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Abstract: Immunotherapies are becoming a promising strategy for malignant disease. Selectively 

directing host immune responses to target cancerous tissue is a milestone of human health care. The 

roles of the innate and adaptive immune systems in both cancer progression and elimination are now 

being realized. Defining the immune cell environment and identifying the contributions of each  

sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and 

demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity 

against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic 

efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as 

melanoma, now provides the principals for which this treatment paradigm can be adapted for primary 

brain cancers. The central nervous system is complex, and relative contributions of immune  

sub-populations to high grade glioma progression are not fully characterized. Here, we summarize 

recent research in both animal and humans which add to the knowledge base of how innate and 

adaptive immune cells contribute to glioma progression, and outline work which has demonstrated 

their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell 

surface receptor protein, describe its signaling functions in the context of immunity, and point to its 

potential to slow glioma progression.  
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1. Introduction  

High grade gliomas (HGG), such as grade IV Glioblastoma Multiform (GBM), are the most 

common and lethal primary tumors arising in the CNS [1]. GBM are viciously invasive, present 

chemo- and radio-therapy resistance, are histologically heterogeneous, and more recently have been 

classified by molecular subtypes [1–4]. Standard therapy minimally increases median survival and 

involves maximal surgical debulking followed by Temozolomide and radiation treatment regiments [5]. 

GBM can arise from glial cells throughout the brain, and often results from malignant progression of 

grade II/III gliomas. The pathological hallmarks of glioma progression parallel those in other 

malignant solid tumor types, such as the dependency on vascular remodeling and angiogenesis, local 

tissue invasion, immune evasion, and resistance to standard of care therapies. 

Increasing evidence supports the concept that the tumor microenvironment (TME) plays a 

modulatory role in glioma progression. The TME consists of non-cancerous stromal cell types, all of 

which ultimately contribute to maintenance and health of the bulk tumor [6]. While the CNS was 

once believed to be immune privileged, peripheral immune influences on CNS diseases is now a 

pragmatic subject. Here we discuss how major immune cell populations contribute to the progression 

and maintenance of HGG, and outline their potential to mitigate the advancement of disease. Lastly, 

we discuss Neuropillin 1 (NRP1), a prominent cell surface protein receptor with many distinct 

ligands, as a potential therapeutic target across immune cell populations, and suggest that NRP1 

could be exploited in developing new treatments for GBM. 

2. Discrete roles of immune cell populations in glioma progression, maintenance, and 

regression 

2.1. Subpopulations of lymphocytes affect glioma progression  

Although lymphoid populations vary across GBM cohorts, increased tumor infiltrating 

lymphocytes (TILs) correlate with glioma grade, but can also correlate with increased survival [7–9]. 

This paradox may be elucidated by considering the various lymphocytic populations present in the 

TME, and by identifying their contributions to tumor development. Naive CD4
+
 lymphocytes arise 

from hematopoietic thymic progenitors and are activated via MHC II antigen presentation on antigen 

presenting cells (APCs). Antigen exposure and humoral signaling initiate CD4
+
 T cells to expand 

into a variety of effector subsets. Polarized Th1/Th2 helper T cells (Th) are canonically derived from 

IL-12/INFγ or IL-4 exposure, respectively [10]. T regulatory cells (Treg) are another important 

subset of effector lymphocytes, which are potently induced following TGFβ exposure [11]. CD4
+
 Th 

cells have the ability to mount inflammatory responses, as well as activate processes of adaptive 

immunity. Alternatively, CD4
+
CD25

+
FOXP3

+
 Tregs are classically associated with 

immunosuppression, attenuation of autoimmunity, and the inhibition of CD4
+
 proliferation [11]. 

CD4
+
 cells are required for adaptive immune system activation, and thus, their presence would be 

expected to correlate with a stronger anti-tumoral adaptive immune response. However, the 

influences CD4
+
 Th2 and CD4

+
FOXP3

+
 Treg cells have within the TME have not been fully clarified 

in glioma.  

Fecci et al. have previously reported that patients with GBM present with CD4
+
 lymphopenia, 

but noticeably also maintain higher proportions of CD4
+
CD25

+
FOXP3

+
 regulatory T cells (Tregs) [12]. 
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Treg depletion studies in culture and in an orthotopic murine model of glioma suggested that the 

activity of the increased hematogenous populations of Tregs in GBM patients may be linked to Th2 

responses and suppressed proliferation of CD4
+
 T cells [12]. The same group demonstrated that  

anti-CTLA-4 treatment in mice harboring malignant astrocytomas increased peripheral CD4
+
 cell 

numbers and conferred resistance to Treg immunosuppression [13]. Since this work, there has been 

an increased focus on the contributions of CD4
+
 Th cells and subset CD4

+
FOXP3

+
 Tregs to glioma 

progression at both the pre-clinical and clinical levels.  

Following entry into the CNS/tumor compartment, lymphocytes downregulate CD28, and 

CD62L co-stimulatory molecule expression [8]. This may hint at a mechanism by which the existing 

immunosuppressive TME captures and represses TILs. Although CD4
+
 cell numbers alone do not 

directly correlate with clinical outcome in GBM patients [7,14], new evidence suggests that elevated 

CD4
+
 and/or CD4

+
FOXP3

+
 population ratios may be indicative of glioma disease severity and risk 

of recurrence [15,16].  

The mechanisms underlying how Th and Treg populations aid glioma progression have not been 

fully characterized. Mu et al. conducted an elegant study which analyzed 44 paired samples from 

patients with recurrent HGG [17]. Elevated numbers of perivascular CD4
+
 TILs strongly correlated 

with CD34
+
 tumor vascularity in both primary and recurrent glioma [17]. In a subset of patients 

refractive to bevacizumab anti-angiogenic therapy, increased and activated CD4
+
 populations were 

found to be correlated with bevacizumab resistance, as such activation was not apparent in 

chemotherapy-naïve patient samples [17]. Elevated CD4
+
 and CD4

+
FOXP3

+
 populations were 

correlated with shorter recurrence-free survival, and the perivascular CD4
+
FOXP3

+
 Treg population 

in primary tumors was identified as an independent predictor of tumor recurrence in this cohort [17]. 

The close association to the perivascular region, and conspicuous relationship with tumor 

progression and recurrence may point to the angiogenic process which may contribute to grade III 

glioma progression to GBM, a mechanism which has long eluded glioma biology. Nevertheless, 

these data support negative roles of CD4
+
 population subsets in glioma progression.  

Despite these supportive roles, selectively modulating CD4
+
 populations could be used to elicit 

tumor shrinkage. Anti-tumorigenic effector functions of these cells have been realized in mouse 

models of melanoma and pancreatic cancer [18–20]. In a syngeneic orthotopic murine model of 

glioma, CD4
+
 depletion completely nullified tumor lysate vaccine/Fc-OX40L treatment efficacy, and 

the survival effects were found to be driven in part by antibody-dependent cell mediated  

cytotoxicity (ADCC) and natural killer T cell (NKT) populations [21]. Similarly, CD4
+
 cell 

populations were found to be necessary for the complete efficacy of combined oncolytic herpes 

simplex virus (oHSV ΔG47-mIL12) and immune checkpoint inhibitor therapy in two distinct murine 

derived glioma models [22]. 

The anti-tumorigenic potential of alternate lymphocytic populations is also supported by a study, 

which expanded and differentiated glioma patient T cells (of mixed CD3
+
CD4

–
CD8

–
, CD4

+
, and 

CD8
+
 subsets) ex vivo using IL-2, IL-15, and IL-21. The study demonstrated preferential expansion 

of existing memory effector T cells populations, which were reactive against autologous tumor cells 

and shared tumor-associated antigens [23]. The authors also suggest that these expanded cell 

populations were resistant to TME immunosuppressive factors, and proposed this protocol for 

adoptive cell transfer therapy application [23]. While other specialized T cell subsets, such as γδ T 

cells, may lack roles in immune-mediated responses to HGG [24], CD4
+
 T cells and CD4

+
FOXP3

+
 

Treg subsets cannot be ignored when considering HGG progression and treatment responses.  
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2.2. Challenges cytotoxic lymphocytes face during glioma rejection 

Unlike CD4
+
 cells, there is appreciably more knowledge surrounding the mechanisms by which 

CD8
+
 cytotoxic lymphocyte (CTL) populations affect glioma progression. Stimulated by MHC I

+
 

APCs, effector CD8
+
 T cells selectively target virus-infected, malfunctioning, and/or cancerous cells. 

CTL infiltrate is typically correlated with survival in GBM patients [25]. Consequently, ineffective 

tumor clearance arises when tumor cells express ligands, which directly inhibit CTL function. 

Programmed death ligand 1 (PD-L1) is a primary immunosuppressive molecule whose expression is 

correlated with glioma grade, and may be a prognostic marker of GBM survival [26]. However, it 

should be noted that PD-L1 expression among GBM subtypes is inconsistent [27]. Tumor cell 

expression of PD-L1 is a major mechanism by which the TME exerts immunosuppressive effects via 

ligation with PD-1 on CD8
+
 CTL effector immune cells. Success in phase I/II clinical trials for GBM 

patients using PD-1 checkpoint inhibitors Pembrolizumab and Nivolumab has demonstrated that  

PD-1 blockade may be a promising strategy to control glioma progression [28,29]. Animal models of 

GBM demonstrate that CTL effector function underlies PD-1/PDL-1 blockade responses [30]. 

However, efficacy of PD-1 blockade may be dependent on tumor PD-L1 expression levels, and the 

perquisite existence of PD-L1 subdued CTLs [31]. These caveats present interesting challenges when 

considering PD-1 blockade as a treatment strategy for GBM. As such, combinatorial treatments aim 

to more effectively stimulate, recruit and prime CTL populations. Supporting this theory, 

radiotherapy has shown to dramatically increase the efficacy of checkpoint inhibitor blockade in 

animal models of glioma, which is characterized by increased CTL infiltrate and diminished Treg 

populations [32,33]. This regimen can easily be applied to human subjects, as radiotherapy is already 

a component of standard of care for HGG.  

Other methods designed to improve CTL effector function utilize adoptive cell transfer (ACT). 

ACT elicits potent anti-tumor responses via exogenously priming or genetically altering effector 

CD8
+
 T cells to recognize tumor specific antigens. This allows CTLs to enter the brain parenchyma, 

identify target cells, clonally expand, and elicit INFγ-dependent, cytotoxic anti-tumorigenic 

responses [34]. ACT has been successful in targeting primary melanoma and melanoma brain 

metastases [35,36], however they are still in initial phases of being developed for malignant gliomas. 

Intracranial and systemic delivery of autologous T cells expressing genetically engineered chimeric 

antigen receptor (CAR) against the tumor antigen IL13Rα2 has recently been demonstrated to be a 

tolerable platform to treat patients with advanced GBM [37]. Following this study, a recent 

individual case has reported compete regression of recurrent, multifocal tumors following modified 

IL13Rα2 CAR T-cell therapy [38]. Other modalities, such as the identification of a CD8-independent 

mechanism of tumor regression in a murine model of glioma via Fc-OX40L may shed light on how 

discrete lymphoid populations contribute to tumor control [21]. 

Perhaps the most striking advancement in GBM immunotherapy is the application of dendritic 

cell (DC) vaccines. Native CTLs are often insufficient to induce GBM disease regression, by virtue 

of the immunosuppressive TME, and due to the majority of unrecognizable surfaces within the bulk 

tumor. Exogenously introducing professional antigen presenting cells (APCs) which have been pre-

educated to tumor antigen profiles can enhanced activation of the adaptive immune system, allowing 

for subsequent induction and recruitment of sufficient levels of host derived CTLs. This process may 

then tip the balance in favor of tumor rejection. Although it has been difficult to predict DC 
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vaccination efficacy, the platform has proven to be a promising as well as tolerable approach to 

increase CTL infiltrate and GBM patient responses [39,40].  

DC vaccines are faced with their own pitfalls including insufficient activation of the adaptive 

immune system, tumor heterogeneity, and limited migration of activated cells. An approach to 

circumvent the limited priming of the adaptive immune system is to combine DC vaccines with ACT. 

Tumor RNA-pulsed-DCs cocultured with autologous lymphocytes effectively expand tumor specific 

CTL populations, and in conjunction with DC vaccination, ACT significantly improves survival in 

animals with HGG [41]. Further protocols, which expand tumor specific CTLs, may be extended to 

humans. Tumor antigen-pulsed DCs from HLA-A*02-positive GBM patients can increase CD8
+
 T 

cell expansion and specificity ex vivo [42]. INFγ production is signature to functional CTL effector 

populations. CTL responses to tumor antigens can be measured by INFγ production as well as 

effector/target killing ratios, which could help identify potent CTL effector populations for ACT [42].  

Deriving DC vaccination efficacy has also been demonstrated by altering the antigenic profile 

DCs present to the adaptive immune system. Immunogenic cell death (ICD) of glioma cells induced 

by photodynamic therapy elicited a significantly stronger DC vaccination response over typical DC 

priming techniques in a prophylactic animal model of glioma [43]. ICD generates reactive oxygen 

species and damage associated molecular patterns (DAMPs), which drives DCs to confer robust 

protection and inhibition of glioma progression [43]. Furthermore, ICD based DC vaccination 

increased brain Th1 and CTL infiltrates, INFγ levels, and reduced Treg population ratios following 

glioma induction [43]. This approach was also found to be synergistic with traditional DC priming 

techniques, such as glioma cell freeze/thaw necrosis, as well as standard Temozolomide  

treatment [43]. Thus, new efforts should consider where tumor antigens are derived and by which 

methods DCs are primed before vaccination, so that complete activation and specificity of CTLs may 

be produced.  

Lack of DC activation and migration also presents an obstacle for DC vaccination. GBM 

patients receiving intracranial injection of recall antigen tetanus/diphtheria (Td) toxoid to 

precondition the vaccination site showed improved clinical outcomes following CMV-pp65 RNA 

pulsed DC vaccine treatment [44]. Patients displayed a robust increase in number of DCs draining 

into vaccine site lymph nodes. Further investigation identified a CD4
+
 T cell dependent mechanism, 

which mediated DC recall and Td precondition efficacy [44]. Prompting DC lymph node draining, 

cell maturation, and adaptive immune communication are all necessary to induce DC vaccine 

functionality.  

2.3. Glioma associated microglia and macrophages 

Glioma associated microglia and macrophages (GAMs) traffic to malignant lesions, where they 

become subverted by tumor cells to adopt a pro-tumorigenic phenotype. Although the paradigm of 

polarized “M1” or “M2” phenotypes has recently been challenged [45], it is widely accepted that 

GAMS are predominantly M2-like; and orchestrate tumor progression by secreting factors which 

promote chemoattraction, immune suppression, neoangiogenesis, tumor cell survival, and by 

influencing extracellular matrix (ECM) reorganization (reviewed in [6,46,47]). GAMs are considered 

to be an integral part of glioma pathology, and evidence suggests that modulation of this immune cell 

population could slow or cause regression of tumor growth. 
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HGG biopsies consistently show excessive GAM infiltrate [9,48,49], and GAM populations 

reportedly comprise up to 30% of tumor bulk [47]. GAM infiltrate has been correlated with poor 

prognosis, particularly those which express M2 markers [50–52]. In silico and transcriptional 

analyses of patient samples link excessive M2 GAM infiltrate to the aggressive mesenchymal GBM 

subtype, and suggest that alterations in the TME promote GAM recruitment and disease  

progression [53]. It has also been shown that GAMs from GBM patients express high levels of PDL1, 

and upregulate this immunosuppressive ligand in response to tumor secreted IL-10 [54]. By deeply 

infiltrating peritumoral and bulk lesions, pro-tumorigenic M2 GAMs largely exert negative influence 

over human glioma progression.  

Consistent with pro-tumorigenic M2 GAMs found in human patient samples, dynamic 

characterization of immune cell populations and transcriptomic analysis of GAMs in C6 rat gliomas 

definitively identify accumulation of immunosuppressive CD4
+
 and Treg populations, and high 

expression of M2 markers [55]. The mechanisms by which GAMs contribute to glioma progression 

extend from regulating inflammatory responses to neoangiogenesis. Modulating immunosuppressive 

TGFβ activity through exogenous miRNA delivery can abrogate M2 GAM populations and prolong 

animal survival [56]. The anti-tumorigenic response in animal models, elicited by modulating GAM 

populations, is accompanied by significant downregulation of M2 associated genes, including 

Arginase-1 (Arg1), Adrenomedullin (Adm) and CD206 [57–61]. Suppressing the M2 phenotype is 

paramount for controlling GAM pro-tumorgenic functionality, however, shifting this innate immune 

cell population towards an M1 phenotype may be an additional mechanism to stifle glioma 

progression. GAM specific SOCS3 KO cells upregulate the JAK/STAT signaling pathway in 

conjunction with increased pro-inflammatory markers TNFα and CXCL10 [57]. M1 shifted GAMs 

were shown to induce anti-tumorgenic responses by altering the immune landscape through 

increasing CD8
+
 populations while simultaneously decreasing Treg populations, although, only mild 

improvements in animal survival and tumor burden were observed [57]. This presents the notion that 

GAMs within the TME may be persuaded to shed their subverted pro-tumorigenic phenotype and 

adopt more anti-tumorigenic behaviors.  

Indeed, this idea has demonstrated effectiveness in the context of colony stimulating factor 1 

receptor (CSF1R) inhibition, where GAMs can become “re-educated” within the glioma 

microenvironment to adopt an anti-tumorigenic phenotype [58]. Further, CSF1R inhibition using the 

experimental compound PLX3397 has been shown to reduce disease progression and M2 gene 

signatures in preclinical models of glioma, and has enhanced efficacy over the broader spectrum 

tyrosine kinase inhibitors Vatalanib and Dovitinib [59]. PLX3397 is currently in active clinical trials 

for malignant solid tumors including recurrent GBM. More recently, CSF1R inhibition has shown to 

prevent resistance to anti-VEGF therapy in orthotopic model using ovarian cancer cells [62]. These 

studies highlight CSF1R as a major target by which GAM contributions to glioma progression can be 

controlled. 

Hypoxic tumor regions also induce potent angiogenic signaling in tumor associated 

macrophages (TAMs). This process regulates the expression of VEGF, contributes to vascular 

remodeling, and is reportedly dependent on the activity of hypoxia-inducible factor 1-alpha (Hif1α) [60,63]. 

Additionally, in vitro experiments demonstrate that M2 macrophages are responsible for inducing 

angiogenesis [64]. Thus, regulating GAM populations within the TME could provide a valid method 

to control immunosuppression and aberrant angiogenesis associated with HGG (Figure 1).  
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Figure 1. Contributions of immune cell populations in the maintenance, progression, and 

treatment options of glioma. Perivascular association of CD4
+
 Th and Treg correlates 

with glioma progression and recurrence. Treg populations are responsible for 

immunosuppressive effects within the TME and the periphery. CTLs are inhibited within 

the TME by relatively high Treg populations and PD-L1 ligation. M2 GAMs recruit 

immunosuppressive T Cells, express PD-L1, and contribute to the VEGF mediated 

angiogenesis feedback loop. Conversely, DC vaccines, adoptive cell therapy techniques, 

and GAM manipulation can modulate the immune landscape to exert anti-tumorigenic 

responses. 

GAMs are potent sources of secreted chemokines, which drive immunosuppressive TIL 

recruitment. Chemokines, such as CCL2, have been correlated with TIL levels as well as decreased 

GBM patient survival [65]. To investigate this possible connection, Chang et al. utilized in vitro and 

in vivo systems in the GL261 murine glioma model and reported that soluble factors produced by 

tumor cells induce Arg1
+ 

M2-like GAMs within the TME to secrete high levels of CCL2. CCL2 

production correlated with distinct CCR4
+
 Treg and CCR2

+ 
myeloid derived suppressor cell (MDSC) 

populations infiltrating the tumor, suggesting these molecular steps may be largely responsible for 

the recruitment of immunosuppressive cell types in glioma [65]. Other chemokines also play roles in 

local and peripheral immune recruitment during glioma progression. Activated microglia associated 

with NF1 low-grade optic gliomas were found to express significantly higher levels of CCL5 and 

CXCL13 RNA [66]. Antibody mediated CCL5 blockade reduced glioma growth and decreased 

microglia recruitment to tumor cells, indicating that this chemokine has local CNS effects and 

enhances the TME growth supporting functions [66]. 

Contribution to chemotaxis is not limited to GAMS; transplanted hematopoietic stem cell (HSC) 

prior to ACT in an animal model of glioma were shown to be necessary for lymphocyte recruitment 

and effective tumor rejection [41]. The chemoattracting properties of the HSCs, specifically the 

secretion of CLL3, was determined to be the governing factor for ACT efficacy [41], supporting the 

roles that immune signaling proteins have in glioma maintenance and progression. Thus, factors 

produced both by the tumor as well as immune cells of the TME contribute to the remodeling of the 
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immune landscape. Cell signaling profiles may have important implications when considering how 

patients will respond to therapies. 

Neuropilin 1 has recently been identified as a receptor involved in the activation of  

GAMs [67,68]. Our group has demonstrated that binding of the immunomodulatory tetrapeptide, 

tuftsin (TKPR), to Nrp1 in the setting of experimental autoimmune encephalomyelitis (EAE), a 

rodent model of Multiple Sclerosis, has the potential to polarize microglia to a more 

immunosuppressive phenotype via TGFβR1 and SMAD2/3 activation, thereby reducing the severity 

of the disease course [67]. This initial observation led to the examination of Neuropilin’s potential 

role in the immune regulation of glioma microenvironment. 

3. Neuropilin 1: an immunotherapeutic, anti-proliferative, and anti-angiogenic target for 

glioma 

Neuropilin 1 (Nrp1) is a cell surface receptor which was originally identified to contribute to 

signaling associated with axonal pathfinding and chemorepulsion via co-reception with one of its 

associated co-receptors, Plexin A1, in neurons [69]. Nrp1 has since been found by various groups to 

also have the potential to complex with other co-receptors including transforming growth factor β 

receptor I/II (TGFβRI/II), vascular endothelial growth factor receptor 2 (VEGFR2), hepatocyte 

growth factor receptor (cMET) and to amplify signaling pathways associated with these  

receptors [70–72]. 

 

Figure 2. Structure and Function of Neuropilin 1. Neuropilin 1 (Nrp1) is a cell surface 

receptor composed of an A1, A2, B1, B2, C, transmembrane (TM), and a C-terminal (C) 

domain. The C-terminal domain contains a SEA motif which binds PDZ adaptor proteins. 

The A1 and A2 domains are responsible for binding semaphorins while the B1 and B2 

domains have been characterized to bind VEGF, TGFβ, PlGF, and HGF. The C domain 

is an oligomerization domain, which allows Nrp1 to interact with its various co-receptors 

and amplify signaling via their associated ligands. 
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Nrp1 is composed of an A1, A2, B1, B2, oligomerization, transmembrane, and cytoplasmic tail 

domain. The cytoplasmic tail domain is quite short and is considered to have no potential to elicit 

downstream signaling on its own (Figure 2). However, in complex with an associated receptor via 

interactions with its oligomerization domain, Nrp1 has the potential to amplify the associated 

receptor’s signaling pathway [73]. The A1 and A2 domain are semaphorin binding domains while 

the B1 and B2 domains are responsible for binding VEGF, TGFβ, PIGF, and HGF [74]. Additionally, 

it has been shown that Nrp1 can complex with ABL1 in endothelial cells and carry out angiogenic 

signaling independently of its association with VEGFR2 or VEGF [75]. 

Nrp1’s expression is rather ubiquitous in terms of its tissue distribution in that it is expressed by 

endothelial cells, subsets of DCs, subsets of T cells, subsets of myeloid-derived cells, and  

microglia [74–76]. In mice and rats, the complete elimination of Nrp1 is lethal due to its crucial role 

in embryonic angiogenesis [77,78]. In a similar manner, mice which express Nrp1 with a point 

mutation in the B1 domain responsible for signaling via TGFβ, PlGF, HGF, and VEGF-A, survive to 

adulthood but exhibit abnormal vasculature [78]. These mice have been shown to have a resistance 

phenotype to the growth of xenograft tumors, attributed to poor neovascularization of the tumors [78].  

3.1. Functional roles of NRP1 in T cells  

Nrp1 is expressed by subsets of Tregs and plays a role in the suppression of adaptive  

immunity [76]. In skin allograft experiments in mice, it was seen that the survival of the tissue was 

partially dependent on the expression of Nrp1 by Treg populations. When this expression was lost, 

the allografts were rejected, hinting at an immunosuppressive role for Nrp1 in these cells [79]. NRP1 

may also function to suppress autoimmunity, as CD4
+
 loss of NRP1 in a mouse model of multiple 

sclerosis skews inflammatory populations to a TH-17 phenotype and reduces Treg populations, 

worsening autoimmune disease progression [80]. It has also been shown in a murine melanoma 

model that Nrp1 expressing Tregs are attracted to tumors via the tumor’s secretion of VEGF, which 

is abrogated by the inhibition of Nrp1 signaling. Delgoffe et al. have shown that the stability of 

Nrp1
+
 Tregs in the tumor microenvironment is dependent on their activation by the Nrp1 ligand, 

semaphorin 4A (Sema4A). Antibody-mediated blockade of sema4A or genetic deletion of Nrp1 from 

these Treg populations using FOXP3-Cre resulted in enhanced anti-tumoral immunity in melanoma 

mouse models [81]. The accumulation of Nrp1 expressing Tregs in tumors is correlated with 

increased immunosuppression and the suppression of effector T cell functions [82].  

Nrp1 expression in the majority of peripheral T cells is rather negligible in healthy people. 

However, in patients with certain advanced stage cancers, such as pancreatic adenocarcinoma and 

colorectal cancer, Nrp1 expressing T cells are significantly elevated in their blood and have been 

considered as potential biomarkers for their degree of immunosuppression in these patients [74]. 

Additionally, the expression of Nrp1 has also been consistently documented in naïve populations 

NKT cells in humans, but its expression is lost in mature populations of the cells [83]. 

3.2. Dendritic cells and innate immune cells 

Immature plasmacytoid dendritic cells (iDCs) are another PBMC that has consistently been 

identified to express high levels of Nrp1 in humans. These cells have the potential to preferentially 

interact with Nrp1-expressing Tregs via the homotypic interaction of Nrp1 on both cell types, leading 
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to the activation and expansion of these Treg populations, providing an explanation for how they can 

lead to increased immunosuppression. This “glue” between both cell types has also been postulated 

to contribute to greater sensitivity of these cells to antigen presentation [84]. Additionally, it has been 

shown that human Nrp1-expressing DCs have the potential to transfer Nrp1 to Tregs via trogocytosis 

along with VEGF and potentially other intracellular contents [85]. 

3.3. NRP1 functionality in monocytic populations 

Macrophage-specific depletion of Nrp1 in mice via the use of LysM-Cre does not result in any 

apparent abnormalities in development or in adulthood [86]. However, it has been shown that mice 

with Nrp1 depletion from LysM-Cre expressing microglia and macrophages are resistant to 

pathological angiogenesis in a model of retinal sclerosis [87]. These same mice with Nrp1-deficient 

LysM expressing cells were shown to have slower disease courses in orthotopic breast and pancreatic 

cancer models, attributed to poorer vascularization of the tumors and increased infiltration of tumors 

by anti-tumorigenic macrophages and T cells [86]. Our group has reported the expression of Nrp1 by 

glioma associated microglia and macrophages (GAMs) associated with glioma biopsies of various 

grades [68]. Additionally, Zhang et al. reported that subsets of highly aggressive gliomas are 

populated by GAMs with significantly elevated Nrp1 expression [88].  

As mentioned earlier, activation of Nrp1 by tuftsin during EAE resulted in polarization of 

microglia to a more M2-like phenotype via SMAD2/3 activation [67]. We have also observed that 

Nrp1 depletion from GAMs slows tumor progression and increases anti-tumoral immunity in a 

murine model of GBM [68]. The outcomes in these diseases models were partially attributable to the 

fact that Nrp1 complexes with TGFβRI/II to potentiate signaling via SMAD2/3, highlighting its 

potential as a therapeutic target in a similar fashion to the use of TGFβ inhibitors [89]. Additionally, 

using chimeric mouse models, we have shown that NRP1 ablation from either populations of 

peripheral monocytes or resident microglia can repress glioma progression, suggesting discriminant 

functionality of these cells [90]. 

3.4. Glioma-derived cancer cells 

Overexpression of Nrp1 by cancerous cells in glioma biopsies has been directly correlated with 

poorer clinical outcome and worse progression free survival (PFS) [91]. Various studies have 

implicated most of the soluble factors known to signal via Nrp1 to be associated with poorer clinical 

outcomes and direct promotion of glioma growth in animal studies. Chen et al. demonstrated that 

blocking Nrp1 using a monoclonal antibody inhibited the proliferation and migration of the human-

derived glioma cell line U87MG and slowed tumor progression in vivo when the cell line was 

xenografted in mice [92]. Additionally, the U87MG cell line has a highly invasive phenotype relative 

to glioma cell lines such as the LN18, T98, and U118 human glioma cell lines. In vitro analysis of 

the secretome of the U87MG cell line showed significant elevations in the amount of Nrp1 secreted 

by the cells relative to the less invasive lines [93] In the U373MG human glioma cell line, it was 

shown that siRNA-mediated knockdown of Nrp1 reduced proliferation and increased apoptosis of 

the cells, associated with reductions in Bcl-2 expression and ERK, JNK, and MAPK activation [94]. 

Additionally, Nasarre et al. showed that targeting the transmembrane domain of Nrp1 via a small 
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peptide inhibitor has the potential to slow glioma progression due to reductions in angiogenesis and 

proliferation in pre-clinical human xenograft and rat models [95].  

3.5. NRP1 signaling in glioma maintenance and progression  

Semaphorin 3A (sema3A) has been implicated to promote the infiltration and spread of glioma-

derived cells in an autocrine fashion and is overexpressed in a subset of gliomas in patients [96]. 

Sema3A is secreted by glioma-derived cells in vesicles, which have been shown to directly increase 

vascular permeability by interacting with Nrp1 on endothelial cells in xenograft mouse models. 

Blocking signaling via either sema3A or Nrp1 was shown to abrogate this. Additionally, these 

vesicles can be detected in the blood of patients, which may also hold some prognostic value [97]. 

The expression of the receptor for sema3A, PlexinA1, has been correlated with worse survival 

outcomes in patients with GBM. Additionally, in a murine xenograft model, it has been shown that a 

small peptide inhibitor that disrupts the oligomerization of Nrp1 and PlexinA1 reduces GBM 

proliferative potential and tumor angiogenesis in vivo [98]. This peptide inhibitor, interestingly, 

blocked VEGF-dependent angiogenesis in vitro as well, possibly by also blocking the 

oligomerization of Nrp1 with VEGFR2. Additionally, Casazza et al. have shown that Sema3A acts a 

chemoattractant for Nrp1-PlexinA1 expressing TAMs to infiltrate tumors where they downregulate 

Nrp1 expression once becoming entrapped in more hypoxic environments. Deletion of Nrp1 or 

mutating the sema3A-binding A1 domain of Nrp1 from TAMs was shown to prevent this [86]. As 

mentioned above, Nrp1 also binds and signal via Sema4A, playing an important role in the 

maintenance of immunosuppressive Treg populations. 

VEGF-A and VEGF-B bind Nrp1 in complex to VEGFR2 and amplify pro-angiogenic signaling 

via the activation of AKT and p38 MAPK [99]. Glioma stem cells have also been shown to secrete 

VEGF-A, which not only serves to promote angiogenesis, but also enhances the proliferative index 

of glioma cells in an autocrine fashion via VEGFR2 in complex to Nrp1 [100]. VEGF-A 

overexpression is well documented in almost all cases of HGG and has received a great deal of 

attention as a therapeutic target in recent years. Phase III clinical trials were performed in 2014, 

evaluating concomitant Avastin (bevacizumab, an anti-VEGF antibody) with TMZ and RT as first 

line defense for newly diagnosed glioma. While increasing PFS significantly, the trials failed to meet 

pre-defined criteria for success and failed to show any increase in overall survival time (OST) for 

patients [101]. However, individual patients responded quite well, showing that some may serve to 

benefit from the adjuvant therapy. Bevacizumab is still under evaluation as a concomitant therapy in 

various clinical trials for HGG. 

Nrp1 has been shown to bind TGFβ and LAP-TGFβ and amplify signaling associated with these 

ligands in cancer cells via co-reception with TGFβRI/II [89]. TGFβI and II overexpression, 

especially that of isoform II, has been correlated with poorer clinical outcomes in subsets of  

glioma [102,103]. Autocrine signaling within cancer cells serves to enhance epithelial to 

mesenchymal transition (EMT) and increases the invasive phenotype of tumor cells. TGFβ 

potentiates angiogenesis and is an immunosuppressive cytokine, which polarizes Tregs and attracts 

and polarizes immunosuppressive GAMs [104,105]. It can downregulate perforin, granzyme A/B, 

IFNγ, and FasL expression by CTLs, which are all mediators of CTL-mediated cytotoxicity [106]. 

Downregulation of the expression of TGFβRII in human xenograft-derived gliomas has been shown 

to reduce their tumorigenicity [107]. Inhibition of TGFβ-dependent pathways using TGFβRII 
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inhibitors in GAMs has been shown to prevent their immunosuppressive polarization [108]. Blocking 

TGFβ-mediated signaling using systemically administered neutralizing antibodies was efficacious in 

slowing glioma progression in immunocompetent mice, partially by preventing the 

immunosuppressive polarization of GAMs [109]. For the treatment of glioma, clinical trials are 

ongoing, evaluating the TGFβRI small molecule inhibitor, LY2157299, for efficacy in combination 

with the standard of care. The drug is generally well tolerated and has shown efficacy in about 20% 

of patients [110]. 

Placental growth factor (PlGF) is an important angiogenic factor, which has been shown to bind 

the B1 domain of Nrp1 and act as a chemo-attractant for GAMs [111,112]. Clinical trials have been 

conducted using a monoclonal antibody against PIGF for recurrent glioma. The drug has shown 

acceptable safety profiles, but, unfortunately, the antibody was not shown to have any additive 

benefit for patients over bevacizumab alone [113]. In medulloblastoma, however, PlGF and Nrp1 are 

both highly expressed. Inhibition of signaling via either has been shown to slow tumor progression in 

murine xenograft models [114]. 

Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a ligand which binds Nrp1 in its complex 

to cMET and activates downstream signaling which promotes cell proliferation, angiogenesis, and 

survival [99]. The overexpression of HGF by glioma cells has been correlated with increased tumor 

microvascularity, increased tumor grade, and worse prognosis for patients. Downregulation of HGF 

in human-derived glioma cells was also shown to reduce their proliferative and migratory  

capacity [115]. Furthermore, Hu et al. demonstrated that Nrp1 expression by a subset of human 

glioma-derived xenografts potentiated their growth in an autocrine fashion via the amplification of 

pathways downstream of cMET and HGF [71]. A phase II clinical trial was conducted with 

rilotumumab, a HGF-blocking antibody, in patients with recurrent GBM, but the antibody showed 

little efficacy as a monotherapy [116]. However, cabozantinib, a small molecule inhibitor of both 

cMET and VEGFR2, underwent phase II clinical evaluation in patients with progressive and 

recurrent GBM, and was reported to result in modest improvements in PFS [117]. The drug is 

currently under evaluation in combination with standard of care RT and TMZ for newly diagnosed 

GBM [118]. The HGF-cMET signaling axis is a promising therapeutic target, but it would appear 

that targeting it in combination to other pathways is preferable. As Nrp1, serves to amplify cMET 

signaling, a similar rationale for targeting it in HGG is well substantiated. 

3.6. Nrp1 as a PET tracer and for drug delivery 

As Nrp1 is widely expressed in gliomas, the use of PET tracers that bind Nrp1 has been 

investigated in murine models. Using F-18 labelled peptides, Wu et al. were able to show that 

peptides targeting Nrp1 and integrin αvβ3 preferentially bound to glioma tissue [119]. This method 

may hold promise in monitoring glioma progression in patients. Additionally, more effective drug 

trafficking to gliomas has been proposed by packaging chemotherapeutics in liposomes coated by 

Nrp1-binding peptides [120–123]. In a similar fashion, targeting Nrp1 in order to deliver gadolinium 

oxide for MRI and chlorin for interstitial photodynamic therapy has been explored in rat xenograft 

studies. The nanoparticles were able to preferentially localize to peripheral tumoral vasculature and 

may hold some promise for translation to the clinic [124]. 
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4. Conclusions 

Identifying the contributions of immune cell populations within the TME will further the 

knowledge base by which we treat and develop therapies for GBM. The innate and adaptive immune 

systems are complex, multifaceted schemes. Providing protection from foreign pathogens, 

materializing sustained immunity, and regulating self/non-self-responses are immense tasks. 

Unfortunately, in scenarios of malignancy, the immune system often fails to protect the host. 

Modulating lymphocyte inflammatory responses may prove to be a method by which overall 

adaptive immunity can be coerced into rejection of bulk tumors. Additionally, with the advancements 

of ACT and DC vaccines, tools now exist to selectively activate effector cells of the adaptive 

immune system. Innate immune cells such as microglia and macrophages are now also recognized as 

pertinent players to glioma progression, and perhaps by invoking their phagocytic and  

pro-inflammatory functions, a greater foothold can be gained in controlling HGG disease (Figure 1). 

New targets which can modulate subsets, or entire arms, of the immune system need to be identified 

so that clinicians can combat GBM.  

 

Figure 3. Roles of Neuropilin 1 in the Glioma Microenvironment. Neuropilin 1 (Nrp1) is 

expressed by various cell types which infiltrate the glioma microenvironment, including 

most glioma-derived cells (GBM cells), microglia, infiltrating BMDMs, endothelial cells, 

certain Treg subtypes, and certain dendritic cell subtypes (iDCs). GBM cells produce 

VEGF, TGFβ, and HGF/SF which increase the malignancy of the tumors by enhancing 

the proliferative and invasive potential of the GBM cells, mediated via Nrp1 and its 

associated co-receptors. Sema3A in the glioma microenvironment also causes microglial 

and BMDM migration into the tumor and enhances invasion by the GBM cells. VEGF 

produced by the tumors also serves to enhance angiogenesis and increase microglial and 

BMDM migration into the tumor. Microglia and BMDMs are also responsible for the 

production of VEGF and TGFβ. TGFβ can polarize microglia, BMDMs, Tregs, and iDCs 

to more immunosuppressive, tumor supporting phenotypes. Homotypic interactions 

between Nrp1 on iDCs and Tregs also enhances their contact times and allows for stronger 

stimulation of these immunosuppressive Treg subsets. 
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Directly targeting Nrp1 in the clinic has only been approached, thus far, for the treatment of 

advanced solid tumors via the use of a humanized monoclonal antibody, MNRP1685A, which blocks 

the binding of VEGF-A, VEGF-B, and PlGF-2 to the B1 domain of Nrp1. The antibody was 

hypothesized to benefit patients through a mechanism similar to bevacizumab, but was unfortunately 

poorly tolerated and associated with clinically significant levels of proteinuria in patients during 

phase I evaluation [125].  

The efficacy and tolerability of other Nrp1-targeting drugs should be considered, and since 

Nrp1 plays so many roles in the glioma microenvironment (Figure 3), pursuing research in the 

development and implementation of Nrp1 antagonists in glioma therapy seems fruitful. 
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