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Abstract: Efficient elimination of transformed and virus-infected cells by natural killer (NK) cells 

mainly depends on the recognition of “induced self” ligands by activating receptors, including 

NKG2D and DNAM1. The surface expression of these ligands in stressed or diseased cells results 

from the integration of transcriptional, post-transcriptional and post-translational mechanisms. 

Among post-translational mechanisms, recent findings indicate that ubiquitin and ubiquitin-like 

modifications, namely ubiquitination and SUMOylation, contribute to a very rapid negative 

regulation of NKG2D and DNAM1 ligand surface expression promoting either ligand degradation or 

ligand intracellular retention. On the other hand, accumulating evidences demonstrate that NKG2D 

receptor expression is down-regulated by ubiquitin-dependent endocytosis upon ligand stimulation. 

In this scenario, the overall consequence of the post-translational modifications of activating NK cell 

receptors and of their ligands on target cells is to impair effector cell-mediated recognition of 

damaged cells. Our review summarizes recent findings on the role of post-translational modifications 

in the modulation of target cell susceptibility to NK cell-mediated killing. 
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1. Introduction  

Natural killer (NK) cells are innate lymphocytes rapidly activated during early stages of viral 

infections and tumor transformation [1,2]. Their cytolytic function against infected and transformed 

cells, as well as their ability to secrete cytokines and chemokines, is finely controlled by the 

integration of signals derived from inhibitory receptors which recognize major histocompatibility 

complex (MHC) class I molecules on healthy cells, and activating receptors, some ligands of which 

have been only partially characterized [3]. 

Among activating receptors, natural-killer receptor group 2, member D (NKG2D) and DNAX 

accessory molecule 1 (DNAM1/CD226) play a crucial role in “induced self” recognition in that their 

ligands are self-molecules up-regulated upon cellular stress, microbial infection and malignant 

transformation [4,5,6]. 

2. NKG2D and DNAM1 Activating Receptors and Their Ligands 

NKG2D is a potent activating C-type lectin receptor expressed on all NK cells but also on 

CD8+ αβ T cells, γδ T cells, and activated CD4+ αβ T cells [7,8,9].  

NKG2D-deficient mice show impaired surveillance towards spontaneous malignancies [10], 

and enhanced susceptibility to cytomegalovirus (CMV) infection [11], thus supporting a prominent 

role for NKG2D in NK cell-mediated immune responses.  

Human NKG2D forms a hexameric complex with the transmembrane adaptor DNAX activating 

protein 10 (DAP10), which is required for signal propagation 12. Ligand engagement promotes the 

phosphorylation of a tyrosine-based motif (YINM) in DAP10 intracellular domain that allows the 

recruitment of growth factor receptor-bound protein 2 (Grb2)/Vav1 complex and the activation of 

phosphatidyl-inositol-3-kinase (PI3K) 12,13. Together, these signals are responsible for the 

consequent activation of phospholipase C gamma ( PLCγ) 2, leading to cytotoxic granule secretion 

and cytokine synthesis 14. A shorter NKG2D isoform that associates with either DAP10 or DAP12 

adapters is expressed on activated murine NK cells and can initiate a signalling cascade involving the 

Syk/LAT pathway thanks to the immune tyrosine-based activation motif (ITAM) present in DAP12 

cytoplasmic tail 15,16. 

Remarkably, NKG2D can recognize multiple ligands that are all homologous to MHC class I 

molecules. NKG2D binds to two families of polymorphic ligands in humans: MHC class I related 

proteins (MIC) A/B and six UL16 binding proteins (ULBP1-6). MICA and MICB contain α1, α2 and 

α3 domains similar to MHC molecules and are transmembrane proteins, even though allelic variants 

of MICA exist that are linked to plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. 

ULBP proteins possess only α1 and α2 domains and are expressed either as transmembrane (ULBP 4 

and 6) or GPI-linked (ULPB1-3 and 5) surface molecules [4,9,17].  

Three subfamilies of ligands are known in mice (Rae-1α-ε, MULT1, and H60a–c). All are 

orthologous to the human ULPB family, and can be expressed as transmembrane (MULT1) or GPI-

linked (Rae-1 and some H60 ligands) proteins [4,9,17]. 

DNAM1 is an immunoglobulin receptor expressed on the majority of NK cells as well as on 

monocytes, T cells and subsets of B cells [8,18]. It is an adhesion molecule with a clear role in 
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monocyte transendothelial migration [19] but it also contributes to tumor surveillance [20,21] and 

control of viral infections [22], as demonstrated in DNAM1-deficient mice.  

DNAM1-mediated signalling cascade remains poorly defined. Ligand binding promotes the 

phosphorylation of a cytoplasmic serine by the protein kinase C (PKC) [23]. This phosphorylation 

allows the association of DNAM1 with the integrin LFA1 that is required for DNAM1-mediated 

signalling. Indeed, LFA1 crosslinking triggers the phosphorylation of a tyrosine in the DNAM1 

cytoplasmic tail that, in turn, propagates intracellular signals required for cytotoxicity and cytokine 

production [24]. 

Both in humans and in mice DNAM1 interacts with the Nectin and Nectin-like family members 

Nectin2/CD112 and Nectin-like5/CD155 also known as poliovirus receptor (PVR) [25,26,27], even 

though murine DNAM1 binding to Nectin2 is still debated [28]. Nectin2 and PVR share a structure 

characterized by the presence of three immunoglobulin domains, while they differ in the cytoplasmic 

domain [27]. Like other members of the Nectin/Nectin-like family, Nectin2 and PVR are involved in 

cell-cell adhesion through the interaction with other members of the same family. Moreover, Nectin2 

is also able to establish homophilic interactions.  

2.1. NKG2D and DNAM1 ligands: molecular target for NK cell-mediated recognition  

NKG2D ligands (NKG2DL) are almost absent in healthy cells but are found on the membrane 

of several tumors of epithelial and non-epithelial origin, including melanoma, leukemia, lymphoma, 

glioma, and hepatocellular carcinoma where their expression contributes to render tumor cells 

susceptible to NK cell-mediated killing [29–32]. Moreover, epithelial tumors that express MICA and 

MICB, including carcinomas of the lung, breast, kidney, ovary, prostate, and colon, are efficiently 

recognized by infiltrating γδ T cells [33].  

Differently from NKG2DLs, DNAM1 ligands (DNAM1L) are widely expressed on normal cells, 

including neuronal, epithelial, endothelial and fibroblastic cells [27]. However, up-regulation of PVR 

and/or Nectin2 on solid and haematological cancers activates NK cell killing of these tumors in a 

DNAM1-dependent manner [34–38]. Notably, DNAM1-dependent cytotoxicity is particularly 

relevant against tumor cells that do not express NKG2DLs [39]. 

NKG2D and DNAM1 ligands play also a crucial role in infected cell elimination. They are 

rapidly induced on infected cells to alert the immune system. However, virus-encoded proteins often 

inhibit their cell surface expression in order to evade NKG2D and DNAM1-mediated NK cell 

recognition [5,18,40]. Both NKG2D ligands of the MIC and ULBP families are up-regulated on 

HCMV-infected fibroblasts [41–44], thus increasing the co-stimulation of CD8+ T cells by NKG2D 

and inducing NK cell activation. Concomitantly, DNAM1 participates to the NK cell-mediated 

killing of HCMV-infected cells since PVR is up-regulated upon infection [45]. Similarly to HCMV, 

HIV infection induces the expression of MICA, ULBP1-2 and PVR on virus-infected T cells 

rendering these cells susceptible to NK cell cytotoxicity [46,47,48]. ULBP1 and Nectin2 are up-

regulated on EBV-infected B cells and activate NK cell cytotoxicity against these cells [49], while 

the expression of MICB on human macrophages upon infection with Influenza A or Sendai virus 

induces IFN-γ production in NK cells [50]. 
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3. Mechanisms Regulating NKG2D and DNAM1 Ligand Expression on Stressed Cells 

Expression of both NKG2D and DNAM-1 ligands is induced by different stress pathways 

associated with hyper-proliferation, malignant transformation and virus infection [4,5,6]. Notably, 

ligand expression can be the result of transcriptional, post-transcriptional and post-translational 

levels of regulation depending on the type of stress and cell context (Figure 1). Therefore, 

unravelling these different layers of regulation may allow the development of new therapeutic 

approaches aimed at improving NK cell-mediated immune surveillance. 

 

Figure 1. Regulation of NKG2D and DNAM1 ligand expression in response to stress 

stimuli. Mechanisms of post-transcriptional regulation include inhibition by microRNAs; 

mechanisms of post-translational regulations include metalloproteinase-induced shedding 

from the cell surface, release inside exosomes, and intracellular retention by ubiquitin or 

SUMO modification. (Figure modified from [6]). 

Until now, much efforts have been mainly concentrated in the identification of molecular 

pathways involved in the transcriptional regulation of NK cell activating ligand expression in 

response to different types of stress. One of the best-characterized pathways is the DNA damage 

response (DDR), a signalling pathway involved in the maintenance of DNA integrity. In fact, DDR is 

activated in response to DNA lesions produced during replication or induced by stress-related stimuli 

including virus infection and genotoxic agents [5]. This pathway is implicated in the induction of 

MICA and PVR in healthy proliferating T cells [51,52] and in the up-regulation of MICA, ULBP2 

and PVR on CD4+ T lymphocytes upon HIV infection [53,54,55]. Several lines of evidence 

demonstrated that up-regulation of both NKG2D and DNAM1 ligands is mainly driven by the DDR 

pathway also in cancer cells, further supporting a role for this pathway in alerting immune system 

against damaged cells [56–59]. 
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In addition to DDR pathway, stressful stimuli including the heat shock pathway, the oxidative 

stress pathway and the endoplasmic reticulum stress response, as well as stimulation through Toll-

like receptor (TLR) are responsible for NKG2D ligand and PVR transcriptional  

up-regulation [4,60,61]. In some cases, as during HCMV infection, viral proteins can directly be 

responsible for transcriptional regulation of these ligands [62]. Among transcription factors involved 

in NKG2D and DNAM1 ligand regulation, a role for NF-ΚB, AP-1, and E2F has been  

documented [51,61,63–66]. 

As formally demonstrated in the case of NKG2DLs, ligand transcript levels can also be 

regulated at mRNA level by different endogenous or virus-encoded microRNA [67–70].  

Different post-translational mechanisms, including the release of soluble ligands and the 

Ubiquitin (Ub) and Ub-like modifications, are also implicated in the regulation of both NKG2D and 

DNAM1 ligand expression, and will be discussed further below. 

3.1. Regulation of NK cell activating ligands by post-translational mechanisms 

The best characterized post-translational mechanism is the production of NKG2DL soluble 

forms by tumor cells either by metalloproteinase-mediated shedding [31,71,72,73] or by their release 

on the membrane of exosomes [74,75], nanosized vesicles involved in intracellular  

communications (Figure 1). Regarding DNAM1Ls, soluble PVR forms, generated by alternative 

mRNA splicing, have been detected in sera of tumor patients [76]. However, the mechanism through 

which these soluble forms increase during transformation is largely unknown. 

Post-translational mechanisms that repress surface expression of NKG2D and DNAM1 ligands 

have also been reported upon viral infection. Human CMV-encoded proteins UL16 and UL142 can 

cause NKG2DL intracellular retention [43,77,78], while UL141 promotes intracellular retention of 

an immature form of PVR [45] and the constitutive degradation of Nectin2 [79]. Similarly, HIV-Nef 

induces intracellular retention of PVR [48] and NKG2DLs of ULBP family [46]. Upon HSV-1 

infection, MICA is down-modulated from the cell surface without any effect on total protein  

level [80], suggesting ligand intracellular retention.  

These evidences support the conclusion that post-translational regulation of NKG2D and 

DNAM1 ligands may represent a general viral strategy to evade NK cell recognition. 

Additional examples of post-translational regulation of NK cell activating ligands comprise the 

down-regulation of PVR surface expression and protein degradation in hepatocellular carcinoma 

upon activation of unfolded protein response (UPR) [81]. 

Regarding the molecular mechanisms implicated, Ub and small Ub-like modifier (SUMO) 

pathways appears to be deregulated in damaged cells, including virus infected and transformed  

cells [82,83,84]. In particular, the enzymes involved in ubiquitination and SUMOylation are often 

up-regulated in tumor cells, and several viruses exploit these pathways for their replication.  

Interestingly, recent evidences reveal a previously unknown role for Ub and Ub-like modifiers 

as regulators of NKG2D and DNAM1 ligand expression, and provide novel insights in molecular 

mechanisms underlying expression of innate immune activating ligands on tumor cells [85–88]. 
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3.2. NKG2D and DNAM1 ligand modification by ubiquitin and ubiquitin-like modifiers  

Protein ubiquitination is a dynamic post-translational modification whereby the 76-amino acid 

protein Ub is covalently attached to a protein substrate. It is involved in nearly all aspects of 

eukaryotic biology due to the large number of proteins that may be subjected to this  

modification [89,90]. Ubiquitination, is catalyzed by the consecutive action of three classes of 

enzymes: the Ub-activating enzyme (E1), the Ub-conjugating enzyme (E2) and the Ub protein  

ligase (E3) that is responsible for substrate specificity. Once ubiquitinated, the substrate may 

undergo proteasome-dependent degradation as well as non-degradative fate, depending on the type 

of ubiquitin modification (Figure 2A). Indeed, Ub possesses seven lysine (K) residues that can be 

ubiquitinated, thus leading to the formation of different kind of Ub chains. In particular, whether the 

addition of K48-linked Ub chains signals for proteasomal degradation, modification by single Ub 

moieties (mono- and multi-ubiquitination) or by K63-linked Ub chains regulates endocytosis and 

trafficking of membrane proteins [89,91].  

The first evidence of an NK cell activating ligand modified by ubiquitination came from studies 

on Kaposi’s sarcoma-associated herpesvirus. The viral protein K5, endowed with E3 Ub ligase 

activity, has been shown to be responsible for MICA ubiquitination on cytoplasmic lysines [85], thus 

preventing ligand surface expression. However, MICA does not undergo Ub-dependent degradation 

but instead it is retained in intracellular compartments (Figure 3, left). Interestingly, MICB was 

shown to be subjected to the same mechanism of down-regulation, while a common MICA allele that 

lack the cytoplasmic tail (MICA*008) resulted resistant to K5-mediated down-regulation [85].  

Murine NKG2D ligand MULT-1 has been shown to be constitutively ubiquitinated by the 

cellular orthologues of the Kaposi herpes virus-encoded Ub ligase on their cytoplasmic lysine 

residues [86,87]. Notably, MULT1 ubiquitination is responsible for ligand lysosomal degradation 

under normal conditions, and it is reversed in response to UV radiation and heat shock but not by 

other stressful stimuli [86], suggesting that only specific stressors impact on post-translational ligand 

modifications. No evidences are actually available in regard to DNAM1L ubiquitination.  

Protein SUMOylation is a modification whereby the Ub-like modifier SUMO is covalently 

attached to the lysine residues of acceptor proteins. In analogy with Ub modification, SUMOylation 

occurs in three sequential steps catalyzed by different enzymes: a single E1, a single E2 and a small 

number of E3 enzymes [92,93]. Upon SUMOylation, target proteins do not necessarily undergo a 

degradative fate but instead they are subjected to conformational changes that modify their 

enzymatic activity or their ability to interact with other macromolecules (Figure 2B). 

SUMO conjugation to protein substrates is frequently up-regulated in many tumors including 

breast and lung cancers, glioblastoma and multiple myeloma [92,93]. 

We have recently reported that this pathway impacts on activating ligand expression, thus 

impairing tumor cell recognition by NK cells [88]. Focusing on DNAM1Ls, we demonstrated that 

the SUMO pathway controls PVR, but not Nectin2 surface expression. PVR is directly subjected to 

SUMOylation, and this modification prevents its surface expression impairing DNAM1-mediated 

NK cell recognition [88] (Figure 3, left). 
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Figure 2. Comparison of ubiquitin and SUMO conjugation pathways. (A) The ubiquitin 

pathway. Attachment of ubiquitin (Ub) to a target protein requires three major enzymatic 

steps. In the first ATP-dependent step, Ub becomes covalently linked to the ubiquitin-

activating enzyme E1 with a thiolester link. The activated Ub is then transferred to 

ubiquitin-conjugating enzyme (E2), which serves as a carrier protein. Ubiquitin  

ligase (E3) catalyzes the covalent attachment of Ub to the target substrate by the 

formation of isopeptide bonds. One or several Ub molecules can be conjugated to a 

substrate, determining its cellular fate. (B) The SUMO pathway. The conjugation 

pathway to SUMO is similar to the ubiquitin pathway, but it uses different E1 and E2 

enzymes. The second step consists of a thiolester link that conjugates SUMO to Ubc9. 

This enzyme seems to have some intrinsic ligase activity for SUMO but the E3 protein 

might serve to increase the affinity between Ubc9 and the substrate allowing 

SUMOylation to occur at a maximal rate. SUMOylation may affect enzymatic activity, 

subcellular localization, and the ability to interact with other proteins. (Figure modified 

from Gasparrini et al., Int Arch Allergy Immunol 156: 16–26; 2011). 

Intracellular retention of immature forms of MICA in endoplasmic reticulum followed by 

constitutive degradation has been observed in melanoma cells, and renders these cells able to evade 

NKG2D-mediated surveillance [94]. Similar results were obtained for MICB in a panel of tumor cell 

lines: this ligand is continuously internalized from plasma membrane and retained in intracellular 

compartments without being degraded [95]. Whether Ub or Ub-like modifications are directly 

implicated in MICA/B intracellular retention has not been investigated so far. 
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More recently, a similar behavior has been observed for ULBP1 that is continuously 

internalized and degraded in proteasome [96], suggesting that Ub or Ub-like modifications also 

affect GPI-linked molecules. 

Altogether, these findings provide novel insights into the molecular mechanisms underlying 

NKG2D and DNAM1 ligand expression, and confer a role to post-translational modifications in 

preventing NK cell-mediated recognition and killing.  

 

Figure 3. Model depicting how ubiquitin and/or SUMO modifiers prevent activating 

ligand surface expression on target cell (left), and provide a signal for internalization and 

trafficking of activating receptors on NK cell (right). 

4. Regulation of NK Cell Activating Receptor Expression by Ubiquitination 

The efficacy of damaged cell elimination also depends on the presence and relative abundances 

of activating receptors on the surface of NK cells.  

In the case of NKG2D, its surface expression can be modulated under different conditions. For 

examples, several cytokines, i.e. interleukin-2 (IL-2), IL-7, IL-12 and IL-15, increase 

NKG2D/DAP10 transcripts and receptor surface expression, whereas others (i.e. TGF-β and IL-21) 

decrease NKG2D surface expression and promote a selective impairment of NKG2D-mediated 

cytotoxicity [97–104]. 

It is now well recognized that persistent exposure to NKG2D ligands also results in a decrease 

of NKG2D surface expression promoting receptor down-modulation and the consequent impairment 

of NK cell-mediated effector functions [72,105–111]. 

The main mechanism responsible for NKG2D down-modulation is ligand-mediated  

endocytosis [112]. Both human and murine NKG2D receptors are indeed removed from the plasma 

membrane by clathrin-dependent internalization [107,110], and then rapidly traffics through 

endosomal compartment till lysosomes where both NKG2D and its associated adaptor, DAP10, are 

degraded [105,111,113,114].  
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Recent findings indicate that ligand-dependent human NKG2D endocytosis requires DAP10 

ubiquitination that provides a signal for both receptor internalization from plasma membrane and its 

sorting through the endocytic compartments to lysosomes for degradation [114] (Figure 3, right). 

Indeed, a mutated form of DAP10 that does not undergo ubiquitination strongly impairs both 

NKG2D/DAP10 internalization and lysosomal degradation [114]. Although not formally 

demonstrated in mouse, it is likely that the Ub pathway is also implicated in murine NKG2D 

endocytosis. Indeed, NKG2D/DAP10 receptor complex degradation was observed in a murine 

transgenic model overexpressing a DAP10-Ub fusion molecule [115]. 

Notably, some NKG2DLs possess intrinsic diverse ability to induce NKG2D endocytosis. In 

particular, MICA and ULBP2 differ in their capability to phosphorylate the Ub ligase c-Cbl and to 

activate the Ub pathway, being MICA the most efficient ligand [111]. Whether c-Cbl is the Ub ligase 

responsible for DAP10 ubiquitination is still unknown; however, these results suggest that the degree 

of NKG2D/DAP10 ubiquitination dictates the extent of receptor internalization and degradation. 

Interestingly, Ub modification has been also previously demonstrated for CD16, the low affinity 

receptor for IgG responsible for NK cell-mediated antibody-dependent cellular  

cytotoxicity (ADCC) [116]. Ubiquitination of CD16 ζ subunit and the associated tyrosine kinases 

promotes endocytosis of engaged receptor complexes and render NK cells impaired in their ability to 

further perform ADCC [116–119].  

Regarding DNAM1, less is known about the effect of cytokines on receptor surface expression. 

As in the case of NKG2D, IL-15 up-regulates DNAM1 mRNA level whereas TGF-β has the 

opposite effect [120]. Upon ligand binding, down-modulation of DNAM1 surface expression was 

observed on NK cells from patients affected by different tumors, including multiple myeloma, acute 

myeloid leukemia and ovarian carcinoma, as compared to healthy donors [35,36,121]. Notably, 

DNAM1 down-modulation leads to an impaired NK cell mediated natural cytotoxicity. The 

molecular mechanisms responsible for DNAM1 down-modulation have not been clarified yet. In 

particular, whether DNAM1 may undergo ubiquitination has not been investigated so far. 

Altogether these results demonstrate that the Ub pathway may also negatively regulate the 

functional capability of NK cells by a direct covalent modification and down-regulation of their 

activating receptors. 

5. Conclusion 

Recent findings support a role for Ub and Ub-like pathways in the regulation of NKG2D and 

DNAM1 ligands. Those ligands undergo ubiquitination or SUMOylation, and are then degraded or 

subjected to intracellular retention with the consequent reduction of their surface expression. Of note, 

compared to transcriptional regulation this mechanism offer the opportunity for a much more rapid 

kind of regulation, since the ligands have been already transduced. 

In healthy cells, these modifications may act to prevent ligand membrane expression and a 

potential dangerous NK cell recognition, while in viral infected or transformed cells may represent a 

mechanism to evade NK cell surveillance. 
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Upon contact with ligand-bearing targets, the Ub pathway may also contribute to down-regulate 

the surface expression of engaged activating NK cell receptors, as formally demonstrated for CD16 

and NKG2D. 

Altogether, these findings support the conclusion that post-translational regulation of NK cell 

activating receptors and their ligands may rapidly regulate the strength of NK cell-target interaction, 

and impair the ability of NK cells to eliminate dangerous cells.  
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