In this study, we examined Finland's renewable energy landscape in 2023 and provided an extrapolated estimate for 2030 using hourly data and capacity projections. The method applied 2023 hourly capacity factors to 2030 installed capacity and consumption estimates provided by Fingrid to simulate future production and consumption patterns. In 2023, wind and solar power comprised 19% of electricity production but were projected to supply over 50% by 2030. However, due to the intermittency of these sources, the model estimated that Finland will remain electricity-negative for 61% of the hours in 2030, with an annual deficit of 10 TWh. Electricity price data from Nord Pool was also analyzed, showing a modest inverse correlation between wind production and market price. The analysis revealed significant seasonal variability, with winter deficits and summer surpluses closely associated with wind availability. Nuclear and hydropower remain critical for baseload and grid balancing, whereas storage technologies and flexible demand are necessary to close the gap. We conclude that under the current development trajectories, Finland is unlikely to achieve full electricity self-sufficiency by 2030 and will continue to rely on imports during low-production periods. These findings highlight the importance of diversifying renewable generation, improving capacity factors, and investing in energy storage to support Finland's 2035 carbon neutrality target.
Citation: Jaakko Schroderus, Pekka Tervonen, Harri Haapasalo, Marko Huttula. Renewable energy analysis for 2023 and estimate for 2030 in Finland[J]. AIMS Energy, 2025, 13(5): 1273-1300. doi: 10.3934/energy.2025047
In this study, we examined Finland's renewable energy landscape in 2023 and provided an extrapolated estimate for 2030 using hourly data and capacity projections. The method applied 2023 hourly capacity factors to 2030 installed capacity and consumption estimates provided by Fingrid to simulate future production and consumption patterns. In 2023, wind and solar power comprised 19% of electricity production but were projected to supply over 50% by 2030. However, due to the intermittency of these sources, the model estimated that Finland will remain electricity-negative for 61% of the hours in 2030, with an annual deficit of 10 TWh. Electricity price data from Nord Pool was also analyzed, showing a modest inverse correlation between wind production and market price. The analysis revealed significant seasonal variability, with winter deficits and summer surpluses closely associated with wind availability. Nuclear and hydropower remain critical for baseload and grid balancing, whereas storage technologies and flexible demand are necessary to close the gap. We conclude that under the current development trajectories, Finland is unlikely to achieve full electricity self-sufficiency by 2030 and will continue to rely on imports during low-production periods. These findings highlight the importance of diversifying renewable generation, improving capacity factors, and investing in energy storage to support Finland's 2035 carbon neutrality target.
| [1] |
Sovacool BK (2009) The importance of comprehensiveness in renewable electricity and energy-efficiency policy. Energy Policy 37: 1529–1541. https://doi.org/10.1016/j.enpol.2008.12.016 doi: 10.1016/j.enpol.2008.12.016
|
| [2] | Ministry of Economic Affairs and Employment of Finland (2022) Carbon neutral Finland 2035—National climate and energy strategy. Available from: http://urn.fi/URN: ISBN: 978-952-327-843-1. |
| [3] |
Pilpola S, Arabzadeh V, Mikkola J, et al. (2019) Analyzing national and local pathways to carbon-neutrality from technology, emissions, and resilience perspectives—case of Finland. Energies 12: 949. https://doi.org/10.3390/en12050949 doi: 10.3390/en12050949
|
| [4] |
Cherp A, Vinichenko V, Jewell J, et al. (2018) Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Res Soc Sci 37: 175–190. https://doi.org/10.1016/j.erss.2017.09.015 doi: 10.1016/j.erss.2017.09.015
|
| [5] | European Commission (2025) The European Green Deal. Available from: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en. |
| [6] |
Kivimaa P, Sivonen MH (2021) Interplay between low-carbon energy transitions and national security: An analysis of policy integration and coherence in Estonia, Finland and Scotland. Energy Res Soc Sci 75: 102024. https://doi.org/10.1016/j.erss.2021.102024 doi: 10.1016/j.erss.2021.102024
|
| [7] |
Boccard N (2009) Capacity factor of wind power realized values vs. estimates. Energy Policy 37: 2679–2688. https://doi.org/10.1016/j.enpol.2009.02.046 doi: 10.1016/j.enpol.2009.02.046
|
| [8] |
Notton G, Nivet ML, Voyant C, et al. (2018) Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew Sustain Energy Rev 87: 96–105. https://doi.org/10.1016/j.rser.2018.02.007 doi: 10.1016/j.rser.2018.02.007
|
| [9] | State Treasury Finland (2025) Carbon Neutral Finland 2035. Available from: https://www.treasuryfinland.fi/investor-relations/sustainability-and-finnish-government-bonds/carbon-neutral-finland-2035/. |
| [10] | Ministry of Economic Affairs and Employment of Finland (2024) Finland's integrated national energy and climate plan update. Available from: https://urn.fi/URN: ISBN: 978-952-327-527-0. |
| [11] | Jääskeläinen S (2021) Fossiilittoman liikenteen tiekartta: Valtioneuvoston periaatepäätös kotimaan liikenteen kasvihuonepäästöjen vähentämisestä. Ministry of Transport and Communications of Finland. Available from: https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/163258/LVM_2021_15.pdf?sequence = 1 & isAllowed = y. |
| [12] | IPCC (2023) Climate Change 2023: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Lee H and Romero J (eds.). IPCC, Geneva, Switzerland. Available from: https://www.ipcc.ch/report/ar6/syr/. |
| [13] |
Adebayo TS, Ozsahin DU, Olanrewaju VO, et al. (2025) Decoding the environmental role of nuclear and renewable energy consumption: A time-frequency perspective. Ann Nucl Energy 223: 111660. https://doi.org/10.1016/j.anucene.2025.111660 doi: 10.1016/j.anucene.2025.111660
|
| [14] | International Energy Agency (IEA) (2022) Renewables 2022. Available from: https://www.iea.org/reports/renewables-2022. |
| [15] |
Heidrich O, Reckien D, Olazabal M, et al. (2016) National climate policies across Europe and their impacts on cities strategies. J Environ Manage 168: 36–45. https://doi.org/10.1016/j.jenvman.2015.11.043 doi: 10.1016/j.jenvman.2015.11.043
|
| [16] |
Hanna R, Heptonstall P, Gross R (2024) Job creation in a low carbon transition to renewables and energy efficiency: A review of international evidence. Sustain Sci 19: 125–150. https://doi.org/10.1007/s11625-023-01440-y doi: 10.1007/s11625-023-01440-y
|
| [17] |
Adebayo TS, Olanrewaju VO (2025) Journey toward affordable and modern energy: Role of income inequality and technological innovation. Environ Prog Sustain Energy 44: e14555. https://doi.org/10.1002/ep.14555 doi: 10.1002/ep.14555
|
| [18] |
Allam Z, Bibri SE, Sharpe SA (2022) The rising impacts of the COVID-19 pandemic and the Russia–Ukraine War: Energy transition, climate justice, global inequality, and supply chain disruption. Resources 11: 99. https://doi.org/10.3390/resources11110099 doi: 10.3390/resources11110099
|
| [19] |
Ren G, Wan J, Liu J, et al. (2018) Analysis of wind power intermittency based on historical wind power data. Energy 150: 482–492. https://doi.org/10.1016/j.energy.2018.02.142 doi: 10.1016/j.energy.2018.02.142
|
| [20] |
Wu C, Zhang XP, Sterling M (2022) Solar power generation intermittency and aggregation. Sci Rep 12: 1363. https://doi.org/10.1038/s41598-022-05247-2 doi: 10.1038/s41598-022-05247-2
|
| [21] |
Yekini Suberu M, Wazir Mustafa M, Bashir N (2014) Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev 35: 499–514. https://doi.org/10.1016/j.rser.2014.04.009 doi: 10.1016/j.rser.2014.04.009
|
| [22] |
Saha S, Saleem MI, Roy TK (2023) Impact of high penetration of renewable energy sources on grid frequency behaviour. Int J Electr Power Energy Syst 145: 108701. https://doi.org/10.1016/j.ijepes.2022.108701 doi: 10.1016/j.ijepes.2022.108701
|
| [23] |
Baur D, Emmerich P, Baumann MJ, et al. (2022) Assessing the social acceptance of key technologies for the German energy transition. Energy Sustain Soc 12: 4. https://doi.org/10.1186/s13705-021-00329-x doi: 10.1186/s13705-021-00329-x
|
| [24] | European Commission (2023) Energy Efficiency Directive. Available from: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en. |
| [25] | European Commission (2021) Questions and answers—The effort sharing regulation and land, forestry and agriculture regulation. Available from: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3543. |
| [26] | European Commission (2025) About the EU ETS. Available from: https://climate.ec.europa.eu/eu-action/carbon-markets/eu-emissions-trading-system-eu-ets/about-eu-ets_en. |
| [27] | European Commission (2025) The Just Transition Mechanism. Available from: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/finance-and-green-deal/just-transition-mechanism_en. |
| [28] | European Parliament and Council of the European Union (2023) Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 on the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. Official Journal of the European Union L. Available from: http://data.europa.eu/eli/dir/2023/2413/oj. |
| [29] | Fingrid (2025) Sähköntuotannon ja -kulutuksen CO2-päästöarviot. Available from: https://www.fingrid.fi/sahkomarkkinainformaatio/co2/. |
| [30] | Tampereen Energia (2025) Historia. Available from: https://www.tampereenenergia.fi/tampereen-energia/yritys/historia/. |
| [31] | Etelä-Savon Energia (ESE) (2023) Kuhankosken vesivoimalaitos Laukaassa. Available from: https://ese.fi/fi-fi/article/uutiset/kuhankosken-vesivoimalaitos-laukaassa/1598/. |
| [32] | Motiva (2025) Vesivoima. Available from: https://www.motiva.fi/ratkaisut/uusiutuva_energia/vesivoima. |
| [33] | Suomen uusiutuvat ry (2025) Tuulivoima Suomessa. Available from: https://suomenuusiutuvat.fi/tuulivoima/tuulivoima-maailmalla/tuulivoima-suomessa/. |
| [34] | Suomen Tuulivoimayhdistys ry (2023) Finnish Wind Power Statistics 2022. Available from: https://suomenuusiutuvat.fi/media/finnish-wind-power-stats_2022-1.pdf. |
| [35] | Virtanen S (2021) Suomi oli aikoinaan hetken aurinkovoiman suurvalta—1980-luvun huipputeknologia haudattiin ja tuotanto lopetettiin, kun öljyn hinta laski. Tekniikka & Talous. Available from: https://www.tekniikkatalous.fi/uutiset/a/34db61c0-14a6-4039-a99b-f8c964a772c0. |
| [36] | LUT-yliopisto (2024) Aurinkoenergia ja aurinkosähkö Suomessa. Available from: https://www.lut.fi/fi/artikkelit/aurinkoenergia-ja-aurinkosahko-suomessa. |
| [37] | Statistics Finland (2011) Forest accounts 2010. Available from: https://stat.fi/til/mettp/2010/mettp_2010_2011-12-20_tie_001_en.html. |
| [38] | Ministry of Economic Affairs and Employment of Finland (2021) Turvetyöryhmä, työpaperi 30.03. 21. Työ-ja elinkeinoministeriö. Available from: https://tem.fi/documents/1410877/67934370/Turvety%C3%B6ryhm%C3%A4%2C+ty%C3%B6paperi+30.03.21.pdf. |
| [39] | Motiva (2024) Tuet tuulivoiman rakentamiselle. Available from: https://www.motiva.fi/ratkaisut/uusiutuva_energia/tuulivoima/tuulivoima_suomessa/tuet_tuulivoiman_rakentamiselle. |
| [40] |
Tumse S, Bilgili M, Yildirim A, et al. (2024) Comparative analysis of global onshore and offshore wind energy characteristics and potentials. Sustainability 16: 6614. https://doi.org/10.3390/su16156614 doi: 10.3390/su16156614
|
| [41] |
Vogel EE, Saravia G, Kobe S, et al. (2024) Onshore versus offshore capacity factor and reliability for wind energy production in Germany: 2010–2022. Energy Sci Eng 12: 2198–2208. https://doi.org/10.1002/ese3.1742 doi: 10.1002/ese3.1742
|
| [42] |
Möllerström E, Gipe P, Ottermo F (2024) Wind power development: A historical review. Wind Eng 49: 499–512. https://doi.org/10.1177/0309524X241260061 doi: 10.1177/0309524X241260061
|
| [43] | Kalmikov A (2017) Chapter 2—Wind power fundamentals. Wind Energy Engineering, 17–24. https://doi.org/10.1016/B978-0-12-809451-8.00002-3 |
| [44] | Nakamoto Y, Eguchi S (2024) How do seasonal and technical factors affect generation efficiency of photovoltaic power plants? Renew Sustain Energy Rev 199: 114441. https://doi.org/10.1016/j.rser.2024.114441 |
| [45] |
Boretti A (2023) Capacity factors over the lifetime of solar thermal and photovoltaic plants. Energy Technol 11: 2201270. https://doi.org/10.1002/ente.202201270 doi: 10.1002/ente.202201270
|
| [46] | Fingrid (2025) Fingrid Open Data Portal. Available from: https://data.fingrid.fi/. |
| [47] | Fingrid Oyj (2024) Sähkön tuotannon ja kulutuksen kehitysnäkymät päivitetty—Pidemmän aikavälin näkymä ennallaan. STT Info. Available from: https://www.sttinfo.fi/tiedote/70541198/sahkon-tuotannon-ja-kulutuksen-kehitysnakymat-paivitetty-pidemman-aikavalin-nakyma-ennallaan?lang = fi. |
| [48] |
Shcherbakov M, Brebels A, Shcherbakova NL, et al. (2013) A survey of forecast error measures. World Appl Sci J 24: 171–176. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032 doi: 10.5829/idosi.wasj.2013.24.itmies.80032
|
| [49] | Fingrid Oyj (2023) A peculiar situation in the electricity market on Friday—The price does not guide production and consumption correctly. PublicNow. Available from: https://www.publicnow.com/view/E7B932AA8D64B8F31D78A1C5C1A785E3171CB9B2. |
| [50] | WindEurope (2024) Wind energy in Europe—2023 statistics and the outlook for 2024–2030. WindEurope. Available from: https://windeurope.org/data/products/wind-energy-in-europe-2023-statistics-and-the-outlook-for-2024-2030/. |