Processing math: 83%
Research article Special Issues

Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies

  • Received: 05 August 2014 Accepted: 24 October 2014 Published: 17 November 2014
  • The cystic fibrosis transmembrane conductance regulator protein (CFTR) is a chloride channel highly expressed in the gills of Salmo salar, with a role in osmoregulation. It shares 60% identity with the human CFTR channel, mutations to which can cause the common genetic disorder cystic fibrosis CF. The expression and localisation of salmon CFTR have been investigated, but the isolated protein has not been extensively characterised. Here we present a protocol for the purification of recombinant salmon CFTR, along with biophysical and structural characterisation of the purified protein. Salmon CFTR was overexpressed in Saccharomyces cerevisiae, solubilised in the detergent LPG-14 and chromatographically purified by nickel-affinity and size-exclusion chromatography methods. Prior to size-exclusion chromatography samples of salmon CFTR had low purity, and contained large quantities of aggregated protein. Compared to size-exclusion chromatography profiles of other orthologues of CFTR, which had less evidence of aggregation, salmon CFTR appeared to have lower intrinsic stability than human and platypus CFTR. Nonetheless, repeated size-exclusion chromatography allowed monodisperse salmon CFTR to be isolated, and multi-angle light scattering was used to determine its oligomeric state. The monodispersity of the sample and its oligomeric state were confirmed using cryo-electron microscopy and small-angle X-ray scattering (SAXS). These data were also processed to calculate a low-resolution structure of the salmon CFTR, which showed similar architecture to other ATP-binding cassette proteins.

    Citation: Naomi L. Pollock, Oscar Moran, Debora Baroni, Olga Zegarra-Moran, Robert C. Ford. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies[J]. AIMS Molecular Science, 2014, 1(4): 141-161. doi: 10.3934/molsci.2014.4.141

    Related Papers:

    [1] Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
    [2] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
    [3] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [4] Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012
    [5] Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009
    [6] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [7] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [8] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [9] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [10] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
  • The cystic fibrosis transmembrane conductance regulator protein (CFTR) is a chloride channel highly expressed in the gills of Salmo salar, with a role in osmoregulation. It shares 60% identity with the human CFTR channel, mutations to which can cause the common genetic disorder cystic fibrosis CF. The expression and localisation of salmon CFTR have been investigated, but the isolated protein has not been extensively characterised. Here we present a protocol for the purification of recombinant salmon CFTR, along with biophysical and structural characterisation of the purified protein. Salmon CFTR was overexpressed in Saccharomyces cerevisiae, solubilised in the detergent LPG-14 and chromatographically purified by nickel-affinity and size-exclusion chromatography methods. Prior to size-exclusion chromatography samples of salmon CFTR had low purity, and contained large quantities of aggregated protein. Compared to size-exclusion chromatography profiles of other orthologues of CFTR, which had less evidence of aggregation, salmon CFTR appeared to have lower intrinsic stability than human and platypus CFTR. Nonetheless, repeated size-exclusion chromatography allowed monodisperse salmon CFTR to be isolated, and multi-angle light scattering was used to determine its oligomeric state. The monodispersity of the sample and its oligomeric state were confirmed using cryo-electron microscopy and small-angle X-ray scattering (SAXS). These data were also processed to calculate a low-resolution structure of the salmon CFTR, which showed similar architecture to other ATP-binding cassette proteins.


    Homogenization theory has become an important tool in the investigation of processes taking place in highly heterogenous media ranging from soil to the most advanced aircraft the construction of which uses composite materials. So far, the problems solved by means of homogenization have mainly involved deterministic partial differential equations (PDEs) and the homogenization of PDEs with randomly oscillating coefficients; the great wealth of results obtained over several decades on problems of diverse classes and methodologies can be found for instance in [9,6,40,41,23,34,22,49,31,17,4,32,36,46,50,33], for the deterministic case and [13,14,18,20,24,37,19,47,48]. for the random case. Fundamental methods were subsequently developed such as the method of asymptotic expansions ([9], [6], [40], [41]), the two scale-convergence ([4], [32]), Tartar method of oscillating test functions and H-convergence ([49]), the asymptotic method for non periodically perforated domains ([23], [46]), G-convergence ([36]) and $ \Gamma $-convergence developed by De Giorgi and his students; relevant extensions of some of these methods, including their random counterparts, have also emerged in recent times. One rapidly developping important branch of homogenization is that of numerical homogenization; see [1], [2].

    However physical processes under random fluctuations are better modelled by stochastic partial differential equations (SPDEs). It was therefore natural to consider homogenization of this very important class of PDEs. Research in this direction is still at its infancy, despite the importance of such problems in both applied and fundamental sciences. Some relevant interesting work have recently been undertaken, mainly for parabolic SPDEs; see for instance [3,8,10,11,21,43,44]. We also note the closely related work [3,25,15,16] dealing with stochastic homogenization for SPDEs with small parameters. The list of references is of course not exhaustive, but a representation of the main trends in the field.

    The homogenization of hyperbolic SPDEs was initiated in [27], [28,29], [30] where the authors studied the homogenization of Dirichlet problems for linear hyperbolic equation with rapidly oscillating coefficients using the method of the two-scale convergence pioneered by Nguetseng in [32] and developed by Allaire in [4] and [5]; they also dealt with the linear Neumann problem by means of Tartar's method and obtained the corresponding corrector results within these settings; [30] deals with a semilinear hyperbolic SPDE by Tartar's method.

    In the present work, following the two-scale convergence method, we investigate the homogenization of a non-linear hyperbolic equation with nonlinear damping, where the intensity of the noise is also nonlinear and is assumed to satisfy Lipschitz's condition. Our investigation relies on crucial compactness results of analytic (Aubin-Lions-Simon's type) and probabilistic (Prokhorov and Skorokhod fundamental theorems) nature. It should be noted that these methods extend readily to the case when Lipschitz condition on the intensity of the noise is replaced by a mere continuity. In contrast to the linear and the semilinear cases considered in previous papers, the type of nonlinear damping and nonlinear noise in the present paper leads to new challenges in obtaining uniform a priori estimates as well as in the passage to the limit. It should be noted that the process of damping in mechanical systems is a crucial stabilizing factor when the system is subjected to very extreme tasks; mathematically this translates in some regularizing effects on the solution of the governing equations.

    We are concerned with the homogenization of the initial boundary value problem with oscillating data, referred to throughout the paper as problem $(P_{\epsilon }) $:

    $ duϵtdiv(Aϵ(x)uϵ)dt+B(t,uϵt)dt=f(t,x,x/ε,uϵ)dt+g(t,x,x/ε,uϵt)dW in (0,T)×Quϵ=0 on(0,T)×Q,uϵ(0,x)=aϵ(x), uϵt(0,x)=bϵ(x) in Q, $

    where $ u_{t}^{\epsilon } $ denotes the partial derivative $ \partial u^{\epsilon }/\partial t $ of $ u^{\epsilon } $ with respect to $ t $, $ \epsilon >0 $ is a sufficiently small parameter which ultimately tends to zero, $ T>0 $, $ Q $ is an open and bounded (at least Lipschitz) subset of $ \mathbb{R}^{n} $, $ W = (W(t))\left( t\in \lbrack 0,T]\right) $ an $ m $-dimensional standard Wiener process defined on a given filtered complete probability space $ (\Omega ,\mathcal{F},\mathbb{P},\left( \mathcal{F}_{t}\right) _{0\leq t\leq T}) $; $ \mathbb{E} $ denotes the corresponding mathematical expectation. For a physical motivation, we refer to [27,28], where the authors discussed real life processes of vibrational nature subjected to random fluctuations; for instance the nonlinear term $ B(t,u_{t}^{\epsilon }) $ stands for damping effects, the term $ f(t,x,x/\varepsilon ,\nabla u^{\epsilon }) $ is the oscillating regular part of the force acting on the system and depending linearly on $ \nabla u^{\epsilon } $, while the term $ g(t,x,x/\varepsilon ,u_{t}^{\epsilon })dW $ represents the oscillating random component of the force; it depends on $ u_{t}^{\varepsilon } $. More precise assumptions on the data will be provided shortly.

    Few words about the difference between the current work and previous works by the authors on homogenization of SPDEs. Compared to [27,28,29,30], the structure of problem ($ P_{\varepsilon } $) is dominated by nonlinear terms such as the damping $ B(t,u_{t}^{\epsilon }) $, leading to $ L^{p}\left( Q\right) $-like norms whose combination with the predominently $ L^{2} $-like norms coming from the other terms requires special care, both in the derivation of the a priori estimates, as well as in the passage to the limit. Though, two-scale convergence method is also used in the paper [27], the model there is essentially linear. The works [43,44] deal with stochastic parabolic equations in domains with fine grained boundaries, where no conditions of periodicity hold and the methodology implemented there is a stochastic counterpart of Kruslov-Marchenko's [23] and Skrypnik's [46] homogenization theories based on potiential theory; for instance the homogenized problems in [43,44] involve an additional term of capacitary type. The investigation of a hyperbolic counterpart of these works has still not been undertaken and is somehow overdue. Finally, compared with the above mentioned works, the current paper involves a simpler proof of the convergence of the stochastic nonlinear term (its integral) thanks to a blending of two-scale convergence with a regularizing argument and a result on convergence of stochastic integrals due to Rozovskii [39,Theorem 4,P 63].

    We now introduce some functions spaces needed in the sequel.

    For $ 2\leq p\leq \infty , $ we define the Sobolev space

    $ W1,p(Q)={ϕ:ϕLp(Q),ϕxjLp(Q),j=1,...,n}, $

    where the derivatives exist in the weak sense, and $ L^{p}(Q) $ is the usual Lebesgue space. For $ p = 2,\,\,W^{1,2}(Q) $ is denoted by $ H^{1}(Q) $. By $W_{0}^{1,p}(Q) $ we denote the space of elements $ \psi \in W^{1,p}(Q) $ such that $ \psi |_{\partial Q} = 0 $ with the $ W^{1,p}(Q) $-norm. By $ (\phi ,\psi ) $ we denote the inner product in $ L^{2}(Q) $ and by $ \langle .,.\rangle $ we denote the duality pairing between $ W_{0}^{1,p}(Q) $ and $ W^{-1,p^{\prime }}(Q) $ ($ \frac{1}{p}+\frac{1}{p^{\prime }} $ = 1). We also consider the following spaces$ ,\ H(Q) = \{u\in H^{1}(Q)|\mathcal{M}_{Q}(u) = 0\} $ where $\mathcal{M}_{Q}(u) $ is the mean value of $ u $ over $ Q $, $ C_{{\text{per}}}^{\infty }(Y) $ the subspace of $ C^{\infty }(\mathbb{R}^{n}) $ of $ Y $- periodic functions where $ Y = (0,l_{1})\times ...\times (0,l_{n}) $. Let $ H_{{\text{per}}}^{1}(Y) $ be the closure of $ C_{{\text{per}}}^{\infty }(Y) $ in the $ H^{1} $-norm, and $H_{{\text{per}}}(Y) $ the subspace of $ H_{{\text{per}}}^{1}(Y) $ with zero mean on $ Y $.

    For a Banach space $ X $, and $ 1\leq p\leq \infty $, we denote by $L^{p}(0,T;X) $ the space of measurable functions $ \phi :t\in \lbrack 0,T]\longrightarrow \phi (t)\in X $ and $ p $-integrable with the norm

    $ ||ϕ||Lp(0,T;X)=(T0||ϕ||pXdt)1p,0p<. $

    When $ p = \infty $, $ L^{\infty }(0,T;X) $ is the space of all essentially bounded functions on the closed interval $ [0,T] $ with values in $ X $ equipped with the norm

    $ ϕL(0,T;X)=esssup[0,T]ϕX<. $

    For $ 1\leq q,p<\infty $, $ L^{q}\left(\Omega ,\mathcal{F},\mathbb{P},L^{p}(0,T;X)\right) $ ($ (\Omega ,\mathcal{F},\mathbb{P}) $ is a probability space with a filtration $ \left\{ \mathcal{F}_{t}\right\} _{t\in \left[ 0,T\right] } $) consists of all random functions $ \phi :(\omega ,t)\in \Omega \times \lbrack 0,T]\longrightarrow \phi (\omega ,t,\cdot)\in X $ such that $ \phi (\omega ,t,x) $ is progressively measurable with respect to $ (\omega ,t) $. We endow this space with the norm

    $ ||ϕ||Lq(Ω,F,P;Lp(0,T;X))=(E||ϕ||qLp(0,T;X))1/q. $

    When $ p = \infty $, the norm in the space $ L^{q}(\Omega ,\mathcal{F},\mathbb{P},L^{\infty }(0,T;X)) $ is given by

    $ ||ϕ||Lq(Ω,F,P;L(0,T;X))=(E||ϕ||qL(0,T;X))1/q. $

    It is well known that under the above norms, $ L^{q}(\Omega ,\mathcal{F}, \mathbb{P},L^{p}(0,T;X)) $ is a Banach space.

    We now impose the following hypotheses on the data.

    $ ({\rm{A1}}) $ $ A_{\epsilon}(x) = A(\frac{x}{\epsilon}) = (a_{i,j}(\frac{x}{\epsilon }))_{1\leq i,j\leq n} $ is an $ n\times n $ symmetric matrix, the components $ a_{i,j} $, are $ Y- $periodic and there exists a constant $ \alpha >0 $ such that

    $ ni,j=1ai,jξiξjαni=1ξ2i for, ξRn,ai,jL(Rn),i,j=1,,n. $

    $ ({\rm{A2}}) $ $ B(t,\cdot): u \in W_{0}^{1,p}(Q)\longrightarrow W^{-1,p^{\prime }}(Q) $ such that

    (ⅰ) $ B(t,\cdot) $ is a hemicontinuous operator, i.e. $ \lambda \longrightarrow \langle B(t,u+\lambda v), w\rangle $ is a continuous operator for all $ t \in (0,T) $ and all $ u,v,w \in W_{0}^{1,p}(Q) $;

    (ⅱ) There exists a constant $ \gamma >0 $ such that $ \langle B(t,u),u\rangle \geq \gamma \|u\|^{p}_{W_{0}^{1,p}(Q)} $ for $ a.e. \,\,t \in (0,T) $ and all $ u \in W_{0}^{1,p}(Q); $

    (ⅲ) There exists a positive constant $ \beta $ such that $ \| B(t,u)\|_{W^{-1,p^{\prime }}(Q)} \leq \beta \|u\|^{p-1}_{W_{0}^{1,p}(Q)} $ for $ a.e. \,\,t \in (0,T) $ and all $ u \in W_{0}^{1,p}(Q); $

    (ⅳ) $ \langle B(t,u)-B(t,v),u-v\rangle \geq 0, $ for $ a.e. \,\, t \in (0,T) $ and all $ u,v \in W_{0}^{1,p}(Q); $

    (ⅴ) The map $ t\longrightarrow B(t,u) $ is Lebesgue measurable in $ (0,T) $ with values in $ W^{-1,p^{\prime }}(Q) $ for all $ u\in W_{0}^{1,p}(Q) $.

    (A3) We assume that $ f(t,x,y,w) $ is measurable with respect to$ \ \left( x,y\right) $ for any $ \left( t,w\right) \in (0,T)\times \mathbb{R}^{n} $, continuous with respect to $ \left( t,w\right) $ for almost every $ \left( x,y\right) \in Q\times Y $, and $ Y $-periodic with respect to $ y $. Also there exists an $ \mathbb{R}^{n} $-valued function $ F = \left( F_{i}\left( t,x,y\right) \right) _{1\leq i\leq n} $ such that $ f(t,x,y,w) = F(t,x,y)\cdot w $. Furthermore,

    $ ||f(t,x,xε,w)||L2(Q)C||w||L2(Q),  $

    for any $ \left( t,w,\varepsilon \right) \in (0,T)\times L^{2}\left( Q\right) \times \left( 0,\infty \right) $, with the constant $ C $ independent of $ \varepsilon $ and $ t $. A sufficient requirement for this condition to hold is that $ F_{i}\left( t,\cdot \right) \in L^{\infty }\left( Q\times Y\right) $ for any $ t\in (0,T) $.

    (A4) $ a^{\epsilon }(x)\in H_{0}^{1}\left( Q\right) $, $ b^{\epsilon }(x)\in L^{2}\left( Q\right) $, for any $ \epsilon >0 $.

    (A5) $ g\left( t,x,y,\phi \right) $ is an $ m $-dimensional vector-function whose components $ g_{j}\left( t,x,\right. $ $ \left.y,\phi \right) $ satisfy the following conditions:

    ● $ g_{j}\left( t,x,y,\phi \right) $ is $ Y $-periodic with respect to $ y $, measurable with respect to $ x $ and $ y $ for almost all $ t\in \left( 0,T\right) $ and for all $ \phi \in L^{2}\left( Q\right) $,

    ●  $ g_{j}\left( t,x,y,\phi \right) $ is continuous with respect to $ \phi $ for almost all $ \left( t,x,y\right) \in \left( 0,T\right) \times Q\times Y $, and there exists a positive constant $ C $ independent of $ t $, $ x $ and $ y $, such that

    $ ||gj(t,x,y,ϕ)||L2(Q)C(1+||ϕ||L2(Q)), $ (1)

    and

    ● $ g_{j}\left( t,x,y,\cdot \right) $ satisfies Lipschitz's condition

    $ |gj(t,x,y,s1)gj(t,x,y,s2)|L|s1s2|, $ (2)

    with the constant $ L $ independent of $ t $, $ x $ and $ y. $

    If $ \left\vert \left\vert g_{j}\left( t,x,y,0\right) \right\vert \right\vert _{L^{2}\left( Q\times Y\right) }<\infty $ for any $ i = 1,...,m $ and any $ t\in \left( 0,T\right) $, the condition (1) is redundant since it follows from the Lipschitz condition (2).

    From now on we use the following oscillating functions

    $ fϵ(t,x,w)=f(t,x,xε,w), gεj(t,x,ϕ)=gi(t,x,xε,ϕ). $

    We now introduce our notion of solution; namely the strong probabilistic one.

    Definition 1.1. We define the strong probabilistic solution of the problem $ (P_{\epsilon }) $ on the prescribed filtered probability space $ \left( \Omega ,\mathcal{F},\mathbb{P},\left\{ \mathcal{F}_{t}\right\} _{t\in \left[ 0,T \right] }\right) $ as a process

    $ uϵ:Ω×[0,T]H10(Q), $

    satisfying the following conditions:

    (1) $ u^{\epsilon },u_{t}^{\epsilon } $ are $ \mathcal{F}_{t}-\text{measurable} $,

    (2)

    $ uϵL2(Ω,F,P;C(0,T;H10(Q)))uϵtL2(Ω,F,P;C(0,T;L2(Q)))Lp(Ω,F,P;Lp(0,T;W1,p0(Q))), $

    (3) $ \forall t\in \left[ 0,T\right] $, $ u^{\epsilon }(t,.) $ satisfies the identity

    $ (uϵt(t,.),ϕ)(uϵt(0,.),ϕ)+t0(Aϵuϵ(s,.),ϕ)ds+t0Bϵ(s,uϵt),ϕds=t0(fϵ(s,.,uϵ),ϕ)ds+(t0gϵ(s,.,uϵt)dW(s),ϕ),ϕCc(Q). $

    The problem of existence and uniqueness of a strong probabilistic solution of $ (P_{\epsilon}) $ was dealt with in [38]. The relevant result is

    Theorem 1.2. Suppose that the assumptions $ (A1)-(A5) $ hold and let $ p\geq 2 $. Then for fixed $ \epsilon >0 $, the problem $ \left( P_{\epsilon }\right) $ has a unique strong probabilistic solution $ u^{\epsilon } $ in the sense of Definition 1.1.

    Our goal is to show that as $ \epsilon $ tends to zero the sequence of solutions $ \left(u^{\epsilon } \right) $ converge in a suitable sense to a solution $ u $ of the following SPDE

    $ (P){dutdivA0udt+B(t,ut)dt=˜f(t,x,u)dt+˜g(t,x,ut)d˜W in Q×(0,T),u=0 onQ×(0,T),u(0,x)=a(x)H10(Q),ut(0,x)=b(x)L2(Q), $

    where $ A_{0} $ is a constant elliptic matrix defined by

    $ A0=1|Y|Y(A(y)A(y)χ(y))dy, $

    $ \chi (y)\in H_{\text{per}}(Y) $ is the unique solution of the following boundary value problem:

    $ {divy(A(y)yχ(y))=yA(y)inYχisYperiodic, $

    for any $ \lambda \in \mathbb{R}^{n} $ and $ Y = (0,l_{1})\times ...\times (0,l_{n}) $,

    $˜f(t,x,u)=1|Y|YF(t,x,y)[xu(t,x)+yu1(t,x,y)]dy,˜g(t,x,ut)=1|Y|Yg(t,x,y,ut)dy,$

    $ a $ and $ b $ are suitable limits of the oscillating initial conditions $a^{\epsilon } $ and $ b^{\epsilon } $, respectively, $ \tilde{W} $ is an $ m $-dimensional Wiener process

    Here and in the sequel, $ C $ will denote a constant independent of $ \epsilon $. In the following lemma, we obtain the energy estimates associated to problem $ \left( P_{\epsilon}\right) $.

    Lemma 2.1. Under the assumptions $ (A1) $-$ (A5) $, the solution $ u^{\epsilon } $ of $ (P_{\epsilon }) $ satisfies the following estimates:

    $ Esup0tTuϵ(t)2H10(Q)C,Esup0tTuϵt(t)2L2(Q)C, $ (3)

    and

    $ ET0uϵt(t)pW1,p0(Q)C. $ (4)

    Proof. The following arguments are used modulo appropriate stopping times. It$ \hat{o} $'s formula and the symmetry of $ A $ give

    $ d[uϵt2L2(Q)+(Aϵuϵ,uϵ)]+2B(t,uϵt),uϵt)dt=2(fϵ(t,x,uϵ)),uϵt)dt+2(gϵ(t,x,uϵt),uϵt)dW+mj=0gϵj(t,x,uϵt)2L2(Q)dt. $

    Integrating over $ (0,t),\,\,t\leq T $, we get

    $ uϵt(t)2L2(Q)+(Aϵuϵ(t),uϵ(t))+2t0B(s,uϵt(s)),uϵt(s))ds=uϵ12L2(Q)+(Aϵuϵ0,uϵ0)+2t0(fϵ(s,x,uϵ),uϵt)ds+2t0(gϵ(s,x,uϵt),uϵt)dW+mj=0t0gϵj(s,x,uϵt)2L2(Q)ds. $

    Using the assumptions $ (A1) $, $ (A2)(ii) $, $ (A5) $ and taking the supremum over $ t\in \lbrack 0,T] $ and the expectation on both sides of the resulting relation, we have

    $ E[sup0tTuϵt(t)2L2(Q)+sup0tTuϵ(t)2H10(Q)+2γt0uϵt(s)pW1,p0(Q)ds]C[C1+t0uϵt(t)2L2(Q)dt+2t0|(fϵ(s,x,uϵ),uϵt)|ds+2sup0st|s0(gϵ(σ,x,uϵt),uϵt)dW|], $ (5)

    where

    $ C1=C(T)+uϵ12L2(Q)+uϵ02H10(Q). $

    Using assumptions (A3), thanks to Cauchy-Schwarz's and Young's inequalities, we have

    $ ET0|(fϵ(s,x,uϵ),uϵt)|dtET0uϵL2(Q)uϵtL2(Q)dtEsup0tTuϵt(t)L2(Q)T0uϵL2(Q)dtϱEsup0tTuϵt(t)2L2(Q)+C(ϱ)T(T0uϵ2L2(Q)dt), $ (6)

    where $ \varrho >0 $. Thanks to Burkholder-Davis-Gundy's inequality, followed by Cauchy-Schwarz's inequality, the last term in 5 can be estimated as

    $ Esup0st|s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW(σ)|CE(t0(gϵ(σ,x,uϵt(σ)),uϵt(σ))2dσ)12CE(sup0stuϵt(s)L2(Q)t0gϵ(σ,x,uϵt(σ))2L2(Q)dσ)12. $

    Again using Young's inequality and the assumptions $ (A5) $, we get

    $ 2Esup0st|s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW|ϱEsup0stuϵt(s)2L2(Q)+C(ϱ)T0gϵ(σ,uϵt(σ))2L2(Q)dσϱEsup0stuϵt(s)2L2(Q)+C(ϱ)(T)+C(ϱ)T0uϵt(σ)2L2(Q)dσ, $ (7)

    for $ \varrho >0 $. Combining the estimates 6, 7, 5 and assumption $ (A5) $ and taking $ \varrho $ sufficiently small, we infer that

    $ Esup0tTuϵt(t)2L2(Q)+Esup0tTuϵ(t)2H10(Q)+CEt0uϵt(s)pW1,p0(Q)dsC(T,C1,C2)+CEt0[uϵt(s)2L2(Q)+uϵ(s)2H10(Q)]dt, $ (8)

    Using Gronwall's inequality, we have

    $ E[sup0tTuϵt(t)2L2(Q)+sup0tTuϵ(t)2H10(Q)]C, $

    and subsequently

    $ Et0uϵt(s)pW1,p0(Q)dsC. $

    The proof is complete.

    The following lemma will be of great importance in proving the tightness of probability measures generated by the solution of problem $ (P_{\epsilon}) $ and its time derivative.

    Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and let $ p\geq 2 $. Then there exists a constant $ C>0 $ such that

    $ Esup|θ|δT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCδp/p, $

    for any $ \epsilon >0 $ and $ 0<\delta <1 $.

    Proof.. $ \ \ $We consider that $ div\left( A_{\epsilon }\nabla \phi \right) $ has been restricted to the space $ W^{-1,p^{\prime }}(Q) $ and that the restriction induces a bounded mapping from $ W_{0}^{1,p}(Q) $ to $W^{-1,p^{\prime }}(Q) $.

    Assume that $ u_{t}^{\epsilon } $ is extended by zero outside the interval $[0,T] $ and that $ \theta >0 $. We write

    $ uϵt(t+θ)uϵt(t)=t+θtdiv(Aϵuϵ)dst+θtB(s,uϵt(s))ds+t+θtfϵ(s,x,uϵ)ds+t+θtgϵ(s,uϵt(s))dW(s). $

    Then

    $ uϵt(t+θ)uϵt(t)W1,p(Q)t+θtdiv(Aϵuϵ)dsW1,p(Q)+t+θtB(s,uϵt(s))dsW1,p(Q)+t+θtfϵ(s,x,uϵ)dsW1,p(Q)+t+θtgϵ(s,uϵt(s))dW(s)W1,p(Q). $ (9)

    Firstly, thanks to assumption $ (A1) $, we have

    $ t+θtdiv(Aϵuϵ)dsW1,p(Q)supϕW1,p0(Q):ϕ=1|t+θtdiv(Aϵuϵ)ds,ϕW1,p(Q),W1,p0(Q)|=supϕW1,p0(Q):ϕ=1Qt+θtAϵuϵϕdxdsCsupϕW1,p0(Q):ϕ=1t+θtuϵLp(Q)ϕLp(Q)dsCt+θtuϵL2(Q)dsCθ1/2(t+θtuϵ2L2(Q)ds)1/2, $ (10)

    where we have used the fact that $ p^{\prime }\leq 2 $.

    Secondly, we use assumption $ (A2)(iii), $ estimate 4 and H$ \ddot{o} $lder's inequality to get

    $ t+θtB(s,uϵt(s))dsW1,p(Q)supϕW1,p0(Q):ϕ=1|t+θtB(s,uϵt(s))ds,ϕW1,p(Q),W1,p0(Q)|supϕW1,p0(Q):ϕ=1t+θtB(s,uϵt(s))W1,p(Q)ϕW1,p0(Q)dsCθ1/p(t+θtuϵtpW1,p0(Q)ds)1/p. $ (11)

    Thirdly,

    $ t+θtfϵ(s,x,uϵ)dsW1,p(Q)t+θtfϵ(s,x,uϵ)dsL2(Q)Ct+θtuϵL2(Q)θ1/2(t+θtuϵ2L2(Q)ds)1/2, $ (12)

    where we have used assumption (A3).

    Using 10, 11 and 12 in 9 raised to the power $ p^{\prime } $, for fixed $ \delta >0 $, we get

    $ Esup0<θδT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCEsup0<θδθp/2T0(t+θtuϵ2L2(Q)ds)p/2dt+CEsup0<θδθp/pT0t+θtuϵtpW1,p0(Q)dsdt+Esup0<θδT0t+θtgϵ(s,uϵt(s)dW(s)pW1,p(Q)dt. $ (13)

    We now estimate the term involving the stochastic integral.

    We use the embedding

    $ W1,p0(Q)L2(Q)W1,p(Q) $

    to get the estimate

    $ Esup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pW1,pdtEsup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pL2(Q)dt. $ (14)

    Thanks to Fubini's theorem and H$ \ddot{o} $lder's inequality, we have

    $ ET0sup0<θδ||t+θtgϵ(s,uϵt(s)dW(s)||pL2(Q)dtT0(QEsup0<θδ(t+θtgϵ(s,uϵt(s))dW(s))2dx)p/2dtT0(Et+δt||gϵ(s,uϵt(s)||2L2(Q)ds)p/2dt, $ (15)

    where we have used Burkholder-Davis-Gundy's inequality. We now invoke assumption $ (A5) $ and estimate 3 to deduce from 14 and 15 that

    $ Esup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pW1,pdtT0[Et+δt(1+||uϵt(s)||2L2(Q))ds]p/2dtCTδp/2. $ (16)

    For the first term in the right-hand side of 13, we use Fubini's theorem, H$ \ddot{o} $lder's inequality and estimate 3 to get

    $ Esup0<θδθp/2T0(t+θtuϵ2L2(Q)ds)p/2δp/2T0(Et+δtuϵ2L2(Q)ds)p/2CTδp. $ (17)

    The second term on the right hand side of 13 is estimated using 4 and we get

    $ Esup0<θδθp/pT0t+θtuϵtpW1,p0(Q)dsdtδp/pT0ET0uϵtpW1,p0(Q)dsdtCδp/p. $ (18)

    Combining 13, 16, 17 and 18, and taking into account the fact that the similar estimates hold for $ \theta <0 $, we conclude that

    $ Esup|θ|δT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCδp/p. $

    This completes the proof.

    The following Lemmas are needed in the proof of the tightness and the study of the properties of the probability measures generated by the sequence $(W,u^{\epsilon },u_{t}^{\epsilon }) $.

    We have from [45]

    Lemma 3.1. Let $ B_{0} $, $ \ B $ and $ B_{1} $ be some Banach spaces such that $ B_{0}\subset B $ $ \subset B_{1} $ and the injection $ B_{0}\subset B $ is compact. For any $ 1\leq p,q\leq \infty $, and $ 0<s\leq 1 $ let $ E $ be a set bounded in $ L^{q}(0,T;B_{0})\cap N^{s,p}(0,T;B_{1}) $, where

    $ Ns,p(0,T;B1)={vLp(0,T;B1):suph>0hsv(t+h)v(t)Lp(0,Tθ,B1)<}. $

    Then $ E $ is relatively compact in $ L^{p}(0,T;B) $

    The following two lemmas are collected from [12]. Let $ \mathcal{S} $ be a separable Banach space and consider its Borel $\sigma $-field to be $ \mathcal{B}(\mathcal{S}) $. We have

    Lemma 3.2. (Prokhorov) A sequence of probability measures $ \left( \Pi _{n}\right) _{n\in \mathbb{N}} $ on $ (\mathcal{S}, \mathcal{B}(\mathcal{S} )) $ is tight if and only if it is relatively compact.

    Lemma 3.3. (Skorokhod) Suppose that the probability measures $ \left( \mu _{n}\right) _{n\in \mathbb{N}} $ on $ (\mathcal{S}, \mathcal{B}(\mathcal{S})) $ weakly converge to a probability measure $ \mu $. Then there exist random variables $ \xi ,\xi _{1},\dots \xi _{n},\dots $, defined on a common probability space $ (\Omega ,\mathcal{F},P) $, such that $ \mathcal{L} (\xi _{n}) = \mu _{n} $ and $ \mathcal{L}(\xi ) = \mu $ and

    $ limnξn=ξ,Pa.s.; $

    the symbol $ \mathcal{L}\left( \cdot \right) $ stands for the law of $ \cdot $.

    Let us introduce the space $ Z = Z_{1}\times Z_{2} $, where

    $ Z1={ϕ:sup0tTϕ(t)2H10(Q)C1,sup0tTϕ(t)2L2(Q)C1}, $

    and

    $ Z2={ψ:sup0tTψ(t)2L2(Q)C3,T0ψ(t)pW1,p0(Q)dtC4,T0ψ(t+θ)ψ(t)pW1,p(Q)C5θ1/p}. $

    We endow $ Z $ with the norm

    $ (ϕ,ψ)Z=ϕZ1+ψZ2=sup0tTϕ(t)L2(Q)+sup0tTϕH10(Q)+sup0tTψ(t)2L2(Q)+(T0ψ(t)pW1,p0(Q)dt)1p+(supθ>01θ1/pT0ψ(t+θ)ψ(t)pW1,p(Q))1p. $

    Lemma 3.4. The above constructed space $ Z $ is a compact subset of $ L^{2}(0,T;L^{2}(Q))\times L^{2}(0,T;L^{2}(Q)). $

    Proof. Lemma 3.1 together with suitable arguments due to Bensoussan [7] give the compactness of $ Z_{1} $ and $ Z_{2} $ in $ L^{2}(0,T;L^{2}(Q)) $.

    We now consider the space $ \mathcal{X} = C(0,T;\mathbb{R}^{m})\times L^{2}(0,T;L^2(Q)) \times L^{2}(0,T;L^{2}(Q)) $ and $ \mathcal{B}(\mathcal{X}) $ the $ \sigma - $algebra of its Borel sets. Let $ \Psi _{\epsilon } $ be the $ (\mathcal{X},\mathcal{B}(\mathcal{X})) $-valued measurable map defined on $(\Omega ,\mathcal{F},\mathbb{P}) $ by

    $ Ψϵ:ω(W(ω),uϵ(ω),uϵt(ω)). $

    Define on $ (\mathcal{X},\mathcal{B}(\mathcal{X})) $ the family of probability measures $ \left(\Pi _{\epsilon } \right) $ by

    $ Πϵ(A)=P(Ψ1ϵ(A))for allAB(X). $

    Lemma 3.5. The family of probability measures $ \{\Pi _{\epsilon }:\epsilon >0\} $ is tight in $ (\mathcal{X},\mathcal{B}(\mathcal{X})). $

    Proof. We carry out the proof following a long the lines of the proof of [27,lemma 7]. For $ \delta >0 $, we look for compact subsets

    $ WδC(0,T;Rm),DδL2(0,T;L2(Q)),EδL2(0,T;L2(Q)) $

    such that

    $ Πϵ{(W,uϵ,uϵt)Wδ×Dδ×Eδ}1δ. $

    This is equivalent to

    $ P{ω:W(,ω)Wδ,uϵ(,ω)Dδ,uϵt)(,ω)Eδ}1δ, $

    which can be proved if we can show that

    $ P{ω:W(,ω)Wδ}δ,P{uϵ(,ω)Dδ}δ,P{uϵt)(,ω).Eδ}δ. $

    Let $ L_{\delta } $ be a positive constant and $ n\in \mathbb{N} $. Then we deal with the set

    $ Wδ={W()C(0,T;Rm):supt,s[0,T]n|W(s)W(t)|Lδ:|st|Tn1}. $

    Using Arzela's theorem and the fact that $ W_{\delta } $ is closed in $ C(0,T;\mathbb{R}^{m}) $, we ensure the compactness of $ W_{\delta } $ in $ C(0,T;\mathbb{R}^{m}) $. From Markov's inequality

    $ P(ω:η(ω)α)E|η(ω)|kαk, $ (19)

    where $ \eta $ is a nonnegative random variable and $ k $ a positive real number, we have

    $ P{ω:W(,ω)Wδ}P[n=1(supt,s[0,T]|W(s)W(t)|Lδn:|st|Tn1)]n=0P[n6j=1(supTjn6tT(j+1)n6|W(s)W(t)|Lδn)]. $

    But

    $ \mathbb{E}\left( W_{i}(t)-W_{i}(s)\right) ^{2k} = (2k-1)!!(t-s)^{k},\,\,\,k = 1,2,3,\dots , $

    where $ (2k-1)!! = 1\cdot 3\cdot \cdot \cdot (2k-1) $ and $ W_{i} $ denotes the i-th component of $ W $.

    For $ k = 4 $, we have

    $ P{ω:W(.,ω)Wδ}n=0n6j=1(nLδ)4E(supTjn6tT(j+1)n6|W(t)W(jTn6)|4)Cn=0n6j=1(nLδ)4(Tn6)2=CT2(Lδ)4n=0n2. $

    Choosing $ (L_{\delta })^{4} = \dfrac{(\sum n^{-2})^{-1}}{3CT^{2}\delta } $, we have

    $ P{ω:W(.,ω)Wδ}δ3. $

    Now, let $ K_{\delta },\,\,M_{\delta } $ be positive constants. We define

    $ Dδ={z:sup0tTz(t)2H10(Q)Kδ,sup0tTz(t)2L2(Q)Mδ}. $

    Lemma 3.4 shows that $ D_{\delta } $ is compact subset of $L^{2}(0,T;L^{2}(Q)), $ for any $ \delta >0 $. It is therefore easy to see that

    $ P{uϵDδ}P{sup0tTuϵ(t)2H10(Q)Kδ}+P{sup0tTuϵt(t)2L2(Q)Mδ}. $

    Markov's inequality 19 gives

    $ P{uϵDδ}1KδEsup0tTuϵ(t)2H10(Q)+1MδEsup0tTuϵt(t)2L2(Q)CKδ+CMδ=δ3. $

    for $ K_{\delta } = M_{\delta } = \frac{6C}{\delta }. $

    Similarly, we let $ \mu _{n},\,\,\nu _{m} $ be sequences of positive real numbers such that $ \mu _{n},\,\,\nu _{n}\rightarrow 0 $ as $ n\rightarrow \infty $, $ \sum_{n}\frac{\mu _{n}^{p^{\prime }/p}}{\nu _{n}}<\infty $ (for the series to converge we can choose $ \nu _{n} = 1/n^{2} $, $ \mu _{n} = 1/n^{\alpha } $, with $ \alpha p^{\prime }/p>4 $) and define

    $ Bδ={v:sup0tTv(t)2L2(Q)Kδ,T0v(t)pW1,p0(Q)dtLδ,supθμnT0v(t+θ)v(t)pW1,p(Q)dtνnMδ}. $

    Owing to Proposition 3.1 in [7], $ B_{\delta } $ is a compact subset of $ L^{2}(0,T;L^{2}(Q)) $ for any $ \delta >0 $. We have

    $ P{uϵtBδ}P{sup0tTuϵt(t)2L2(Q)Kδ}+P{T0uϵt(t)pW1,p0(Q)dtLδ}+P{supθμnT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtνnMδ}. $

    Again thanks to 19, we obtain

    $ P{uϵtBδ}1KδEsup0tTuϵt(t)2L2(Q)+1LδET0uϵt(t)pW1,p0(Q)dt+n=01νnMδE{supθμnT0uϵt(t+θ)uϵt(t)pW1,p(Q)dt}CKδ+CLδ+CMδμp/pnνn=δ3δ, $

    for $ K_{\delta }^{\prime } = \frac{9C}{\delta } $, $ L_{\delta }^{\prime } = \frac{ 9C}{\delta } $ and $ M_{\delta }^{\prime } = \dfrac{9C\sum \frac{\mu _{n}^{p^{\prime }/p}}{\nu _{n}}}{\delta } $. This completes the proof.

    From Lemmas 3.2 and 3.5, there exist a subsequence $ \{\Pi _{\epsilon _{j}}\} $ and a measure $ \Pi $ such that

    $ ΠϵjΠ $

    weakly. From lemma 3.3, there exist a probability space $ (\tilde{\Omega},\tilde{\mathcal{F}},\tilde{\mathbb{P}}) $ and $ \mathcal{X} $-valued random variables $ (W_{\epsilon _{j}},u^{\epsilon _{j}},u_{t}^{\epsilon _{j}}),\,\,(\tilde{W},u,u_{t}) $ such that the probability law of $(W_{\epsilon _{j}},u^{\epsilon _{j}}, u_{t}^{\epsilon _{j}}) $ is $ \Pi _{\epsilon _{j}} $ and that of $ (\tilde{W},u,u_{t}) $ is $ \Pi $. Furthermore, we have

    $ (Wϵj,uϵj,uϵjt)(˜W,u,ut)inX,˜Pa.s.. $ (20)

    Let us define the filtration

    $ ~Ft=σ{˜W(s),u(s),ut(s)}0st. $

    We show that $ \tilde{W}(t) $ is an $ \tilde{\mathcal{F}_{t}} $-wiener process following [7] and [42]. Arguing as in [42], we get that $ (W_{\epsilon _{j}},u^{\epsilon _{j}},u_{t}^{\epsilon _{j}}) $ satisfies $ \tilde{\mathbb{P}}-a.s. $ the problem $ \left( P_{\epsilon _{j}}\right) $ in the sense of distributions.

    In this section, we state some key facts about the powerful two-scale convergence invented by Nguetseng [32].

    Definition 4.1. A sequence $ \{v^{\epsilon}\} $ in $ L^{p}(0,T;L^p(Q))(1<p<\infty) $ is said to be two-scale converge to $ v = v(t,x,y),\,\ v\in L^{p}(0,T;L^p(Q\times Y)), $ as $ \epsilon \rightarrow 0 $ if for any $ \psi = \psi(t,x,y)\in L^p((0,T)\times Q ;C_{\text{per}}^{\infty }(Y)) $, one has

    $ limϵ0T0Qvϵψϵdxdt=1|Y|T0Q×Yv(t,x,y)ψ(t,x,y)dydxdt, $ (21)

    where $ \psi^{\epsilon}(t,x) = \psi(t,x, \frac{x}{\epsilon}) $. We denote this by $ \{v^{\epsilon}\}\rightarrow v \,\,\,\text{2-s in}\,\,\, L^{p}(0,T;L^p(Q)) $.

    The following result deals with some of the properties of the test functions which we are considering; it is a modification of Lemma 9.1 from [17,p.174].

    Lemma 4.2. (i) Let $ \psi \in L^{p}((0,T)\times Q;C_{per}(Y)),\,\,1<p<\infty $. Then $ \psi (\cdot,\cdot,\frac{\cdot}{\epsilon })\in L^{p}(0,T;L^{p}(Q)) $ with

    $ ψ(,,ϵ)Lp(0,T;Lp(Q))ψ(,,)Lp((0,T)×Q;Cper(Y)) $ (22)

    and

    $ ψ(,,ϵ)1|Y|Yψ(,,y)dyweakly inLp(0,T;Lp(Q)). $

    Furthermore if $ \psi \in L^{2}((0,T)\times Q;C_{per}(Y)) $, then

    $ limϵ0T0Q[ψ(t,x,xϵ)]2dxdt=1|Y|T0Q×Y[ψ(t,x,y)]2dtdxdy. $ (23)

    (ii) If $ \psi (t,x,y) = \psi _{1}(t,x)\psi _{2}(y),\,\ \psi _{1}\in L^{p}(0,T;L^{s}(Q)),\,\psi _{2}\in L_{per}^{r}(Y),\,\,1\leq s,r<\infty $ are such that

    $ 1r+1s=1p, $

    then $ \psi (\cdot,\cdot,\frac{\cdot}{\epsilon })\in L^{p}(0,T;L^{p}(Q)) $ and

    $ ψ(,,ϵ)ψ1(,)|Y|Yψ2(y)dyweakly inLp(0,T;Lp(Q)). $

    The following theorems are of great importance in obtaining the homogenization result; for their proofs, we refer to [4], [17] and [26].

    Theorem 4.3. Let $ \{u^{\epsilon}\} $ be a sequence of functions in $ L^{2}\left(0,T;L^{2}(Q)\right) $ such that

    $ uϵL2(0,T;L2(Q))<. $ (24)

    Then up to a subsequence $ u^{\epsilon} $ is two-scale convergent in $ L^{2}\left(0,T;L^{2}(Q)\right) $.

    Theorem 4.4. Let $ \{u^{\epsilon }\} $ be a sequence satisfying the assumptions of Theorem 4.3. Furthermore, let $ \{u^{\epsilon }\}\subset L^{2}\left( 0,T;H_{0}^{1}(Q)\right) $ be such that

    $ uϵL2(0,T;H10(Q))<. $

    Then, up to a subsequence, there exists a couple of functions $ (u,u_{1}) $ with $ u\in L^{2}(0,T;H_{0}^{1}(Q)) $ and $ u_{1}\in L^{2}((0,T)\times Q;H_{{\text{per}}}(Y)) $ such that

    $ uϵu 2s inL2(0,T;L2(Q)), $ (25)
    $ uϵxu+yu1  2s inL2(0,T;L2(Q)). $ (26)

    The following lemma is crucial in obtaining the convergence of the stochastic integral in the next section

    Lemma 4.5. The oscillating data given in (A5) satisfies the following convergence

    $ g(t,x,xε,uεt)˜g(t,x,ut)=:1|Y|Yg(t,x,y,ut)dy  weakly in L2((0,T)×Q),  ˜Pa.s.. $ (27)

    Proof. Test with $ \psi \left( t,x,\frac{x}{\varepsilon }\right) , $ where $ \psi \left( t,x,y\right) \in L^{2}\left( \left( 0,T\right) \times Q,C_{per}^{\infty }\left( Y\right) \right) , $ as follows:

    $ T0Qg(t,x,xε,uεt)ψ(t,x,xε)dxdt=Iε1+Iε2, $

    where

    $ Iε1=T0Q[g(t,x,xε,uεjt)g(t,x,xε,ut)]ψ(t,x,xε)dxdt,Iε2=T0Qg(t,x,xε,ut)ψ(t,x,xε)dxdt. $

    Then

    $ Iε1||ψ(t,x,xε)||L2((0,T)×Q)||g(t,x,xε,uεt)g(t,x,xε,ut)||L2((0,T)×Q)C||uεtut||L2((0,T)×Q), $

    thanks to the Lipschitz condition on $ g\left( t,x,\cdot \right) $. Now due to the strong convergence 20 of $ u_{t}^{\varepsilon }-u_{t} $ to zero in $L^{2}\left( \left( 0,T\right) \times Q\right) $, $ \mathbb{\tilde{P}} $-a.s., we get that $I_{1}^{\varepsilon }\rightarrow 0 $, $ \tilde{\mathbb{P}}-a.s. $

    Now we can apply 2-scale convergence for the limit of $ I_{2}^{\varepsilon } $ and indeed

    $ limε0Iε2=T0QYg(t,x,y,ut)ψ(t,x,y)dxdt,˜Pa.s. $

    Therefore

    $ g(t,x,xε,uεt)2sg(t,x,y,ut), ˜Pa.s. $ (28)

    and this implies the result.

    Remark 1. From the assumption (A5), 28 and 23, we have the following strong convergence

    $ limϵ0T0Q[g(t,x,xϵ,uϵt)]2dxdt=1|Y|T0Q×Y[g(t,x,y,ut)]2dtdxdy. $ (29)

    We will now study the asymptotic behaviour of the problem $ (P_{\epsilon_j}) $, when $ \epsilon_j \rightarrow 0 $.

    Theorem 5.1. Suppose that the assumptions on the data are satisfied. Let

    $ aϵja,weakly inH10(Q), $ (30)
    $ bϵjb,weakly inL2(Q). $ (31)

    Then there exist a probability space $ \left( \tilde{\Omega},\tilde{\mathcal{F}},\tilde{\mathbb{P}},\left( \tilde{\mathcal{F}}_{t}\right) _{0\leq t\leq T}\right) $ and random variables $ (u^{\epsilon _{j}},u_{t}^{\epsilon _{j}},W_{\epsilon _{j}}) $ and $ (u,u_{t},\tilde{W}) $ such that the convergences 20 and 26 hold. Furthermore $ (u,u_{t},\tilde{W}) $ satisfies the homogenized problem $ (P) $.

    Proof. From estimates 3 and 4 and assumption $(A2)(iii) $, we have the following convergences

    $ uϵjuweakly inL(0,T;H10(Q))ˆPa.s, $ (32)
    $ uϵjtutweakly inL(0,T;L2(Q))ˆPa.s, $ (33)
    $ uϵjtutweakly inLp(0,T;W1,p0(Q))ˆPa.s, $ (34)
    $ B(t,uϵjt)χweakly inLp(0,T;W1,p(Q))ˆPa.s.. $ (35)

    Now let us identify the limit in 35. By arguing as in [38,Lemma 2.6,p. 51], we get

    $ t0B(s,uϵjt),uϵjtdst0χ,utds,weakly inL1(Ω), t[0,T]. $ (36)

    Having this in hand, let $ v\in L^{p}(0,T;W_{0}^{1,p}(Q)) $ and define

    $ χϵj=ˆET0B(t,uϵjt)B(t,v),uϵjtvdt. $ (37)

    From the monotonicity assumption $ (A2)(iv) $, we have $ \chi _{\epsilon _{j}}\geq 0 $. Now using 34, 35 and 36 to pass to the limit in 37, we get

    $ ˆET0χB(t,v),utvdt0. $

    For $ \lambda >0 $ and $ w\in L^{p}(0,T;W_{0}^{1,p}(Q)) $, we can chose $v(t) = u_{t}(t)-\lambda w(t) $. Hence

    $ ˆET0χB(t,ut(t)λw(t)),w(t)dt0. $ (38)

    Using the hemicontinuty assumption $ (A2)(i) $, we have

    $ χB(t,ut(t)λw(t)),w(t)χB(t,ut(t)),w(t),  as λ0, ˆPa.s.. $

    Now, from assumptions $ (A2)(ii) $ and $ (A2)(v) $, we use the Lebesgue dominated convergence theorem to pass to the limit in 38. This implies

    $ ˆET0χB(t,ut(t)),w(t)dt0. $ (39)

    But the inequality 39 is true for all $ w(t)\in L^{p}(0,T;W_{0}^{1,p}(Q))) $. Therefore

    $ χ=B(t,ut(t),ˆPa.s.. $

    Testing problem $ (P_{\epsilon _{j}}) $ by the function $ \Phi \in C^{\infty}_{\text{c}}((0,T)\times Q) $ and integrating the first term in the right-hand side by parts, we have

    $ T0QuϵjtΦt(t,x)dxdt+T0QAϵjuϵjΦdxdt+T0QBϵj(t,uϵjt),Φdxdt=T0Qfϵj(t,x,uϵj)Φdxdt+T0Qgϵj(t,x,uϵjt)ΦdxdWϵj, $ (40)

    Using estimate 3, the convergence 20 and Theorems 4.3 and 4.4, we show the two-scale convergence

    $ uϵjxu+yu1 2-s in,L2(0,T;L2(Q)). $

    Let $ \Phi ^{\epsilon _{j}}(t,x) = \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}}), $ where $ \phi \in C^{\infty}_{\text{c}}((0,T)\times Q) $ and $ \phi _{1}\in C^{\infty}_{\text{c}}((0, T)\times Q;C_{\text{per}}^{\infty }(Y)) $. Then we can still consider $\Phi ^{\epsilon _{j}} $ as test function in 40. Thus

    $ T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj. $ (41)

    Let us deal with these terms one by one, when $ \epsilon _{j}\rightarrow 0 $. Thanks to estimate 22 and convergence 33, we have

    $ limϵj0T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj0T0Quϵjt(t,x)ϕt(t,x)dxdt+limϵj0ϵjT0Quϵjt(t,x)ϕ1t(t,x,xϵj)dxdt=T0Qut(t,x)ϕt(t,x)dxdt,˜Pa.s.. $

    The second term can be written as follows,

    $ limϵj0T0Quϵj(x,t)Aϵj[xϕ(t,x)+yϕ1(t,x,xϵj)]dxdt+limϵj0ϵjT0QAϵjuϵj(x,t)xϕ1(t,x,xϵj)dxdt. $ (42)

    Since $ A_{\epsilon _{j}}\in L^{\infty }(Y) $ and $ \nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,y)\in L_{\text{per}}^{2}(Y;C(Q\times (0,T))) $, we regard $ A_{\epsilon _{j}}[\nabla _{x}\phi (t,x)+\nabla _{y}\phi _{1}(t,x,\frac{x}{\epsilon _{j}})] $ as a test function in the two-scale limit of the gradient in the first term in 42. Therefore

    $ limϵj0T0Quϵj(x,t)Aϵj[xϕ(t,x)+yϕ1(t,x,xϵj)]dxdt=1|Y|T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt. $

    Thanks to H$ \ddot{o} $lder inequality, 22 and the fact that $A_{\epsilon _{j}}\nabla u^{\epsilon _{j}} $ is bounded in $ L^{\infty }(0,T; L^{2}(Q) $, we have

    $ limϵj0ϵjT0QAϵjuϵj(x,t)xϕ1(t,x,xϵj)dxdt=0,˜Pa.s.. $

    Again, thanks to estimate 22 and convergence 35, we have

    $ limϵj0T0QB(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj0T0QB(t,uϵjt),ϕt(t,x)dxdt+limϵj0ϵjT0QB(t,uϵjt),ϕ1t(t,x,xϵj)dxdt=T0QB(t,ut),ϕt(t,x)dxdt,˜Pa.s.. $

    Let us write

    $ limϵj0T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj0T0QFϵj(t,x)uϵj[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj0T0QFϵj(t,x)uϵjϕ(t,x)dxdt+limϵj0ϵjT0QFϵj(t,x).uϵjϕ1(t,x,xϵj)dxdt, $ (43)

    where we have used the assumption (A3). It is easy to see that the second term in 43, converges to zero. For the first term in the right-hand side of 43, we readily have

    $ limϵj0T0QFϵj(t,x)uϵjϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu+yu1]ϕ(t,x)dxdydt,˜Pa.s.. $ (44)

    Concerning the stochastic integral, we have

    $ ˜ET0Qgϵj(t,x,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj=˜ET0Qgϵj(t,x,uϵjt)ϕ(t,x)dxdWϵj+˜EϵjT0Qgϵj(t,x,uϵjt)ϕ1(t,x,xϵj)dxdWϵj. $ (45)

    We deal with the term involving $ \phi \left( t,x\right) $. We have

    $ ˜ET0Qϕ(t,x)g(t,x,xε,uεt)dWεt=˜ET0Qϕ(t,x)g(t,x,xε,uεt)d(Wεt˜Wt)+˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $ (46)

    In view of the unbounded variation of $ W_{t}^{\varepsilon }-\tilde{W}_{t} $, the convergence of the first term on the right-hand side of 46 needs appropriate care, in order to take advantage of the $ \mathbb{\tilde{P}}- $ a.s. uniform convergence of $ W_{t}^{\varepsilon } $ to $ \tilde{W}_{t} $ in $ C\left( \left[ 0,T\right] \right) $. We adopt the idea of regularization of $ g\left( t,x,\frac{x}{\varepsilon },u_{t}^{\varepsilon }\right) $ with respect to the variable $ t $, by means of the following sequence

    $ gελ(uε)(t)=1λT0ρ(tsλ)g(s,x,xε,uεs(s))ds for λ>0, $ (47)

    where $ \rho $ is a standard mollifier.

    We have that $ g_{\lambda }^{\varepsilon }\left( u^{\varepsilon }\right) \left( t\right) $ is a differentiable function of $ t $ and satisfies the relations

    $ ˜ET0||gελ(uε)(t)||2L2(Q)dt˜ET0||g(t,x,xε,uεt(t))||2L2(Q)dt, for any λ>0, $ (48)

    and for any $ \varepsilon >0 $

    $ gελ(uε)(t)gε(t,x,uεt(t)) strongly in L2(˜Ω,˜F,˜P,L2((0,T)×Q)) as λ0. $ (49)

    We split the first term in the right-hand side of 46 as

    $ ˜ET0Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt˜Wt)=˜ET0Qϕ(t,x)gελ(uε)(t)dxd(Wεt˜Wt)+˜ET0Qϕ(t,x)[gε(t,x,uεt(t))gελ(uε)(t)]dxd(Wεt˜Wt). $ (50)

    Owing to 49, and Burkholder-Davis-Gundy's inequality, it readily follows that the second term in 50 is bounded by a function $\sigma _{1}\left( \lambda \right) $ which converges to zero as $ \lambda \rightarrow 0 $. In the first term in the same relation, we take advantage of the differentiability of $ g_{\lambda }^{\varepsilon } $ with respect to $ t $ in order to integrate by parts. As a result we get

    $ ˜ET0Qϕ(t,x)gελ(uε)(t)d(Wεt˜Wt)=˜ET0Q(Wεt˜Wt)t[ϕ(t,x)gελ(uε)(t)]dt+˜EQϕ(T,x)gελ(uε)(T)(WεT˜WT). $ (51)

    Thanks to the conditions on $ \phi $ and $ g $ and the uniform convergence obtained from the application of Skorokhod's compactness result, namely

    $ Wεt˜Wt uniformly in C([0,T]), ˜Pa.s., $ (52)

    we get that both terms on the right-hand side of 51 are bounded by the product $ \sigma _{2}\left( \lambda \right) \eta _{1}\left( \varepsilon \right) $ such that $ \sigma _{2}\left( \lambda \right) $ is finite and $ \eta _{1}\left( \varepsilon \right) $ vanishes as $ \varepsilon $ tends to zero. Summarizing these facts, we deduce from 50 that

    $ |˜ET0Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt˜Wt)|σ1(λ)+σ2(λ)η1(ε). $ (53)

    Thus, we infer from 46 that

    $ |˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|σ1(λ)+σ2(λ)η1(ε) $ (54)

    Taking the limit in 54 as $ \varepsilon \rightarrow 0 $, we get

    $ limε0|˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|σ1(λ); $

    but the left-hand side of this relation being independent of $ \lambda $, we can pass to the limit on both sides as $ \lambda \rightarrow 0 $, to arrive at the crucial statement

    $ limε0˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt=limε0˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $ (55)

    Owing to 27; that is

    $ g(t,x,xε,uεt)˜g(t,x,ut) weakly in L2((0,T)×Q), ˜Pa.s., $

    we can call upon the convergence theorem for stochastic integrals due to Rozovskii [39,Theorem 4,p. 63] to claim that

    $ ˜ET0Qϕ(t,x)g(t,x,xε,uεt)dWt˜ET0Qϕ(t,x)˜g(t,x,ut)d˜Wt. $

    Hence, we deduce from 55 that,

    $ T0Qϕ(t,x)g(t,x,xε,uεt)dWεtT0Qϕ(t,x)˜g(t,x,ut)d˜Wt, ˜Pa.s.. $ (56)

    For the second term in 45, thanks to Burkholder-Davis-Gundy's inequality, the assumptions on $g^{\epsilon _{j}} $ and 22, we have

    $ limϵj0ϵj˜Esupt[0,T]|t0Qϕ1(t,x,xε)g(t,x,xε,uεt)dxdWϵjt|Climϵj0ϵj˜E(T0(Qϕ1(t,x,xε)g(t,x,xε,uεt)dx)2dt)12Climϵj0ϵj˜E(T0g(t,x,xε,uεt)L2(Q)ϕ1(t,x,xϵj)L2(Q)dt)12Climϵj0ϵj(T0g(t,x,xε,uεt)L2(Q)dt)120,˜Pa.s. $

    Combining the above convergences, we obtain

    $ T0Qut(t,x)ϕt(t,x)dxdt+1|Y|T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y).[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdx. $ (57)

    Choosing in the first stage $ \phi = 0 $ and after $ \phi _{1} = 0 $, the problem 57 is equivalent to the following system of integral equations

    $ T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][yϕ1(t,x,y)]dydxdt=0, $ (58)

    and

    $ T0Qut(t,x)ϕt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y).[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)d˜Wdx. $ (59)

    By standard arguments (see [17]), equation 58 has a unique solution given by

    $ u1(t,x,y)=χ(y)xu(t,x)+~u1(t,x), $ (60)

    where $ \chi (y), $ known as the first order corrector, is the unique solution to the following equation:

    $ {divy(A(y)yχ(y))=yA(y),inY,χisYperiodic. $ (61)

    As for the uniqueness of the solution of 59, we prove it as follows. Using 60 in 59, one obtains that 59 is the weak formulation of the equation

    $ dutA0Δudt+B(t,ut)dt=˜f(t,x,u)dt+˜g(t,x,ut)d˜W, $ (62)

    where

    $A0=1|Y|Y(A(y)A(y)yχ(y))dy,˜f(t,x,u)=1|Y|YF(t,x,y)[xu(t,x)+yu1(t,x,y)]dy,$ (63)

    and

    $ ˜g(t,x,ut)=1|Y|Yg(t,x,y,ut)dy. $

    But the initial boundary value problem corresponding to 62 has a unique solution by [38]. It remains to show that $ u(x,0) = a(x) $ and $ u_{t}(x,0) = b(x) $. Notice that equation 40 is valid for $ \Phi ^{\epsilon _{j}}(t,x) = \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{ \epsilon _{j}}) $ where $ \phi \in C^{\infty }_{\text{c}}((0,T)\times Q) $ and $ \phi _{1}\in C^{\infty }_{\text{c}}((0,T)\times Q;C_{\text{per}}^{\infty }(Y)) $, such that $ \phi (0,x) = v(x) $ and $ \phi (T,x) = 0 $. Thus, we have

    $ T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj+Quϵjt(x,0)v(x)dx, $

    where we pass to the limit, to get

    $ T0Qut(t,x)ϕt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+Qb(x)v(x)dx. $

    The integration by parts, in the first term gives

    $ T0Qdut(t,x)ϕ(t,x)dx+Qut(x,0)v(x)dx+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+Qb(x)v(x)dx. $

    In view of equation 57, we deduce that

    $ Qut(x,0)v(x)dx=Qb(x)v(x)dx, $

    for any $ v\in C^{\infty }_{\text{c}}(Q) $. This implies that $ u_{t}(x,0) = b(x) $. For the other initial condition, we consider $ \Phi ^{\epsilon _{j}}(t,x) = \phi (t,x)+\epsilon _{j}\phi _{1}(t,x,\frac{x}{\epsilon _{j}}) $ as a test function in 40, where $ \phi \in C^{\infty }_{\text{c}}((0,T)\times Q) $ and $\phi _{1}\in C^{\infty }_{\text{c}}((0,T)\times Q;C_{\text{per}}^{\infty }(Y)) $, such that $ \phi (0,x) = 0,\phi _{t}(0,x) = v(x) $ and $ \phi (T,x) = 0 = \phi _{t}(T,x) $. Integration by parts in the first term of 40, gives

    $ T0Quϵj(t,x)[ϕtt(t,x)+ϵjϕ1tt(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵjQuϵj(x,0)v(x)dx. $

    Passing to the limit in this equation, we obtain

    $ T0Qu(t,x)ϕtt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×,YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜WdxdtQa(x)v(x)dx. $

    We integrate by parts again to obtain

    $ T0Qut(t,x)ϕt(t,x)dxdtQu(x,0)v(x)dx+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜WdxdtQa(x)v(x)dx. $

    Using the same argument as before, we show that $ u(x,0) = a(x) $. We note the triple $ \left( \tilde{W},u,u_{t}\right) $ is a probabilistic weak solution of $ (P) $ which is unique. Thus by the infinite dimensional version of Yamada-Watanabe's theorem (see [35]), we get that $ \left( W,u,u_{t}\right) $ is the unique strong solution of $ (P) $. Thus up to distribution (probability law) the whole sequence of solutions of $(P_{\epsilon }) $ converges to the solution of problem $ (P) $. Thus the proof of Theorem 5.1 is complete.

    Let us introduce the energies associated with the problems ($P_{\epsilon _{j}} $) and ($ P $), as follows:

    $ Eϵj(uϵj)(t)=12˜Euϵjt(t)2L2(Q)+12˜EQAϵjuϵj(x,t)uϵj(x,t)dx+˜Et0B(s,uϵjt),uϵjtdsE(u)(t)=12˜Eut(t)2L2(Q)+12˜EQA0u(x,t)u(x,t)dx+˜Et0B(s,ut),utds. $

    But from It$ \hat{o} $'s formula, we have

    $ \begin{align*} & \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{t}^{\epsilon _{j}}(t)\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}(t)\cdot\nabla u^{\epsilon _{j}}(t)dx+\tilde{\mathbb{E}} \int_{0}^{t}\langle B(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}}\rangle ds \\ & = \tilde{\mathbb{E}}\bigg[\frac{1}{2}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot \nabla u_{0}^{\epsilon _{j}}dx+\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds+\int_{0}^{t}(g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})dW_{\epsilon _{j}}\bigg] . \end{align*} $

    Thus

    $ \begin{align} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)& = \frac{1}{2}\tilde{ \mathbb{E}}\Vert u_{1}^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2} \tilde{\mathbb{E}}\int_{Q}A_{\epsilon _{j}}\nabla u_{0}^{\epsilon _{j}}\cdot\nabla u_{0}^{\epsilon _{j}}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds, \end{align} $ (64)
    $ \begin{align} \mathcal{E}(u)(t)& = \frac{1}{2}\tilde{\mathbb{E}}\Vert u_{1}\Vert _{L^{2}(Q)}^{2}+\frac{1}{2}\tilde{\mathbb{E}}\int_{Q}A_{0}\nabla u_{0}\cdot \nabla u_{0}dx \\ & +\tilde{\mathbb{E}}\int_{0}^{t}(\tilde{f}(s,x,\nabla u),u_{t})ds+\frac{1}{2 }\tilde{\mathbb{E}}\int_{0}^{t}\Vert \tilde{g}\left( s,x,u_{t}\right) \Vert _{L^{2}(Q)}^{2}ds. \end{align} $ (65)

    The vanishing of the expectation of the stochastic integrals is due to the fact that $ (g^{\epsilon }(u_{t}^{\epsilon }),\tilde{u}_{t}^{\epsilon }) $ and $ (g(u),u_{t}) $ are square integrable in time. We want to prove that the energy associated with the problem ($ P_{\epsilon _{j}} $), uniformly converges to that of the corresponding homogenized problem ($ P $). For this purpose we need to assume some stronger assumptions on the initial data. We have the following result

    Theorem 6.1. Assume that the assumptions of Theorem 5.1 are fulfilled and

    $ \begin{align} & -div(A_{\epsilon _{j}}\nabla a^{\epsilon _{j}})\rightarrow -div(A_{0}\nabla a),\,\,\,\, strongly\ in\,\,\,H^{-1}(Q), \end{align} $ (66)
    $ \begin{align} & b^{\epsilon _{j}}\rightarrow b,\,\,\,\,\ strongly\ in\,\,\,L^{2}(Q). \end{align} $ (67)

    Then

    $ \begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t)\,\,\,in\,\,C([0,T]), \end{equation*} $

    where $ u $ is the solution of the homogenized problem.

    Proof. Thanks to the convergences 20, 44, 29, 66 and 67, we show that

    $ \begin{equation*} \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\rightarrow \mathcal{E} (u)(t),\,\,\,\forall t \in [0,T]. \end{equation*} $

    Now we need to show that $ \left( \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right) $, is uniformly bounded and equicontinuous on $ [0,T] $ and hence Arzela-Ascoli's theorem concludes the proof. We have

    $ \begin{align*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert & \leq \frac{1}{2}\tilde{\mathbb{E}}\Vert b^{\epsilon _{j}}\Vert _{L^{2}(Q)}^{2}+\frac{\alpha }{2}\tilde{\mathbb{E}}\Vert a^{\epsilon _{j}}\Vert _{H_{0}^{1}}+\tilde{\mathbb{E}}\int_{0}^{t}\left\vert (f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})\right\vert ds \\ & +\frac{1}{2}\int_{0}^{t}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} $

    Thanks to the assumptions on the data $ (A3),\,(A4) $ and $ (A5) $, the a priori estimates 3 and 4, we show that

    $ \begin{equation*} \left\vert \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\right\vert \leq C,\quad \forall t\in \lbrack 0,T]. \end{equation*} $

    For any $ h>0 $ and $ t\in \lbrack 0,T] $, we get

    $ \begin{align*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})&(t+h)- \mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)| \\ & \leq \tilde{\mathbb{E}}\int_{t}^{t+h}|(f^{\epsilon _{j}}(s,x,\nabla u^{\epsilon _{j}}),u_{t}^{\epsilon _{j}})|ds+\frac{1}{2}\tilde{\mathbb{E}} \int_{t}^{t+h}\Vert g^{\epsilon _{j}}(s,u_{t}^{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}ds. \end{align*} $

    Again assumptions (A3), (A5) and Cauchy-Schwarz's inequality, give

    $ \begin{equation*} |\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t+h)-\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)|\leq C\left( h+h^{\frac{1}{2}}\right) . \end{equation*} $

    This implies the equicontinuity of the sequence $ \{\mathcal{E}^{\epsilon _{j}}(u^{\epsilon _{j}})(t)\}_{\epsilon _{j}} $, and therefore the proof is complete.

    In this section, we establish a corrector result stated in the following

    Theorem 7.1. Let the assumptions of Theorems 5.1 and 6.1 be fulfilled. Assume that $ \nabla _{y}\chi (y)\in \lbrack L^{r}(Y)]^{n} $ and $ \nabla u\in L^{2}(0,T;[L^{s}(Y)]^{n}) $ with $ 1\leq r,s<\infty $ such that

    $ \begin{equation*} \frac{1}{r}+\frac{1}{s} = \frac{1}{2}. \end{equation*} $

    Then

    $ \begin{align} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P}}-a.s., \end{align} $ (68)
    $ \begin{align} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})& \rightarrow 0\,\,\,\ strongly\ in\,\,\,L^{2}(0,T;H^{1}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{align} $ (69)

    Proof. It is easy to see that

    $ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} $

    Then convergence 20 gives

    $ \begin{equation*} u_{t}^{\epsilon _{j}}-u_{t}-\epsilon _{j}u_{1t}(\cdot,\cdot,\frac{.}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{\mathbb{P} }-a.s.. \end{equation*} $

    Thus 68 holds. Similarly we show that

    $ \begin{equation*} u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;L^{2}(Q))\quad \tilde{ \mathbb{P}}-a.s.. \end{equation*} $

    It remains to show that

    $ \begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} ))\rightarrow 0\,\,\,\text{strongly in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n})\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $

    We have

    $ \begin{equation*} \nabla (u^{\epsilon _{j}}-u-\epsilon _{j}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}} )) = \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}}))-\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})). \end{equation*} $

    Again

    $ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\epsilon _{j}\nabla u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\rightarrow 0\,\,\,\text{in}\,\,\,L^{2}(0,T;[L^{2}(Q)]^{n}), \quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $

    Now from the ellipticity assumption on the matrix $ A $, we have

    $ \begin{align} \alpha \mathbb{E}\int_{0}^{T}&\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\Vert _{L^{2}(Q)}^{2}dt \\ & \leq \mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{ \epsilon _{j}})\right) \\ & \cdot \left( \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & = \mathbb{E}\int_{0}^{T}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot\nabla u^{\epsilon _{j}}dxdt \\ &-2\mathbb{E}\int_{0}^{T}\int_{Q}\nabla u^{\epsilon _{j}}A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt \\ & +\mathbb{E}\int_{0}^{T}\int_{Q}A\left( \frac{x}{\epsilon _{j}}\right) \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) \\ &\cdot \left( \nabla u+\nabla _{y}u_{1}(\cdot,\cdot,\frac{\cdot}{\epsilon _{j}})\right) dxdt. \end{align} $ (70)

    Let us pass to the limit in this inequality. We start with

    $ \begin{equation*} \mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx. \end{equation*} $

    From the convergence of the energies in Theorem 6.1 and using 63 and 60, we have

    $ \begin{align} & \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{Q}A_{\epsilon _{j}}\nabla u^{\epsilon _{j}}\cdot \nabla u^{\epsilon _{j}}dx \\ & = \mathbb{E}\int_{Q\times Y}A(y)\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]\cdot[\nabla _{x}u(t,x)+\nabla _{y}u_{1}(t,x,y)]dydx. \end{align} $ (71)

    Next, using the two-scale convergence of $ \nabla u^{\epsilon _{j}} $, with the test function $ A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) $, we obtain

    $ \begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&\nabla u^{\epsilon _{j}}(t,x)\cdot A\left( \frac{x}{\epsilon _{j}}\right)\cdot \left( \nabla u+\nabla _{y}u_{1}(t,x,\frac{x}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ &\cdot A\left( y\right) \cdot\left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} $ (72)

    Now, let us write

    $ \begin{align*} \psi (t,x,y)& = A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) \\ & = A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)+2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}u_{1}(t,x,y)\\ &+A\left( y\right) \nabla _{y}u_{1}(t,x,y)\cdot\nabla _{y}u_{1}(t,x,y). \end{align*} $

    For $ u_{1} $ given by 60, we have

    $ \begin{align*} \psi (t,x,y) = & A\left( y\right) \nabla u(t,x)\cdot\nabla u(t,x)-2A\left( y\right) \nabla u(t,x)\cdot\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)] \\ & +A\left( y\right) \nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]\nabla _{y}[\chi (y)\cdot \nabla _{x}u(t,x)]. \end{align*} $

    Now using $ (ii) $ of Lemma 4.2, for $ p = 2 $, we obtain

    $ \begin{align} \lim\limits_{\epsilon _{j}\rightarrow 0}\int_{0}^{T}\int_{Q}&A\left( \frac{x}{ \epsilon _{j}}\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{x}{ \epsilon _{j}})\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,\frac{ y}{\epsilon _{j}})\right) dxdt \\ & = \int_{0}^{T}\int_{Q\times Y}A\left( y\right) \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right)\\ & \cdot \left( \nabla u(t,x)+\nabla _{y}u_{1}(t,x,y)\right) dxdydt. \end{align} $ (73)

    Combining 71, 72 and 73 with 70, we deduce that

    $ \begin{equation*} \lim\limits_{\epsilon _{j}\rightarrow 0}\mathbb{E}\int_{0}^{T}\Vert \nabla u^{\epsilon _{j}}-\nabla u-\nabla _{y}u_{1}(.,.,\frac{.}{\epsilon _{j}} )\Vert _{L^{2}(Q)}^{2}dt = 0\quad \tilde{\mathbb{P}}-a.s.. \end{equation*} $

    Thus the proof is complete.

    As a closing remark, we note that our results can readily be extended to the case of infinite dimensional Wiener processes taking values in appropriate Hilbert spaces; for instance cylindrical Wiener processes.

    The authors express their deepest gratitude to the reviewers for their careful reading of the paper and their insightful comments which have improved the paper. Part of this work was conducted when the first author visited the African Institute for Mathematical Sciences (AIMS), South Africa, he is grateful to the generous hospitality of AIMS.

    [1] Plog S, Mundhenk L, Bothe MK, et al. (2010) Tissue and cellular expression patterns of porcine CFTR: similarities to and differences from human CFTR. J Histochem Cytochem 58: 785-797. doi: 10.1369/jhc.2010.955377
    [2] Crawford I, Maloney PC, Zeitlin PL, et al. (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. P Natl Acad Sci USA 88: 9262-9266. doi: 10.1073/pnas.88.20.9262
    [3] Gadsby DC, Nairn AC (1999) Regulation of CFTR Cl- ion channels by phosphorylation and dephosphorylation. Adv Sec Messenger Phosphoprotein Res 33: 79-106. doi: 10.1016/S1040-7952(99)80006-8
    [4] Gadsby DC, Nairn AC (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 79: S77-S107.
    [5] Kirk KL, Wang W (2011) A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J Biol Chem 286: 12813-12819. doi: 10.1074/jbc.R111.219634
    [6] Quinton PM, Reddy MM (2000) CFTR, a rectifying, non-rectifying anion channel? J Korean Med Sci 15 Suppl: S17-20.
    [7] Goss CH, Ratjen F (2013) Update in cystic fibrosis 2012. Am J Resp Crit Care 187: 915-919. doi: 10.1164/rccm.201301-0184UP
    [8] Welsh MJ, Ramsey BW (1998) Research on cystic fibrosis: a journey from the Heart House. Am J Resp Crit Care 157: S148-154. doi: 10.1164/ajrccm.157.4.nhlbi-13
    [9] Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Resp Physiol Neurobi 184: 257-268. doi: 10.1016/j.resp.2012.07.019
    [10] Christensen AK, Hiroi J, Schultz ET, et al. (2012) Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater. J Exp Biol 215: 642-652. doi: 10.1242/jeb.063057
    [11] Chen JM, Cutler C, Jacques C, et al. (2001) A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models. Mol Biol Evol 18: 1771-1788. doi: 10.1093/oxfordjournals.molbev.a003965
    [12] Kiilerich P, Kristiansen K, Madsen SS (2007) Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J Endocrinol 194: 417-427. doi: 10.1677/JOE-07-0185
    [13] Nilsen TO, Ebbesson LO, Madsen SS, et al. (2007) Differential expression of gill Na+, K+-ATPase alpha- and beta-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210: 2885-2896. doi: 10.1242/jeb.002873
    [14] Mio K, Ogura T, Mio M, et al. (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283: 30300-30310. doi: 10.1074/jbc.M803185200
    [15] Rosenberg MF, O'Ryan LP, Hughes G, et al. (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286: 42647-42654. doi: 10.1074/jbc.M111.292268
    [16] Zhang L, Aleksandrov LA, Riordan JR, et al. (2011) Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. BBA-Biomembranes 1808: 399-404. doi: 10.1016/j.bbamem.2010.08.012
    [17] Awayn NH, Rosenberg MF, Kamis AB, et al. (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem Soc T 33: 996-999. doi: 10.1042/BST20050996
    [18] Lewis HA, Buchanan SG, Burley SK, et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23: 282-293. doi: 10.1038/sj.emboj.7600040
    [19] Thibodeau PH, Brautigam CA, Machius M, et al. (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 12: 10-16. doi: 10.1038/nsmb881
    [20] Galeno L, Galfre E, Moran O (2011) Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution. Eur Biophys J 40: 811-824. doi: 10.1007/s00249-011-0692-5
    [21] Galfre E, Galeno L, Moran O (2012) A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 69: 3701-3713. doi: 10.1007/s00018-012-1049-7
    [22] Marasini C, Galeno L, Moran O (2013) A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 70: 923-933. doi: 10.1007/s00018-012-1172-5
    [23] Hudson RP, Chong PA, Protasevich, II, et al. (2012) Conformational changes relevant to channel activity and folding within the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 287: 28480-28494. doi: 10.1074/jbc.M112.371138
    [24] Huang P, Liu Q, Scarborough GA (1998) Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator. Anal biochem 259: 89-97. doi: 10.1006/abio.1998.2633
    [25] Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34: 364-372. doi: 10.1016/j.ymeth.2004.03.025
    [26] Carpenter EP, Beis K, Cameron AD, et al. (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struc Biol 18: 581-586. doi: 10.1016/j.sbi.2008.07.001
    [27] Dobrovetsky E, Menendez J, Edwards AM, et al. (2007) A robust purification strategy to accelerate membrane proteomics. Methods 41: 381-387. doi: 10.1016/j.ymeth.2006.08.009
    [28] Granseth E, Seppala S, Rapp M, et al. (2007) Membrane protein structural biology--how far can the bugs take us? Mol Membr Biol 24: 329-332. doi: 10.1080/09687680701413882
    [29] Lewinson O, Lee AT, Rees DC (2008) The funnel approach to the precrystallization production of membrane proteins. J Mol Biol 377: 62-73. doi: 10.1016/j.jmb.2007.12.059
    [30] Graeslund S (2008) Protein production and purification. Nat Meth 5: 135-146. doi: 10.1038/nmeth.f.202
    [31] Mancia F, Love J (2010) High-throughput expression and purification of membrane proteins. J Struct Biol 172: 85-93. doi: 10.1016/j.jsb.2010.03.021
    [32] Aller SG, Yu J, Ward A, et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722. doi: 10.1126/science.1168750
    [33] Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14: 673-681. doi: 10.1016/j.str.2006.01.013
    [34] Sonoda Y, Cameron A, Newstead S, et al. (2010) Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins. FEBS Lett 584: 2539-2547. doi: 10.1016/j.febslet.2010.04.015
    [35] Sonoda Y, Newstead S, Hu NJ, et al. (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19: 17-25. doi: 10.1016/j.str.2010.12.001
    [36] Drew D, Newstead S, Sonoda Y, et al. (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3: 784-798. doi: 10.1038/nprot.2008.44
    [37] Newstead S, Kim H, von Heijne G, et al. (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104: 13936-13941. doi: 10.1073/pnas.0704546104
    [38] Clark KM, Fedoriw N, Robinson K, et al. Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. Protein Expres Purif 71: 207-223.
    [39] Slotboom DJ, Duurkens RH, Olieman K, et al. (2008) Static light scattering to characterize membrane proteins in detergent solution. Methods 46: 73-82. doi: 10.1016/j.ymeth.2008.06.012
    [40] Ouano AC, Kaye W (1974) Gel-permeation chromatography: X. Molecular weight detection by low-angle laser light scattering. J Polym Sci: Polym Chem Edit 12: 1151-1162.
    [41] Miller JL, Tate CG (2011) Engineering an ultra-thermostable beta(1)-adrenoceptor. J Mol Biol 413: 628-638. doi: 10.1016/j.jmb.2011.08.057
    [42] Shibata Y, White JF, Serrano-Vega MJ, et al. (2009) Thermostabilization of the neurotensin receptor NTS1. J Mol Biol 390: 262-277. doi: 10.1016/j.jmb.2009.04.068
    [43] Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struc Biol 19: 386-395. doi: 10.1016/j.sbi.2009.07.004
    [44] Warne T, Serrano-Vega MJ, Tate CG, et al. (2009) Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expres Purif 65: 204-213. doi: 10.1016/j.pep.2009.01.014
    [45] Aleksandrov AA, Kota P, Cui L, et al. (2012) Allosteric modulation balances thermodynamic stability and restores function of DeltaF508 CFTR. J Mol Biol 419: 41-60. doi: 10.1016/j.jmb.2012.03.001
    [46] Huang P, Stroffekova K, Cuppoletti J, et al. (1996) Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast. Biochim Biophys Acta 1281: 80-90. doi: 10.1016/0005-2736(96)00032-6
    [47] Bear CE, Li CH, Kartner N, et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68: 809-818. doi: 10.1016/0092-8674(92)90155-6
    [48] Kogan I, Ramjeesingh M, Li C, et al. (2002) Studies of the molecular basis for cystic fibrosis using purified reconstituted CFTR protein. Method Mol Med 70: 143-157.
    [49] Bai J, Swartz DJ, Protasevich, II, et al. (2011) A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PloS One 6: e22577. doi: 10.1371/journal.pone.0022577
    [50] O'Ryan L, Rimington T, Cant N, et al. (2012) Expression and purification of the cystic fibrosis transmembrane conductance regulator protein in Saccharomyces cerevisiae. J Vis Exp e3860.
    [51] Pollock N, Cant N, Rimington T, et al. (2014) Purification of the cystic fibrosis transmembrane conductance regulator protein expressed in Saccharomyces cerevisiae. J Vis Exp e51447.
    [52] Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Method 9: 671-675. doi: 10.1038/nmeth.2089
    [53] Sievers F, Wilm A, Dineen D, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539.
    [54] Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods in molecular biology 1079: 105-116. doi: 10.1007/978-1-62703-646-7_6
    [55] Dawson RJP, Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935-938. doi: 10.1016/j.febslet.2007.01.073
    [56] Hammersley A, Svensson S, Hanfland M, et al. (1996) Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Res 14: 325-348.
    [57] Mateu L, Luzzati V, Vargas R, et al. (1990) Order-disorder phenomena in myelinated nerve sheaths. II. The structure of myelin in native and swollen rat sciatic nerves and in the course of myelinogenesis. J Mol Biol 215: 385-402.
    [58] Luzzati V, Tardieu A (1980) Recent developments in solution x-ray scattering. Annu Rev Biophys Bioeng 9: 1-29. doi: 10.1146/annurev.bb.09.060180.000245
    [59] Petoukhov M, Svergun D (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struc Biol 17: 562-571. doi: 10.1016/j.sbi.2007.06.009
    [60] Guinier A, Fournet G (1955) Small angle scattering of x-rays. New York: Wiley.
    [61] Feigin L, Svergun D (1987) Structure analysis by small-angle x.ray and neutron scattering. New York, London: Plenum Press.
    [62] Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25: 495-503. doi: 10.1107/S0021889892001663
    [63] Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185. doi: 10.1038/nature05155
    [64] Franke D, Svergun D (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42: 342-346. doi: 10.1107/S0021889809000338
    [65] Tian C, Vanoye CG, Kang C, et al. (2007) Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome. Biochemistry 46: 11459-11472. doi: 10.1021/bi700705j
    [66] Oliver RC, Lipfert J, Fox DA, et al. (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PloS One 8: e62488. doi: 10.1371/journal.pone.0062488
    [67] Yang Z, Wang C, Zhou Q, et al. (2014) Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci 23: 769-789. doi: 10.1002/pro.2460
    [68] Gulati S, Jamshad M, Knowles TJ, et al. (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461: 269-278. doi: 10.1042/BJ20131477
    [69] Lyman CP (1968) Body temperature of exhausted salmon. Copeia 1968: 631-633. doi: 10.2307/1442045
    [70] Behrisch HW (1969) Temperature and the regulation of enzyme activity in poikilotherms. Fructose diphosphatase from migrating salmon. Biochem J 115: 687-696.
    [71] Handeland SO, Berge Ö, Björnsson BT, et al. (2000) Seawater adaptation by out-of-season Atlantic salmon (Salmo salar L.) smolts at different temperatures. Aquaculture 181: 377-396.
    [72] Hsu HH, Lin LY, Tseng YC, et al. (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357: 225-243. doi: 10.1007/s00441-014-1883-z
    [73] Moorman BP, Inokuchi M, Yamaguchi Y, et al. (2014) The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity. Gen Comp Endocrinol [in press].
    [74] Sucre E, Bossus M, Bodinier C, et al. (2013) Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J Comp Physiol B 183: 83-97. doi: 10.1007/s00360-012-0687-2
    [75] Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7: 426-436. doi: 10.1038/nrm1949
    [76] Venerando A, Franchin C, Cant N, et al. (2013) Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. PloS One 8: e74232. doi: 10.1371/journal.pone.0074232
  • This article has been cited by:

    1. Hermano Frid, Kenneth H. Karlsen, Daniel Marroquin, Homogenization of stochastic conservation laws with multiplicative noise, 2022, 283, 00221236, 109620, 10.1016/j.jfa.2022.109620
    2. Mogtaba Mohammed, Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions, 2022, 14, 2073-8994, 1722, 10.3390/sym14081722
    3. Mogtaba Mohammed, Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition, 2023, 8, 2473-6988, 12093, 10.3934/math.2023609
    4. Mogtaba Mohammed, Noor Ahmed, Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains, 2020, 120, 18758576, 123, 10.3233/ASY-191582
    5. Chigoziem Emereuwa, Mogtaba Mohammed, Homogenization of a stochastic model of a single phase flow in partially fissured media, 2022, 129, 18758576, 413, 10.3233/ASY-211735
    6. Mogtaba Mohammed, Waseem Asghar Khan, Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes, 2021, 12, 1756-9737, 10.1142/S1756973721500086
    7. Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6702) PDF downloads(1283) Cited by(4)

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog