Research article

Enhancement of power distribution efficiency through optimal capacitor placement using adaptive simulated gorilla troop optimizer


  • Published: 21 July 2025
  • This paper proposes an Adaptive Simulated Gorilla Troop Optimizer (ASGTO) to minimize the cost of switched capacitor placement in the IEEE 34-bus radial distribution network. The novelty of this work lies in the enhancement of the standard Gorilla Troop Optimizer (GTO) through the integration of circle chaotic mapping and step adaptive simulations, which improve the global optimization performance. The ASGTO adopts a two-step approach: a loss sensitivity analysis identifies candidate buses, followed by the determination of the optimal capacitor locations and sizes by ASGTO. The optimization process is validated using a backward-forward sweep power flow analysis based on standard IEEE data. Comparative results reveal the superiority of the proposed ASGTO method, thereby achieving a 27.9% reduction in active power loss, a 28.09% decrease in reactive power loss, and an annual energy cost saving of $9,122.32. The optimal placement of the capacitors significantly enhances the voltage stability, thereby maintaining voltage levels between 0.9505 per unit (p.u) and 0.9952 p.u. The results confirm the effectiveness of the ASGTO in reducing losses and costs while improving voltage profiles, thereby supporting the development of more efficient and sustainable distribution networks.

    Citation: Bright Ayasu, Abdul-Fatawu Seini Yussif, Emmanuel Agyepong Nyantakyi. Enhancement of power distribution efficiency through optimal capacitor placement using adaptive simulated gorilla troop optimizer[J]. AIMS Electronics and Electrical Engineering, 2025, 9(3): 405-422. doi: 10.3934/electreng.2025019

    Related Papers:

  • This paper proposes an Adaptive Simulated Gorilla Troop Optimizer (ASGTO) to minimize the cost of switched capacitor placement in the IEEE 34-bus radial distribution network. The novelty of this work lies in the enhancement of the standard Gorilla Troop Optimizer (GTO) through the integration of circle chaotic mapping and step adaptive simulations, which improve the global optimization performance. The ASGTO adopts a two-step approach: a loss sensitivity analysis identifies candidate buses, followed by the determination of the optimal capacitor locations and sizes by ASGTO. The optimization process is validated using a backward-forward sweep power flow analysis based on standard IEEE data. Comparative results reveal the superiority of the proposed ASGTO method, thereby achieving a 27.9% reduction in active power loss, a 28.09% decrease in reactive power loss, and an annual energy cost saving of $9,122.32. The optimal placement of the capacitors significantly enhances the voltage stability, thereby maintaining voltage levels between 0.9505 per unit (p.u) and 0.9952 p.u. The results confirm the effectiveness of the ASGTO in reducing losses and costs while improving voltage profiles, thereby supporting the development of more efficient and sustainable distribution networks.



    加载中


    [1] Twumasi E, Abdul-Fatawu YS, Frimpong EA (2023) Optimal Sizing and Placement of Series Capacitors in Distribution Networks Using Modified Elephant Herding Optimization Algorithm. J Appl Res Electr Eng 2: 173–181. https://doi.org/10.22055/jaree.2023.44430.1076 doi: 10.22055/jaree.2023.44430.1076
    [2] Bilal M, Shahzad M, Arif M, Ullah B, Hisham SB, Ali SSA (2021) Annual cost and loss minimization in a radial distribution network by capacitor allocation using pso. Appl Sci 11: 11840. https://doi.org/10.3390/app112411840 doi: 10.3390/app112411840
    [3] Yussif AFS, Seini T, Ayasu B, Nyantakyi EA (2024) Enhancing Reactive Power Compensation in Distribution Systems through Optimal Integration of D-STATCOM using the Pelican Optimization Algorithm. International Journal of Electrical Engineering and Applied Sciences (IJEEAS) 7: 2600–9633. https://doi.org/10.54554/ijeeas.2024.7.01.006 doi: 10.54554/ijeeas.2024.7.01.006
    [4] Amiel I, Rajput S, Averbukh M (2021) Capacitive reactive power compensation to prevent voltage instabilities in distribution lines. Int J Electr Power Energy Syst 131: 107043. https://doi.org/10.1016/j.ijepes.2021.107043 doi: 10.1016/j.ijepes.2021.107043
    [5] Stanelyte D, Radziukynas V (2019) Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks. Energies 13: 58. https://doi.org/10.3390/en13010058 doi: 10.3390/en13010058
    [6] Díaz P, Pérez-Cisneros M, Cuevas E, Camarena O, Martinez FAF, González A (2018) A swarm approach for improving voltage profiles and reduce power loss on electrical distribution networks. IEEE Access 6: 49498–49512. https://doi.org/10.1109/ACCESS.2018.2868814 doi: 10.1109/ACCESS.2018.2868814
    [7] Biswal SR, Shankar G (2018) Optimal Sizing and Allocation of Capacitors in Radial Distribution System using Sine Cosine Algorithm. Proc. 2018 IEEE Int. Conf. Power Electron. Drives Energy Syst. (PEDES), 1–4. https://doi.org/10.1109/PEDES.2018.8707739
    [8] Addisu M, Salau AO, Takele H (2021) Fuzzy logic based optimal placement of voltage regulators and capacitors for distribution systems efficiency improvement. Heliyon 7: e07848. https://doi.org/10.1016/j.heliyon.2021.e07848 doi: 10.1016/j.heliyon.2021.e07848
    [9] Ortiz L (2020) Ubicación y dimensionamiento óptimo de bancos de capacitores usando compensación VOLT-VAR en Microredes. IEEE Latin America Transactions. Available from: https://www.researchgate.net/profile/Leony-Ortiz/publication/356998075_Ubicacion_y_dimensionamiento_optimo_de_bancos_de_capacitores_usando_compensacion_VOLT-VAR_en_Microredes/links/61c472338bb20101842f9df3/Ubicacion-y-dimensionamiento-optimo-de-bancos-de-
    [10] Rama ST, Rajini V (2023) Optimization of Switching Control and Microgrid Energy Management System with Alternate Arm Converter Based on Bacterial Foraging Algorithm. Int Trans Electr Energy Syst 2023: 5585420. https://doi.org/10.1155/2023/5585420 doi: 10.1155/2023/5585420
    [11] Roy A, Verma V, Gampa SR, Bansal RC (2023) Planning of distribution system considering residential roof top photovoltaic systems, distributed generations and shunt capacitors using gravitational search algorithm. Comput Electr Eng 111: 108960. https://doi.org/10.1016/j.compeleceng.2023.108960 doi: 10.1016/j.compeleceng.2023.108960
    [12] Eo O, To A, Ik O, Oo AI (2023) Optimal sitting and sizing of shunt capacitor for real power loss reduction on radial distribution system using firefly algorithm: A case study of Nigerian system. Energy Source Part A 45: 5776–5788. https://doi.org/10.1080/15567036.2019.1673507 doi: 10.1080/15567036.2019.1673507
    [13] Alghamdi AS (2022) A New Self-Adaptive Teaching–Learning-Based Optimization with Different Distributions for Optimal Reactive Power Control in Power Networks. Energies 15: 2759. https://doi.org/10.3390/en15082759 doi: 10.3390/en15082759
    [14] Nagpal M, Kaushal M, Sharma A (2022) A feature reduced intrusion detection system with Optimized SVM Using Big Bang Big Crunch Optimization. Wireless Pers Commun 122: 1939‒1965. https://doi.org/10.1007/s11277-021-08975-2 doi: 10.1007/s11277-021-08975-2
    [15] Ibrahim AH, Ashigwuike EC, Oluyombo W, Sadiq AA (2023) Optimal Capacitor Planning for Power Factor Improvement Using Hybrid Particle Swarm and Harmony Search Optimization. Niger J Technol Dev 20: 210–226. https://doi.org/10.4314/njtd.v20i3.1825 doi: 10.4314/njtd.v20i3.1825
    [16] Ding Z, Zhang H, Li H, Chen J, Lu P, Hua C (2023) Improved Harmony Search Algorithm for Enhancing Efficiency and Quality in Optimization of the Distillation Process. ACS Omega 8: 28487–28498. https://doi.org/10.1021/acsomega.3c02785 doi: 10.1021/acsomega.3c02785
    [17] Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80: 8091‒8126. https://doi.org/10.1007/s11042-020-10139-6 doi: 10.1007/s11042-020-10139-6
    [18] Reddy NM, Kiran TV, Kumar IK, Reddy KR, Srinivas C, Divya K (2024) Optimizing Capacitor Placement in Distribution Systems Under Variable Loading Conditions with Golden Jack Optimization (GJO). Int J Electr Electron Res 12: 338–344. https://doi.org/10.37391/IJEER.120202 doi: 10.37391/IJEER.120202
    [19] Jayabarathi T, Raghunathan T, Sanjay R, Jha A, Mirjalili S, Cherukuri SHC (2022) Hybrid Grey Wolf Optimizer Based Optimal Capacitor Placement in Radial Distribution Systems. Electr Power Components Syst 50: 413–425. https://doi.org/10.1080/15325008.2022.2132556 doi: 10.1080/15325008.2022.2132556
    [20] Mathenge SW, Mharakurwa ET, Mogaka L (2024) Voltage enhancement and loss minimization in a radial network through optimal capacitor sizing and placement based on Crow Search Algorithm. Energy Reports 12: 4953–4965. https://doi.org/10.1016/j.egyr.2024.10.062 doi: 10.1016/j.egyr.2024.10.062
    [21] Ali ES (2025) Efficient Capacitor Location in Radial Distribution Networks via Reptile Search Approach. WSEAS Trans Circuits Syst 24: 66–77. https://doi.org/10.37394/23201.2025.24.8 doi: 10.37394/23201.2025.24.8
    [22] Mahato JP, Poudel YK, Chapagain MR, Mandal RK (2024) Power Loss Minimization and Voltage Profile Improvement of Radial Distribution Network Through the Installation of Capacitor and Distributed Generation (DG). Arch Adv Eng Sci, 1–9. https://doi.org/10.47852/bonviewAAES42022031 doi: 10.47852/bonviewAAES42022031
    [23] Tahir MJ, Rasheed MB, Rahmat MK (2022) Optimal Placement of Capacitors in Radial Distribution Grids via Enhanced Modified Particle Swarm Optimization. Energies 15: 2452. https://doi.org/10.3390/en15072452 doi: 10.3390/en15072452
    [24] Kavya L, Ramakrishna K (2020) Optimal Placement of capacitor in the Radial Distribution System using Multi Objective BA/CS Algorithm. Gedrag and Organisatie 33. https://doi.org/10.37896/GOR33.02/146 doi: 10.37896/GOR33.02/146
    [25] Hussien AG, Bouaouda A, Alzaqebah A, Kumar S, Hu G, Jia H (2024) An in-depth survey of the artificial gorilla troops optimizer: Outcomes, variations, and applications. Artif Intell Rev 57: 246. https://doi.org/10.1007/s10462-024-10838-8 doi: 10.1007/s10462-024-10838-8
    [26] Bright A, Emmanuel AK, Elvis T, Emmanuel FA (2023) Enhanced Adaptive Simulated Based Artificial Gorilla Troop Optimizer for Global Optimisation. International Journal of Electrical Engineering and Applied Sciences (IJEEAS) 6: 63–76. https://doi.org/10.54554/ijeeas.2023.6.02.008 doi: 10.54554/ijeeas.2023.6.02.008
    [27] Suryadi MT, Satria Y, Prawadika LN (2020) An improvement on the chaotic behavior of the Gauss Map for cryptography purposes using the Circle Map combination. J Phys Conf Ser 1490: 012045. IOP Publishing. https://doi.org/10.1088/1742-6596/1490/1/012045 doi: 10.1088/1742-6596/1490/1/012045
    [28] Osama A, Zeineldin HH, Tarek HM EF, El-Saadany EF (2023) Optimal Placement and Sizing of Capacitor Banks in Radial Distribution Systems Using the Whale Optimization Algorithm. 2023 IEEE PES Conf. Innov. Smart Grid Technol. - Middle East, ISGT Middle East 2023 - Proc., 1–5. https://doi.org/10.1109/ISGTMiddleEast56437.2023.10078650
    [29] El-Fergany AA, Abdelaziz AY (2014) Efficient heuristic-based approach for multi-objective capacitor allocation in radial distribution networks. IET Gener Transm Distrib 8: 70–80. https://doi.org/10.1049/iet-gtd.2013.0213 doi: 10.1049/iet-gtd.2013.0213
    [30] Abou El-Ela AA, El-Sehiemy RA, Kinawy AM, Mouwafi MT (2016) Optimal capacitor placement in distribution systems for power loss reduction and voltage profile improvement. IET Gener Transm Distrib 10: 1209–1221. https://doi.org/10.1049/iet-gtd.2015.0799 doi: 10.1049/iet-gtd.2015.0799
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(104) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog