Review Special Issues

Power-to-hydrogen: A review of applications, market development, and policy landscape

  • Published: 26 June 2025
  • As a result of the shift to low-carbon sustainable energy systems, hydrogen is now a major energy carrier. With an emphasis on hydrogen generation, storage, applications, infrastructure development and policy landscape, this review examines the "power-to-hydrogen" pathway. While hydrogen constitutes 75% of the universe's mass, scalable terrestrial production remains challenging, with electrolysis efficiencies currently at 60–80% and costs at $3–8/kg for green hydrogen. Key applications span steelmaking (reducing 7% of global CO2 emissions) and fuel cells (reaching 60% energy efficiency). Storage solutions, including 700-bar compressed tanks and metal hydrides, face density and safety hurdles. Infrastructure demands $15 trillion in investment by 2050 for pipelines and refueling stations. Policy levers like carbon pricing (<$100/ton CO2) and research and development (R & D) subsidies are critical to accelerate deployment. The carbon price, subsidies, and further research will all influence the direction of hydrogen in the future. Notwithstanding the obstacles, policy, technological, and infrastructure advancements can fully realize hydrogen's potential to revolutionize the world's energy system. From both global and universal perspectives, this review seeks to raise public understanding of hydrogen's critical role in a sustainable energy future.

    Citation: Rim BOUKHCHINA, Mohamed HAMDI, Souheil EL ALIMI. Power-to-hydrogen: A review of applications, market development, and policy landscape[J]. AIMS Energy, 2025, 13(3): 696-731. doi: 10.3934/energy.2025025

    Related Papers:

  • As a result of the shift to low-carbon sustainable energy systems, hydrogen is now a major energy carrier. With an emphasis on hydrogen generation, storage, applications, infrastructure development and policy landscape, this review examines the "power-to-hydrogen" pathway. While hydrogen constitutes 75% of the universe's mass, scalable terrestrial production remains challenging, with electrolysis efficiencies currently at 60–80% and costs at $3–8/kg for green hydrogen. Key applications span steelmaking (reducing 7% of global CO2 emissions) and fuel cells (reaching 60% energy efficiency). Storage solutions, including 700-bar compressed tanks and metal hydrides, face density and safety hurdles. Infrastructure demands $15 trillion in investment by 2050 for pipelines and refueling stations. Policy levers like carbon pricing (<$100/ton CO2) and research and development (R & D) subsidies are critical to accelerate deployment. The carbon price, subsidies, and further research will all influence the direction of hydrogen in the future. Notwithstanding the obstacles, policy, technological, and infrastructure advancements can fully realize hydrogen's potential to revolutionize the world's energy system. From both global and universal perspectives, this review seeks to raise public understanding of hydrogen's critical role in a sustainable energy future.



    加载中


    [1] Conte M, Iacobazzi A, Ronchetti M, et al. (2001) Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives. J Power Sources 100: 171–187. https://doi.org/10.1016/S0378-7753(01)00893-X doi: 10.1016/S0378-7753(01)00893-X
    [2] Capurso T, Stefanizzi M, Torresi M, et al. (2022) Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers Manage 251: 114898. https://doi.org/10.1016/j.enconman.2021.114898 doi: 10.1016/j.enconman.2021.114898
    [3] Howarth RW, Jacobson MZ (2021) How green is blue hydrogen? Energy Sci Eng 9: 1676–1687. https://doi.org/10.1002/ese3.956 doi: 10.1002/ese3.956
    [4] Elsaddik M, Nzihou A, Delmas GH, et al. (2024) Renewable and high-purity hydrogen from lignocellulosic biomass in a biorefinery approach. Sci Rep 14: 150. https://doi.org/10.1038/s41598-023-50611-5 doi: 10.1038/s41598-023-50611-5
    [5] Nnabuife SG, Oko E, Kuang B, et al. (2023) The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. Sustainable Chem Clim Action 2: 100024. https://doi.org/10.1016/j.scca.2023.100024 doi: 10.1016/j.scca.2023.100024
    [6] Martinez-Burgos WJ, de Souza Candeo E, Medeiros ABP, et al. (2021) Hydrogen: Current advances and patented technologies of its renewable production. J Cleaner Prod 286: 124970. https://doi.org/10.1016/j.jclepro.2020.124970 doi: 10.1016/j.jclepro.2020.124970
    [7] Yang D, Lee J, Song NC, et al. (2023) Patent analysis on green hydrogen technology for future promising technologies. Int J Hydrogen Energy 48: 32241–32260. https://doi.org/10.1016/j.ijhydene.2023.04.317 doi: 10.1016/j.ijhydene.2023.04.317
    [8] World Intellectual Property Organization (2024). Available from: https://www.wipo.int/publications/en/, accessed on February 24, 2025.
    [9] Zhang L, Jia C, Bai F, et al. (2024) A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 355: 129455. https://doi.org/10.1016/j.fuel.2023.129455 doi: 10.1016/j.fuel.2023.129455
    [10] Berstad D, Gardarsdottir S, Roussanaly S, et al. (2022) Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis. Renewable Sustainable Energy Rev 154: 111772. https://doi.org/10.1016/j.rser.2021.111772 doi: 10.1016/j.rser.2021.111772
    [11] Singh R, Singh M, Gautam S (2021) Hydrogen economy, energy, and liquid organic carriers for its mobility. Mater Today Commun 46: 5420–5427. https://doi.org/10.1016/j.matpr.2020.09.065 doi: 10.1016/j.matpr.2020.09.065
    [12] Otto M, Chagoya KL, Blair RG, et al. (2022) Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. J Energy Storage 55: 105714. https://doi.org/10.1016/j.est.2022.105714 doi: 10.1016/j.est.2022.105714
    [13] Yang M, Hunger R, Berrettoni S, et al. (2023) A review of hydrogen storage and transport technologies. Clean Energy 7: 190–216. https://doi.org/10.1093/ce/zkad021 doi: 10.1093/ce/zkad021
    [14] Van Hoecke L, Laffineur L, Campe R, et al. (2021) Challenges in the use of hydrogen for maritime applications. Energy Environ Sci 14: 815–843. https://doi.org/10.1039/D0EE01545H doi: 10.1039/D0EE01545H
    [15] Muthukumar P, Kumar A, Afzal M, et al. (2023) Review on large-scale hydrogen storage systems for better sustainability. Int J Hydrogen Energy 48: 33223–33259. https://doi.org/10.1016/j.ijhydene.2023.04.304 doi: 10.1016/j.ijhydene.2023.04.304
    [16] Kourougianni F, Arsalis A, Olympios AV, et al. (2024) A comprehensive review of green hydrogen energy systems. Renewable Energy 231: 120911. https://doi.org/10.1016/j.renene.2024.120911 doi: 10.1016/j.renene.2024.120911
    [17] Corigliano O, Florio G, Fragiacomo P (2011) A performance analysis of an anaerobic digester—high temperature fuel cells fed by urban solid waste biogas. Energy Sources, Part A: Recovery, Util Environ Eff 43: 207–218. https://doi.org/10.1080/15567036.2011.592908 doi: 10.1080/15567036.2011.592908
    [18] Genovese M, Corigliano O, Piraino F, et al. (2025) E-fuels infrastructures for heavy-duty applications: Case study of a refueling facility based on green hydrogen. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2025.03.423 doi: 10.1016/j.ijhydene.2025.03.423
    [19] Buchner J, Menrad K, Decker T (2025) Public acceptance of green hydrogen production in Germany. Renewable Sustainable Energy Rev 208: 115057. https://doi.org/10.1016/j.rser.2024.115057 doi: 10.1016/j.rser.2024.115057
    [20] Shan R, Kittner N (2025) Sector-specific strategies to increase green hydrogen adoption. Renewable Sustainable Energy Rev 214: 115491. https://doi.org/10.1016/j.rser.2025.115491 doi: 10.1016/j.rser.2025.115491
    [21] Roucham B, Lefilef A, Zaghdoud O, et al. (2025) The evolution of green hydrogen in renewable energy research: Insights from a bibliometric perspective. Energy Rep 13: 576–593. https://doi.org/10.1016/j.egyr.2024.12.037 doi: 10.1016/j.egyr.2024.12.037
    [22] Eckl F, Moita A, Castro R, et al. (2025) Valorization of the by-product oxygen from green hydrogen production: A review. Appl Energy 15: 124817. https://doi.org/10.1016/j.apenergy.2024.124817 doi: 10.1016/j.apenergy.2024.124817
    [23] Tonelli D, Rosa L, Gabrielli P, et al. (2023) Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat Commun 14: 5532. https://doi.org/10.1038/s41467-023-41107-x doi: 10.1038/s41467-023-41107-x
    [24] Guo J, Zhang Y, Zavabeti A, et al. (2022) Hydrogen production from the air. Nat Commun 13: 5046. https://doi.org/10.1038/s41467-022-32652-y doi: 10.1038/s41467-022-32652-y
    [25] Wang B, Liu W, Zhang Y, et al. (2022) Natural solar intermittent-powered electromethanogenesis towards green carbon reduction. Chem Eng J 432: 134369. https://doi.org/10.1016/j.cej.2021.134369 doi: 10.1016/j.cej.2021.134369
    [26] Cristello JB, Yang JM, Hugo R, et al. (2023) Feasibility analysis of blending hydrogen into natural gas networks. Int J Hydrogen Energy 48: 17605–17629. https://doi.org/10.1016/j.ijhydene.2023.01.156 doi: 10.1016/j.ijhydene.2023.01.156
    [27] Helled R, Mazzola G, Redmer R (2020) Understanding dense hydrogen at planetary conditions. Nature Rev Phys 2: 562–574. https://doi.org/10.1038/s42254-020-0223-3 doi: 10.1038/s42254-020-0223-3
    [28] Brygoo S, Loubeyre P, Millot M, et al. (2021) Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions. Nature 593: 517–521. https://doi.org/10.1038/s41586-021-03516-0 doi: 10.1038/s41586-021-03516-0
    [29] Robert D, Forward L (1986) Feasibility of interstellar travel: A review. Acta Astronaut 14: 243–252. https://doi.org/10.1016/0094-5765(86)90126-8 doi: 10.1016/0094-5765(86)90126-8
    [30] Genta G (2024) Interstellar exploration: From science fiction to actual technology. Acta Astronaut 222: 655–660. https://doi.org/10.1016/j.actaastro.2024.06.049 doi: 10.1016/j.actaastro.2024.06.049
    [31] Wade DC, Doctor R, Peddicord KL (2002) Star-H2: the secure transportable autonomous reactor for hydrogen production and desalinization. In Proceedings of the 10th International Conference on Nuclear Engineering. https://doi.org/10.1115/ICONE10-22663
    [32] Geels FW (2011) The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environ Innovation Societal Transitions 1: 24–40. https://doi.org/10.1016/j.eist.2011.02.002 doi: 10.1016/j.eist.2011.02.002
    [33] Bergek A, Jacobsson S, Carlsson B, et al. (2008) Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Res Policy 37: 407–429. https://doi.org/10.1016/j.respol.2007.12.003 doi: 10.1016/j.respol.2007.12.003
    [34] Sovacool BK, Baum CM, Low S (2023) Reviewing the sociotechnical dynamics of carbon removal. Joule 7: 57–82. https://doi.org/10.1016/j.joule.2022.11.008 doi: 10.1016/j.joule.2022.11.008
    [35] McDowall W, Eames M (2006) Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature. Energy Policy 34: 1236–1250. https://doi.org/10.1016/j.enpol.2005.12.006 doi: 10.1016/j.enpol.2005.12.006
    [36] Cherp A, Vinichenko V, Tosun J, et al. (2021) National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat Energy 6: 742–754. https://doi.org/10.1038/s41560-021-00863-0 doi: 10.1038/s41560-021-00863-0
    [37] Saeidi S, Sápi A, Khoja AH, et al. (2023) Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renewable Sustainable Energy Rev 183: 113392. https://doi.org/10.1016/j.rser.2023.113392 doi: 10.1016/j.rser.2023.113392
    [38] Midilli A, Kucuk H, Topal ME, et al. (2021) A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. Int J Hydrogen Energy 46: 25385–25412. https://doi.org/10.1016/j.ijhydene.2021.05.088 doi: 10.1016/j.ijhydene.2021.05.088
    [39] Korányi TI, Németh M, Beck A, et al. (2022) Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies 15: 6342. https://doi.org/10.3390/en15176342 doi: 10.3390/en15176342
    [40] Simoes SG, Catarino J, Picado A, et al. (2021) Water availability and water usage solutions for electrolysis in hydrogen production. J Cleaner Prod 315: 128124. https://doi.org/10.1016/j.jclepro.2021.128124 doi: 10.1016/j.jclepro.2021.128124
    [41] Kumar SS, Lim H (2022) An overview of water electrolysis technologies for green hydrogen production. Energy Rep 8: 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127 doi: 10.1016/j.egyr.2022.10.127
    [42] IEA, International Energy Agency database. Available from: https://www.iea.org/reports/hydrogen-projects-database.
    [43] Qiu Y, Yang H, Tong L, et al. (2021) Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals 11: 1101. https://doi.org/10.3390/met11071101 doi: 10.3390/met11071101
    [44] Ma N, Zhao W, Wang W, et al. (2024) Large scale of green hydrogen storage: Opportunities and challenges. Int J Hydrogen Energy 50: 379–396. https://doi.org/10.1016/j.ijhydene.2023.09.021 doi: 10.1016/j.ijhydene.2023.09.021
    [45] Niermann M, Timmerberg S, Drünert S, et al. (2021) Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen. Renewable Sustainable Energy Rev 135: 110171. https://doi.org/10.1016/j.rser.2020.110171 doi: 10.1016/j.rser.2020.110171
    [46] da Silva Veras T, Mozer TS, da Silva César A (2017) Hydrogen: Trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42: 2018–2033. https://doi.org/10.1016/j.ijhydene.2016.08.219 doi: 10.1016/j.ijhydene.2016.08.219
    [47] Yue M, Lambert H, Pahon E, et al. (2021) Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable Sustainable Energy Rev 146: 111180. https://doi.org/10.1016/j.rser.2021.111180 doi: 10.1016/j.rser.2021.111180
    [48] Liu W, Sun L, Li Z, et al. (2020) Trends and future challenges in hydrogen production and storage research. Environ Sci Pollut Res 27: 31092–31104. https://doi.org/10.1007/s11356-020-09470-0 doi: 10.1007/s11356-020-09470-0
    [49] Qureshi F, Yusuf M, Khan MA, et al. (2023) A state-of-the-art review on the latest trends in hydrogen production, storage, and transportation techniques. Fuel 340: 127574. https://doi.org/10.1016/j.fuel.2023.127574 doi: 10.1016/j.fuel.2023.127574
    [50] Gupta A, Baron GV, Perreault P, et al. (2021) Hydrogen clathrates: Next generation hydrogen storage materials. Energy Storage Mater 41: 69–107. https://doi.org/10.1016/j.ensm.2021.05.044 doi: 10.1016/j.ensm.2021.05.044
    [51] Sun C, Wang C, Ha T, et al. (2023) A brief review of characterization techniques with different length scales for hydrogen storage materials. Nano Energy 113: 108554. https://doi.org/10.1016/j.nanoen.2023.108554 doi: 10.1016/j.nanoen.2023.108554
    [52] Pal A, Kakran S, Kumar A, et al. (2024) Powering squarely into the future: A strategic analysis of hydrogen energy in QUAD nations. Int J Hydrogen Energy 49: 16–41. https://doi.org/10.1016/j.ijhydene.2023.06.169 doi: 10.1016/j.ijhydene.2023.06.169
    [53] Frieden F, Leker J (2024) Future costs of hydrogen: A quantitative review. Sustainable Energy Fuels 8: 1806–1822. https://doi.org/10.1039/D4SE00137K doi: 10.1039/D4SE00137K
    [54] Brändle G, Schönfisch M, Schulte S (2021) Estimating long-term global supply costs for low-carbon hydrogen. Appl Energy 302: 117481. https://doi.org/10.1016/j.apenergy.2021.117481 doi: 10.1016/j.apenergy.2021.117481
    [55] Kamran M, Turzyński M (2024) Exploring hydrogen energy systems: A comprehensive review of technologies, applications, prevailing trends, and associated challenges. J Energy Storage 96: 112601. https://doi.org/10.1016/j.est.2024.112601 doi: 10.1016/j.est.2024.112601
    [56] Seck GS, Hache E, Sabathier J, et al. (2050) Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis. Renewable Sustainable Energy Rev 167: 112779. https://doi.org/10.1016/j.rser.2022.112779 doi: 10.1016/j.rser.2022.112779
    [57] Aitken C, Ersoy E (2023) War in Ukraine: The options for Europe's energy supply. The World Econ 46: 887–896. https://doi.org/10.1111/twec.13354 doi: 10.1111/twec.13354
    [58] Yang C, Hao Y, Irfan M (2021) Energy consumption structural adjustment and carbon neutrality in the post-COVID-19 era. Struct Change Econ Dyn 59: 442–453. https://doi.org/10.1016/j.strueco.2021.06.017 doi: 10.1016/j.strueco.2021.06.017
    [59] Schreyer F, Luderer G, Rodrigues R, et al. (2020) Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies. Environ Res Lett 15: 114016. https://doi.org/10.1088/1748-9326/abb852 doi: 10.1088/1748-9326/abb852
    [60] Fragiacomo P, Genovese M (2020) Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Convers Manage 223: 113332. https://doi.org/10.1016/j.enconman.2020.113332 doi: 10.1016/j.enconman.2020.113332
    [61] Seker S, Aydin N (2020) Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. Int J Hydrogen Energy 45: 15855–15868. https://doi.org/10.1016/j.ijhydene.2019.12.183 doi: 10.1016/j.ijhydene.2019.12.183
    [62] Kirichenko AS, Kirichenko EV (2024) Assessment of the performance of implementation of renewable energy facilities with the prospect of hydrogen production using the example of southern Russia. Int J Hydrogen Energy 85: 783–793. https://doi.org/10.1016/j.ijhydene.2024.08.327 doi: 10.1016/j.ijhydene.2024.08.327
    [63] IEA, International Energy Agency (2024) Hydrogen production projects: Global trends and opportunities. Available from: https://www.iea.org/reports/hydrogen-production-projects, accessed on February 27, 2025.
    [64] Mahajan D, Tan K, Venkatesh T, et al. (2022) Hydrogen blending in gas pipeline networks—A review. Energies 15: 3582. https://doi.org/10.3390/en15103582 doi: 10.3390/en15103582
    [65] Erdener BC, Sergi B, Guerra OJ, et al. (2023) A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. Int J Hydrogen Energy 48: 5595–5617. https://doi.org/10.1016/j.ijhydene.2022.10.254 doi: 10.1016/j.ijhydene.2022.10.254
    [66] Tiar B, Fadlallah SO, Serradj DEB, et al. (2024) Navigating Algeria towards a sustainable green hydrogen future to empower North Africa and Europe's clean hydrogen transition. Int J Hydrogen Energy 61: 783–802. https://doi.org/10.1016/j.ijhydene.2024.02.328 doi: 10.1016/j.ijhydene.2024.02.328
    [67] Cardinale R (2023) From natural gas to green hydrogen: Developing and repurposing transnational energy infrastructure connecting North Africa to Europe. Energy Policy 181: 113623. https://doi.org/10.1016/j.enpol.2023.113623 doi: 10.1016/j.enpol.2023.113623
    [68] Abad AV, Dodds PE (2020) Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 138: 111300. https://doi.org/10.1016/j.enpol.2020.111300 doi: 10.1016/j.enpol.2020.111300
    [69] Bodard A, Chen Z, ELJarray O, et al. (2024) Green hydrogen production by low‐temperature membrane‐engineered water electrolyzers, and regenerative fuel cells. Small Methods 8: 2400574. https://doi.org/10.1002/smtd.202400574 doi: 10.1002/smtd.202400574
    [70] Qureshi F, Asif M, Khan A, et al. (2024) Green hydrogen production from non-traditional water sources: A sustainable energy solution with hydrogen storage and distribution. Chem Rec 24: e202400080. https://doi.org/10.1002/tcr.202400080 doi: 10.1002/tcr.202400080
    [71] Penttinen SL (2024) Navigating the hydrogen landscape: An analysis of hydrogen support mechanisms in the US and the EU. Rev Eur, Comp Inter Environ Law 3: 397–411. https://doi.org/10.1111/reel.12575 doi: 10.1111/reel.12575
    [72] Stöhr T, Reiter V, Scheikl S, et al. (2024) Hydrogen quality in used natural gas pipelines: An experimental investigation of contaminants according to ISO 14687:2019 standard. Int J Hydrogen Energy 67: 1136–1147. https://doi.org/10.1016/j.ijhydene.2023.09.305 doi: 10.1016/j.ijhydene.2023.09.305
    [73] International Organization for Standardization (2020). ISO 19880-1: 2020. Gaseous hydrogen-Fuelling stations- Part 1: General requirements. Available from: https://www.iso.org/standard/71940, accessed on February 20, 2025.
    [74] Beurey C, Gozlan B, Carré M, et al. (2021) Review and survey of methods for analysis of impurities in hydrogen for fuel cell vehicles according to ISO 14687:2019. Front Energy Res 8: 1–20. https://doi.org/10.3389/fenrg.2020.615149 doi: 10.3389/fenrg.2020.615149
    [75] Kumar S, Nanan-Surujbally A, Sharma DP, et al. (2024) Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell). Towards Hydrogen Infrastruct: Adv Challenges Prep Hydrogen Econ, 315–346. https://doi.org/10.1016/B978-0-323-95553-9.00011-X doi: 10.1016/B978-0-323-95553-9.00011-X
    [76] Jeje SO, Marazani T, Obiko JO, et al. (2024) Advancing the hydrogen production economy: A comprehensive review of technologies, sustainability, and future prospects. Int J Hydrogen Energy 78: 642–661. https://doi.org/10.1016/j.ijhydene.2024.06.344 doi: 10.1016/j.ijhydene.2024.06.344
    [77] Bade SO, Tomomewo OS (2024) A review of governance strategies, policy measures, and regulatory framework for hydrogen energy in the United States. Int J Hydrogen Energy 78: 1363–1381. https://doi.org/10.1016/j.ijhydene.2024.06.338 doi: 10.1016/j.ijhydene.2024.06.338
    [78] Gielen D, Taibi E, Miranda R (2019) Hydrogen: A reviewable energy perspective. Report prepared for the 2nd hydrogen energy ministerial meeting in Tokyo, Japan. Available from: https://www.h2knowledgecentre.com/content/policypaper1305, accessed on February 12, 2025.
    [79] European Commission (2022) REPowerEU Plan (COM/2022/230 final). Available from: https://eurlex.europa.eu/legal-content/EN/TXT/HTML/?uri = CELEX: 52022DC0230, accessed on February 20, 2025.
    [80] Balci Y, Erbay C (2024) Harnessing solar energy for sustainable green hydrogen production in Türkiye: Opportunities, and economic viability. Int J Hydrogen Energy 87: 985–996. https://doi.org/10.1016/j.ijhydene.2024.09.098 doi: 10.1016/j.ijhydene.2024.09.098
    [81] Hauglustaine D, Paulot F, Collins W, et al. (2022) Climate benefit of a future hydrogen economy. Commun Earth Environ 3: 295. https://doi.org/10.1038/s43247-022-00626-z doi: 10.1038/s43247-022-00626-z
    [82] Hamdi M, Elalimi S (2025) Performance analysis of a photovoltaic-driven hydrogen electrolyzer system for sustainable ammonia production: Seasonal and regional assessment. Energy Convers Manage 326: 119538. https://doi.org/10.1016/j.enconman.2025.119538 doi: 10.1016/j.enconman.2025.119538
    [83] IEA, Net Zero Roadmap: A Global Pathway to Keep the 1.5 ℃ Goal in Reach, 2023 Update. Paris: IEA, 2023. Available from: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach.
    [84] Seck GS, Hache E, Sabathier J, et al. (2022) Hydrogen and the decarbonization of the energy system in Europe in 2050: A detailed model-based analysis. Renewable Sustainable Energy Rev 167: 112779. https://doi.org/10.1016/j.rser.2022.112779 doi: 10.1016/j.rser.2022.112779
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2529) PDF downloads(170) Cited by(3)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog