Citation: Naomi L. Pollock, Oscar Moran, Debora Baroni, Olga Zegarra-Moran, Robert C. Ford. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies[J]. AIMS Molecular Science, 2014, 1(4): 141-161. doi: 10.3934/molsci.2014.4.141
[1] | Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014 |
[2] | Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649 |
[3] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[4] | Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012 |
[5] | Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009 |
[6] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[7] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[8] | Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010 |
[9] | Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267 |
[10] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
Homogenization theory has become an important tool in the investigation of processes taking place in highly heterogenous media ranging from soil to the most advanced aircraft the construction of which uses composite materials. So far, the problems solved by means of homogenization have mainly involved deterministic partial differential equations (PDEs) and the homogenization of PDEs with randomly oscillating coefficients; the great wealth of results obtained over several decades on problems of diverse classes and methodologies can be found for instance in [9,6,40,41,23,34,22,49,31,17,4,32,36,46,50,33], for the deterministic case and [13,14,18,20,24,37,19,47,48]. for the random case. Fundamental methods were subsequently developed such as the method of asymptotic expansions ([9], [6], [40], [41]), the two scale-convergence ([4], [32]), Tartar method of oscillating test functions and H-convergence ([49]), the asymptotic method for non periodically perforated domains ([23], [46]), G-convergence ([36]) and
However physical processes under random fluctuations are better modelled by stochastic partial differential equations (SPDEs). It was therefore natural to consider homogenization of this very important class of PDEs. Research in this direction is still at its infancy, despite the importance of such problems in both applied and fundamental sciences. Some relevant interesting work have recently been undertaken, mainly for parabolic SPDEs; see for instance [3,8,10,11,21,43,44]. We also note the closely related work [3,25,15,16] dealing with stochastic homogenization for SPDEs with small parameters. The list of references is of course not exhaustive, but a representation of the main trends in the field.
The homogenization of hyperbolic SPDEs was initiated in [27], [28,29], [30] where the authors studied the homogenization of Dirichlet problems for linear hyperbolic equation with rapidly oscillating coefficients using the method of the two-scale convergence pioneered by Nguetseng in [32] and developed by Allaire in [4] and [5]; they also dealt with the linear Neumann problem by means of Tartar's method and obtained the corresponding corrector results within these settings; [30] deals with a semilinear hyperbolic SPDE by Tartar's method.
In the present work, following the two-scale convergence method, we investigate the homogenization of a non-linear hyperbolic equation with nonlinear damping, where the intensity of the noise is also nonlinear and is assumed to satisfy Lipschitz's condition. Our investigation relies on crucial compactness results of analytic (Aubin-Lions-Simon's type) and probabilistic (Prokhorov and Skorokhod fundamental theorems) nature. It should be noted that these methods extend readily to the case when Lipschitz condition on the intensity of the noise is replaced by a mere continuity. In contrast to the linear and the semilinear cases considered in previous papers, the type of nonlinear damping and nonlinear noise in the present paper leads to new challenges in obtaining uniform a priori estimates as well as in the passage to the limit. It should be noted that the process of damping in mechanical systems is a crucial stabilizing factor when the system is subjected to very extreme tasks; mathematically this translates in some regularizing effects on the solution of the governing equations.
We are concerned with the homogenization of the initial boundary value problem with oscillating data, referred to throughout the paper as problem
$ duϵt−div(Aϵ(x)∇uϵ)dt+B(t,uϵt)dt=f(t,x,x/ε,∇uϵ)dt+g(t,x,x/ε,uϵt)dW in (0,T)×Quϵ=0 on(0,T)×∂Q,uϵ(0,x)=aϵ(x), uϵt(0,x)=bϵ(x) in Q, $ |
where
Few words about the difference between the current work and previous works by the authors on homogenization of SPDEs. Compared to [27,28,29,30], the structure of problem (
We now introduce some functions spaces needed in the sequel.
For
$ W1,p(Q)={ϕ:ϕ∈Lp(Q),∂ϕ∂xj∈Lp(Q),j=1,...,n}, $ |
where the derivatives exist in the weak sense, and
For a Banach space
$ ||ϕ||Lp(0,T;X)=(∫T0||ϕ||pXdt)1p,0≤p<∞. $ |
When
$ ‖ϕ‖L∞(0,T;X)=esssup[0,T]‖ϕ‖X<∞. $ |
For
$ ||ϕ||Lq(Ω,F,P;Lp(0,T;X))=(E||ϕ||qLp(0,T;X))1/q. $ |
When
$ ||ϕ||Lq(Ω,F,P;L∞(0,T;X))=(E||ϕ||qL∞(0,T;X))1/q. $ |
It is well known that under the above norms,
We now impose the following hypotheses on the data.
$ n∑i,j=1ai,jξiξj≥αn∑i=1ξ2i for, ξ∈Rn,ai,j∈L∞(Rn),i,j=1,…,n. $ |
(ⅰ)
(ⅱ) There exists a constant
(ⅲ) There exists a positive constant
(ⅳ)
(ⅴ) The map
(A3) We assume that
$ ||f(t,x,xε,w)||L2(Q)≤C||w||L2(Q), $ |
for any
(A4)
(A5)
●
●
$ ||gj(t,x,y,ϕ)||L2(Q)≤C(1+||ϕ||L2(Q)), $ | (1) |
and
●
$ |gj(t,x,y,s1)−gj(t,x,y,s2)|≤L|s1−s2|, $ | (2) |
with the constant
If
From now on we use the following oscillating functions
$ fϵ(t,x,w)=f(t,x,xε,w), gεj(t,x,ϕ)=gi(t,x,xε,ϕ). $ |
We now introduce our notion of solution; namely the strong probabilistic one.
Definition 1.1. We define the strong probabilistic solution of the problem
$ uϵ:Ω×[0,T]⟶H10(Q), $ |
satisfying the following conditions:
(1)
(2)
$ uϵ∈L2(Ω,F,P;C(0,T;H10(Q)))uϵt∈L2(Ω,F,P;C(0,T;L2(Q)))∩Lp(Ω,F,P;Lp(0,T;W1,p0(Q))), $ |
(3)
$ (uϵt(t,.),ϕ)−(uϵt(0,.),ϕ)+∫t0(Aϵ∇uϵ(s,.),∇ϕ)ds+∫t0⟨Bϵ(s,uϵt),ϕ⟩ds=∫t0(fϵ(s,.,∇uϵ),ϕ)ds+(∫t0gϵ(s,.,uϵt)dW(s),ϕ),∀ϕ∈C∞c(Q). $ |
The problem of existence and uniqueness of a strong probabilistic solution of
Theorem 1.2. Suppose that the assumptions
Our goal is to show that as
$ (P){dut−divA0∇udt+B(t,ut)dt=˜f(t,x,∇u)dt+˜g(t,x,ut)d˜W in Q×(0,T),u=0 on∂Q×(0,T),u(0,x)=a(x)∈H10(Q),ut(0,x)=b(x)∈L2(Q), $ |
where
$ A0=1|Y|∫Y(A(y)−A(y)χ(y))dy, $ |
$ {divy(A(y)∇yχ(y))=∇y⋅A(y)inYχisYperiodic, $ |
for any
$˜f(t,x,∇u)=1|Y|∫YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]dy,˜g(t,x,ut)=1|Y|∫Yg(t,x,y,ut)dy,$ |
Here and in the sequel,
Lemma 2.1. Under the assumptions
$ Esup0≤t≤T‖uϵ(t)‖2H10(Q)≤C,Esup0≤t≤T‖uϵt(t)‖2L2(Q)≤C, $ | (3) |
and
$ E∫T0‖uϵt(t)‖pW1,p0(Q)≤C. $ | (4) |
Proof. The following arguments are used modulo appropriate stopping times. It
$ d[‖uϵt‖2L2(Q)+(Aϵ∇uϵ,∇uϵ)]+2⟨B(t,uϵt),uϵt)⟩dt=2(fϵ(t,x,∇uϵ)),uϵt)dt+2(gϵ(t,x,uϵt),uϵt)dW+m∑j=0‖gϵj(t,x,uϵt)‖2L2(Q)dt. $ |
Integrating over
$ ‖uϵt(t)‖2L2(Q)+(Aϵ∇uϵ(t),∇uϵ(t))+2∫t0⟨B(s,uϵt(s)),uϵt(s))⟩ds=‖uϵ1‖2L2(Q)+(Aϵ∇uϵ0,∇uϵ0)+2∫t0(fϵ(s,x,∇uϵ),uϵt)ds+2∫t0(gϵ(s,x,uϵt),uϵt)dW+m∑j=0∫t0‖gϵj(s,x,uϵt)‖2L2(Q)ds. $ |
Using the assumptions
$ E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)+2γ∫t0‖uϵt(s)‖pW1,p0(Q)ds]≤C[C1+∫t0‖uϵt(t)‖2L2(Q)dt+2∫t0|(fϵ(s,x,∇uϵ),uϵt)|ds+2sup0≤s≤t|∫s0(gϵ(σ,x,uϵt),uϵt)dW|], $ | (5) |
where
$ C1=C(T)+‖uϵ1‖2L2(Q)+‖uϵ0‖2H10(Q). $ |
Using assumptions (A3), thanks to Cauchy-Schwarz's and Young's inequalities, we have
$ E∫T0|(fϵ(s,x,∇uϵ),uϵt)|dt≤E∫T0‖∇uϵ‖L2(Q)‖uϵt‖L2(Q)dt≤Esup0≤t≤T‖uϵt(t)‖L2(Q)∫T0‖∇uϵ‖L2(Q)dt≤ϱEsup0≤t≤T‖uϵt(t)‖2L2(Q)+C(ϱ)T(∫T0‖∇uϵ‖2L2(Q)dt), $ | (6) |
where
$ Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW(σ)|≤CE(∫t0(gϵ(σ,x,uϵt(σ)),uϵt(σ))2dσ)12≤CE(sup0≤s≤t‖uϵt(s)‖L2(Q)∫t0‖gϵ(σ,x,uϵt(σ))‖2L2(Q)dσ)12. $ |
Again using Young's inequality and the assumptions
$ 2Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW|≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)∫T0‖gϵ(σ,uϵt(σ))‖2L2(Q)dσ≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)(T)+C(ϱ)∫T0‖uϵt(σ)‖2L2(Q)dσ, $ | (7) |
for
$ Esup0≤t≤T‖uϵt(t)‖2L2(Q)+Esup0≤t≤T‖uϵ(t)‖2H10(Q)+CE∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C(T,C1,C2)+CE∫t0[‖uϵt(s)‖2L2(Q)+‖uϵ(s)‖2H10(Q)]dt, $ | (8) |
Using Gronwall's inequality, we have
$ E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)]≤C, $ |
and subsequently
$ E∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C. $ |
The proof is complete.
The following lemma will be of great importance in proving the tightness of probability measures generated by the solution of problem
Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and let
$ Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p, $ |
for any
Proof..
Assume that
$ uϵt(t+θ)−uϵt(t)=∫t+θtdiv(Aϵ∇uϵ)ds−∫t+θtB(s,uϵt(s))ds+∫t+θtfϵ(s,x,∇uϵ)ds+∫t+θtgϵ(s,uϵt(s))dW(s). $ |
Then
$ ‖uϵt(t+θ)−uϵt(t)‖W−1,p′(Q)≤‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)+‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtgϵ(s,uϵt(s))dW(s)‖W−1,p′(Q). $ | (9) |
Firstly, thanks to assumption
$ ‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtdiv(Aϵ∇uϵ)ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|=supϕ∈W1,p0(Q):‖ϕ‖=1∫Q∫t+θtAϵ∇uϵ∇ϕdxds≤Csupϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖∇uϵ‖Lp′(Q)‖∇ϕ‖Lp(Q)ds≤C∫t+θt‖∇uϵ‖L2(Q)ds≤Cθ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, $ | (10) |
where we have used the fact that
Secondly, we use assumption
$ ‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtB(s,uϵt(s))ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|≤supϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖B(s,uϵt(s))‖W−1,p′(Q)‖ϕ‖W1,p0(Q)ds≤Cθ1/p(∫t+θt‖uϵt‖pW1,p0(Q)ds)1/p′. $ | (11) |
Thirdly,
$ ‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)≤‖∫t+θtfϵ(s,x,∇uϵ)ds‖L2(Q)≤C∫t+θt‖∇uϵ‖L2(Q)≤θ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, $ | (12) |
where we have used assumption (A3).
Using 10, 11 and 12 in 9 raised to the power
$ Esup0<θ≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤CEsup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2dt+CEsup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt+Esup0<θ≤δ∫T0‖∫t+θtgϵ(s,uϵt(s)dW(s)‖p′W−1,p′(Q)dt. $ | (13) |
We now estimate the term involving the stochastic integral.
We use the embedding
$ W1,p0(Q)↪L2(Q)↪W−1,p′(Q) $ |
to get the estimate
$ Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt. $ | (14) |
Thanks to Fubini's theorem and H
$ E∫T0sup0<θ≤δ||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt≤∫T0(∫QEsup0<θ≤δ(∫t+θtgϵ(s,uϵt(s))dW(s))2dx)p′/2dt≤∫T0(E∫t+δt||gϵ(s,uϵt(s)||2L2(Q)ds)p′/2dt, $ | (15) |
where we have used Burkholder-Davis-Gundy's inequality. We now invoke assumption
$ Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤∫T0[E∫t+δt(1+||uϵt(s)||2L2(Q))ds]p′/2dt≤CTδp′/2. $ | (16) |
For the first term in the right-hand side of 13, we use Fubini's theorem, H
$ Esup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2≤δp′/2∫T0(E∫t+δt‖∇uϵ‖2L2(Q)ds)p′/2≤CTδp′. $ | (17) |
The second term on the right hand side of 13 is estimated using 4 and we get
$ Esup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt≤δp′/p∫T0E∫T0‖uϵt‖pW1,p0(Q)dsdt≤Cδp′/p. $ | (18) |
Combining 13, 16, 17 and 18, and taking into account the fact that the similar estimates hold for
$ Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p. $ |
This completes the proof.
The following Lemmas are needed in the proof of the tightness and the study of the properties of the probability measures generated by the sequence
We have from [45]
Lemma 3.1. Let
$ Ns,p(0,T;B1)={v∈Lp(0,T;B1):suph>0h−s‖v(t+h)−v(t)‖Lp(0,T−θ,B1)<∞}. $ |
Then
The following two lemmas are collected from [12]. Let
Lemma 3.2. (Prokhorov) A sequence of probability measures
Lemma 3.3. (Skorokhod) Suppose that the probability measures
$ limn→∞ξn=ξ,P−a.s.; $ |
the symbol
Let us introduce the space
$ Z1={ϕ:sup0≤t≤T‖ϕ(t)‖2H10(Q)≤C1,sup0≤t≤T‖ϕ′(t)‖2L2(Q)≤C1}, $ |
and
$ Z2={ψ:sup0≤t≤T‖ψ(t)‖2L2(Q)≤C3,∫T0‖ψ(t)‖pW1,p0(Q)dt≤C4,∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q)≤C5θ1/p}. $ |
We endow
$ ‖(ϕ,ψ)‖Z=‖ϕ‖Z1+‖ψ‖Z2=sup0≤t≤T‖ϕ′(t)‖L2(Q)+sup0≤t≤T‖ϕ‖H10(Q)+sup0≤t≤T‖ψ(t)‖2L2(Q)+(∫T0‖ψ(t)‖pW1,p0(Q)dt)1p+(supθ>01θ1/p∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q))1p′. $ |
Lemma 3.4. The above constructed space
Proof. Lemma 3.1 together with suitable arguments due to Bensoussan [7] give the compactness of
We now consider the space
$ Ψϵ:ω↦(W(ω),uϵ(ω),uϵt(ω)). $ |
Define on
$ Πϵ(A)=P(Ψ−1ϵ(A))for allA∈B(X). $ |
Lemma 3.5. The family of probability measures
Proof. We carry out the proof following a long the lines of the proof of [27,lemma 7]. For
$ Wδ⊂C(0,T;Rm),Dδ⊂L2(0,T;L2(Q)),Eδ⊂L2(0,T;L2(Q)) $ |
such that
$ Πϵ{(W,uϵ,uϵt)∈Wδ×Dδ×Eδ}≥1−δ. $ |
This is equivalent to
$ P{ω:W(⋅,ω)∈Wδ,uϵ(⋅,ω)∈Dδ,uϵt)(⋅,ω)∈Eδ}≥1−δ, $ |
which can be proved if we can show that
$ P{ω:W(⋅,ω)∉Wδ}≤δ,P{uϵ(⋅,ω)∉Dδ}≤δ,P{uϵt)(⋅,ω).∉Eδ}≤δ. $ |
Let
$ Wδ={W(⋅)∈C(0,T;Rm):supt,s∈[0,T]n|W(s)−W(t)|≤Lδ:|s−t|≤Tn−1}. $ |
Using Arzela's theorem and the fact that
$ P(ω:η(ω)≥α)≤E|η(ω)|kαk, $ | (19) |
where
$ P{ω:W(⋅,ω)∉Wδ}≤P[∞⋃n=1(supt,s∈[0,T]|W(s)−W(t)|≥Lδn:|s−t|≤Tn−1)]≤∞∑n=0P[n6⋃j=1(supTjn−6≤t≤T(j+1)n−6|W(s)−W(t)|≥Lδn)]. $ |
But
$ \mathbb{E}\left( W_{i}(t)-W_{i}(s)\right) ^{2k} = (2k-1)!!(t-s)^{k},\,\,\,k = 1,2,3,\dots , $ |
where
For
$ P{ω:W(.,ω)∉Wδ}≤∞∑n=0n6∑j=1(nLδ)4E(supTjn−6≤t≤T(j+1)n−6|W(t)−W(jTn−6)|4)≤C∞∑n=0n6∑j=1(nLδ)4(Tn−6)2=CT2(Lδ)4∞∑n=0n−2. $ |
Choosing
$ P{ω:W(.,ω)∉Wδ}≤δ3. $ |
Now, let
$ Dδ={z:sup0≤t≤T‖z(t)‖2H10(Q)≤Kδ,sup0≤t≤T‖z′(t)‖2L2(Q)≤Mδ}. $ |
Lemma 3.4 shows that
$ P{uϵ∉Dδ}≤P{sup0≤t≤T‖uϵ(t)‖2H10(Q)≥Kδ}+P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥Mδ}. $ |
Markov's inequality 19 gives
$ P{uϵ∉Dδ}≤1KδEsup0≤t≤T‖uϵ(t)‖2H10(Q)+1MδEsup0≤t≤T‖uϵt(t)‖2L2(Q)≤CKδ+CMδ=δ3. $ |
for
Similarly, we let
$ Bδ={v:sup0≤t≤T‖v(t)‖2L2(Q)≤K′δ,∫T0‖v(t)‖pW1,p0(Q)dt≤L′δ,supθ≤μn∫T0‖v(t+θ)−v(t)‖p′W−1,p′(Q)dt≤νnM′δ}. $ |
Owing to Proposition 3.1 in [7],
$ P{uϵt∉Bδ}≤P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥K′δ}+P{∫T0‖uϵt(t)‖pW1,p0(Q)dt≥L′δ}+P{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt≥νnM′δ}. $ |
Again thanks to 19, we obtain
$ P{uϵt∉Bδ}≤1K′δEsup0≤t≤T‖uϵt(t)‖2L2(Q)+1L′δE∫T0‖uϵt(t)‖pW1,p0(Q)dt+∑∞n=01νnM′δE{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt}≤CK′δ+CL′δ+CM′δ∑μp′/pnνn=δ3δ, $ |
for
From Lemmas 3.2 and 3.5, there exist a subsequence
$ Πϵj⇀Π $ |
weakly. From lemma 3.3, there exist a probability space
$ (Wϵj,uϵj,uϵjt)→(˜W,u,ut)inX,˜P−a.s.. $ | (20) |
Let us define the filtration
$ ~Ft=σ{˜W(s),u(s),ut(s)}0≤s≤t. $ |
We show that
In this section, we state some key facts about the powerful two-scale convergence invented by Nguetseng [32].
Definition 4.1. A sequence
$ limϵ→0∫T0∫Qvϵψϵdxdt=1|Y|∫T0∫Q×Yv(t,x,y)ψ(t,x,y)dydxdt, $ | (21) |
where
The following result deals with some of the properties of the test functions which we are considering; it is a modification of Lemma 9.1 from [17,p.174].
Lemma 4.2. (i) Let
$ ‖ψ(⋅,⋅,⋅ϵ)‖Lp(0,T;Lp(Q))≤‖ψ(⋅,⋅,⋅)‖Lp((0,T)×Q;Cper(Y)) $ | (22) |
and
$ ψ(⋅,⋅,⋅ϵ)⇀1|Y|∫Yψ(⋅,⋅,y)dyweakly inLp(0,T;Lp(Q)). $ |
Furthermore if
$ limϵ→0∫T0∫Q[ψ(t,x,xϵ)]2dxdt=1|Y|∫T0∫Q×Y[ψ(t,x,y)]2dtdxdy. $ | (23) |
(ii) If
$ 1r+1s=1p, $ |
then
$ ψ(⋅,⋅,⋅ϵ)⇀ψ1(⋅,⋅)|Y|∫Yψ2(y)dyweakly inLp(0,T;Lp(Q)). $ |
The following theorems are of great importance in obtaining the homogenization result; for their proofs, we refer to [4], [17] and [26].
Theorem 4.3. Let
$ ‖uϵ‖L2(0,T;L2(Q))<∞. $ | (24) |
Then up to a subsequence
Theorem 4.4. Let
$ ‖uϵ‖L2(0,T;H10(Q))<∞. $ |
Then, up to a subsequence, there exists a couple of functions
$ uϵ→u 2−s inL2(0,T;L2(Q)), $ | (25) |
$ ∇uϵ→∇xu+∇yu1 2−s inL2(0,T;L2(Q)). $ | (26) |
The following lemma is crucial in obtaining the convergence of the stochastic integral in the next section
Lemma 4.5. The oscillating data given in (A5) satisfies the following convergence
$ g(t,x,xε,uεt)⇀˜g(t,x,ut)=:1|Y|∫Yg(t,x,y,ut)dy weakly in L2((0,T)×Q), ˜P−a.s.. $ | (27) |
Proof. Test with
$ ∫T0∫Qg(t,x,xε,uεt)ψ(t,x,xε)dxdt=Iε1+Iε2, $ |
where
$ Iε1=∫T0∫Q[g(t,x,xε,uεjt)−g(t,x,xε,ut)]ψ(t,x,xε)dxdt,Iε2=∫T0∫Qg(t,x,xε,ut)ψ(t,x,xε)dxdt. $ |
Then
$ Iε1≤||ψ(t,x,xε)||L2((0,T)×Q)||g(t,x,xε,uεt)−g(t,x,xε,ut)||L2((0,T)×Q)≤C||uεt−ut||L2((0,T)×Q), $ |
thanks to the Lipschitz condition on
Now we can apply 2-scale convergence for the limit of
$ limε→0Iε2=∫T0∫Q∫Yg(t,x,y,ut)ψ(t,x,y)dxdt,˜P−a.s. $ |
Therefore
$ g(t,x,xε,uεt)2−s→g(t,x,y,ut), ˜P−a.s. $ | (28) |
and this implies the result.
Remark 1. From the assumption (A5), 28 and 23, we have the following strong convergence
$ limϵ→0∫T0∫Q[g(t,x,xϵ,uϵt)]2dxdt=1|Y|∫T0∫Q×Y[g(t,x,y,ut)]2dtdxdy. $ | (29) |
We will now study the asymptotic behaviour of the problem
Theorem 5.1. Suppose that the assumptions on the data are satisfied. Let
$ aϵj⇀a,weakly inH10(Q), $ | (30) |
$ bϵj⇀b,weakly inL2(Q). $ | (31) |
Then there exist a probability space
Proof. From estimates 3 and 4 and assumption
$ uϵj⇀uweakly inL∞(0,T;H10(Q))ˆP−a.s, $ | (32) |
$ uϵjt⇀utweakly inL∞(0,T;L2(Q))ˆP−a.s, $ | (33) |
$ uϵjt⇀utweakly inLp(0,T;W1,p0(Q))ˆP−a.s, $ | (34) |
$ B(t,uϵjt)⇀χweakly inLp′(0,T;W−1,p′(Q))ˆP−a.s.. $ | (35) |
Now let us identify the limit in 35. By arguing as in [38,Lemma 2.6,p. 51], we get
$ ∫t0⟨B(s,uϵjt),uϵjt⟩ds→∫t0⟨χ,ut⟩ds,weakly inL1(Ω), ∀t∈[0,T]. $ | (36) |
Having this in hand, let
$ χϵj=ˆE∫T0⟨B(t,uϵjt)−B(t,v),uϵjt−v⟩dt. $ | (37) |
From the monotonicity assumption
$ ˆE∫T0⟨χ−B(t,v),ut−v⟩dt≥0. $ |
For
$ ˆE∫T0⟨χ−B(t,ut(t)−λw(t)),w(t)⟩dt≥0. $ | (38) |
Using the hemicontinuty assumption
$ ⟨χ−B(t,ut(t)−λw(t)),w(t)⟩⟶⟨χ−B(t,ut(t)),w(t)⟩, as λ⟶0, ˆP−a.s.. $ |
Now, from assumptions
$ ˆE∫T0⟨χ−B(t,ut(t)),w(t)⟩dt≥0. $ | (39) |
But the inequality 39 is true for all
$ χ=B(t,ut(t),ˆP−a.s.. $ |
Testing problem
$ −∫T0∫QuϵjtΦt(t,x)dxdt+∫T0∫QAϵj∇uϵj∇Φdxdt+∫T0∫Q⟨Bϵj(t,uϵjt),Φ⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)Φdxdt+∫T0∫Qgϵj(t,x,uϵjt)ΦdxdWϵj, $ | (40) |
Using estimate 3, the convergence 20 and Theorems 4.3 and 4.4, we show the two-scale convergence
$ ∇uϵj→∇xu+∇yu1 2-s in,L2(0,T;L2(Q)). $ |
Let
$ −∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj. $ | (41) |
Let us deal with these terms one by one, when
$ limϵj→0∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj→0∫T0∫Quϵjt(t,x)ϕt(t,x)dxdt+limϵj→0ϵj∫T0∫Quϵjt(t,x)ϕ1t(t,x,xϵj)dxdt=∫T0∫Qut(t,x)ϕt(t,x)dxdt,˜P−a.s.. $ |
The second term can be written as follows,
$ limϵj→0∫T0∫Q∇uϵj(x,t)Aϵj[∇xϕ(t,x)+∇yϕ1(t,x,xϵj)]dxdt+limϵj→0ϵj∫T0∫QAϵj∇uϵj(x,t)∇xϕ1(t,x,xϵj)dxdt. $ | (42) |
Since
$ limϵj→0∫T0∫Q∇uϵj(x,t)Aϵj[∇xϕ(t,x)+∇yϕ1(t,x,xϵj)]dxdt=1|Y|∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt. $ |
Thanks to H
$ limϵj→0ϵj∫T0∫QAϵj∇uϵj(x,t)∇xϕ1(t,x,xϵj)dxdt=0,˜P−a.s.. $ |
Again, thanks to estimate 22 and convergence 35, we have
$ limϵj→0∫T0∫Q⟨B(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]⟩dxdt=limϵj→0∫T0∫Q⟨B(t,uϵjt),ϕt(t,x)⟩dxdt+limϵj→0ϵj∫T0∫Q⟨B(t,uϵjt),ϕ1t(t,x,xϵj)⟩dxdt=∫T0∫Q⟨B(t,ut),ϕt(t,x)⟩dxdt,˜P−a.s.. $ |
Let us write
$ limϵj→0∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵj[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵjϕ(t,x)dxdt+limϵj→0ϵj∫T0∫QFϵj(t,x).∇uϵjϕ1(t,x,xϵj)dxdt, $ | (43) |
where we have used the assumption (A3). It is easy to see that the second term in 43, converges to zero. For the first term in the right-hand side of 43, we readily have
$ limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵjϕ(t,x)dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu+∇yu1]ϕ(t,x)dxdydt,˜P−a.s.. $ | (44) |
Concerning the stochastic integral, we have
$ ˜E∫T0∫Qgϵj(t,x,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj=˜E∫T0∫Qgϵj(t,x,uϵjt)ϕ(t,x)dxdWϵj+˜Eϵj∫T0∫Qgϵj(t,x,uϵjt)ϕ1(t,x,xϵj)dxdWϵj. $ | (45) |
We deal with the term involving
$ ˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWεt=˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d(Wεt−˜Wt)+˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $ | (46) |
In view of the unbounded variation of
$ gελ(uε)(t)=1λ∫T0ρ(−t−sλ)g(s,x,xε,uεs(s))ds for λ>0, $ | (47) |
where
We have that
$ ˜E∫T0||gελ(uε)(t)||2L2(Q)dt≤˜E∫T0||g(t,x,xε,uεt(t))||2L2(Q)dt, for any λ>0, $ | (48) |
and for any
$ gελ(uε)(t)→gε(t,x,uεt(t)) strongly in L2(˜Ω,˜F,˜P,L2((0,T)×Q)) as λ→0. $ | (49) |
We split the first term in the right-hand side of 46 as
$ ˜E∫T0∫Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt−˜Wt)=˜E∫T0∫Qϕ(t,x)gελ(uε)(t)dxd(Wεt−˜Wt)+˜E∫T0∫Qϕ(t,x)[gε(t,x,uεt(t))−gελ(uε)(t)]dxd(Wεt−˜Wt). $ | (50) |
Owing to 49, and Burkholder-Davis-Gundy's inequality, it readily follows that the second term in 50 is bounded by a function
$ ˜E∫T0∫Qϕ(t,x)gελ(uε)(t)d(Wεt−˜Wt)=˜E∫T0∫Q(Wεt−˜Wt)∂∂t[ϕ(t,x)gελ(uε)(t)]dt+˜E∫Qϕ(T,x)gελ(uε)(T)(WεT−˜WT). $ | (51) |
Thanks to the conditions on
$ Wεt→˜Wt uniformly in C([0,T]), ˜P−a.s., $ | (52) |
we get that both terms on the right-hand side of 51 are bounded by the product
$ |˜E∫T0∫Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt−˜Wt)|≤σ1(λ)+σ2(λ)η1(ε). $ | (53) |
Thus, we infer from 46 that
$ |˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt−˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|≤σ1(λ)+σ2(λ)η1(ε) $ | (54) |
Taking the limit in 54 as
$ limε→0|˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt−˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|≤σ1(λ); $ |
but the left-hand side of this relation being independent of
$ limε→0˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt=limε→0˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $ | (55) |
Owing to 27; that is
$ g(t,x,xε,uεt)⇀˜g(t,x,ut) weakly in L2((0,T)×Q), ˜P−a.s., $ |
we can call upon the convergence theorem for stochastic integrals due to Rozovskii [39,Theorem 4,p. 63] to claim that
$ ˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWt→˜E∫T0∫Qϕ(t,x)˜g(t,x,ut)d˜Wt. $ |
Hence, we deduce from 55 that,
$ ∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWεt→∫T0∫Qϕ(t,x)˜g(t,x,ut)d˜Wt, ˜P−a.s.. $ | (56) |
For the second term in 45, thanks to Burkholder-Davis-Gundy's inequality, the assumptions on
$ limϵj→0ϵj˜Esupt∈[0,T]|∫t0∫Qϕ1(t,x,xε)g(t,x,xε,uεt)dxdWϵjt|≤Climϵj→0ϵj˜E(∫T0(∫Qϕ1(t,x,xε)g(t,x,xε,uεt)dx)2dt)12≤Climϵj→0ϵj˜E(∫T0‖g(t,x,xε,uεt)‖L2(Q)‖ϕ1(t,x,xϵj)‖L2(Q)dt)12≤Climϵj→0ϵj(∫T0‖g(t,x,xε,uεt)‖L2(Q)dt)12→0,˜P−a.s. $ |
Combining the above convergences, we obtain
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+1|Y|∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y).[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdx. $ | (57) |
Choosing in the first stage
$ ∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇yϕ1(t,x,y)]dydxdt=0, $ | (58) |
and
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇xϕ(t,x)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y).[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)d˜Wdx. $ | (59) |
By standard arguments (see [17]), equation 58 has a unique solution given by
$ u1(t,x,y)=−χ(y)⋅∇xu(t,x)+~u1(t,x), $ | (60) |
where
$ {divy(A(y)∇yχ(y))=∇y⋅A(y),inY,χisYperiodic. $ | (61) |
As for the uniqueness of the solution of 59, we prove it as follows. Using 60 in 59, one obtains that 59 is the weak formulation of the equation
$ dut−A0Δudt+B(t,ut)dt=˜f(t,x,∇u)dt+˜g(t,x,ut)d˜W, $ | (62) |
where
$A0=1|Y|∫Y(A(y)−A(y)∇yχ(y))dy,˜f(t,x,∇u)=1|Y|∫YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]dy,$ | (63) |
and
$ ˜g(t,x,ut)=1|Y|∫Yg(t,x,y,ut)dy. $ |
But the initial boundary value problem corresponding to 62 has a unique solution by [38]. It remains to show that
$ −∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)⋅[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj+∫Quϵjt(x,0)v(x)dx, $ |
where we pass to the limit, to get
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+∫Qb(x)v(x)dx. $ |
The integration by parts, in the first term gives
$ ∫T0∫Qdut(t,x)ϕ(t,x)dx+∫Qut(x,0)v(x)dx+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+∫Qb(x)v(x)dx. $ |
In view of equation 57, we deduce that
$ ∫Qut(x,0)v(x)dx=∫Qb(x)v(x)dx, $ |
for any
$ ∫T0∫Quϵj(t,x)[ϕtt(t,x)+ϵjϕ1tt(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)⋅[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj−∫Quϵj(x,0)v(x)dx. $ |
Passing to the limit in this equation, we obtain
$ ∫T0∫Qu(t,x)ϕtt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×,YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt−∫Qa(x)v(x)dx. $ |
We integrate by parts again to obtain
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt−∫Qu(x,0)v(x)dx+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt−∫Qa(x)v(x)dx. $ |
Using the same argument as before, we show that
Let us introduce the energies associated with the problems (
$ Eϵj(uϵj)(t)=12˜E‖uϵjt(t)‖2L2(Q)+12˜E∫QAϵj∇uϵj(x,t)⋅∇uϵj(x,t)dx+˜E∫t0⟨B(s,uϵjt),uϵjt⟩dsE(u)(t)=12˜E‖ut(t)‖2L2(Q)+12˜E∫QA0∇u(x,t)⋅∇u(x,t)dx+˜E∫t0⟨B(s,ut),ut⟩ds. $ |
But from It
$ \begin{align*} & \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{t}^{\epsilon _{j}}(t)\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(t)\cdot\nabla u^{\epsilon _{j}}(t)dx+\tilde{\mathbb{E}} \int_{0}^{t}\langle B(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}}\rangle ds \\ & = \tilde{\mathbb{E}}\bigg[\frac{1}{2}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot \nabla u_{0}^{\epsilon _{j}}dx+\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds+\int_{0}^{t}(g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})dW_{\epsilon _{j}}\bigg] . \end{align*} $ |
Thus
$ \begin{align} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)& = \frac{1}{2}\tilde{ \mathbb{E}}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2} \tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot\nabla u_{0}^{\epsilon _{j}}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds, \end{align} $ | (64) |
$ \begin{align} \mathcal{E}(u)(t)& = \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{1}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{0}\nabla u_{0}\cdot \nabla u_{0}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(\tilde{f}(s,x,\nabla u),u_{t})ds+\frac{1}{2 }\tilde{\mathbb{E}}\int_{0}^{t}\Vert \tilde{g}\left( s,x,u_{t}\right) \Vert _{L^{2}(Q)}^{2}ds. \end{align} $ | (65) |
The vanishing of the expectation of the stochastic integrals is due to the fact that
Theorem 6.1. Assume that the assumptions of Theorem 5.1 are fulfilled and
$ \begin{align} & -div(A_{\epsilon _{j}}\nabla a^{\epsilon _{j}})\rightarrow -div(A_{0}\nabla a),\,\,\,\, strongly\ in\,\,\,H^{-1}(Q), \end{align} $ | (66) |
$ \begin{align} & b^{\epsilon _{j}}\rightarrow b,\,\,\,\,\ strongly\ in\,\,\,L^{2}(Q). \end{align} $ | (67) |
Then
$ \begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t)\,\,\,in\,\,C([0,T]), \end{equation*} $ |
where
Proof. Thanks to the convergences 20, 44, 29, 66 and 67, we show that
$ \begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t),\,\,\,\forall t \in [0,T]. \end{equation*} $ |
Now we need to show that
$ \begin{align*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert & \leq \frac{1}{2}\tilde{\mathbb{E}}\Vert b^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{\alpha }{2}\tilde{\mathbb{E}}\Vert a^{\epsilon _{j}}\Vert _{H_{0}^{1}}+\tilde{\mathbb{E}}\int_{0}^{t}\left\vert (f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})\right\vert ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} $ |
Thanks to the assumptions on the data
$ \begin{equation*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert \leq C,\quad \forall t\in \lbrack 0,T]. \end{equation*} $ |
For any
$ \begin{align*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})&(t+h)- \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)| \\ & \leq \tilde{\mathbb{E}}\int_{t}^{t+h}|(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})|ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{t}^{t+h}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} $ |
Again assumptions (A3), (A5) and Cauchy-Schwarz's inequality, give
$ \begin{equation*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t+h)-\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)|\leq C\left( h+h^{\frac{1}{2}}\right) . \end{equation*} $ |
This implies the equicontinuity of the sequence
In this section, we establish a corrector result stated in the following
Theorem 7.1. Let the assumptions of Theorems 5.1 and 6.1 be fulfilled. Assume that
$ \begin{equation*} \frac{1}{r}+\frac{1}{s} = \frac{1}{2}. \end{equation*} $ |
Then
$ \begin{align} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P}}-a.s., \end{align} $ | (68) |
$ \begin{align} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;H^{1}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{align} $ | (69) |
Proof. It is easy to see that
$ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} $ |
Then convergence 20 gives
$ \begin{equation*} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{.}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P} }-a.s.. \end{equation*} $ |
Thus 68 holds. Similarly we show that
$ \begin{equation*} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} $ |
It remains to show that
$ \begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} ))\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n})\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $ |
We have
$ \begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )) = \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}}))-\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})). \end{equation*} $ |
Again
$ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n}), \quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $ |
Now from the ellipticity assumption on the matrix
$ \begin{align} \alpha \mathbb{E}\int_{0}^{T}&\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}dt \\ & \leq \mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\right) \\ & \cdot \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & = \mathbb{E}\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot\nabla u^{\epsilon _{j}}dxdt \\ &-2\mathbb{E}\int_{0}^{T}\int_{Q}\nabla u^{\epsilon _{j}}A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & +\mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) \\ &\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt. \end{align} $ | (70) |
Let us pass to the limit in this inequality. We start with
$ \begin{equation*} \mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx. \end{equation*} $ |
From the convergence of the energies in Theorem 6.1 and using 63 and 60, we have
$ \begin{align} & \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx \\ & = \mathbb{E}\int_{Q\times Y}A(y)\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]dydx. \end{align} $ | (71) |
Next, using the two-scale convergence of
$ \begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&\nabla u^{\epsilon _{j}}(t,x)\cdot A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(t,x,\frac{x}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ &\cdot A\left( y\right) \cdot\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} $ | (72) |
Now, let us write
$ \begin{align*} \psi (t,x,y)& = A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ & = A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)+2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}u_{1}(t,x,y)\\ &+A\left( y\right) \nabla _{y}u_{1}(t,x,y)\cdot\nabla _{y}u_{1}(t,x,y). \end{align*} $ |
For
$ \begin{align*} \psi (t,x,y) = & A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)-2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)] \\ & +A\left( y\right) \nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]. \end{align*} $ |
Now using
$ \begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&A\left( \frac{x}{ \epsilon _{j}}\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{x}{ \epsilon _{j}})\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{ y}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} $ | (73) |
Combining 71, 72 and 73 with 70, we deduce that
$ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{0}^{T}\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(.,.,\frac{.}{\epsilon _{j}} )\Vert _{L^{2}(Q)}^{2}dt = 0\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $ |
Thus the proof is complete.
As a closing remark, we note that our results can readily be extended to the case of infinite dimensional Wiener processes taking values in appropriate Hilbert spaces; for instance cylindrical Wiener processes.
The authors express their deepest gratitude to the reviewers for their careful reading of the paper and their insightful comments which have improved the paper. Part of this work was conducted when the first author visited the African Institute for Mathematical Sciences (AIMS), South Africa, he is grateful to the generous hospitality of AIMS.
[1] |
Plog S, Mundhenk L, Bothe MK, et al. (2010) Tissue and cellular expression patterns of porcine CFTR: similarities to and differences from human CFTR. J Histochem Cytochem 58: 785-797. doi: 10.1369/jhc.2010.955377
![]() |
[2] |
Crawford I, Maloney PC, Zeitlin PL, et al. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. P Natl Acad Sci USA 88: 9262-9266. doi: 10.1073/pnas.88.20.9262
![]() |
[3] |
Gadsby DC, Nairn AC (1999) Regulation of CFTR Cl- ion channels by phosphorylation and dephosphorylation. Adv Sec Messenger Phosphoprotein Res 33: 79-106. doi: 10.1016/S1040-7952(99)80006-8
![]() |
[4] | Gadsby DC, Nairn AC (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 79: S77-S107. |
[5] |
Kirk KL, Wang W (2011) A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J Biol Chem 286: 12813-12819. doi: 10.1074/jbc.R111.219634
![]() |
[6] | Quinton PM, Reddy MM (2000) CFTR, a rectifying, non-rectifying anion channel? J Korean Med Sci 15 Suppl: S17-20. |
[7] |
Goss CH, Ratjen F (2013) Update in cystic fibrosis 2012. Am J Resp Crit Care 187: 915-919. doi: 10.1164/rccm.201301-0184UP
![]() |
[8] |
Welsh MJ, Ramsey BW (1998) Research on cystic fibrosis: a journey from the Heart House. Am J Resp Crit Care 157: S148-154. doi: 10.1164/ajrccm.157.4.nhlbi-13
![]() |
[9] |
Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Resp Physiol Neurobi 184: 257-268. doi: 10.1016/j.resp.2012.07.019
![]() |
[10] |
Christensen AK, Hiroi J, Schultz ET, et al. (2012) Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater. J Exp Biol 215: 642-652. doi: 10.1242/jeb.063057
![]() |
[11] |
Chen JM, Cutler C, Jacques C, et al. (2001) A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models. Mol Biol Evol 18: 1771-1788. doi: 10.1093/oxfordjournals.molbev.a003965
![]() |
[12] |
Kiilerich P, Kristiansen K, Madsen SS (2007) Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J Endocrinol 194: 417-427. doi: 10.1677/JOE-07-0185
![]() |
[13] |
Nilsen TO, Ebbesson LO, Madsen SS, et al. (2007) Differential expression of gill Na+, K+-ATPase alpha- and beta-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210: 2885-2896. doi: 10.1242/jeb.002873
![]() |
[14] |
Mio K, Ogura T, Mio M, et al. (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283: 30300-30310. doi: 10.1074/jbc.M803185200
![]() |
[15] |
Rosenberg MF, O'Ryan LP, Hughes G, et al. (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286: 42647-42654. doi: 10.1074/jbc.M111.292268
![]() |
[16] |
Zhang L, Aleksandrov LA, Riordan JR, et al. (2011) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. BBA-Biomembranes 1808: 399-404. doi: 10.1016/j.bbamem.2010.08.012
![]() |
[17] |
Awayn NH, Rosenberg MF, Kamis AB, et al. (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem Soc T 33: 996-999. doi: 10.1042/BST20050996
![]() |
[18] |
Lewis HA, Buchanan SG, Burley SK, et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23: 282-293. doi: 10.1038/sj.emboj.7600040
![]() |
[19] |
Thibodeau PH, Brautigam CA, Machius M, et al. (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 12: 10-16. doi: 10.1038/nsmb881
![]() |
[20] |
Galeno L, Galfre E, Moran O (2011) Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution. Eur Biophys J 40: 811-824. doi: 10.1007/s00249-011-0692-5
![]() |
[21] |
Galfre E, Galeno L, Moran O (2012) A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 69: 3701-3713. doi: 10.1007/s00018-012-1049-7
![]() |
[22] |
Marasini C, Galeno L, Moran O (2013) A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 70: 923-933. doi: 10.1007/s00018-012-1172-5
![]() |
[23] |
Hudson RP, Chong PA, Protasevich, II, et al. (2012) Conformational changes relevant to channel activity and folding within the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 287: 28480-28494. doi: 10.1074/jbc.M112.371138
![]() |
[24] |
Huang P, Liu Q, Scarborough GA (1998) Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator. Anal biochem 259: 89-97. doi: 10.1006/abio.1998.2633
![]() |
[25] |
Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34: 364-372. doi: 10.1016/j.ymeth.2004.03.025
![]() |
[26] |
Carpenter EP, Beis K, Cameron AD, et al. (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struc Biol 18: 581-586. doi: 10.1016/j.sbi.2008.07.001
![]() |
[27] |
Dobrovetsky E, Menendez J, Edwards AM, et al. (2007) A robust purification strategy to accelerate membrane proteomics. Methods 41: 381-387. doi: 10.1016/j.ymeth.2006.08.009
![]() |
[28] |
Granseth E, Seppala S, Rapp M, et al. (2007) Membrane protein structural biology--how far can the bugs take us? Mol Membr Biol 24: 329-332. doi: 10.1080/09687680701413882
![]() |
[29] |
Lewinson O, Lee AT, Rees DC (2008) The funnel approach to the precrystallization production of membrane proteins. J Mol Biol 377: 62-73. doi: 10.1016/j.jmb.2007.12.059
![]() |
[30] |
Graeslund S (2008) Protein production and purification. Nat Meth 5: 135-146. doi: 10.1038/nmeth.f.202
![]() |
[31] |
Mancia F, Love J (2010) High-throughput expression and purification of membrane proteins. J Struct Biol 172: 85-93. doi: 10.1016/j.jsb.2010.03.021
![]() |
[32] |
Aller SG, Yu J, Ward A, et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722. doi: 10.1126/science.1168750
![]() |
[33] |
Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14: 673-681. doi: 10.1016/j.str.2006.01.013
![]() |
[34] |
Sonoda Y, Cameron A, Newstead S, et al. (2010) Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins. FEBS Lett 584: 2539-2547. doi: 10.1016/j.febslet.2010.04.015
![]() |
[35] |
Sonoda Y, Newstead S, Hu NJ, et al. (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19: 17-25. doi: 10.1016/j.str.2010.12.001
![]() |
[36] |
Drew D, Newstead S, Sonoda Y, et al. (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3: 784-798. doi: 10.1038/nprot.2008.44
![]() |
[37] |
Newstead S, Kim H, von Heijne G, et al. (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104: 13936-13941. doi: 10.1073/pnas.0704546104
![]() |
[38] | Clark KM, Fedoriw N, Robinson K, et al. Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. Protein Expres Purif 71: 207-223. |
[39] |
Slotboom DJ, Duurkens RH, Olieman K, et al. (2008) Static light scattering to characterize membrane proteins in detergent solution. Methods 46: 73-82. doi: 10.1016/j.ymeth.2008.06.012
![]() |
[40] | Ouano AC, Kaye W (1974) Gel-permeation chromatography: X. Molecular weight detection by low-angle laser light scattering. J Polym Sci: Polym Chem Edit 12: 1151-1162. |
[41] |
Miller JL, Tate CG (2011) Engineering an ultra-thermostable beta(1)-adrenoceptor. J Mol Biol 413: 628-638. doi: 10.1016/j.jmb.2011.08.057
![]() |
[42] |
Shibata Y, White JF, Serrano-Vega MJ, et al. (2009) Thermostabilization of the neurotensin receptor NTS1. J Mol Biol 390: 262-277. doi: 10.1016/j.jmb.2009.04.068
![]() |
[43] |
Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struc Biol 19: 386-395. doi: 10.1016/j.sbi.2009.07.004
![]() |
[44] |
Warne T, Serrano-Vega MJ, Tate CG, et al. (2009) Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expres Purif 65: 204-213. doi: 10.1016/j.pep.2009.01.014
![]() |
[45] |
Aleksandrov AA, Kota P, Cui L, et al. (2012) Allosteric modulation balances thermodynamic stability and restores function of DeltaF508 CFTR. J Mol Biol 419: 41-60. doi: 10.1016/j.jmb.2012.03.001
![]() |
[46] |
Huang P, Stroffekova K, Cuppoletti J, et al. (1996) Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast. Biochim Biophys Acta 1281: 80-90. doi: 10.1016/0005-2736(96)00032-6
![]() |
[47] |
Bear CE, Li CH, Kartner N, et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68: 809-818. doi: 10.1016/0092-8674(92)90155-6
![]() |
[48] | Kogan I, Ramjeesingh M, Li C, et al. (2002) Studies of the molecular basis for cystic fibrosis using purified reconstituted CFTR protein. Method Mol Med 70: 143-157. |
[49] |
Bai J, Swartz DJ, Protasevich, II, et al. (2011) A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PloS One 6: e22577. doi: 10.1371/journal.pone.0022577
![]() |
[50] | O'Ryan L, Rimington T, Cant N, et al. (2012) Expression and purification of the cystic fibrosis transmembrane conductance regulator protein in Saccharomyces cerevisiae. J Vis Exp e3860. |
[51] | Pollock N, Cant N, Rimington T, et al. (2014) Purification of the cystic fibrosis transmembrane conductance regulator protein expressed in Saccharomyces cerevisiae. J Vis Exp e51447. |
[52] |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Method 9: 671-675. doi: 10.1038/nmeth.2089
![]() |
[53] | Sievers F, Wilm A, Dineen D, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. |
[54] |
Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods in molecular biology 1079: 105-116. doi: 10.1007/978-1-62703-646-7_6
![]() |
[55] |
Dawson RJP, Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935-938. doi: 10.1016/j.febslet.2007.01.073
![]() |
[56] | Hammersley A, Svensson S, Hanfland M, et al. (1996) Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Res 14: 325-348. |
[57] | Mateu L, Luzzati V, Vargas R, et al. (1990) Order-disorder phenomena in myelinated nerve sheaths. II. The structure of myelin in native and swollen rat sciatic nerves and in the course of myelinogenesis. J Mol Biol 215: 385-402. |
[58] |
Luzzati V, Tardieu A (1980) Recent developments in solution x-ray scattering. Annu Rev Biophys Bioeng 9: 1-29. doi: 10.1146/annurev.bb.09.060180.000245
![]() |
[59] |
Petoukhov M, Svergun D (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struc Biol 17: 562-571. doi: 10.1016/j.sbi.2007.06.009
![]() |
[60] | Guinier A, Fournet G (1955) Small angle scattering of x-rays. New York: Wiley. |
[61] | Feigin L, Svergun D (1987) Structure analysis by small-angle x.ray and neutron scattering. New York, London: Plenum Press. |
[62] |
Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25: 495-503. doi: 10.1107/S0021889892001663
![]() |
[63] |
Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185. doi: 10.1038/nature05155
![]() |
[64] |
Franke D, Svergun D (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42: 342-346. doi: 10.1107/S0021889809000338
![]() |
[65] |
Tian C, Vanoye CG, Kang C, et al. (2007) Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome. Biochemistry 46: 11459-11472. doi: 10.1021/bi700705j
![]() |
[66] |
Oliver RC, Lipfert J, Fox DA, et al. (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PloS One 8: e62488. doi: 10.1371/journal.pone.0062488
![]() |
[67] |
Yang Z, Wang C, Zhou Q, et al. (2014) Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci 23: 769-789. doi: 10.1002/pro.2460
![]() |
[68] |
Gulati S, Jamshad M, Knowles TJ, et al. (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461: 269-278. doi: 10.1042/BJ20131477
![]() |
[69] |
Lyman CP (1968) Body temperature of exhausted salmon. Copeia 1968: 631-633. doi: 10.2307/1442045
![]() |
[70] | Behrisch HW (1969) Temperature and the regulation of enzyme activity in poikilotherms. Fructose diphosphatase from migrating salmon. Biochem J 115: 687-696. |
[71] | Handeland SO, Berge Ö, Björnsson BT, et al. (2000) Seawater adaptation by out-of-season Atlantic salmon (Salmo salar L.) smolts at different temperatures. Aquaculture 181: 377-396. |
[72] |
Hsu HH, Lin LY, Tseng YC, et al. (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357: 225-243. doi: 10.1007/s00441-014-1883-z
![]() |
[73] | Moorman BP, Inokuchi M, Yamaguchi Y, et al. (2014) The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity. Gen Comp Endocrinol [in press]. |
[74] |
Sucre E, Bossus M, Bodinier C, et al. (2013) Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J Comp Physiol B 183: 83-97. doi: 10.1007/s00360-012-0687-2
![]() |
[75] |
Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7: 426-436. doi: 10.1038/nrm1949
![]() |
[76] |
Venerando A, Franchin C, Cant N, et al. (2013) Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PloS One 8: e74232. doi: 10.1371/journal.pone.0074232
![]() |
1. | Hermano Frid, Kenneth H. Karlsen, Daniel Marroquin, Homogenization of stochastic conservation laws with multiplicative noise, 2022, 283, 00221236, 109620, 10.1016/j.jfa.2022.109620 | |
2. | Mogtaba Mohammed, Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions, 2022, 14, 2073-8994, 1722, 10.3390/sym14081722 | |
3. | Mogtaba Mohammed, Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition, 2023, 8, 2473-6988, 12093, 10.3934/math.2023609 | |
4. | Mogtaba Mohammed, Noor Ahmed, Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains, 2020, 120, 18758576, 123, 10.3233/ASY-191582 | |
5. | Chigoziem Emereuwa, Mogtaba Mohammed, Homogenization of a stochastic model of a single phase flow in partially fissured media, 2022, 129, 18758576, 413, 10.3233/ASY-211735 | |
6. | Mogtaba Mohammed, Waseem Asghar Khan, Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes, 2021, 12, 1756-9737, 10.1142/S1756973721500086 | |
7. | Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168 |