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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disorder 

of undetermined etiology with no effective treatments. Motor weakness and bulbar dysfunction lead 

to premature death, usually resulting from respiratory failure. While much of the research has 

focused on the role of neuronal dysfunction in ALS etiology, evidence from human patients and 

animal models indicates that the neuromuscular junction (NMJ) shows significant functional and 

structural abnormalities prior to the onset of motor neuron degeneration and behavioral symptoms. 

The development of novel experimental approaches will allow the study and manipulation of human 

NMJs and significantly contribute to our understanding of ALS pathogenesis, leading to advances in 

pharmacological treatments for the disease. A novel approach that has been employed in recent years 

is the use of human induced pluripotent stem cells (iPSCs) to generate cell types contributing to 

synaptic connectivity at the NMJ. The generation and differentiation of cells derived from ALS 

patient iPSCs is a promising method for investigating disease mechanisms and drug screening at 

NMJs in vitro. In this review, we cover the theories underlying the mechanisms of ALS pathogenesis 

at the NMJ, an overview of the recent developments in the generation of functional human 

neuromuscular connectivity in vitro, and the advances in human iPSC programming and 

differentiation technology. 
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Abbreviations: AAKG: arginine alpha-ketoglutarate; α-Btx: alpha bungarotoxin; ALS: 

Amyotrophic lateral sclerosis; ACh: acetylcholine; AChRs: acetylcholine receptors; BDNF: brain-

derived neurotrophic factor; BMP: Bone morphogenetic protein; Cdk5: cyclin dependent kinase 5; 

ChR2: Channelrhodopsin-2; ChAT: choline acetyltransferase; CNTF: ciliary neurotrophic factor;  

DP: Deanna protocol; DRG: dorsal root ganglion; EB: Embryoid body; EPP: excitatory postsynaptic 

potential; ESC: embryonic stem cell; GDNF: glial cell-derived neurotrophic factor; GSK-3: glycogen 

synthase kinase-3; iMPCs: induced myogenic progenitor cells; iPSC: induced pluripotent stem cell; 

Lrp4: low density lipoprotein receptor-related protein 4; MEA: microelectrode array; mEPP: 

miniature excitatory postsynaptic potential; MN: motor neuron; MuSK: muscle-specific kinase; 

NCSCs: neural crest stem cells; NMDA: N-methyl-D-aspartate; NMJ: neuromuscular junction; 

p75NTR: p75 neurotrophin receptor; PDMS: polydimethylsiloxane; ROS: reactive oxygen species; 

SCs: Schwann cells; SEMA3A: Semaphorin3A; SHH: sonic hedgehog; SKM: skeletal muscle; 

SMA: spinal muscular atrophy; SMN: Survival motor neuron; SV2: synaptic vesicle protein 2; TSC: 

Terminal Schwann cell; TGF-β: Transforming growth factor β; VA: Valproic acid 

1. Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a fatal, adult-onset neurodegenerative disease 

characterized by progressive loss of motor neurons (MNs) in the cortex, brainstem, and spinal cord. 

MN degeneration results in muscle atrophy and paralysis, ultimately leading to death within 2–5 

years of symptom onset [1]. The incidence of ALS is approximately 2 per 100,000 people, with a 

slightly higher proportion of affected males [2]. ALS can be classified into two different types: 

sporadic and familial. Approximately 90–95% of ALS patients suffer from a sporadic form of ALS 

with no clear genetic linkage [3], while the remaining 5–10% of ALS patients exhibit familial 

inheritance. There is currently no cure for ALS, although there are two FDA-approved drugs, 

riluzole and edaravone, which may increase ALS patient survival by several months and modestly 

reduce the rate of motor function decline [4,5]. 

Over 100 genes have been implicated in ALS pathogenesis [6], a subset of which has been 

shown to be causative for classical familial ALS, namely: (1) superoxide dismutase SOD1[7];  

(2) RNA binding proteins TAR DNA-binding protein 43 (TARDBP/TDP-43) [8,9] and Fused in 

Sarcoma/Translocated in Liposarcoma (FUS) [10,11]; (3) phosphoinositide phosphatase FIG4 [12]; 

(4) AAA-ATPase VCP [13]; and (5) DENN-domain protein C9orf72 [14–16]. Despite the varied 

etiology of the disease, a common pathological finding in many ALS subtypes is the presence of 

misfolded and ubiquitinated cytoplasmic MN inclusions that contain TDP-43 [17–19]. Notable 

exceptions include cases caused by mutations in SOD1 [20–21]. 

Multiple mechanisms have been proposed to contribute to ALS MN pathogenesis, including:  

(1) excitotoxicity [22–23]; (2) mitochondrial dysfunction and oxidative stress [24–25]; (3) abnormal 

protein aggregation [26–27]; (4) impairments in cytoskeletal and axonal dynamics [28–30];  

(5) altered RNA metabolism [19,31]; (6) aberrant neuronal excitability [32–34]; (7) defects in 

endosomal trafficking and autophagy [35–36]; and (8) abnormalities in nucleocytoplasmic  

transport [37–38]. However, there may be some unknown underlying molecular links that connect 

these disparate mechanisms driving the nerve terminal pathology.  

Despite decades of intense research, the precise mechanisms underlying MN disease remain 

elusive. Most ALS research studies have focused on MN dysfunction as the primary pathology, but 
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there is evidence suggesting that early pathological changes occur in the most distal part of the lower 

MN—the neuromuscular junction (NMJ) [39–40]. Additionally, there is evidence that skeletal 

muscle (SKM) and Schwann cells (SCs) may be critical for the manifestation and progression of the 

disease. Most of the data regarding ALS NMJ function has been obtained using animal models, 

which provide critical, but limited, insights into the physiology of human NMJs due to species-

specific differences in structure and function [41–43]. Furthermore, the examination of human 

patient NMJs is particularly difficult due to the absence of predictive and reliable biomarkers for 

ALS disease onset and the use of highly invasive biopsy procedures for pathological examination. To 

date, there are no techniques that allow visualization and/or experimental manipulation of human 

NMJs from ALS patients in vivo. Thus, the development of technical approaches that allow the 

examination of synaptic pathology at the human NMJ are necessary to understand the cellular and 

molecular underpinnings of ALS. These data are also critically important for the discovery and 

testing of new therapeutics for the disease. In this review, we examine the literature regarding the 

mechanisms of NMJ dysfunction in ALS and provide an overview of the recent developments in the 

generation and specification of functional human neuromuscular connectivity in vitro, particularly 

through the use of induced pluripotent stem cell (iPSC) reprogramming technology. 

2. ALS and defects at the neuromuscular junction 

In mammals, SKMs are innervated by axons descending from MN cell bodies in the cortex 

and spinal cord, forming highly specialized nerve-muscle contact sites called neuromuscular 

junctions (NMJs). The terminal ends of MN axons form small swellings termed ‗boutons‘, which 

contain acetylcholine (ACh)-containing synaptic vesicles (Figure 1). These vesicles cluster and 

fuse at distinct regions of the presynaptic plasma membrane known as active zones [41,43]. 

Presynaptically-released neurotransmitters bind to ACh receptors (AChRs) concentrated in the 

postsynaptic folds of the muscle membrane [44]. ACh binding modulates the gating of ion 

channels and promotes the generation of excitatory postsynaptic potentials (EPPs) in the muscle. 

Additionally, terminal Schwann cells (TSCs) play a key role in the formation and stabilization of 

the NMJ, as well as coordinating regeneration responses post-injury [45–47]. 

Studies of human ALS patients have shown that axonal denervation, synapse loss, 

mitochondrial abnormalities, and increases in intracellular Ca
2+

 levels are key pathological events in 

the progression of the disease [48–52]. Examination of early stage NMJs in muscle biopsies from 

ALS patients have revealed functional and structural abnormalities in the peripheral nervous system, 

including (1) decreased neurotransmission [53]; (2) changes in synaptic protein composition [54–55]; 

(3) an increase in synaptic vesicles at nerve terminals [51,56]; and (4) reductions in choline 

acetyltransferase (ChAT) activity [57]. These findings provide support for the ‗dying-back‘ 

hypothesis, which posits that NMJ dysfunction precedes the axonal and MN cell body  

degeneration [39–40]. 

ALS patients also display neurofilament accumulations and other cytoskeletal abnormalities in 

proximal axons [58–60]. Cytoskeletal disorganization can lead to the formation of axonal swellings 

or ‗varicosities‘, which accumulate vesicles, mitochondria, and other cargo, leading to impairments 

in retrograde axonal transport [59,61–62]. A recent study by Lavado et al. (2017) investigated the 

link between aberrant induction of axonal varicosities and glutamate excitotoxicity in human spinal 

cord stem cell-derived MNs. While cells treated with varying concentrations of glutamate for 48 hrs 
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showed no deficits in viability or electrophysiological properties, they did exhibit an increased 

number of axonal varicosities. These varicosities showed an accumulation of synaptic vesicles (a 

common cargo of axonal transport), suggesting a glutamate-dependent effect on axonal integrity and 

function [63]. These results were verified with a human SOD1 patient-derived iPSC line, which 

showed no functional electrophysiological deficits, but exhibited significant numbers of varicosities 

in the absence of glutamate exposure. Most importantly, axonal defects were reversed after treatment 

with a modified Deanna protocol (DP) formulation, which contains arginine alpha-ketoglutarate 

(AAKG) and a number of dietary supplements reported to preserve metabolic function and prevent 

glutamate excitotoxicity [64]. These findings provide some evidence for axonal defects preceding 

functional motor deficits in ALS MNs and for therapeutic reversal of axonal varicosities in vitro. 

Hence, axonal structural abnormalities may represent an early detectable marker and therapeutic 

target for ALS pathology and drug screening in humans.  

Nonetheless, due to the paucity of ALS human patient data at the early stages of the disease, 

much of the evidence for a dying-back neuropathy has been obtained with ALS animal models, 

including mice, zebrafish, C. elegans, and Drosophila [39–40,65–83]. The well-characterized 

SOD1
G93A 

ALS mouse, which develops clinical symptoms by Day 80–90 (p80–90) and dies by 

Day 130 (p130) [66], first provided critical insights into the pathological mechanisms at the ALS 

NMJ [57]. Frey et al. (2000) reported selective loss of fast-type (fast-fatigable) NMJ synapses as 

early as p50 [67], and Kennel et al. (1996) reported progressive loss of functional motor unit 

numbers by p47 using electromyographic data [84]. Quantitative pathological analysis in SOD1
G93A

 

mice showed that at 47 days, more than a month before onset of motor symptoms, 40% of synapses 

were denervated. However, there was no evidence of ventral root or cell body loss at this stage. 

Axonal degeneration occurred between p47–p80, whereas severe loss of MN cell bodies occurred 

after p80. These findings were corroborated with post-mortem material from an ALS patient who 

died during the early stages of the disease [68]. Another study found that mice overexpressing 

mutant TDP-43 showed impaired neurotransmission by age 3 months, which preceded the deficits in 

motor function and MN loss observed at age 10 months [85]. These mutant mice also displayed 

morphologic alterations such as anomalous innervation patterns and changes in the distribution of 

synaptic vesicle–related proteins [85]. 

Data from other animal models have postulated that the dying-back neuropathy may be 

associated with defects in mitochondrial function, autophagy, and axonal  

trafficking [51,70,83,86–87]. NMJs of pre-symptomatic SOD1
G93A 

mice exhibited higher numbers of 

autophagosomes and degenerated mitochondria compared to controls [83]. Damaged mitochondria 

can generate elevated levels of reactive oxygen species (ROS), which have been shown to affect 

NMJ function and contribute to MN degeneration in ALS [78,88–90]. Xie et al. (2015) revealed that 

SOD1
G93A

 mice show progressive reductions in lysosomal density in spinal MNs starting at p40. 

Lysosomal deficits resulted in the accumulation of autophagic vacuoles engulfing damaged 

mitochondria along MN axons [86]. These deficits were attributed to aberrant dynein-mediated 

retrograde trafficking in axons, a finding that supports earlier studies indicating that pre-symptomatic 

SOD1
G93A

 mutant mice show impairments in axonal transport [29–30]. As noted previously, this is 

likely a crucial mechanism in ALS pathology, as axonal defects have been shown to: (1) impair the 

transport of newly synthesized proteins and lipids; (2) disrupt mitochondrial transport and energy 

supply to synapses; (3) prevent the clearance of damaged or misfolded proteins and organelles [91]; 

and (4) promote a switch in retrograde transport from neurotrophic to neurotoxic signaling  
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factors [92]. The findings also provide a more detailed framework for devising therapeutic strategies 

to ameliorate axonal defects in ALS patients. 

Lastly, ALS SOD1 mutant mice harboring manipulations of apoptosis-related genes (Bcl-2 and 

Bax) designed to prevent MN death still developed the disease despite showing a slight increase in 

longevity due to delayed muscle denervation onset [70,93]. Attenuating mitochondrial damage and 

inhibiting aggregation of misfolded SOD1 also had no effect on disease progression [94]. These 

findings support the notion that abolishing MN cell death is not sufficient to deter ALS disease 

progression and that drugs targeting MN death, as opposed to the NMJ, may not have much in vivo 

relevance. These studies also suggest that (1) muscle denervation is driven by separate molecular 

mechanisms than those involved in MN cell death; and (2) that alterations in other cell types (such as 

SKM or TSCs) may likely influence axonal degeneration and NMJ denervation. Indeed, there is 

some evidence that ALS is a non-cell autonomous disease, and numerous studies have shown that 

non-neuronal cells can contribute to disease progression and severity. For instance, glial cells 

expressing mutant SOD1 and TDP-43 selectively kill MNs [95–96], and SKM expression of 

SOD1
G93A

 can induce degeneration of MNs [97]. Furthermore, muscles of pre-symptomatic 

SOD1
G93A 

mice were shown to exhibit reduced levels of cyclin-dependent kinase 5 (Cdk5) [98], a 

protein critical for AChR clustering and myogenesis [99–100], as well as histological abnormalities 

occurring simultaneously with nerve detachment [101]. Additionally, SOD1
G93A 

mice show increases 

in repellent axon guidance proteins (SEMA3A and Nogo-A) in muscle fibers, leading to the idea that 

these signaling cues may promote the repulsion of the motor axons from the muscle and lead to the 

eventual axonal denervation and MN degeneration [102–103]. Similarly, De Winter et al. (2006) 

found that pre-symptomatic SOD1
G93A 

mice have higher expression levels of SEMA3A in SC 

terminals, providing evidence for its potential role in nerve terminal retraction at the NMJ [104]. 

However, expression of a signaling-deficient mutant SEMA3A did not ameliorate motor function in 

SOD1
G93A 

mice, suggesting that SEMA3A signaling may not be an essential factor compromising the 

integrity of NMJs in ALS [105]. A potentially more critical signaling mechanism at ALS NMJs was 

uncovered by a recent study demonstrating that SOD1
G93A 

mice treated with an agonist antibody to 

MuSK (a muscle receptor tyrosine kinase essential for maintaining NMJs), slowed axonal 

denervation, promoted MN survival, and modestly extended ALS mice lifespan by 7–10 days. The 

authors postulated that increased trans-synaptic retrograde signaling was mediated through 

lipoprotein receptor-related protein 4 (Lrp4), which is critical for differentiation and stabilization of 

motor nerve terminals [106–107]. Although these studies suggest a non-cell autonomous model of 

ALS, the exact molecular mechanisms by which SKM and SCs contribute to disease pathology 

remain largely elusive. 

In summary, there is substantial data to support a ‗synaptocentric‘ etiology of ALS, where the 

earliest pathogenic events in the disease process include synaptic dysfunction and the dismantling of 

the NMJ [68,108]. It is possible that impaired retrograde trafficking due to axonal abnormalities 

leads to the accumulation of dysfunctional mitochondria at synaptic terminals, which then triggers 

the release of harmful ROS and the initiation of apoptotic signaling cascades [24]. The reduction in 

ATP levels may also reduce recruitment and transport of vesicles to synaptic release sites [109–110] 

and cause impaired neurotransmission. Concomitantly, the aberrant function or expression of axon 

guidance proteins may contribute to the early pathological changes by influencing NMJ function and 

stability. Nonetheless, whether trans-synaptic signaling processes contribute to ALS pathology is not 
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well established and will require further research. Figure 1 provides a general overview of the 

potential molecular mechanisms underlying the early ALS pathology at the NMJ. 

 

Figure 1. Putative molecular mechanisms underlying early ALS pathology at NMJs. 

Note: Neuromuscular junctions (NMJs) are tripartite synapses composed of a motor neuron (MN) 

terminal synapsing onto a muscle fiber, with terminal Schwann cells (TSCs) enveloping the 

junction. In comparison to healthy NMJs, at the early stages of ALS, NMJs exhibit impaired 

neurotransmitter release and abnormal accumulations of enlarged mitochondria and autophagic 

vacuoles in MN axons and terminals due to impaired microtubule-based retrograde transport 

(dashed line). Skeletal muscle and TSCs may contribute to ALS progression via the release of 

repellent guidance cues (SEMA-3A and Nogo-A) and MuSK/Lrp4 muscle-neuron trans-synaptic 

signaling. These dysfunctional convergent or parallel mechanisms eventually lead to axonal 

retraction and muscle denervation. 
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3. Classic in vitro NMJ culturing models 

While animal models have provided many insights into the pathological and molecular 

mechanisms occurring at ALS NMJs, there have historically been very limited approaches and 

techniques available to directly study human NMJ pathology. Early co-culturing experiments of the 

NMJ were conducted by culturing embryonic spinal cords with intact and attached developing 

ganglia with muscle from chicks, rodents, or Xenopus [111–113]. The development of optimized 

techniques facilitated the culture of physically separate explants of SKM and spinal cord, which 

formed robust structural and functional connections in vitro [114–116]. Morphological analysis via 

electron microscopy revealed the formation of immature synaptic connections in culture, including the 

presence of synaptic vesicles and putative postsynaptic specializations [115–116]. Seecof et al. (1972) 

later devised techniques to differentiate Drosophila embryonic gastrula-stage cells in vitro to form 

morphologically and functionally defined neurons and myotubes [117]. Later, pioneering studies 

discovered and characterized embryonic stem cells (ESCs), which are derived from the inner cell mass 

of mammalian blastocysts, and can grow indefinitely, maintain pluripotency, and differentiate into cells 

of all three germ layers [118–121]. The advent of these sophisticated ESC technologies propelled the 

development of methods to generate MNs [122–125] and SKM [126–127] in vitro. 

To date, there have been many ESC-derived and non-ESC-derived NMJ co-culturing studies 

with Xenopus [128–129], chicks [130–132], rodents [133–137], and humans [138–139], as well as 

cross-species co-cultures [123–124,140–145]. A few seminal studies by Li et al. (2005) and Singh 

Roy et al. (2005) co-cultured ESC-derived MNs with rodent SKM (myoblast cell line C2C12 and 

dissociated rat SKM, respectively). Cultures were maintained for several weeks, during which 

ChAT-positive MNs extended their neurites and formed synapses with myotubes, as assayed by 

labeling with synaptic vesicle markers and the AChR marker, α-bungarotoxin (α-Btx) [123–124]. 

The studies revealed that ESC-derived neurons were electrophysiologically active and had 

functionally intact synaptic transmission. A complementary study by Yohn et al. (2008) showed that 

mouse ESC-MNs were able to restore contractile force to denervated muscles by forming functional 

NMJs when transplanted into the distal stump of a transected peripheral nerve [146]. 

One of the first studies attempting the formation of human ESC-derived NMJs in vitro was 

conducted by Guo et al. (2011). Differentiated MN-SKM co-cultures derived from a human spinal 

cord stem cell line and primary human SKM progenitor cells formed well-defined and 

distinguishable NMJs, as synaptophysin-positive terminals colocalized with AChR clusters. MNs 

and myotubes exhibited normal electrophysiological properties and numerous muscle contractions 

after 1 week of co-culturing. The silencing of myotube contractions by application of curare 

confirmed the formation of NMJs [138]. Similarly, Puttonen et al. (2015) reported a successful co-

culture of human ESC-derived MNs and SKM. Activation of MNs by the glutamatergic receptor 

agonist, N-methyl-D-aspartate (NMDA), triggered reproducible action potentials in myotubes and 

normal miniature excitatory postsynaptic potential (mEPP) amplitudes, suggesting functional 

presynaptic and postsynaptic mechanisms at the NMJs [147]. Using a more elegant approach, 

Steinbeck et al. (2016) co-cultured optically excitable Channelrhodopsin-2 (ChR2)-expressing 

human ESC-derived MNs with human primary myoblasts for 6-8 weeks to form NMJs in vitro. 

Optogenetic stimulation was found to induce muscle contractions, which were subsequently 

blocked by the addition of an AChR blocker. Quantification of AChR subunits by qRT-PCR 

revealed that these 6-week co-cultures expressed the fetal gamma subunit, but not the adult epsilon 
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subunit [148], indicating that their co-culturing method likely only recreated functional fetal-like 

neuromuscular cholinergic synapses. 

In parallel, several labs have also developed SKM engineering platforms to enable the study of 

NMJ formation and function. Smith et al. (2013) developed a silicon-based cantilever system using 

primary myotubes and MN co-cultures and analyzed myotube contraction in response to neuronal 

stimulation via measurement of cantilever deflection using a laser and photo-detector system [149]. 

Uzel et al. (2016) developed a microfluidic ‗NMJ-on-a-chip‘ platform to co-culture C2C12 

myoblast-derived muscle strips and mouse ESC-derived MNs within a 3D hydrogel in continuously 

perfused chambers. To determine NMJ functionality, they co-cultured ChR2-expressing MNs with 

C2C12-derived SKM to form NMJs and used optical stimulation to induce muscle contractile 

activity [150]. Cvetkovic et al. (2017) constructed a cellular system made up of multi-layered tissue 

rings containing integrated C2C12 SKM and mouse ESC-MNs embedded in an extracellular matrix. 

The compacted multi-layered rings were placed on hydrogel ‗bio-bot skeletons‘. Glutamate 

activation of MNs resulted in contractions of the SKM bio-bots, and addition of the ACh blocker, 

curare, halted the muscle contractions [151]. Thus, these groups were successful in creating flexible 

platforms and methods for combining MNs and SKM and obtaining functional NMJ measurements. 

In sum, these studies have highly advanced our understanding of in vitro NMJ formation and 

have propelled the development of advanced tissue engineering technologies. However, these studies 

still have not been able to adequately and convincingly recapitulate the complex NMJ architecture 

observed in vivo, in terms of myotube fusion efficiency, myotube strength, expression of AChRs, and 

formation of functional synapses. Further research into the basic structural and functional 

mechanisms involved in MN and SKM development will help us devise differentiation protocols that 

will yield mature and functional NMJ cell types and lead to the development of more effective 

bioengineering technologies for NMJ modeling. 

4. iPSC reprogramming technology 

Due to the ethical and technical issues regarding the use of human ESCs for research, the 

scientific community geared its efforts to the development of alternative in vitro stem cell 

technologies. In 2007, Takahashi and colleagues successfully reprogrammed human skin fibroblasts 

into induced pluripotent stem cells (iPSCs), which were found to be indistinguishable from ESCs in 

terms of morphology, proliferation, and expression of characteristic pluripotency markers. To do this, 

Takahashi transduced fibroblasts with retroviruses encoding four defined transcription factors: Oct4, 

Sox2, Klf4, and c-Myc, which function in the maintenance of pluripotency in both early embryos and 

ESCs [152–154]. iPSCs were shown to have unlimited proliferation capacity in vitro and to have the 

capability to differentiate into multipotent cell lineages. 

The successful reprogramming of somatic cells into iPSCs has allowed the possibility for 

disease modeling, pharmacological screening, and regenerative medicine. iPSCs have provided us 

with the ability to generate and study cell types from patients and to use gene-editing technologies 

to determine the effect of specific mutations on disease-relevant phenotypes. CRISPR/CAS9 

correction of mutations in an iPSC cell line allows for the development of isogenic controls 

harboring the same genetic background of the patient, thus removing second-site mutations or other 

genetic confounders that may affect the study of cellular phenotypes [155]. Additionally, gene editing 

has also aided in the generation of gene-corrected patient cells. Corrections have been successfully 
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achieved in iPSCs derived from ALS [156] and spinal muscle atrophy (SMA) patients [157], thereby 

paving the way for gene therapy applications such as autologous cell transplantation. However, one 

of the main issues regarding potential treatments with iPSC-derived cells is the possibility of 

genomic instability and tumorigenesis due to retroviral insertional mutagenesis and transgene 

reactivation [158]. Numerous strategies have been devised to mitigate these issues, such as the 

development of integration-free vectors such as Sendai virus vectors [159–161], plasmid  

vectors [162–163], DNA-free protein-based [164], and mRNA-based methods [165]. Nonetheless, 

the safety of iPSC-derived cells, as well as their long-term function and survival following 

autologous transplantation in humans, has not been well-established and will require extensive 

characterization and validation in vitro. Figure 2 outlines a simplified illustration of the use of iPSC 

reprogramming technology for in vitro ALS disease modeling and drug screening. 

 

Figure 2. The use of iPSC reprogramming technology for generation of ALS NMJs in 

vitro, disease modeling, and drug screening. 

Note: (1) Isolation of patient-specific somatic cells (fibroblasts). (2) Reprogramming of somatic 

cells using core transcription factors to generate induced pluripotent stem cells (iPSCs). (3) 

Directed differentiation of iPSCs to form NMJ cell types in vitro. (4) Disease modeling and 

functional characterization of ALS pathophysiology via intracellular muscle recordings in control 

and ALS patients. (5) Drug screening and discovery for personalized treatments for ALS patients. 
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4.1. Generation of iPSC-derived motor neurons 

To enable the study of neurodegenerative diseases such as ALS, numerous protocols have 

been devised to differentiate iPSCs to enriched populations of specialized cell types. The most 

widely used protocols producing enriched MN populations involve (1) neural patterning using 

small molecule inhibitors of Bone morphogenetic protein (BMP) and Transforming growth factor 

β (TGF-β) signaling; (2) embryoid body (EB) formation in the presence of retinoic acid and sonic 

hedgehog (SHH); and (3) MN maturation with neurotrophic factors: including brain-derived 

neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary 

neurotrophic factor (CNTF) [166–170]. Another method that has been employed is the transgenic 

expression of MN-specific transcription factors [87,171] to form induced MNs, which have been 

shown to: (1) express a MN transcriptional profile; (2) to be electrophysiologically active; (3) to 

have the capacity to integrate into the developing spinal cord; and (4) to form functional NMJs 

with chick myotubes in vitro [171]. The optimization of directed differentiation of iPSCs into MNs 

has made it possible to conduct studies modeling various ALS subtypes (SOD1, TDP-43, and 

C9orf72) in vitro [33,87,172–177]. In a groundbreaking study, Egawa et al. (2012) provided the 

first evidence that patient iPSC MNs could be utilized for drug screening by rescuing ALS-

associated phenotypes with a histone acetyltransferase inhibitor [174]. Since then, relevant 

molecular and cellular phenotypes have been identified in ALS MNs, including mitochondrial and 

ER stress [177], membrane hyperexcitability [33] and endosomal trafficking/lysosomal 

dysfunction [87], which have led to the development of promising novel drug therapeutics. 

Remarkably, there have also been a few studies showing that human iPSC-derived MNs can 

be transplanted into ALS animal models and improve disease phenotypes [178–179]. Popescu et al. 

(2013) transplanted human iPSC‐derived neural progenitors into control or ALS SOD1
G93A

 rat 

spinal cords and reported successful survival and engrafting of the transplanted cells in vivo, as well 

as efficient neural progenitor specification to MNs in both control and ALS recipients [179]. 

However, the study did not evaluate synaptogenesis of the engrafted cells or the effects of the 

engraftment on motor function and lifespan of the ALS SOD1
G93A 

rats, so it is difficult to make a 

conclusive statement about the efficiency of the transplantation method. In a similar vein, 

Nizzardo et al. (2013) generated and transplanted human iPSC-derived neural stem cells (NSCs) 

into ALS SOD1
G93A 

mice via intrathecal or intravenous injections. The successful engraftment of 

the transplanted NSCs into the spinal cord of treated ALS mice resulted in reductions of MN loss, 

improvements in motor performance, and a slight increase in lifespan. Interestingly, the systematic 

administration was reported to have a better therapeutic effect than the intrathecal  

administration [178]. Although more studies are required to understand the long-term functionality 

and survivability of the engrafted cells, these results provide a promising framework for stem cell- 

based therapies of ALS. 

Despite these great advances in stem cell biology, limitations remain with the current iPSC 

MN protocols. First, a transcriptome study has revealed that iPSC-derived MNs are closer to 

embryonic spinal MNs than to their in vivo adult counterparts [180]. Unfortunately, it remains 

unclear whether in vitro iPSC-derived MNs, which are produced in several weeks, can recapitulate 

the decades of in vivo events leading to MN degeneration. Several solutions have been employed to 

further mature and age iPSC-derived MNs, including the use of toxic stressors (pesticides or ROS), 

chemical manipulations (glutamate-induced excitotoxicity and nutrient deprivation), and the use of 
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trans-differentiation protocols, which directly convert mature lineages into mature cell  

types [181–183]. Second, most protocols require expensive and complex media formulations, 

employ tedious and time-consuming differentiation steps lasting 1–2 months, and have low cell 

efficiencies. Developing new methods that enable the generation of highly pure and functionally 

mature MNs in a consistent and time-effective manner will be critical for future research.  

4.2. Generation of iPSC-derived skeletal muscle  

The use of iPSCs for the generation of SKM has been much more challenging due to our 

limited knowledge regarding the inductive signals required for SKM formation, as well as the 

inability to produce large quantities of SKM with high purity. Multiple morphological assessments 

indicate that iPSC-derived myotubes are more developmentally immature and hypotrophic than 

primary myotubes. This may be due to: (1) suboptimal extracellular matrix composition for SKM 

growth [184]; (2) the lack of electrical and mechanical stimulation of SKMs [185]; and (3) the 

absence of neuronal and glial signals shown to promote the maturation of muscle cells in vitro. 

Most iPSC protocols have used direct reprogramming with muscle-specific transcription factors, 

such as MyoD and PAX7 [186–188], and/or the induction of SKM using small molecules and 

cytokines modulating the relevant signaling pathways in myogenesis [189–190]. Various patterned 

substrates and 3D culture systems have been devised to enhance myotube fusion, differentiation, 

and AChR formation [150,191–192]. Madden et al. (2016) successfully engineered electrically and 

chemically responsive, contractile human muscle tissues (‗myobundles‘) using primary myogenic 

cells. The myobundles were fabricated by combining human myogenic precursors with an 

extracellular matrix in polydimethylsiloxane (PDMS) molds. Myobundles exhibited an aligned 

architecture, multinucleated and striated myofibers, and a Pax7
+
 cell pool. Notably, the myobundles 

displayed normal responses to drugs that modulate muscle activity, demonstrating their utility for 

pharmacological screening [193]. In a follow-up study, the Bursac lab generated induced myogenic 

progenitor cells (iMPCs) via the transient overexpression of Pax7 in human iPSC-derived paraxial 

mesoderm cells. iMPCs readily differentiated into spontaneously contracting multinucleated 

myotubes expressing AChRs and other developmental muscle proteins. Under 3D culture conditions, 

multiple iPSC lines reproducibly formed functional SKM tissues (iSKM bundles) containing aligned 

multinucleated myotubes exhibiting contractile force and robust calcium transients in response to 

electrical or ACh stimulation. After 1 month in culture, the iSKM bundles underwent further 

structural maturation, hypertrophy, and the ability to generate force. Most critically, when implanted 

into the dorsal window chamber or hindlimb muscle in immunocompromised mice, the iSKM 

bundles vascularized and maintained functionality after 2–3 weeks [188]. This study was the first to 

demonstrate engineering of 3D contractile SKM tissues derived from human iPSCs. 

To advance the translational potential of these studies, a few groups have employed iPSCs to 

model muscle ALS pathology in vitro. Lenzi et al. (2016) generated iPSC-derived control and ALS 

SKM using an inducible MyoD expression system and found that ALS mutant iPSCs differentiated 

into mature myotubes expressing functional AChRs displaying ACh-induced ionic currents [194]. 

Swartz et al. (2016) used a small molecule‐based protocol for the generation of multinucleated 

skeletal myotubes from C9orf72 ALS patient iPSCs and observed no aberrant changes in SKM 

differentiation efficiencies, TDP-43 localization, and ubiquitin or p62 pathologies specific to 

C9orf72 ALS patients [195]. These initial studies suggest that muscle function is likely not the 
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primary cell target in ALS or that the SKMs generated with this specific protocol are missing critical 

factors essential for eliciting the NMJ pathology. More research is required to understand the role of 

ALS SKM in the etiology of the disease. Still, these studies serve as proof that diseased iPSCs can be 

utilized to recapitulate many pathological features of the disease, thus providing a platform for 

studying the disease in vitro. 

4.3. Generation of iPSC-derived Schwann cells  

Currently, there are no studies that have reported the generation of TSCs, but a few studies have 

created protocols for generating myelinating Schwann cells (SCs) from human iPSCs. Liu et al. 

(2012) differentiated neural crest stem cells (NCSCs) from iPSCs using EB formation and PA6 

stromal cell line-conditioned medium with FGF2, Rock inhibitor, and ascorbic acid [196]. NCSCs 

were FACS-sorted using p75 neurotrophin receptor (p75NTR) and subsequently differentiated into 

SCs by culturing NCSCs in specialized media supplemented with neuregulin-1/heregulin-β1 for 40 

days. They demonstrated that the SCs expressed GFAP, S100β, p75NTR, Sox9, and myelin markers 

such as PMP22 and MBP using immunohistochemistry and gene expression profiling. They 

validated the functionality of their SC differentiation protocol by demonstrating that human ESC-

derived NCSCs were able to myelinate rat dorsal root ganglion (DRG) sensory axons in vitro [196]. 

A similar study by Wang et al. (2011) also devised a protocol to differentiate iPSCs to NCSCs using 

both EBs and neural rosette formation coupled with FACS-sorting with p75NTR. NCSCs were 

implanted in a rat sciatic nerve injury model, and after 1 month, the NCSCs formed cells expressing 

the SC marker S100β, indicating in vivo glial differentiation. They demonstrated that the NCSC-

engrafted group had regenerated a greater number of axons and a higher number of SCs around 

individual axons than controls via histological analysis. These results indicated that the transplanted 

NCSCs had the capacity to enhance regeneration of peripheral nerves by facilitating axon 

myelination [197]. More recently, Kim et al. (2017) reported a protocol for producing SCs from 

iPSCs by using a combination of small molecules SB431542 (TGF-β signaling inhibitor), CT99021 

(glycogen synthase kinase-3 (GSK-3) inhibitor), and neuregulin-1/heregulin-β1. The SCs were 

shown to express appropriate developmental and cell-specific markers and were able to myelinate 

embryonic rat DRG neurons in vitro. Additionally, SC transplantation into sciatic-nerve injured mice 

promoted nerve regeneration presumably through the release of neurotrophic factors that promote 

axonal growth [198]. Although the myelination capacity of the SCs was reportedly low, the protocol 

serves as a useful resource for producing functional myelinating SCs.  

Despite the major progress in the development of robust iPSC differentiation protocols for 

NMJ cell types, the immature characteristics of these tissues should be a major consideration when 

modeling adult-onset neurodegenerative diseases [199–200]. The creation of well-designed 

medium formulations that accurately reflect temporal developmental processes and the use of 

biologically relevant extracellular matrices allowing growth, attachment, and spatial orientation of 

tissues [201–202] is essential to recapitulate anatomically-correct in vivo tissues and for more 

effective and predictive pre-clinical drug screening assays. 
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5. Generation of iPSC-derived neuromuscular junctions 

To date, there is only one published study that has successfully established NMJ co-cultures 

combining MNs and myotubes from the same donor human iPSC cell line. Demestre et al. (2015) 

demonstrated that 3-week MN-myotube co-cultures formed putative NMJs, expressing relevant pre- and 

postsynaptic proteins [203]. One week after co-culturing in vitro, AChR clusters appeared, and early 

outgrowing neurites became closely opposed to end-plate regions. At 3 weeks, MNs induced the 

maturation of muscle cells and AChR aggregation, eventually resulting in the formation of NMJs, 

which were assessed by the appearance of AChR and MN contact sites. While the authors conducted 

electrophysiological analysis of SKM to assess functionality, there was no electrophysiological data 

acquired with the NMJ co-cultures, thus precluding conclusive statements about the functionality of their 

NMJ model and its use for drug screening and therapeutics. 

Because of the technical challenges associated with generating NMJ cell types from the same iPSC line, 

most groups have opted to form NMJs by co-culturing iPSC-derived MNs and primary muscle cell 

lines, particularly due to the latter‘s widespread availability and relatively simple growth conditions. 

Toma et al. (2015) successfully co-cultured human iPSC-derived MNs with chick myotubes and 

found that MNs extended their axons along the myofibers. The iPSC-MNs were shown to form 

stable NMJs with anatomical and physiological features of their in vivo counterparts, including the 

expression of MN glutamate receptors and muscle AChRs and normal electrophysiological 

properties (as assessed by the synaptic vesicle cycling dye FM4-64 and intracellular electrode 

recordings at the muscle). Toma et al. also demonstrated that transplanted iPSC-MNs formed 

anatomically-correct NMJs with previously denervated muscle fibers, restored muscle contractile 

force, and attenuated denervation-induced atrophy [204]. Most impressively, the iPSC-MNs 

remained functional several weeks after transplantation, providing support for their use in cell 

replacement therapies to restore function to denervated muscles after disease or injury. 

To identify potential drug therapeutics for neuromuscular diseases, a few studies have reported 

generating NMJs in vitro from diseased patient iPSCs. Shi et al. (2018) investigated the pathogenic 

mechanisms underlying C9orf72 ALS repeat expansions in MNs. They utilized the forced expression 

of lineage-specific transcription factors to convert control and C9orf72 ALS patient iPSCs into MNs. 

To examine whether C9orf72 MNs recapitulated ALS neurodegenerative processes, they performed 

longitudinal tracking of MN survival in vitro. Stress conditions, such as high glutamate stimulation 

and the removal of neurotrophic factors, caused a rapid degeneration of ALS MNs in culture. They 

revealed that the C9orf72 MN degeneration was due to deficits in vesicle trafficking and lysosomal 

biogenesis, resulting in accumulations of glutamate receptors in MN neurites and dendritic spines. 

The researchers were subsequently able to rescue C9orf72 MN survival and glutamate receptor 

levels by treatment with Apilimod, a PIKFYVE kinase inhibitor regulating endolysosomal 

trafficking and kinetics [87]. Moreover, Shi et al. (2018) showed that ChR2-expressing control and 

ALS MNs co-cultured with primary chick muscle repeatedly induced myotube contraction following 

depolarization with light, indicating the formation of functional NMJs. Because the co-cultures were 

maintained under normal medium containing neurotrophic factors, the number and force of the 

contractions were not significantly different between control and ALS NMJs [87]. Future 

experiments are required to determine whether there are any differences between control and ALS 

NMJs under stress-inducing conditions and whether pharmacological agents ameliorate any potential 

deficits at ALS NMJs. 
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In addition to ALS iPSC NMJ models, other groups have attempted to establish similar 

neuromuscular disease models. Yoshida et al. (2015) generated iPSC-derived MNs from patients 

with spinal muscular atrophy (SMA), a disease characterized by degeneration of lower MNs, leading 

to progressive paralysis and muscular atrophy [205–206]. The human SMA iPSC-MNs were co-

cultured with differentiated mouse C2C12 muscle, and after 40+ days, α-BTX-positive AChRs were 

found clustered opposed to synaptic vesicle protein 2 (SV2)-positive synaptic nerve terminals. 

Myotubes innervated by SMA MNs exhibited a reduced number and size of AChR clusters at 

various differentiation time points relative to control NMJs [206]. These deficits were reminiscent of 

the early stages of SMA, where NMJ developmental abnormalities precede MN loss. Valproic acid 

(VA), which has been shown to increase Survival MN (SMN) gene levels, was able to rescue AChR 

clustering in SMA iPSC MN and myotube co-cultures [206–207]. Yoshida et al. (2015) were able to 

replicate SMA phenotypes in vitro and provide supporting evidence for VA as a promising 

therapeutic drug candidate for SMA. Whether VA ameliorates any abnormal electrophysiological 

properties at the NMJ was not assessed in this study but would be a next critical step for the 

complete validation of this disease model.  

In sum, these studies provide a solid framework for the use of diseased iPSCs to form NMJs in 

vitro and to study molecular pathways involved in NMJ dysfunction. Most importantly, the 

generation of functional iPSC-derived NMJ models provides the possibility for the discovery of drug 

treatments that may improve neuromuscular function and restore muscle contractility in patients. 

6. Challenges with the formation and study of iPSC-derived NMJs in vitro 

Despite the major advances in the generation of iPSC-derived cell types and co-culturing 

methods to generate NMJs, iPSC-derived NMJs remain immature and unstable in comparison to 

NMJs in vivo. Co-cultures using iPSC-derived MNs and muscles typically have short lifespans (up to 

1 month), likely due to suboptimal culturing conditions lacking the proper biochemical context and 

microenvironment for each cell type. Recreating the complex cellular milieu at the NMJ has been 

challenging, as the detailed nature of the trans-synaptic signals and molecular mechanisms regulating 

NMJ structure and function are not well understood. A major factor that may play a crucial role in 

the formation of NMJ in vitro is the presence of TSCs in co-cultures, as they have been shown to be 

critical for NMJ development and function. In fact, glial cells at the NMJ have been reported to:  

(1) regulate glutamate receptor clustering in SKMs via Wnt signaling [208]; (2) coordinate TGF-β-

mediated retrograde signaling controlling presynaptic differentiation [209]; (3) modulate synaptic 

transmission [210]; (4) promote synaptic elimination [211]; (5) control guidance of regenerating 

axons to muscles post-injury [212–213]; and (6) aid in muscle AChR cluster maturation [47]. 

Multiple studies have shown the beneficial effect of SCs on neural function in co-culture  

systems [214–217], however, no study has succeeded in incorporating SCs into an in vitro model of 

NMJs. A neuron-muscle-Schwann cell tri-culture derived from patient iPSCs would produce a more 

structurally and physiologically accurate NMJ that would address fundamental questions about the 

roles of each cell type in ALS pathogenesis, as well as provide the ability to effectively screen for 

drug therapeutics for the disease. More research is required to understand the basic biology 

underlying TSCs and to generate viable iPSC differentiation protocols for their generation in vitro. 

Additionally, evidence suggests that microglia play a crucial role in the activation of 

neuroinflammation in ALS. Increasing stress and injury causes ALS MNs to release signals to 
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microglia, which in turn, release ROS and pro-inflammatory cytokines that promote MN cell  

death [218]. A few studies have reported the generation of iPSC-derived microglia [219–220] and 

their inclusion in the NMJ co-cultures may provide a better simulation of ALS phenotypes. 

The other challenge is the need for high-throughput screening platforms for ALS drug discovery. 

Several co-culturing NMJ studies have attempted to set up phenotypic and drug screening models 

assessing Ca
2+

 kinetics and electrophysiological parameters [138,148–150,221–223]. More recently, 

several laboratories have employed multi-well microelectrode arrays (MEAs) to characterize MN 

electrical activity in control and diseased genotypes and after application of drugs or 

pharmacological agents [33,224]. Most notably, Wainger et al. (2014) utilized MEA recordings to 

assay hyperexcitability in ALS iPSC-MNs and were able to rescue mutant phenotypes using the Kv7 

channel activator retigabine [33], which has been shown to have a modest effect in reducing MN 

axonal excitability in ALS patients [225]. MEA platforms may be used in conjunction with 

microchannel structures for cell compartmentalization, thereby providing the opportunity to assay 

electrophysiological activity in separate pre-and postsynaptic cells and to screen for potential drug 

therapeutics. Moreover, Kiskinis et al. (2018) developed and optimized an all-optical 

electrophysiology system ‗Optopatch‘ to study the electrical properties of human ALS iPSC-derived 

MNs [226–227]. The relative ease of acquiring large quantities of functional data from cellular 

populations using the Optopatch may be useful for larger scale co-culturing experiments, although 

the accuracy and temporal resolution lags behind conventional patch clamping methods. 

An alternative approach was taken by Santhanam et al. (2018), who generated an NMJ model in 

which spatially segregated populations of human MNs and myotubes were cultured in a two-

chambered construct connected through microtunnels. Electrical stimulation of the human iPSC-

derived MNs resulted in robust myotube contractions as assayed by video imaging. The system was 

validated for its pharmacological and drug screening relevance by measuring the dose-response 

curves for various NMJ toxins including curare, botulinum toxin, and bungarotoxin [228]. This 

sensitive screening platform could be highly useful for measuring functionality of ALS iPSC-derived 

NMJs after drug application. 

Hence, in order to facilitate drug discovery, we must be capable of evaluating the functionality 

of NMJs using automatized, high-throughput systems. The use of optogenetically-controllable MNs 

for electrical stimulation coupled with sensitive techniques to assay muscle contraction will improve 

our understanding of NMJ function in both healthy and diseased states and be invaluable for 

screening novel therapeutic agents for neuromuscular disorders. 

7. Concluding remarks 

Drug development for the treatment of neurodegenerative diseases is a challenging field. Many 

drugs tested in animal models fail in human clinical trials due to lack of efficacy or toxicity [229], 

suggesting that the preclinical animal models are not adequately recapitulating the human disease. 

These translational failures may be due to inherent biological differences between species or 

methodological flaws in the animal and human studies, which lead to erroneous data and conclusions 

about mechanisms underlying the disease and reduced predictive efficacy of treatments on human 

disease [230]. Neurodegenerative diseases like ALS are complex, multifactorial diseases that are 

likely caused by several independent mechanisms and may require the simultaneous targeting of 

several proteins and/or cellular pathways [231]. In vitro ALS modeling using iPSC-derived cell 
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types may facilitate the study of the effects of genetic variants on cellular and molecular 

phenotypes and lead to the development of pharmacological screens for phenotypic modifiers of 

the disease. 

Lastly, there is a myriad of evidence from animal models and human patients suggesting that 

the early ALS pathogenesis may occur at NMJs. Using iPSC technology to model ALS NMJs has the 

potential to provide valuable insights into the basic molecular mechanisms of the synaptic pathology 

and the contribution of non-neuronal cells (muscles and SCs) to the disease. It is likely that early 

interventions for synaptic dysfunction are critical for the subsequent irreversible loss of MN axonal 

and cell body degeneration. Therefore, therapies targeting pre-symptomatic pathological mechanisms 

(such as defects in axonal integrity and synaptic transmission) could be a powerful way to halt or 

delay the disease process. As summarized in this review, numerous studies have attempted to 

recreate neuromuscular connectivity in vitro, however, further optimization of co-culturing methods 

for NMJ cell types is required to yield more physiologically relevant and mature NMJs. Although 

there are many technical challenges, the rapid developments occurring in iPSC/stem cell biology and 

biomedical engineering will enable the systematic construction and high-throughput validation of 

ALS patient NMJs in vitro, leading to the discovery of efficacious pharmacological treatments for 

the disease. 
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