Research article

Creation of hidden $ n $-scroll Lorenz-like attractors

  • Published: 10 July 2025
  • Compared with the recently reported hidden two-scroll Lorenz-like attractors in symmetric quadratic and sub-quadratic Lorenz-like dynamical systems, little seems to be concerned with the generation of hidden $ n $-scroll ($ n\in\mathbb{N} $) attractors as far as one knows, especially the one whose number of scrolls equals the one of equilibria. To achieve this target, we first constructed a new asymmetric quadratic Lorenz-like analogue and seized hidden single-scroll Lorenz-like attractors, which were also created through the collapse of pseudo singularly degenerate heteroclinic cycles. Then, utilizing the fractal process or rotation symmetry, the proposed system may exhibit hidden $ n $-scroll Lorenz-like attractors coexisting with $ n $ stable equilibria, and two examples of hidden two/three-scroll Lorenz-like attractors coexisting with two/three stable equilibria were given. In addition, the existence of a single heteroclinic orbit was proved with the help of suitable Lyapunov functions. The obtained results may not only generalize the second part of Hilbert's 16th problem (i.e., the degree may determine the geometrical structure of strange attractors), but also provide reference for practical application.

    Citation: Jun Pan, Haijun Wang, Feiyu Hu. Creation of hidden $ n $-scroll Lorenz-like attractors[J]. Electronic Research Archive, 2025, 33(7): 4167-4183. doi: 10.3934/era.2025188

    Related Papers:

  • Compared with the recently reported hidden two-scroll Lorenz-like attractors in symmetric quadratic and sub-quadratic Lorenz-like dynamical systems, little seems to be concerned with the generation of hidden $ n $-scroll ($ n\in\mathbb{N} $) attractors as far as one knows, especially the one whose number of scrolls equals the one of equilibria. To achieve this target, we first constructed a new asymmetric quadratic Lorenz-like analogue and seized hidden single-scroll Lorenz-like attractors, which were also created through the collapse of pseudo singularly degenerate heteroclinic cycles. Then, utilizing the fractal process or rotation symmetry, the proposed system may exhibit hidden $ n $-scroll Lorenz-like attractors coexisting with $ n $ stable equilibria, and two examples of hidden two/three-scroll Lorenz-like attractors coexisting with two/three stable equilibria were given. In addition, the existence of a single heteroclinic orbit was proved with the help of suitable Lyapunov functions. The obtained results may not only generalize the second part of Hilbert's 16th problem (i.e., the degree may determine the geometrical structure of strange attractors), but also provide reference for practical application.



    加载中


    [1] R. Miranda, E. Stone, The proto-Lorenz system, Phys. Lett. A, 178 (1993), 105–113. https://doi.org/10.1016/0375-9601(93)90735-I
    [2] C. Letellier, P. Werny, J. M. Malasoma, R. Gilmore, Multichannel intermittencies induced by symmetries, Phys. Rev. E, 66 (2002), 036220. https://doi.org/10.1103/PhysRevE.66.036220 doi: 10.1103/PhysRevE.66.036220
    [3] Y. Guo, G. Qi, Y. Hamam, A multi-wing spherical chaotic system using fractal process, Nonlinear Dyn., 85 (2016), 2765–2775. https://doi.org/10.1007/s11071-016-2861-7 doi: 10.1007/s11071-016-2861-7
    [4] Y. Yang, L. Huang, J. Xiang, H. Bao, H. Li, Design of multi-wing 3D chaotic systems with only stable equilibria or no equilibrium point using rotation symmetry, Int. J. Electron. Commun., 135 (2021), 153710. https://doi.org/10.1016/j.aeue.2021.153710 doi: 10.1016/j.aeue.2021.153710
    [5] M. Marwan, A. Xiong, M. Han, R. Khan, Chaotic behavior of Lorenz-based chemical system under the influence of fractals, MATCH Commun. Math. Comput. Chem., 91 (2024), 307–336. https://doi.org/10.46793/match.91-2.307M doi: 10.46793/match.91-2.307M
    [6] J. Pan, H. Wang, G. Ke, F. Hu, Creation of single-wing Lorenz-like attractors via a ten-ninths-degree term, Open Phys., 23 (2025), 20250165. https://doi.org/10.1515/phys-2025-0165 doi: 10.1515/phys-2025-0165
    [7] N. V. Kuznetsov, T. N. Mokaev, O. A. Kuznetsova, E. V. Kudryashova, The Lorenz system: Hidden boundary of practical stability and the Lyapunov dimension, Nonlinear Dyn., 102 (2020), 713–732. https://doi.org/10.1007/s11071-020-05856-4 doi: 10.1007/s11071-020-05856-4
    [8] X. Zhang, G. Chen, Constructing an autonomous system with infinitely many chaotic attractors, Chaos Interdiscip. J. Nonlinear Sci., 27 (2017), 071101. https://doi.org/10.1063/1.4986356 doi: 10.1063/1.4986356
    [9] H. Wang, J. Pan, G. Ke, Revealing more hidden attractors from a new sub-quadratic Lorenz-like system of degree $\frac{6}{5}$, Int. J. Bifurcation Chaos, 34 (2024), 2450071. https://doi.org/10.1142/s0218127424500718 doi: 10.1142/s0218127424500718
    [10] S. Jafari, J. C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1469–1476. https://doi.org/10.1140/epjst/e2015-02472-1 doi: 10.1140/epjst/e2015-02472-1
    [11] D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, A. Prasad, Hidden attractors in dynamical systems, Phys. Rep., 637 (2016), 1–50. https://doi.org/10.1016/j.physrep.2016.05.002 doi: 10.1016/j.physrep.2016.05.002
    [12] S. N. Chowdhury, D. Ghosh, Hidden attractors: A new chaotic system without equilibria, Eur. Phys. J. Spec. Top., 229 (2020), 1299–1308. https://doi.org/10.1140/epjst/e2020-900166-7 doi: 10.1140/epjst/e2020-900166-7
    [13] S. N. Chowdhury, S. Kundu, M. Perc, D. Ghosh, Complex evolutionary dynamics due to punishment and free space in ecological multigames, Proc. R. Soc. A, 477 (2021), 20210397. https://doi.org/10.1098/rspa.2021.0397 doi: 10.1098/rspa.2021.0397
    [14] C. Wang, Y. Li, Q. Deng, Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation, Chaos Solitons Fractals, 193 (2025), 116053. https://doi.org/10.1016/j.chaos.2025.116053 doi: 10.1016/j.chaos.2025.116053
    [15] Q. Deng, C. Wang, G. Yang, Chaotic dynamics of memristor-coupled tabu learning neuronal network, Int. J. Bifurcation Chaos, 35 (2025), 25500531. https://doi.org/10.1142/S0218127425500531 doi: 10.1142/S0218127425500531
    [16] Q. Deng, C. Wang, Y. Sun, G. Yang, Memristive multi-wing chaotic hopfield neural network for LiDAR data security, Nonlinear Dyn., 113 (2025), 17161–17176. https://doi.org/10.1007/s11071-025-10982-y doi: 10.1007/s11071-025-10982-y
    [17] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 113 (2016), 3932–3937. https://doi.org/10.1073/pnas.1517384113 doi: 10.1073/pnas.1517384113
    [18] P. Dubois, T. Gomez, L. Planckaert, L. Perret, Data-driven predictions of the Lorenz system, Phys. D, 408 (2020), 132495. https://doi.org/10.1016/j.physd.2020.132495 doi: 10.1016/j.physd.2020.132495
    [19] J. C. Sprott, A proposed standard for the publication of new chaotic systems, Int. J. Bifurcation Chaos, 21 (2011), 2391–2394. https://doi.org/10.1142/S021812741103009X doi: 10.1142/S021812741103009X
    [20] Y. Chen, Q. Yang, A new Lorenz-type hyperchaotic system with a curve of equilibrium, Math. Comput. Simul., 112 (2015), 40–55. https://doi.org/10.1016/j.matcom.2014.11.006 doi: 10.1016/j.matcom.2014.11.006
    [21] H. Kokubu, R. Roussarie, Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: Part I, J. Dyn. Differ. Equations, 16 (2004), 513–557. https://doi.org/10.1007/s10884-004-4290-4 doi: 10.1007/s10884-004-4290-4
    [22] H. Wang, G. Ke, F. Hu, J. Pan, G. Dong, G. Chen, Pseudo and true singularly degenerate heteroclinic cycles of a new 3D cubic Lorenz-like system, Results Phys., 56 (2024), 107243. https://doi.org/10.1016/j.rinp.2023.107243 doi: 10.1016/j.rinp.2023.107243
    [23] H. Wang, G. Ke, J. Pan, Q. Su, Conjoined Lorenz-like attractors coined, Miskolc Math. Notes, 26 (2025), 527–546. https://doi.org/10.18514/MMN.2025.4489 doi: 10.18514/MMN.2025.4489
    [24] H. Wang, J. Pan, G. Ke, F. Hu, A pair of centro-symmetric heteroclinic orbits coined, Adv. Contin. Discrete Models, 2024 (2024), 1–11. https://doi.org/10.1186/s13662-024-03809-4 doi: 10.1186/s13662-024-03809-4
    [25] H. Wang, J. Pan, F. Hu, G. Ke, Asymmetric singularly degenerate heteroclinic cycles, Int. J. Bifurcation Chaos, 35 (2025), 2550072. https://doi.org/10.1142/S0218127425500725 doi: 10.1142/S0218127425500725
    [26] J. Pan, H. Wang, G. Ke, F. Hu, A novel Lorenz-like attractor and stability and equilibrium analysis, Axioms, 14 (2025), 264. https://doi.org/10.3390/axioms14040264 doi: 10.3390/axioms14040264
    [27] J. Pan, H. Wang, F. Hu, Revealing asymmetric homoclinic and heteroclinic orbits, Electron. Res. Arch., 33 (2025), 1337–1350. https://doi.org/10.3934/era.2025061 doi: 10.3934/era.2025061
    [28] Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-1-4757-3978-7
    [29] J. Sotomayor, L. F. Mello, D. C. Braga, Lyapunov coefficients for degenerate Hopf bifurcations, preprint, arXiv: 0709.3949. https://doi.org/10.48550/arXiv.0709.3949
    [30] H. Wang, G. Ke, G. Dong, Q. Su, J. Pan, Singularly degenerate heteroclinic cycles with nearby apple-shape attractors, Int. J. Bifurcation Chaos, 33 (2023), 2350011. https://doi.org/10.1142/S0218127423500116 doi: 10.1142/S0218127423500116
    [31] A. A. P. Rodrigues, I. S. Labouriau, Spiralling dynamics near heteroclinic networks, Phys. D, 268 (2014), 34–49. https://doi.org/10.1016/j.physd.2013.10.012 doi: 10.1016/j.physd.2013.10.012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(749) PDF downloads(57) Cited by(9)

Article outline

Figures and Tables

Figures(12)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog