Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

1 Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA;
2 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA;
3 Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA;
4 Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA;
5 JEOL USA, Inc., Peabody, Massachusetts, USA;
6 Direct Electron, LP, San Diego, California, USA;
7 E. A. Fischione Instruments, Inc., Export, Pennsylvania, USA;
8 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA

Special Issues: Structural analysis of macromolecules using Cryo electron microscopy

A unique biological safety level (BSL)-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB) to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector) in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2) decontamination cycles.
  Article Metrics

Keywords cryo-electron microscopy; single particle imaging; biological safety containment

Citation: Michael B. Sherman, Juan Trujillo, Benjamin E. Bammes, Liang Jin, Matthias W. Stumpf, Scott C. Weaver. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment. AIMS Biophysics, 2015, 2(2): 153-162. doi: 10.3934/biophy.2015.2.153


  • 1. Sherman MB, Freiberg AN, Razmus D, et al. (2010) A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB. Appl Biosaf 15: 130-136.
  • 2. Sherman MB, Trujillo J, Leahy I, et al. (2013) Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB. J Struct Biol 181: 223-233.    
  • 3. Sherman MB, Weaver SC (2010) Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy. J Virol 84: 9775-9782.    
  • 4. Wang Z, Hryc CF, Bammes B, et al. (2014) An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 5: 4808.    
  • 5. Bammes B, Chen D, Jin L, et al. (2013) Visualizing and correcting dynamic specimen processes in TEM using a Direct Detection Device. Microsc Microanal 19: 1320-1321.    
  • 6. Clare DK, Orlova EV (2010) 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera. J Struct Biol 171: 303-308.
  • 7. Fromm SA, Bharat TAM, Jakobi AJ, et al. (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189: 87-97.    
  • 8. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128: 82-97.    
  • 9. Tang G, Peng L, Baldwin PR, et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157: 38-46.    
  • 10. van Heel M, Harauz G, Orlova EV, et al. (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116: 17-24.    
  • 11. Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol 208: 307-325.
  • 12. Holmes KC, Franklin RE (1958) The radial density distribution in some strains of tobacco mosaic virus. Virology 6: 328-336.    
  • 13. Henderson R, Sali A, Baker Matthew L, et al. (2012) Outcome of the First Electron Microscopy Validation Task Force Meeting. Structure (London, England:1993) 20-330: 205-214.
  • 14. Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612.    
  • 15. Czarneski MA, Lorcheim P (2005) Isolator decontamination using chlorine dioxide gas. Pharm Tech 29: 124-133.
  • 16. Eylath A, Wilson D, Thatcher D, et al. (2003) Successful sterilization using chlorine dioxide gas: Part one- Sanitizing an aseptic fill isolator. BioProcess Int 1: 52-56.
  • 17. Eylath AS, Madhogarhia ER, P. L, et al. (2003) Successful sterilization using chlorine dioxide gas: Part two-Cleaning process vessels. Bio-Process Int 1: 54-56.
  • 18. Leo F, Poisson P, Sinclair CS, et al. (2005) Design, development, and qualification of a microbiological challenge facility to assess the effectiveness of BFS aseptic processing. PDA J Pharm Sci Tech 59: 33-48.
  • 19. Czarneski MA (2009) Microbial decontamination of a 65- room new pharmaceutical research facility. Appl Biosafety: J Amer Biolog Safety Association 14 81-88.
  • 20. Spotts Whitney EA, Beatty ME, Taylor TH, et al. (2003) Inactivation of Bacillus anthracis spores. Emerg Infect Dis 9: 623-627.    
  • 21. Agalloco J, Carleton P, Frederick J (2008) Validation of pharmaceutical processes. New York: Informa Healthcare USA Inc.
  • 22. Westphal AJ, Price PB, Leighton TJ, et al. (2003) Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci 100: 3461-3466.    
  • 23. Meyer RR, Kirkland AI, Dunin-Borkowski RE, et al. (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85: 9-13.    
  • 24. Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49: 269-280.
  • 25. Derkits GE, Mandich ML, Reents WD, et al. (2010) Reliability of electronic equipment exposed to chlorine dioxide used for biological decontamination. 879-880.
  • 26. Namba K, Stubbs G (1986) Structure of TMV at 3.6Å resolution: implications for assembly. Science 231: 1401-1406.
  • 27. Champness JN, Bloomer AC, Bricogne G, et al. (1976) The structure of the protein disk of tobacco mosaic virus to 5A resolution. Nature 259: 20-24.    
  • 28. Sachse C, Chen JZ, Coureux PD, et al. (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371: 812-835.    
  • 29. Ge P, Zhou ZH (2011) Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc Natl Acad Sci U S A 108: 9637-9642.    
  • 30. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333: 721-745.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Michael B. Sherman, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved