Pursuing highly stable and efficient renewable energy solutions remains the driving force for developing perovskite solar cells (PSCs). Central to achieving these cells’ high and optimum performance is the accurate and intelligent design engineering of the device’s architecture. This theoretical study employs the simulation platform SCAPS-1D to systematically investigate the crucial role of the interlayer methylammonium lead iodide (MAPbI3) as an adsorber layer in encouraging the titanium dioxide (TiO2)/MAPbI3/graphene oxide (GO) heterostructure design. By strategic tuning of the MAPbI3 absorber layer, we successfully delivered a remarkable 20.8% power conversion efficiency (PCE) and fill factor (FF) of 80.5% at 300 K, significant improvements over the reference PCE of 11.6% and FF of 78.5%. Significant improvements were made by optimizing MAPbI3 thickness to 1.2 µm and narrowing its bandgap to 1.5 eV, allowing enhanced photon absorption and charge carrier separation and minimizing interface-mediated recombination losses. Importantly, changes to the TiO2 and GO layer thickness had a minimal impact on performance, emphasizing the absorber layer’s dominant role in controlling efficiency. Utilizing low-cost, low-toxicity materials such as abundant TiO2 and GO improves economic feasibility and scalability, and the optimized structure minimizes material consumption, all aligning with sustainable photovoltaic development. These results advance our understanding of PSC optimization and reflect the enormous potential of MAPbI3 materials for developing highly efficient, green alternatives to conventional solar technology, enabling future developments in stable, scalable, and environmentally friendly energy solutions.
Citation: Hmoud Al Dmour, Osama Y. Al-Madanat, Rakan M. Altarawneh, Emad K. Jaradat, Beddiaf Zaidi, Bonginkosi V Kheswa. Enhancing efficiency in TiO2/MAPbI3/GO perovskite solar cells: theoretical investigation of MAPbI3 interlayer effects using SCAPS-1D simulation[J]. AIMS Energy, 2025, 13(3): 732-755. doi: 10.3934/energy.2025026
Pursuing highly stable and efficient renewable energy solutions remains the driving force for developing perovskite solar cells (PSCs). Central to achieving these cells’ high and optimum performance is the accurate and intelligent design engineering of the device’s architecture. This theoretical study employs the simulation platform SCAPS-1D to systematically investigate the crucial role of the interlayer methylammonium lead iodide (MAPbI3) as an adsorber layer in encouraging the titanium dioxide (TiO2)/MAPbI3/graphene oxide (GO) heterostructure design. By strategic tuning of the MAPbI3 absorber layer, we successfully delivered a remarkable 20.8% power conversion efficiency (PCE) and fill factor (FF) of 80.5% at 300 K, significant improvements over the reference PCE of 11.6% and FF of 78.5%. Significant improvements were made by optimizing MAPbI3 thickness to 1.2 µm and narrowing its bandgap to 1.5 eV, allowing enhanced photon absorption and charge carrier separation and minimizing interface-mediated recombination losses. Importantly, changes to the TiO2 and GO layer thickness had a minimal impact on performance, emphasizing the absorber layer’s dominant role in controlling efficiency. Utilizing low-cost, low-toxicity materials such as abundant TiO2 and GO improves economic feasibility and scalability, and the optimized structure minimizes material consumption, all aligning with sustainable photovoltaic development. These results advance our understanding of PSC optimization and reflect the enormous potential of MAPbI3 materials for developing highly efficient, green alternatives to conventional solar technology, enabling future developments in stable, scalable, and environmentally friendly energy solutions.
| [1] |
Olabi AG, Abdelkareem MA (2022) Renewable energy and climate change. Renew Sustain Energy Rev 158: 112111. https://dx.doi.org/10.1016/j.rser.2022.112111 doi: 10.1016/j.rser.2022.112111
|
| [2] |
Jiries A, Al-Nasir F, Hijazin TJ, et al. (2022) Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment. Arab J Chem, 15. https://dx.doi.org/10.1016/j.arabjc.2022.104027 doi: 10.1016/j.arabjc.2022.104027
|
| [3] |
Al-Dmour H, Alzard RH, Alblooshi H, et al. (2019) Enhanced energy conversion of Z907-based solar cells by cucurbit[7]uril macrocycles. Front Chem, 7. https://dx.doi.org/10.3389/fchem.2019.00561 doi: 10.3389/fchem.2019.00561
|
| [4] |
Kannan N, Vakeesan D (2016) Solar energy for future world: A review. Renew Sustain Energy Rev 62: 1092–1105. https://dx.doi.org/10.1016/j.rser.2016.05.022 doi: 10.1016/j.rser.2016.05.022
|
| [5] |
Solak EK, Irmak E (2023) Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Adv 13: 12244–12269. https://dx.doi.org/10.1039/D3RA01454A doi: 10.1039/D3RA01454A
|
| [6] |
Osman AI, Chen L, Yang M, et al. (2023) Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environ Chem Lett 21: 741–764. https://dx.doi.org/10.1007/s10311-022-01532-8 doi: 10.1007/s10311-022-01532-8
|
| [7] |
Li G, Li M, Taylor R, et al. (2022) Solar energy utilisation: Current status and roll-out potential. Appl Therm Eng 209: 118285. https://dx.doi.org/10.1016/j.applthermaleng.2022.118285 doi: 10.1016/j.applthermaleng.2022.118285
|
| [8] |
Kamarulzaman A, Hasanuzzaman M, Rahim NA (2021) Global advancement of solar drying technologies and its future prospects: A review. Sol Energy 221: 559–582. https://dx.doi.org/10.1016/j.solener.2021.04.056 doi: 10.1016/j.solener.2021.04.056
|
| [9] |
Roy P, Kumar Sinha N, Tiwari S, et al. (2020) A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol Energy 198: 665–688. https://dx.doi.org/10.1016/j.solener.2020.01.080 doi: 10.1016/j.solener.2020.01.080
|
| [10] |
Correa-Baena J-P, Abate A, Saliba M, et al. (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10: 710–727. https://dx.doi.org/10.1039/C6EE03397K doi: 10.1039/C6EE03397K
|
| [11] |
Bouich A, Marí-Guaita J, Soucase BM, et al. (2023) Bright future by enhancing the stability of methylammonium lead triiodide perovskites thin films through Rb, Cs and Li as dopants. Mater Res Bull 163: 112213. https://dx.doi.org/10.1016/j.materresbull.2023.112213 doi: 10.1016/j.materresbull.2023.112213
|
| [12] |
Machín A, Márquez F (2024) Advancements in photovoltaic cell materials: Silicon, organic, and perovskite solar cells. Materials 17: 1165. https://dx.doi.org/10.3390/ma17051165 doi: 10.3390/ma17051165
|
| [13] |
Li Y, Li Y, Zhang Q, et al. (2023) Electrical transport properties of TiO2/MAPbI3 and SnO2/MAPbI3 heterojunction interfaces under high pressure. RSC Adv 13: 3333–3340. https://dx.doi.org/10.1039/D2RA08143A doi: 10.1039/D2RA08143A
|
| [14] |
Ali N, Shehzad N, Uddin S, et al. (2021) A review on perovskite materials with solar cell prospective. Int J Energy Res 45: 19729–19745. https://dx.doi.org/10.1002/er.7067 doi: 10.1002/er.7067
|
| [15] |
Djeradi S, Dahame T, Fadla MA, et al. (2024) High-throughput ensemble-learning-driven band gap prediction of double perovskites solar cells absorber. Mach Learn Knowl 6: 435–447. https://doi.org/10.3390/make6010022 doi: 10.3390/make6010022
|
| [16] |
Courtier NE, Cave JM, Foster JM, et al. (2019) How transport layer properties affect perovskite solar cell performance: Insights from a coupled charge transport/ion migration model. Energy Environ Sci 12: 396–409. https://dx.doi.org/10.1039/C8EE01576G doi: 10.1039/C8EE01576G
|
| [17] |
Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv 7: 17044–17062. https://dx.doi.org/10.1039/C7RA00002B doi: 10.1039/C7RA00002B
|
| [18] |
Krishna BG, Ghosh DS, Tiwari S (2023) Hole and electron transport materials: A review on recent progress in organic charge transport materials for efficient, stable, and scalable perovskite solar cells. Chem Inorg Mater 1: 100026. https://dx.doi.org/10.1016/j.cinorg.2023.100026 doi: 10.1016/j.cinorg.2023.100026
|
| [19] |
Liu W, Hu S, Pascual J, et al. (2023) Tin halide perovskite solar cells with open-circuit voltages approaching the Shockley-Queisser limit. ACS Appl Mater Interfaces 15: 32487–32495. https://dx.doi.org/10.1021/acsami.3c06538 doi: 10.1021/acsami.3c06538
|
| [20] |
Khatoon S, Chakraborty V, Yadav SK, et al. (2023) Simulation study of CsPbIxBr1-x and MAPbI3 heterojunction solar cell using SCAPS-1D. Sol Energy 254: 137–157. https://dx.doi.org/10.1016/j.solener.2023.02.059 doi: 10.1016/j.solener.2023.02.059
|
| [21] |
Le TXH, Nguyen TV, Amadou Yacouba Z, et al. (2017) Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media. Chemosphere 172: 1–9. https://dx.doi.org/10.1016/j.chemosphere.2016.12.060 doi: 10.1016/j.chemosphere.2016.12.060
|
| [22] |
Bhattarai S, Hossain MK, Madan J, et al. (2024) Performance improvement of HTL-free perovskite solar cells with the graded approach by numerical simulation. J Phys Chem Solids 184: 111691. https://dx.doi.org/10.1016/j.jpcs.2023.111691 doi: 10.1016/j.jpcs.2023.111691
|
| [23] |
Mikroyannidis JA, Kabanakis AN, Sharma SS, et al. (2011) A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells. Adv Funct Mater 21: 746–755. https://dx.doi.org/10.1002/adfm.201001807 doi: 10.1002/adfm.201001807
|
| [24] |
Ecker B, Nolasco JC, Pallarés J, et al. (2011) Degradation effects related to the hole transport layer in organic solar cells. Adv Funct Mater 21: 2705–2711. https://dx.doi.org/10.1002/adfm.201100429 doi: 10.1002/adfm.201100429
|
| [25] |
Al Dmour H (2023) SCAPS numerical analysis of graphene oxide/TiO2 bulk heterojunction solar cell sensitized by N719 ruthenium dye. East Eur J Phys: 555–561. https://dx.doi.org/10.26565/2312-4334-2023-3-65 doi: 10.26565/2312-4334-2023-3-65
|
| [26] |
Bulowski W, Szwanda A, Gawlińska-Nęcek K, et al. (2024) Optimization of the ETL titanium dioxide layer for inorganic perovskite solar cells. J Mater Sci 59: 7283–7298. https://dx.doi.org/10.1007/s10853-024-09581-w doi: 10.1007/s10853-024-09581-w
|
| [27] |
Hussain I, Tran HP, Jaksik J, et al. (2018) Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater 1: 133–154. https://dx.doi.org/10.1007/s42247-018-0013-1 doi: 10.1007/s42247-018-0013-1
|
| [28] |
Yella A, Heiniger L-P, Gao P, et al. (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett 14: 2591–2596. https://dx.doi.org/10.1021/nl500399m doi: 10.1021/nl500399m
|
| [29] |
Claudine U, Zhang P, Raza S, et al. (2025) Synergistically modified Ti2C MXene with poly glycidyl methacrylate and poly(3, 4-ethylene dioxythiophene): Poly(styrene sulfonate) conducting polymers for enhanced photocatalytic degradation of ionic and cationic dyes. Colloids Surf A 713: 136497. https://dx.doi.org/10.1016/j.colsurfa.2025.136497 doi: 10.1016/j.colsurfa.2025.136497
|
| [30] |
Zhang P, Yang H, Zheng Q, et al. (2025) Next-generation solar energy: Progress, stability, and prospects of polymer-modified Perovskite solar cells; A review. Int J Hydrogen Energy 106: 1088–1113. https://dx.doi.org/10.1016/j.ijhydene.2025.01.280 doi: 10.1016/j.ijhydene.2025.01.280
|
| [31] |
Aldosari M, Sohrabpoor H, Gorji NE (2016) Optical modeling of graphene contacted CdTe solar cells. Superlattice Microstruct 92: 242–248. https://dx.doi.org/10.1016/j.spmi.2016.02.023 doi: 10.1016/j.spmi.2016.02.023
|
| [32] |
Znidi F, Morsy M, Nizam Uddin M (2024) Recent advances of graphene-based materials in planar perovskite solar cells. Next Nanotechnol 5: 100061. https://dx.doi.org/10.1016/j.nxnano.2024.100061 doi: 10.1016/j.nxnano.2024.100061
|
| [33] |
Altarawneh RM (2022) Facile fabrication of new sensing platforms decorated with quinalizarin and PtNi alloy nanoparticles for highly sensitive aluminum determination. Microchem J 182: 107944. https://dx.doi.org/10.1016/j.microc.2022.107944 doi: 10.1016/j.microc.2022.107944
|
| [34] |
Yadav S, Gupta SK, Negi CMS (2025) Graphene derivatives as efficient hole transport materials for lead-free double perovskite (Cs2SnI6) solar cells: a numerical study. Optoelectron Lett 21: 155–159. https://dx.doi.org/10.1007/s11801-025-4020-1 doi: 10.1007/s11801-025-4020-1
|
| [35] |
Qadoos A, Rashid M, Naeem MN, et al. (2025) Bandgap engineering in graphene oxide (GO) via integrating DFT calculations with atmospheric-pressure microplasma (AMP) treatment for optoelectronic applications. Hybrid Adv 8: 100353. https://dx.doi.org/10.1016/j.hybadv.2024.100353 doi: 10.1016/j.hybadv.2024.100353
|
| [36] |
de Lima AH, Tavares CT, da Cunha CCS, et al. (2020) Origin of optical bandgap fluctuations in graphene oxide. Eur Phys J B 93: 105. https://dx.doi.org/10.1140/epjb/e2020-100578-7 doi: 10.1140/epjb/e2020-100578-7
|
| [37] |
Al-Madanat O, AlSalka Y, Dillert R, et al. (2021) Photocatalytic H2 production from naphthalene by various TiO2 photocatalysts: Impact of Pt loading and formation of intermediates. Catalysts 11: 107. https://dx.doi.org/10.3390/catal11010107 doi: 10.3390/catal11010107
|
| [38] |
AlSalka Y, Al-Madanat O, Hakki A (2023) TiO2-based photocatalytic hydrogen production: How to transfer it to an applicable approach? Appl Catal A Gen, 662. https://dx.doi.org/10.1016/j.apcata.2023.119287 doi: 10.1016/j.apcata.2023.119287
|
| [39] |
Curti M, Alsalka Y, Al-Madanat O, et al. (2023) Isotopic substitution to unravel the mechanisms of photocatalytic hydrogen production. Photocatal Hydrogen Prod Sustainable Energy, 35–61. https://dx.doi.org/10.1002/9783527835423.ch3 doi: 10.1002/9783527835423.ch3
|
| [40] |
Ombaka LM, McGettrick JD, Oseghe EO, et al. (2022) Photocatalytic H2 production and degradation of aqueous 2-chlorophenol over B/N-graphene-coated Cu0/TiO2: A DFT, experimental and mechanistic investigation. J Environ Manage 311: 114822. https://dx.doi.org/10.1016/j.jenvman.2022.114822 doi: 10.1016/j.jenvman.2022.114822
|
| [41] |
Mohamad Noh MF, Teh CH, Daik R, et al. (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C 6: 682–712. https://dx.doi.org/10.1039/C7TC04649A doi: 10.1039/C7TC04649A
|
| [42] |
Altarawneh RM (2025) Enhancing ethanol electrooxidation in acidic media using Pt nanoparticles supported on metal oxide-modified vulcan XC72 nanocomposites. Langmuir 41: 11101–11112. https://dx.doi.org/10.1021/acs.langmuir.5c00838 doi: 10.1021/acs.langmuir.5c00838
|
| [43] |
Latrous AR, Mahamdi R, Touafek N, et al. (2021) Performance enhancement in CZTS solar cells by SCAPS-1D. Int J Thin Fil Sci Tec 10: 75–81. https://doi.org/10.18576/IJTFST/100201 doi: 10.18576/IJTFST/100201
|
| [44] |
Rahaman M, Hasan M, Moinuddin RM, et al. (2024) Numerical optimization of lead-based and lead-free absorber materials for perovskite solar cell (PSC) architectures: A SCAPS-1D simulation. AIP Adv, 14. https://dx.doi.org/10.1063/5.0217486 doi: 10.1063/5.0217486
|
| [45] |
Al-Dmour H (2024) SCAPS numerical analysis of graphene oxide/zirconium disulfide solar cells. East Eur J Phys 2: 445–449. https://dx.doi.org/10.26565/2312-4334-2024-2-58 doi: 10.26565/2312-4334-2024-2-58
|
| [46] |
Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362: 527–532. https://dx.doi.org/10.1016/S0040-6090(99)00825-1 doi: 10.1016/S0040-6090(99)00825-1
|
| [47] |
Rachidy C, Hartiti B, Touhtouh S, et al. (2023) Numerical modelling of the effect of MAPI3 thin film on ITO/TiO2/MEH-PPV/Au solar cell. Matériaux Tech 111: 507. https://doi.org/10.1051/mattech/2024003 doi: 10.1051/mattech/2024003
|
| [48] |
Liang C, Huang Z, Su J, et al. (2024) Study on performance optimization of perovskite solar cells based on MAPbI3. Adv Theory Simul 7: 2301015. https://dx.doi.org/10.1002/adts.202301015 doi: 10.1002/adts.202301015
|
| [49] |
Al-Dmour H (2021) Capacitance response of solar cells based on amorphous Titanium dioxide (A-TiO2) semiconducting heterojunctions. AIMS Mater Sci 8: 261–270. https://dx.doi.org/10.3934/matersci.2021017 doi: 10.3934/matersci.2021017
|
| [50] |
Du T, Xu W, Xu S, et al. (2020) Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction. J Mater Chem C 8: 12648–12655. https://dx.doi.org/10.1039/D0TC03390A doi: 10.1039/D0TC03390A
|
| [51] |
Al Dmour H, Al-Trawneh S, Al-Taweel S (2021) Synthesis, characterization, and performance of oligothiophene cyanoacrylic acid derivatives for solar cell applications. IJAAS 8: 6. https://dx.doi.org/10.21833/ijaas.2021.06.015 doi: 10.21833/ijaas.2021.06.015
|
| [52] |
Rai N, Rai S, Singh PK, et al. (2020) Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J Mater Sci Mater Electron 31: 16269–16280. https://dx.doi.org/10.1007/s10854-020-04175-z doi: 10.1007/s10854-020-04175-z
|
| [53] |
Miah MH, Khandaker MU, Rahman MB, et al. (2024) Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: Issues and prospects. RSC Adv 14: 15876–15906. https://dx.doi.org/10.1039/D4RA01640H doi: 10.1039/D4RA01640H
|
| [54] |
Guo Z, Yuan M, Chen G, et al. (2024) Understanding defects in perovskite solar cells through computation: Current knowledge and future challenge. Adv Sci 11: 2305799. https://dx.doi.org/10.1002/advs.202305799 doi: 10.1002/advs.202305799
|
| [55] |
Jiang S, Liu M, Zhao D, et al. (2024) Doping strategies for inorganic lead-free halide perovskite solar cells: progress and challenges. Phys Chem Chem Phys 26: 4794–4811. https://dx.doi.org/10.1039/D3CP05444F doi: 10.1039/D3CP05444F
|
| [56] |
Park N-G, Zhu K (2020) Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater 5: 333–350. https://dx.doi.org/10.1038/s41578-019-0176-2 doi: 10.1038/s41578-019-0176-2
|
| [57] |
Tress W (2017) Perovskite solar cells on the way to their radiative efficiency limit—Insights into a success story of high open-circuit voltage and low recombination. Adv Energy Mater 7: 1602358. https://dx.doi.org/10.1002/aenm.201602358 doi: 10.1002/aenm.201602358
|
| [58] |
Mehmood S, Xia Y, Qu F, et al. (2023) Investigating the performance of efficient and stable planer perovskite solar cell with an effective inorganic carrier transport layer using SCAPS-1D simulation. Energies 16: 7438. https://doi.org/10.3390/en16217438 doi: 10.3390/en16217438
|
| [59] | Lee MM, Teuscher J, Miyasaka T, et al. (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338: 643–647. https://dx.doi.org/doi:10.1126/science.1228604 |
| [60] |
Schulz P, Edri E, Kirmayer S, et al. (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7: 1377–1381. https://dx.doi.org/10.1039/C4EE00168K doi: 10.1039/C4EE00168K
|
| [61] |
Wang J, Zhou X, Ni J, et al. (2021) High-performance perovskite solar cell based on mesoporous TiO2 electron transport layer enabled by composite treatment strategy. J Mater Sci: Mater Electron 32: 28417–28425. https://dx.doi.org/10.1007/s10854-021-07221-6 doi: 10.1007/s10854-021-07221-6
|
| [62] |
Usman A, Bovornratanaraks T (2024) Modeling and optimization of modified TiO2 with aluminum and magnesium as ETL in MAPbI3 perovskite solar cells: SCAPS 1D frameworks. ACS Omega 9: 39663–39672. https://dx.doi.org/10.1021/acsomega.4c04505 doi: 10.1021/acsomega.4c04505
|