An injective coloring of a graph G is a vertex coloring such that a pair of vertices obtain distinct colors if there is a path of length two between them. It is proved in this paper that χli(G)≤Δ+4 if Δ≥12 when G does not have a 4−-cycle intersecting with a 5−-cycle. Our result improves a previous result of Cai et al. in 2023, who showed that χli(G)≤Δ+4 when Δ≥12 and G has disjoint 5−-cycles.
Citation: Yuehua Bu, Hongrui Zheng, Hongguo Zhu. On the list injective coloring of planar graphs without a 4−-cycle intersecting with a 5−-cycle[J]. AIMS Mathematics, 2025, 10(1): 1814-1825. doi: 10.3934/math.2025083
[1] | Martin J. Blaser . Studying microbiology with Glenn F. Webb. Mathematical Biosciences and Engineering, 2015, 12(4): xvii-xxii. doi: 10.3934/mbe.2015.12.4xvii |
[2] | Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i |
[3] | David Logan . From the Guest Editor. Mathematical Biosciences and Engineering, 2007, 4(1): i-ii. doi: 10.3934/mbe.2007.4.1i |
[4] | Xu Lu, Chuan Yang, Yujing Zhang, Shanqiu Huang, Li Li, Haoqun Chen, Long Gao, Yan Ma, Wei Song . Test method for health-related physical fitness of college students in mobile internet environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2189-2201. doi: 10.3934/mbe.2019107 |
[5] | Muhammad Akram, Adeel Farooq, Maria Shabir, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf . Group decision-making analysis with complex spherical fuzzy N-soft sets. Mathematical Biosciences and Engineering, 2022, 19(5): 4991-5030. doi: 10.3934/mbe.2022234 |
[6] | Fengwei Li, Qingfang Ye, Juan Rada . Extremal values of VDB topological indices over F-benzenoids with equal number of edges. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240 |
[7] | Yongbing Luo . Improved decay of solution for strongly damped nonlinear wave equations. Mathematical Biosciences and Engineering, 2023, 20(3): 4865-4876. doi: 10.3934/mbe.2023225 |
[8] | Ghous Ali, Adeel Farooq, Mohammed M. Ali Al-Shamiri . Novel multiple criteria decision-making analysis under m-polar fuzzy aggregation operators with application. Mathematical Biosciences and Engineering, 2023, 20(2): 3566-3593. doi: 10.3934/mbe.2023166 |
[9] | Rustam Aipov, Andrey Linenko, Ildar Badretdinov, Marat Tuktarov, Salavat Akchurin . Research of the work of the sieve mill of a grain-cleaning machine with a linear asynchronous drive. Mathematical Biosciences and Engineering, 2020, 17(4): 4348-4363. doi: 10.3934/mbe.2020240 |
[10] | Tetiana Biloborodova, Lukasz Scislo, Inna Skarga-Bandurova, Anatoliy Sachenko, Agnieszka Molga, Oksana Povoroznyuk, Yelyzaveta Yevsieieva . Fetal ECG signal processing and identification of hypoxic pregnancy conditions in-utero. Mathematical Biosciences and Engineering, 2021, 18(4): 4919-4942. doi: 10.3934/mbe.2021250 |
An injective coloring of a graph G is a vertex coloring such that a pair of vertices obtain distinct colors if there is a path of length two between them. It is proved in this paper that χli(G)≤Δ+4 if Δ≥12 when G does not have a 4−-cycle intersecting with a 5−-cycle. Our result improves a previous result of Cai et al. in 2023, who showed that χli(G)≤Δ+4 when Δ≥12 and G has disjoint 5−-cycles.
[1] |
O. V. Borodin, A. O. Ivanova, List injective coloring of planar graphs, Discrete Math., 311 (2011), 154–165. https://doi.org/10.1016/j.disc.2010.10.008 doi: 10.1016/j.disc.2010.10.008
![]() |
[2] |
Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl., 10 (2018), 663–672. https://doi.org/10.1142/S1793830918500684 doi: 10.1142/S1793830918500684
![]() |
[3] |
Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math., 161 (2013), 1367–1377. https://doi.org/10.1016/j.dam.2012.12.017 doi: 10.1016/j.dam.2012.12.017
![]() |
[4] |
J. Cai, W. Li, W. Cai, M. Dehmer, List injective coloring of planar graphs, Appl. Math. Comput., 439 (2023), 127631. https://doi.org/10.1016/j.amc.2022.127631 doi: 10.1016/j.amc.2022.127631
![]() |
[5] |
H. Chen, List injective coloring of planar graphs with girth at least five, Bull. Korean Math. Soc., 61 (2024), 263–271. https://doi.org/10.4134/BKMS.b230097 doi: 10.4134/BKMS.b230097
![]() |
[6] |
H. Chen, J. Wu, List injective coloring of planar graphs with girth g≥6, Discrete Math., 339 (2016), 3043–3051. https://doi.org/10.1016/j.disc.2016.06.017 doi: 10.1016/j.disc.2016.06.017
![]() |
[7] |
M. Chen, G. Hahn, A. Raspaud, W. Wang, Some results on the injective chromatic number of graphs, J. Comb. Optim., 24 (2012), 299–318. https://doi.org/10.1007/s10878-011-9386-2 doi: 10.1007/s10878-011-9386-2
![]() |
[8] |
Q. Fang, L. Zhang, Sharp upper bound of injective coloring of planar graphs with girth at least 5, J. Comb. Optim., 44 (2022), 1161–1198. https://doi.org/10.1007/s10878-022-00880-z doi: 10.1007/s10878-022-00880-z
![]() |
[9] |
G. Hahn, J. Kratochvíl, J. Širáň, D. Sotteau, On the injective chromatic number of graphs, Discrete Math., 256 (2002), 179–192. https://doi.org/10.1016/S0012-365X(01)00466-6 doi: 10.1016/S0012-365X(01)00466-6
![]() |
[10] |
S. J. Kim, X. Lian, The square of every subcubic planar graph of girth at least 6 is 7-choosable, Discrete Math., 347 (2024), 113963. https://doi.org/10.1016/j.disc.2024.113963 doi: 10.1016/j.disc.2024.113963
![]() |
[11] |
W. Li, J. Cai, G. Yan, List injective coloring of planar graphs, Acta Math. Appl. Sin. Engl. Ser., 38 (2022), 614–626. https://doi.org/10.1007/s10255-022-1103-7 doi: 10.1007/s10255-022-1103-7
![]() |
[12] | B. Lužar, Planar graphs with largest injective chromatic number, IMFM Preprint series, 48 (2010), 1–6. |
[13] |
B. Lužar, R. Škrekovski, Counterexamples to a conjecture on injective colorings, Ars Math. Contemp., 8 (2015), 291–295. https://doi.org/10.26493/1855-3974.516.ada doi: 10.26493/1855-3974.516.ada
![]() |
[14] |
B. Lužar, R. Škrekovski, M. Tancer, Injective coloring of planar graphs with few colors, Discrete Math., 309 (2009), 5636–5649. https://doi.org/10.1016/j.disc.2008.04.005 doi: 10.1016/j.disc.2008.04.005
![]() |
[15] | G. Wegner, Graphs with given diameter and a coloring problem, Germany: University of Dortmund, 1977. |
[16] |
J. Yu, M. Chen, W. Wang, 2-Distance choosability of planar graphs with a restriction for maximum degree, Appl. Math. Comput., 448 (2023), 127949. https://doi.org/10.1016/j.amc.2023.127949 doi: 10.1016/j.amc.2023.127949
![]() |
1. | Kangyao Cheng, Hui Wang, Yingyi Zhu, Yan Wang, Huazhong Zhu, Weibo Lyu, Perceptions of Chinese older adults with type 2 diabetes mellitus about self-management mobile platform: A qualitative study, 2022, 46, 01974572, 206, 10.1016/j.gerinurse.2022.04.006 |