0, over Ω, σ̇.n = Ṫ d
, along ∂ΩT . (70)
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The variations relatively to a(sα) gives∫
Ωc

−
∂ f
∂ε

: ε̇ δa + f (z∇a.∇δa − Tr κ a δa) −
∂ f
∂ε

:
∂ε

∂z
a δa dΩ. (71)

By integration by part we obtain∫
Ωc

−
∂ f
∂ε

: ε̇ δa + ∇( f z ∇a δa) − f z∆a δa − Tr κ a δa −
∂ f
∂ε

:
∂ε

∂z
a δa dΩ. (72)

And using the boundary condition δa = 0 along ∂Γ+
o , we recover the consistency condition∫

Γo

∫ lc

o

(∂ f
∂ε

: Daε + f Tr(∇DaM)
)

j(z)dz δa dS . (73)

During the phase of initiation of the layer, some additional terms due to l̇ are present.
Comparing to the case of sharp interface, the velocity must be more regular, due to the presence of

its tangential gradient. The curvature plays a fundamental role on the stability and bifurcation of the
solution.

5. Some Examples

5.1. A cylinder and a sphere under radial expansion

To illustrate the preceding results we propose to consider the case of a composite cylinder or a
composite sphere, with a kernel of material 1 and a core of material 0 in the case of sharp interface,
the radius of the boundary Γo is Ro, the external radius is Re. And we consider radial loading. The
displacement solution of the problem of equilibrium is assumed to be radial

u = u(r)er, (74)

and the strain are

• for the cylinder n = 2, εr =
du
dr
, εθ =

u
r
, εz = 0,

• for the sphere n = 3, εr =
du
dr
, εθ = εφ =

u
r

.

In linear elasticity, with Lamés moduli λ, µ the conservation of the momentum, when Λ(r) = λ(r) + 2µ
with a shear modulus µ uniform, implies the differential equation on u(r):

d
dr

(Λ(r)(
du
dr

+ (n − 1)
u
r

)) = 0. (75)

The displacement solution is then obtained in the composite structure, assuming that the continuity of
u at r = 0 is satisfied, we have

rn−1u(r) = A
∫ r

o

rn−1

Λ
dr. (76)

The radial displacement for the global response is given by

u(Re) = ERe, Rn
eE = AIn(Re). (77)
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The total energy is

E = 2n−1π

∫ Re

o

1
2
σ : ε rn−1dr = 2n−1π σrr(Re) u(Re)Rn−1

e . (78)

As the radial stress is

σrr = λ(
du
dr

+ (n − 1)
u
r

+ 2µ
du
dr

= A − 2µ(n − 1)
u
r
, (79)

the total strain energy is obtained:

E = 2n−1πRn−1
e E2(

Rn
e

In(Re)
− 2µ). (80)

5.2. The case of a sharp interface

We consider now a two phase composite, the boundary Γo between the sound material and the
partially damaged materiel is defined by the surface with radius Ro. When the radius Ro evolves
according to the normality rule, potential energy is evolving and the dissipation is determined. For the
composite system, the integral In depends upon Ro

In =

∫ Ro

o

rn−1

Λ1
dr +

∫ Re

Ro

rn−1

Λo
dr. (81)

For given E, A and In satisfies ERn−1 = AIn. Combining the derivation of In and E relatively to Ro we
find the dissipation

Dm = −
∂E

∂Ro
a = 2n−1π Rn−1

o G a, (82)

where the energy release rate by unit of areas satisfies

G = G(E,Ro) =
1
2

A2 In

Ro
. (83)

During the motion of Γo the critical value Gc is conserved G = Gc, then A = Ac with

G =
1
2

A2
c
Λo − Λ1

ΛoΛ1
= Gc. (84)

5.3. The evolution of the system

Initially the radius is Ro = Ri and then In(Ro) =
Rn

e

nΛo
(1 + c(Ro)

Λo − Λ1

ΛoΛ1
) where c is the volume

fraction of material 1 c(Ro) = (
Ro

Re
)n−1. For increasing value E of the radial loading, the global response

of the composite is decomposed in three state

• State I, A ≤ Ac then the answer is purely elastic, E ≤ Ec(c(Ri))

Σ = σrr(Re) = A − 2n−1µE, E = A
In(Ri)

Rn
e
, (85)
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o

c ETEc(co)

Σ = 3κ1E

Σ = 3κ2E

Figure 2. The global response on a composite sphere under radial expansion.

• State II. The interface is moving, now A = Ac, the volume fraction evolves with Ro and

ERn
e = AcIn(Ro), Σ = ΛoAc − 2n−1µE (86)

From this state, the relation between E and Σ is linear and Σ is a decreasing function of E.

When Ri tends to 0, the critical value Ec(c(Ri)) tends to Eo
c which corresponds to the critical value for

the propagation of an infinitesimal defect as proposed in [11].

5.4. The layer model

To describe a continuous transition, we consider the damage law d(φ) =
φ

lc
and

1
Λ

=
d

Λ1
+

1 − d
Λo

(87)

The values Λo,Λ1 are those used for the sharp interface. Initially the damaged material appears at
r = 0, and Ro increases from 0 to lc. After that the layer i moving keeping its thickness constant.

• State 0: Initially the response of the composite structure is purely elastic. When a critical value is
reached, the transition zone is established.
• State I : Initiation of the transition zone. During the initiation of the layer, φ = (Ro − r)/lc, r ≤ lc,

and the integral In is given by

In =

∫ Re

o

rn−1

Λ(r)
dr =

Rn
e

nΛo
+

Λo − Λ1

ΛoΛ1

Rn+1
o

n(n + 1)lc
. (88)

During this state, the dissipation satisfies the relation

Dm = 2n−1π
Λo − Λ1

ΛoΛ1

A2

lc

Rn
o

n
= 2n−1πYc

∫ Ro

o

rn−1

lc
dr, (89)

and then
Λo − Λ1

ΛoΛ1
A2

c = Yc. (90)

As for the case of sharp layer the parameter A = Ac is constant. The value Ac determines the
critical strain Ec for the beginning of a kernel of damaged material: Ec = AcIn(0)/Rn

e .
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During the phase of initiation of the layer A = Ac, Ro ≤ lc and

Σ = Ac − 2n−1µE, E = AcIn(Ro)/Rn
e . (91)

After a purely elastic response during the increase of E from 0 to Ec, the global stress decreases
linearly with E.
• State II : The finite thickness is reached, Ro = lc. From now, the layer is moving inside the

structure keeping its thickness constant. d = (Ro − r)/lc,Ro − lc ≤ rRo. The integral In becomes

In(Ro) =
Rn

e

nΛo
+

Λo − Λ1

ΛoΛ1

1
lcn(n + 1)

(Rn+1
o − (Ro − lc)n+1). (92)

The dissipation during the propagation gives the constrain

Dm = 2n−1π
Λo − Λ1

ΛoΛ1

A2

nlc
(Rn

o − (Ro − lc)n) = 2n−1πYc

∫ Ro

o

rn−1

lc
dr. (93)

After simplification we recover the value A = Ac. Then after identification Yc = Gc, the response
with a moving layer cannot be distinct from the sharp interface. Such a result is observed for the
uni-axial case, like a bar in tension, for any constitutive law [13]. This is due for the particular
choice of the function Λ(d).

For the same function d(φ) we can choose Λ(d) = d Λ1 + (1 − d) Λo. During the propagation of the
layer when thickness is lc, we have

Λ(r) = Λ1
Ro − r

lc
+ (1 −

Ro − r
lc

)Λo = ΛM + ∆Λ
r
lc
. (94)

For this behaviour, we have for the cylinder

I2 =
(Ro − lc)2

2Λ1
+

R2
e − R2

o

2Λo
+

l2
c

∆Λ
−

ΛMl2
c

(∆Λ)2 log
Λo

Λ1
, (95)

and the constrain due to the normality law becomes

A2 Λo − Λ1

ΛoΛ1
(Ro +

lcΛo

∆Λ
) = 2YcRo. (96)

In this case, the influence of the layer curvature is emphasized. It can be noticed that when lc/Ro tends
to zero, the result for the sharp interface is recovered.

5.5. Example of bifurcation of solution

We consider now a model of blister test. Similar study is made in [18]. The damage parameter
d = 0 for the bonded part and d = 1 for the domain of a membrane peeled of a rigid substrate.

The membrane is submitted to an internal pressure p and the deformation of the membrane is
described by the vertical displacement u relatively to the substrate as shown in the figure. The domain
Ω1 is now a surface S where the membrane is peeled and the potential energy takes the form

E(u, S , p) =

∫
S

1
2

K∇u2 − pu dS . (97)

AIMS Materials Science Volume 3, Issue 3, 881-907.



896

Γo

a(s)ν(s)

u(x, y

Figure 3. Geometry of a inflated membrane.

On ∂S the membrane is bonded then u(x, t) = 0, x ∈ ∂S Under the internal pressure, the membrane is
deformed and the equilibrium state is given by the minimum of the potential energy

∂E

∂u
.δu =

∫
S

K∇u∇δu − pδu dS = 0, (98)

for all δu defined on S and δu(x) = 0, ∈ ∂S . We obtain

K∆u + p = 0, over S , u = 0, along ∂S . (99)

For a variation of the loading ṗ, the boundary can move and the boundary condition u = 0 is
conserved following the motion of ∂S with normal velocity a. The rate of the displacement for a point
on the boundary satisfies the Hadamard relation

v + a∇u.n = 0, (100)

and the variation of potential energy satisfies simultaneously

d
dt
E =

∫
S

K∇u.∇v − pv − ṗu dS +

∫
∂S

(
1
2

K∇u2 − pu)φ ds. (101)

The problem of evolution of a state of equilibrium is given by

K∆v + ṗ = 0, over S , v + a∇u.n = 0, along ∂S . (102)

The evolution of E contains two terms, one due to v and another due to a The variation relatively to a
defined the energy release rate

−
∂E

∂S
δS =

∫
∂S
G(s)a(s) dS , G(s) =

1
2

K(∇u.n)2. (103)

The propagation law is defined by the normality rule

G ≤ Gc, a ≥ 0, a(G −Gc) = 0. (104)

The convected derivative of G is easy to calculate

DaG = K∇u.n(∇v.n + φ∇∇un.n). (105)

As Dau = v + a∇u.n = 0, then any variation of u satisfies δu + δa∇u.n = 0.

AIMS Materials Science Volume 3, Issue 3, 881-907.



897

The functional F (v, a) is reduced to

F =

∫
S

1
2

K∇v.∇v − ṗv dS −
∫

Γ

1
2

a2K∇u.n ∇∇u.n.n ds. (106)

For an initial circular geometry S with radius R, the solution of the problem is u = −p/4K(r2 − R2)
and G(R) ≤ Gc gives a critical pressure

pR < pcR = 2σo. (107)

For p pressure greater than the critical value domain S varies according to the normality rule. The
solution satisfies

∂F

∂v
(v∗ − v) +

∂F

∂φ
(a∗ − a) ≥ 0, ∀a∗ ≥ 0. (108)

For given distribution of local speed a(s), the solution of the problem is v = v( ṗ, a), we can introduce
the functional Q

Q(a) = F (v(ṗ, a), a). (109)

To determine the set of possible solutions, solution v( ṗ, a) is obtained by considering that the propaga-
tion speed a is developed according to the expansion a = αo +

∑
i αi cos(iθ) + βi sin(iθ).

• For prescribed pressure p we have

v =
pr
2K

(αo +
∑

i

(αi cos(iθ) + βi sin(iθ))(
r
R

)i), (110)

the reduced functional
Q(a) = 2πGc(−2α2

o +
∑

i

(i − 1)(α2
i + β2

i )), (111)

is not positive definite, then the circular geometry is unstable.
• But when we control the volume the pressure varies according to the motion of Γo:

v =
pr
2K

(αo +
∑

i

(αi cos(iθ) + βi sin(iθ))(
r
R

)i) + δp
R2 − r2

4K
,

∫
S

vds = 0. (112)

The variations of pressure is determined δp = −
4p
R
αo and the functional is now

Q(a) = 2πGc(6α2
o +

∑
i

(i − 1)(α2
i + β2

i )). (113)

The positivity of Q for a ≥ 0 is obtained, solutions a =
Ṙ
R

+α1 cos θ+ β1 sin θ ≥ 0 are possible for
sufficiently small α1, β1, the stability of the circular geometry is ensured. The functional Q is not
strictly positive for all a and possible bifurcation, loss of circular geometry is obtained.

The discussion of delamination of laminates can be studied in this framework as proposed in [19,
20, 21]. The model of description of the laminate structure has a strong influence on the condition of
stability and bifurcation of solution [22, 23].
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6. A Local Model of Rupture

Neuber [24] has investigated the mechanism of stress-concentration near a notch and crack prop-
agation. A solution is obtained for any non-linear stress-strain laws monotonically increasing and all
loading intensities. The boundary of the notch consists of two parallel straight lines and a cycloid along
which the amount shear is uniform. Bui and Ehrlacher [6] solved the same problem for a linear elastic
material; the thickness of the damaged zone is determined as a function of the stress intensity factor of
the equivalent crack. Similar solution are obtained also in elastoplasticity by Bui [5] and for crack in
[25]. More recently, the results have been generalized to different families of non-linear elastic brittle
material [26] using the hodograph transformation proposed by [27, 28]. To determine the mechanical
quantities over the domain Ω, the hodograph transformation is used [27, 29]. Another technique is also
available [24].

In the transformation of hodograph, the components of the gradient ∇w become the new indepen-
dent variables.

(x1, x2)→ (ξ1, ξ2), ξα = w,α(x1, x2). (114)

The displacement appears as a potential (dw = ξαdxα). The mapping is invertible provided the Jacobian
H = w,11w,22 − (w,12)2 does not vanish. Denote by U the Legendre transformation of w with respect to
ξα

U(ξ1, ξ2) = xαw,α(x1, x2) − w(x1, x2). (115)

By differentiating U with respect to ξ, the conjugate equations are obtained

xα =
∂U
∂ξα

, w = ξ.∇U − U. (116)

In the hodograph plane, the polar coordinates are used (ξ1 = R cos Θ, ξ2 = R sin Θ) then this inverse of
the mapping is given by:

x1 = cos Θ
∂U
∂R
−

sin Θ

R
∂U
∂Θ

, x2 = sin Θ
∂U
∂R

+
cos Θ

R
∂U
∂Θ

. (117)

The stress field satisfies:

τ1 = σ13 = µ(R)R cos Θ, τ2 = σ23 = µ(R)R sin Θ. (118)

The equation of motion is rewritten in the hodograph plane (R,Θ) using the mapping 117. The notation
()′ indicates a derivation with respect to R. The differential equation obtained in statics takes the
expression

∂

∂R

(
µ(R)R

∂U
∂R

)
+

(µ(R)R)′

R
∂2U
∂Θ2 = 0. (119)

This equation is homogeneous of degree one in U. Using 115 the displacement w is

w = R2 ∂

∂R
(
U
R

). (120)

For the considered example, the geometry of the crack is the straight line −∞ ≤ x1 ≤ 0. The direction
of the line is e1. The applied loading is that of a crack obtained in classical linearised elasticity or
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Figure 4. The non linear elastic brittle material.

embedded in neo-Hookean material. For an inner point of view, the local behaviour is non-linear and
the amount of shear is limited by a critical value Rm, as described by the constitutive law:

R ≤ Ro, τ = µoR,

Ro ≤ R ≤ Rm, τ = µoRo(
R
Ro

)α = µ̂Rα,

Rm ≤ R, τ = 0.

(121)

Then for R ≤ Ro the differential equation is elliptic, for Rm ≥ R ≥ Ro ellipticity is ensured if α ≥ 0
otherwise the differential equation becomes hyperbolic. We only consider here the ellipticity case.

For the considered constitutive law, solution in the hodograph plane is build by the combination of
solution for the linear part of the constitutive law and solution for the non linear part with the help of
peculiar solutions. The potential U is searched as [26, 30]:



0 ≤ R ≤ Ro, U = Uo(R,Θ),

Uo = AoR cos Θ

∫ Ro

R

dt
µot3 − BoR(log R cos Θ − Θ sin Θ) + CoR cos Θ,

Ro ≤ R ≤ Rm, U1 = Û(R,Θ),

U1 = A1R cos Θ

∫ Ro

R

dt
µ̂otα+2 − B1R(

2α
α + 1

log R cos Θ − Θ sin Θ) + C1R cos Θ.

(122)

The constants (Ao, A1, Bo, B1,Co,C1) are determined by:

• (a) continuity conditions of the potential in R = Ro,
• (b) continuity of the displacement w everywhere,
• (c) asymptotic behaviour when R→ 0,
• (d) traction free- boundary conditions along the boundary of the damaged zone.

6.1. Determination of the constants

• (a) : Continuity of the potential implies that Bo = B1 = B, and the relation

B
2α
α + 1

Ro log Ro + C1Ro = BRo log Ro + CoRo. (123)
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Then the displacement is given by
0 ≤ R ≤ Ro, w = wo(R,Θ) = −(

Ao

µoR
+ BR) cos Θ,

Ro ≤ R ≤ Rm, w = ŵ(R,Θ) = −(
A1

µ̂oRα
+

2Bα
α + 1

R) cos Θ.
(124)

• (b) Displacement is continuous en R = Ro

A1 + µoR2
oB
α − 1
α + 1

= Ao. (125)

• (c) Displacement satisfies the matching condition at∞, so we obtain

Ao =
K2

πµo
. (126)

• (d) The boundary along the damaged zone is traction free.

To simplify the expression, we adopt an adimensional formulation. Let us define new parameters
(a, a1, b)

Ao

µoR2
o

=
K2

πτ2
o

= a,
A1

µoR2
o

= aa1, B = ba. (127)

We adopt Co = 2 − B + B log(Ro) in order to determine the position of the quasi-crack along x2 = 0,

and we consider the notation Xi =
xi

a
, ρ =

R
Ro

. Then ρo = 1, ρm =
Rm

Ro
.

The condition (126) is then rewritten as

a1 + b
α − 1
α + 1

= 1. (128)

With these notations, the traction-free boundary condition (d) is now explained.
For that, the image of the hodograph plane is determined.

• 0 ≤ ρ ≤ 1,

X1 = −
1
2
−

1
2ρ2 cos(2Θ) − b log ρ,

X2 = −
1

2ρ2 sin(2Θ) + b(Θ −
π

2
),

W = −(
1
ρ

+ bρ) cos Θ.

• 1 ≤ ρ ≤ ρm,

X1 = −(
a1

ρα+1 + b
α − 1
α + 1

)
cos 2Θ

2
− (

a1

ρα+1 + b)
α − 1

2(α + 1)
−

2bα
α + 1

log ρ −
a1

α + 1
,

X2 = −(
a1

ρα+1 + b
α − 1
α + 1

)
sin 2Θ

2
+ b(Θ −

π

2
),

W = −(
a1

ρα
+

2α
α + 1

bρ) cos Θ.
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Figure 5. The geometry of a quasi-crack.

We have moved the frame along e2 with a shift of −bπ/2, to emphasize the symmetry of the geom-
etry with respect to e1. For ρ = ρa, the curve X1(ρa,Θ), X2(ρa,Θ) is a cycloid. With this geometry, the
traction- free boundary condition is given by the equation

τ1dX2 − τ2dX1 = 0. (129)

The boundary is decomposed into three parts: the two horizontal lines Θ = π/2 ± π/2 and the cycloid
where ρ = ρm. The traction-free boundary condition is satisfied for Θ = π/2±π/2 for all ρ, and implies
a relation along the cycloid where ρ = ρm:

(
2b
α + 1

−
a1

ρα+1
m

) cos Θ = 0. (130)

This relation can be combined with (126), then

1 =
2b
α + 1

(ρα+1
m +

α − 1
2

) (131)

It can be noticed that the thickness H of the damaged zone is H = baπ.
For ρm → ∞, the quantity b vanishes, the quasi-crack tends to the classical crack, the thickness H

vanishes.

6.2. Connection with release rate of energy

The strain energy for the critical shear Rm is given by

W(Rm) =

∫ Rm

o
τ(t) dt =

1
µo

τ2
o

α + 1
(ρα+1

m +
α − 1

2
). (132)

As a is a function of the equivalent loading K the relation 131 determines the thickness of the damaged
zone

1
2

aπ =
h

α + 1
(ρα+1

m +
α − 1

2
) =

1
2

K2

τ2
o
. (133)

The flux of the energy along the cycloid is given by

Dd = hW(Rm) = πa
τ2

o

2µo
=

K2

2µo
. (134)
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(a) (b) (c)

Figure 6. A global approach of wear contact : (a) micromecanisms, (b) homogeneisation
of Ω3, (c) Interface layer behaviour by unit area of contact.

This flux is exactly the energy release rate for the equivalent crack given by the condition of loading at
infinity

G = J = hW(Rm). (135)

For different constitutive relations, a numerical scheme is proposed in [31] to solve the problem of
propagation of a quasi-crack for some specific classes of non linear elastic brittle materials.

7. Modelling of Contact Wear

The system consist of two sliding and contacting bodies Ω1 and Ω2 separated by a contact interface
Ω3. The mechanical behaviour of the two bodies are known. The behaviour of the interface Ω3 is
more complex. Particles are detached from sound solids when some local criteria are satisfied at the
boundary. Wear leads to geometrical changes and modification of contact conditions. Wear debris
induce a specific layer. The interface is a complex medium made of particles; eventually of a lubricant
fluid and of damaged zones inside the two bodies near the surface of contact. The interface here is
considered at a macroscopic level as an homogeneous body obtained by an averaging process through
the thickness H = 2h of Ω3. This thickness is so small compared to the size of the contact zone and of
the tribological system that the condition of such homogeneity can be acceptable.

During wear process, the boundaries Γ1 = ∂Ω1∩∂Ω3 and Γ2 = ∂Ω2∩∂Ω3 evolve. During this process a
flux of matter is lost from the materials and the framework developed previously can be applied. Along
the two interfaces Γi energy is dissipated due to the motion of the boundaries

Di =

∫
Γi

ai[ψ]
Γ
− ni.σ.[v]

Γ
dS =

∫
Γi

Gi aids, (136)

and inside the volume of the layer Ω3 a volume dissipation dm due to damage, plasticity or viscosity,
is also present. By integration over the thickness of the layer Ω3, dissipation by unit of contact area is
defined as

Dm =
∑

i

Gi jiai +

∫
H

dm(z) j(z)dz. (137)
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A point of the layer Ω3 is defined relatively to middle surface S (X, t) = 0 with normal n. Then a point
of the layer has coordinates (X, z) such that x = X + zn(X). For x1 ∈ Γ1, z1 = h and for x2 ∈ Γ2, z2 = −h.
The unit area of surface at distance z from S (X, t) = 0 are dS (z) = j(z) dS and j1 = j(h), j2 = j(−h).

The two first terms of the dissipation are associated to the lost of material. The last term can be
interpreted as local friction [8]

friction D3 =

∫
H

dm dz =

∫
H

(σ : ε̇ − ψ̇3) dz. (138)

The main difficulty of the model is to choose the behaviour of the interface which takes into account
of wear debris.

7.1. Interface study

All mechanical quantities are defined with respect to the middle surface : S (X, t) = 0 with normal
n. And Γ1,Γ2 are defined by

x1 = X + h(X, t)ν, x2 = X − h(X, t)ν. (139)

We denote a the velocity of S .

Da(x1) = a1ν1, Da(x2) = a2ν2. (140)

The displacement along the boundary Γi is continuous

[u(X ± h(X, t)n, t)]Γi = 0, (141)

and also the stress vector [σi − σ3].ν = 0.
The internal state of the layer is defined by the total strain energy by unit of contact area

ψS (u1, u2, α) =
1
ρS

∫ h

−h
ρ(x, z)ψ3(ε(x + zν), α) j(x, z)dz, (142)

the surface density of mass

ρS =

∫ h

−h
ρ(x, z) j(x, z)dz (143)

the total potential of dissipation

DS (v1, v2, α̇) =
1
ρS

∫ h

−h
ρ(x, z) dm

(
ε̇(x + zν), α̇

)
j(x, z)dz (144)

To build model of interface, the displacement inside the layer is decomposed as an expansion relatively
to z.

u = uo + zu1 + z2u2 + ... (145)

Up to order 1 we have
u1 = u(X − hν), u2 = u(X + hν) (146)

and
u1 − u2 = ∇u(X, 0).νh = u1h, uo =

1
2

(u1 + u2) (147)

It can be shown that the equilibrium along the interface satisfies

σ.ni = ρS (
∂ψS

∂ui

+
∂DS

∂vi

). (148)
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Figure 7. A rigid punch on an half-elastic plane.

7.2. Sliding contact in steady relative motion

The rigid punch has a vertical displacement up
y = δ + x2/2R and we assume that wear occurs only

in the half space. Ahead the punch there is no debris, then the volume fraction of debris f = 0. The
thickness of the interface is Ho, which corresponds to the sum of roughness of the solids and contains
the thickness of the incompressible fluid. Due to wear, the thickness evolves. The mass conservation
and the fluid incompressibility give the relations between the wear rate φ(x), the fraction of debris
f (x) and the thickness of the thin layer X(x) [32]. All the equations of conservation are written in the
moving frame with the punch at the velocity Vex.

The free energy of the mixture is given by

ψs(w, f ) = k( f )
1
2

(wn)2 + kt( f )(wt − αt)2. (149)

A potential of dissipation is given to determine the irreversible contribution, essentially due to viscosity

d(ẇ, α̇t) =
1
2
ηn( f )ẇ2

n +
1
2
ηt( f )ẇ2

t +
1
2
ηa( f )α̇2

t . (150)

Then the local state equations are

n.σ = k( f )wnn + kt( f )(wt − αt)τ + ηnẇnn + ηtẇtτ, A = kt( f )(wt − αt) = ηa( f )α̇t. (151)

whereA is the driving force associated to viscosity. This constitutive law generalizes the law use in
([32]) in which ηa = kt = 0. For (ηa = kt = 0) we have an interface behaviour given by

σyy = k( f )wn, σxy = ηt( f )ẇt, (152)

k( f ) and η( f ) are chosen from typical homogenized value of the phases.

1
k( f )

=
f

Ks
+

(1 − f )
K f

, ηt = ηo(1 + 2.5 f ), (153)

that the homogenized Reuss’s model for the stiffness and the Einstein’s law for the viscosity.
Introducing these equations in the equilibrium equation determines for a given profile φ(x) the

answer of the elastic half space. The wear rate φ must satisfy a complementary law as proposed
before. For the sake of simplicity we take

φ = kpσyy. (154)
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The half plane has an elastic linear behaviour. In plane strain, the displacement (ux, uy) of the
interface Γ2 is given by solving the Galin’s equations:

co1ux,x(x) = co2σyy + V p
1
π

∫ a

−a

σxy(s)
s − x

ds, (155)

co1uy,x(x) = −co2σxy + V p
1
π

∫ a

−a

σyy(s)
s − x

ds, (156)

where σyy, σxy are the component of the stress vector applied on the half plane, and coi are coefficients
given in terms of Young’s modulus E and Poisson’s ratio ν. V p is principal value of integral in sense
of Cauchy.

co1 =
E

2(1 − ν2)
, co2 =

1 − 2ν
2(1 − ν)

(157)

The solution is obtained analytically by an asymptotic expansion in series of the volume fraction f
of particles.

• At zero order, the Hertz’s solution is recovered.
• At first order, a dependence with f is obtained. Wear occurs, and the profile of the pressure σyy(x)

evolves. The presence of viscous fluid induces a displacement of the maximum of pressure like
under the dry contact with friction ([33]).

This analytical solution is studied in paper [32].

8. Conclusions

In this article, we propose a framework using the motion of interface or surface to describe particular
irreversible processes : damage, fracture, wear, delamination.

The main idea is the change in the strain energy when the degradation process occurs.
The model is based on the definition of the potential energy and to a complementary law using a

normality rule based on the driving force associated to the motion of the interface. The evolution of the
system is given by the resolution of a variational inequality. This formulation of the rate boundary value
problem leads to discussion of stability of the equilibrium configuration and to possible bifurcation
from this state.

Some applications of the concept and examples have illustrated the potentiality of the approach.
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magement. C R Acad des Sciences de Paris, série B 290: 345-348.
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