We consider the subcritical nonlinear Schrödinger equation on non-compact quantum graphs with an attractive potential supported in the compact core, and investigate the existence and the nonexistence of ground states, defined as minimizers of the energy at fixed $ L^2 $-norm, or mass. We finally reach the following picture: for small and large mass there are ground states. Moreover, according to the metric features of the compact core of the graph and to the strength of the potential, there may be an interval of intermediate masses for which there are no ground states. The study was inspired by the research on quantum waveguides, in which the curvature of a thin tube induces an effective attractive potential.
Citation: Riccardo Adami, Ivan Gallo, David Spitzkopf. Ground states for the NLS on non-compact graphs with an attractive potential[J]. Networks and Heterogeneous Media, 2025, 20(1): 324-344. doi: 10.3934/nhm.2025015
We consider the subcritical nonlinear Schrödinger equation on non-compact quantum graphs with an attractive potential supported in the compact core, and investigate the existence and the nonexistence of ground states, defined as minimizers of the energy at fixed $ L^2 $-norm, or mass. We finally reach the following picture: for small and large mass there are ground states. Moreover, according to the metric features of the compact core of the graph and to the strength of the potential, there may be an interval of intermediate masses for which there are no ground states. The study was inspired by the research on quantum waveguides, in which the curvature of a thin tube induces an effective attractive potential.
| [1] |
E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim., 20 (1961), 454–477. https://doi.org/10.1007/BF02731494 doi: 10.1007/BF02731494
|
| [2] | L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Oxford University Press, 164 (2016). https://doi.org/10.1093/acprof: oso/9780198758884.001.0001 |
| [3] | L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (1961), 451–454. |
| [4] | L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura, L. C. Kwek, et al., Roadmap on atomtronics: State of the art and perspective, AVS Quantum Sci., 3 (2021). https://doi.org/10.1116/5.0026178 |
| [5] |
E. Bulgakov, A. Sadreev, Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities, Phys. Rev. B, 84 (2011), 155304. https://doi.org/10.1103/PhysRevB doi: 10.1103/PhysRevB
|
| [6] |
S. Gnutzmann, U. Smilansky, S. Derevyanko, Stationary scattering from a nonlinear network, Phys. Rev. A, 83 (2011), 033831. https://doi.org/10.1103/PhysRevA.83.033831 doi: 10.1103/PhysRevA.83.033831
|
| [7] |
D. Noja, Nonlinear Schrödinger equation on graphs: Recent results and open problems, Phil. Trans. R. Soc. A, 372 (2014), 20130002. https://doi.org/10.1098/rsta.2013.0002 doi: 10.1098/rsta.2013.0002
|
| [8] |
M. Peccianti, A. Dyadyusha, M. Kaczmarek, G. Assanto, Escaping solitons from a trapping potential, Phys. Rev. Lett., 101 (2008), 153902. https://doi.org/10.1103/PhysRevLett.101.153902 doi: 10.1103/PhysRevLett.101.153902
|
| [9] | C. Cacciapuoti, Existence of the ground state for the NLS with potential 27 on graphs, preprint, arXiv: 1707.07326. https://doi.org/10.48550/arXiv: 1707.07326 |
| [10] |
R. Adami, C. Cacciapuoti, D. Finco, D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A: Math. Theor., 45 (2012), 192001. https://doi.org/10.1088/1751-8113/45/19/192001 doi: 10.1088/1751-8113/45/19/192001
|
| [11] | R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Fast solitons on star graphs, Rev. Math. Phys., 23 (2011), 409–451. https://doi.org/10.1142/S0129055X11004345 |
| [12] | R. Adami, E. Serra, P. Tilli, NLS ground states on graphs, Calc. Var., 54 (2015), 743–761. https://doi.org/10.1007/s00526-014-0804-z |
| [13] |
R. Adami, E. Serra, P. Tilli, Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal., 271 (2016), 201–223. https://doi.org/10.1016/j.jfa.2016.04.004 doi: 10.1016/j.jfa.2016.04.004
|
| [14] | R. Adami, E. Serra, P. Tilli, Nonlinear dynamics on branched structures and networks, preprint, arXiv: 1705.00529, Riv. Mat. Univ. Parma, 8 (2017). https://doi.org/10.48550/arXiv.1705.00529 |
| [15] |
R. Adami, S. Dovetta, E. Serra, P. Tilli, Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs, Anal. PDE, 12 (2019), 1597–1612. https://doi.org/10.2140/apde.2019.12.1597 doi: 10.2140/apde.2019.12.1597
|
| [16] |
A. Kairzhan, D. Noja, D. E. Pelinovsky, Standing waves on quantum graphs, J. Phys. A Math. Theor., 55 (2022), 243001. https://doi.org/10.1088/1751-8121/ac6c60 doi: 10.1088/1751-8121/ac6c60
|
| [17] |
D. Pierotti, N. Soave, G. Verzini, Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. R. Soc. Edinb., Sect. A, Math., 151 (2021), 705–733. https://doi.org/10.1017/prm.2020.36 doi: 10.1017/prm.2020.36
|
| [18] |
D. Noja, D. Pelinovsky, G. Shaikhova, Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph, Nonlinearity, 28 (2015), 2343. https://doi.org/10.1088/0951-7715/28/7/2343 doi: 10.1088/0951-7715/28/7/2343
|
| [19] | S. Dovetta, L. Jeanjean, E. Serra, Normalized solutions of L$^2$-supercritical NLS equations on noncompact metric graphs, preprint, arXiv: 2404.15841. https://doi.org/10.48550/arXiv.2404.15841 |
| [20] |
Z. Sobirov, D. Matrasulov, K. Sabirov, S. Sawada, K. Nakamura, Integrable nonlinear Schrödinger equation on simple networks: Connection formula at vertices, Phys. Rev. E, 81 (2010), 066602. https://doi.org/10.1103/PhysRevE.81.066602 doi: 10.1103/PhysRevE.81.066602
|
| [21] |
K. K. Sabirov, Z. A. Sobirov, D. Babajanov, D. U. Matrasulov, Stationary nonlinear Schrödinger equation on simplest graphs, Phys. Lett. A, 377 (2013), 860–865. https://doi.org/10.1016/j.physleta.2013.02.011 doi: 10.1016/j.physleta.2013.02.011
|
| [22] | H. Berestycki, P. Lions, Nonlinear scalar field equations, I existence of a ground state. Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 |
| [23] | A. Shabat, V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62. |
| [24] |
C. Cacciapuoti, D. Finco, D. Noja, Ground state and orbital stability for the NLS equation on a general starlike graph with potentials, Nonlinearity, 30 (2017), 3271. https://doi.org/10.1088/1361-6544/aa7cc3 doi: 10.1088/1361-6544/aa7cc3
|
| [25] |
P. Duclos, P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys., 7 (1995), 73–102. https://doi.org/10.1142/S0129055X95000062 doi: 10.1142/S0129055X95000062
|
| [26] | P. Exner, H. Kovařík, Quantum Waveguides, Theoretical and Mathematical Physics, Springer Cham, 2015. https://doi.org/10.1007/978-3-319-18576-7 |
| [27] |
L. Tentarelli, NLS ground states on metric graphs with localized nonlinearities, J. Math. Anal. Appl., 433 (2016), 291–304. https://doi.org/10.1016/j.jmaa.2015.07.065 doi: 10.1016/j.jmaa.2015.07.065
|
| [28] |
L. Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier, 55 (2005), 199–211. https://doi.org/10.5802/aif.2095 doi: 10.5802/aif.2095
|
| [29] | B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, 1150, Springer Berlin, Heidelberg, 1985. https://doi.org/10.1007/BFb0075060 |
| [30] |
H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1007/978-3-642-55925-9-42 doi: 10.1007/978-3-642-55925-9-42
|