
Rat-bite fever (RBF) is a zoonotic infection and systemic febrile illness transmitted to humans by Rattus spp. contacts following a scratch, bite, or touching excrement, such as urine, feces, and oral secretions. Infection with members of the genus Streptobacillus is the most common cause of this infectious disease. In this review article, we updated the knowledge on the RBF caused by the genus Streptobacillus based on the isolation and identification methods, virulence factors, clinical signs, differential diagnoses, antibiogram, treatment, geographical distribution, and epidemiology. Moreover, the present paper's comprehensive analysis of over 200 infection cases attributed to this genus, spanning from 1915 to 2023, sheds light on its epidemiology and provides valuable insights for the future.
Citation: Mehdi Fatahi-Bafghi. Rat-Bite Fever due to the genus Streptobacillus[J]. AIMS Microbiology, 2024, 10(4): 917-943. doi: 10.3934/microbiol.2024040
[1] | Ruijin Hong, Jialin Ji, Chunxian Tao, Daohua Zhang, Dawei Zhang . Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties. AIMS Materials Science, 2017, 4(1): 223-230. doi: 10.3934/matersci.2017.1.223 |
[2] | Purabi R. Ghosh, Derek Fawcett, Michael Platten, Shashi B. Sharma, John Fosu-Nyarko, Gerrard E. J. Poinern . Sustainable green chemical synthesis of discrete, well-dispersed silver nanoparticles with bacteriostatic properties from carrot extracts aided by polyvinylpyrrolidone. AIMS Materials Science, 2020, 7(3): 269-287. doi: 10.3934/matersci.2020.3.269 |
[3] | Johnson N. Naat, Yantus A. B Neolaka, Yosep Lawa, Calvin L. Wolu, Dewi Lestarani, Sri Sugiarti, Dyah Iswantini . Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent. AIMS Materials Science, 2022, 9(1): 36-55. doi: 10.3934/matersci.2022003 |
[4] | Mohsen Safaei, Mohammad Salmani Mobarakeh, Bahram Azizi, Ehsan Shoohanizad, Ling Shing Wong, Nafiseh Nikkerdar . Optimization of synthesis of cellulose/gum Arabic/Ag bionanocomposite for antibacterial applications. AIMS Materials Science, 2025, 12(2): 278-300. doi: 10.3934/matersci.2025015 |
[5] | Reisfeld Renata . Optical Properties of Lanthanides in Condensed Phase, Theory and Applications. AIMS Materials Science, 2015, 2(2): 37-60. doi: 10.3934/matersci.2015.2.37 |
[6] | Harikrishnan Pulikkalparambil, Jyotishkumar Parameswaranpillai, Jinu Jacob George, Krittirash Yorseng, Suchart Siengchin . Physical and thermo-mechanical properties of bionano reinforced poly(butylene adipate-co-terephthalate), hemp/CNF/Ag-NPs composites. AIMS Materials Science, 2017, 4(3): 814-831. doi: 10.3934/matersci.2017.3.814 |
[7] | Abdulkader A. Annaz, Saif S. Irhayyim, Mohanad L. Hamada, Hashim Sh. Hammood . Comparative study of mechanical performance between Al–Graphite and Cu–Graphite self-lubricating composites reinforced by nano-Ag particles. AIMS Materials Science, 2020, 7(5): 534-551. doi: 10.3934/matersci.2020.5.534 |
[8] | Takayuki Aoyama, Mari Aoki, Isao Sumita, Atsushi Ogura . Effects of particle size of aluminum powder in silver/aluminum paste on n-type solar cells. AIMS Materials Science, 2018, 5(4): 614-623. doi: 10.3934/matersci.2018.4.614 |
[9] | Abdullah Ahmed Ali Ahmed, Abdullah Mohammed Al-Hussam, Abdu Mohammed Abdulwahab, Ahmed Nasser Ahmed Ali Ahmed . The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Materials Science, 2018, 5(3): 533-542. doi: 10.3934/matersci.2018.3.533 |
[10] | Shreeram S. Joglekar, Harish M. Gholap, Prashant S. Alegaonkar, Anup A. Kale . The interactions between CdTe quantum dots and proteins: understanding nano-bio interface. AIMS Materials Science, 2017, 4(1): 209-222. doi: 10.3934/matersci.2017.1.209 |
Rat-bite fever (RBF) is a zoonotic infection and systemic febrile illness transmitted to humans by Rattus spp. contacts following a scratch, bite, or touching excrement, such as urine, feces, and oral secretions. Infection with members of the genus Streptobacillus is the most common cause of this infectious disease. In this review article, we updated the knowledge on the RBF caused by the genus Streptobacillus based on the isolation and identification methods, virulence factors, clinical signs, differential diagnoses, antibiogram, treatment, geographical distribution, and epidemiology. Moreover, the present paper's comprehensive analysis of over 200 infection cases attributed to this genus, spanning from 1915 to 2023, sheds light on its epidemiology and provides valuable insights for the future.
Fractional calculus is a notably attractive subject owing to having wide-ranging application areas of theoretical and applied sciences. Despite the fact that there are a large number of worthwhile mathematical works on the fractional differential calculus, there is no noteworthy parallel improvement of fractional difference calculus up to lately. This statement has shown that discrete fractional calculus has certain unforeseen hardship.
Fractional sums and differences were obtained firstly in Diaz-Osler [1], Miller-Ross [2] and Gray and Zhang [3] and they found discrete types of fractional integrals and derivatives. Later, several authors began to touch upon discrete fractional calculus; Goodrich-Peterson [4], Baleanu et al. [5], Ahrendt et al. [6]. Nevertheless, discrete fractional calculus is a rather novel area. The first studies have been done by Atıcı et al. [7,8,9,10,11], Abdeljawad et al. [12,13,14], Mozyrska et al. [15,16,17], Anastassiou [18,19], Hein et al. [20] and Cheng et al. [21] and so forth [22,23,24,25,26].
Self-adjoint operators have an important place in differential operators. Levitan and Sargsian [27] studied self-adjoint Sturm-Liouville differential operators and they obtained spectral properties based on self-adjointness. Also, they found representation of solutions and hence they obtained asymptotic formulas of eigenfunctions and eigenvalues. Similarly, Dehghan and Mingarelli [28,29] obtained for the first time representation of solution of fractional Sturm-Liouville problem and they obtained asymptotic formulas of eigenfunctions and eigenvalues of the problem. In this study, firstly we obtain self-adjointness of DFSL operator within nabla fractional Riemann-Liouville and delta fractional Grünwald-Letnikov operators. From this point of view, we obtain orthogonality of distinct eigenfunctions, reality of eigenvalues. In addition, we open a new gate by obtaining representation of solution of DFSL problem for researchers study in this area.
Self-adjointness of fractional Sturm-Liouville differential operators have been proven by Bas et al. [30,31], Klimek et al. [32,33]. Variational properties of fractional Sturm-Liouville problem has been studied in [34,35]. However, self-adjointness of conformable Sturm-Liouville and DFSL with Caputo-Fabrizio operator has been proven by [36,37]. Nowadays, several studies related to Atangana-Baleanu fractional derivative and its discrete version are done [38,39,40,41,42,43,44,45].
In this study, we consider DFSL operators within Riemann-Liouville and Grünwald-Letnikov sense, and we prove the self-adjointness, orthogonality of distinct eigenfunctions, reality of eigenvalues of DFSL operator. However, we get sum representation of solutions for DFSL equation by means Laplace transform for nabla fractional difference equations. Finally, we compare the results for the solution of DFSL problem, discrete Sturm-Liouville (DSL) problem with the second order, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem with the second order. The aim of this paper is to contribute to the theory of DFSL operator.
We discuss DFSL equations in three different ways with;
i) Self-adjoint (nabla left and right) Riemann-Liouville (R-L) fractional operator,
L1x(t)=∇μa(p(t)b∇μx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, |
ii) Self-adjoint (delta left and right) Grünwald-Letnikov (G-L) fractional operator,
L2x(t)=Δμ−(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, |
iii)(nabla left) DFSL operator is defined by R-L fractional operator,
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t), 0<μ<1. |
Definition 2.1. [4] Delta and nabla difference operators are defined by respectively
Δx(t)=x(t+1)−x(t),∇x(t)=x(t)−x(t−1). | (1) |
Definition 2.2. [46] Falling function is defined by, α∈R
tα_=Γ(α+1)Γ(α+1−n), | (2) |
where Γ is Euler gamma function.
Definition 2.3. [46] Rising function is defined by, α∈R,
t¯α=Γ(t+α)Γ(t). | (3) |
Remark 1. Delta and nabla operators have the following properties
Δtα_=αtα−1_, | (4) |
∇t¯α=αt¯α−1. |
Definition 2.4. [2,7] Fractional sum operators are defined by,
(i) The left defined nabla fractional sum with order μ>0 is defined by
∇−μax(t)=1Γ(μ)t∑s=a+1(t−ρ(s))¯μ−1x(s), t∈Na+1, | (5) |
(ii) The right defined nabla fractional sum with order μ>0 is defined by
b∇−μx(t)=1Γ(μ)b−1∑s=t(s−ρ(t))¯μ−1x(s), t∈ b−1N, | (6) |
where ρ(t)=t−1 is called backward jump operators, Na={a,a+1,...}, bN={b,b−1,...}.
Definition 2.5. [47] Fractional difference operators are defined by,
(i) The nabla left fractional difference of order μ>0 is defined
∇μax(t)=∇n∇−(n−μ)ax(t)=∇nΓ(n−μ)t∑s=a+1(t−ρ(s))¯n−μ−1x(s), t∈Na+1, | (7) |
(ii) The nabla right fractional difference of order μ>0 is defined
b∇μx(t)=(−1)nΔn b∇−(n−μ)x(t)=(−1)nΔnΓ(n−μ)b−1∑s=t(s−ρ(t))¯n−μ−1x(s), t∈ b−1N. | (8) |
Fractional differences in (7−8) are called the Riemann-Liouville (R-L) definition of the μ-th order nabla fractional difference.
Definition 2.6. [1,21,48] Fractional difference operators are defined by,
(i) The left defined delta fractional difference of order μ, 0<μ≤1, is defined by
Δμ−x(t)=1hμt∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t−s), t=1,...,N. | (9) |
(ii) The right defined delta fractional difference of order μ, 0<μ≤1, is defined by
Δμ+x(t)=1hμN−t∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t+s), t=0,..,N−1. | (10) |
Fractional differences in (9−10) are called the Grünwald-Letnikov (G-L) definition of the μ-th order delta fractional difference.
Theorem 2.7. [47] We define the summation by parts formula for R-L fractional nabla difference operator, u is defined on bN and v is defined on Na, then
b−1∑s=a+1u(s)∇μav(s)=b−1∑s=a+1v(s)b∇μu(s). | (11) |
Theorem 2.8. [26,48] We define the summation by parts formula for G-L delta fractional difference operator, u, v is defined on {0,1,...,n}, then
n∑s=0u(s)Δμ−v(s)=n∑s=0v(s)Δμ+u(s). | (12) |
Definition 2.9. [20] f:Na→R, s∈ℜ, Laplace transform is defined as follows,
La{f}(s)=∞∑k=1(1−s)k−1f(a+k), |
where ℜ=C∖{1} and ℜ is called the set of regressive (complex) functions.
Definition 2.10. [20] Let f,g:Na→R, all t∈Na+1, convolution property of f and g is given by
(f∗g)(t)=t∑s=a+1f(t−ρ(s)+a)g(s), |
where ρ(s) is the backward jump function defined in [46] as
ρ(s)=s−1. |
Theorem 2.11. [20] f,g:Na→R, convolution theorem is expressed as follows,
La{f∗g}(s)=La{f}La{g}(s). |
Lemma 2.12. [20] f:Na→R, the following property is valid,
La+1{f}(s)=11−sLa{f}(s)−11−sf(a+1). |
Theorem 2.13. [20] f:Na→R, 0<μ<1, Laplace transform of nabla fractional difference
La+1{∇μaf}(s)=sμLa+1{f}(s)−1−sμ1−sf(a+1),t∈Na+1. |
Definition 2.14. [20] For |p|<1, α>0, β∈R and t∈Na, discrete Mittag-Leffler function is defined by
Ep,α,β(t,a)=∞∑k=0pk(t−a)¯αk+βΓ(αk+β+1), |
where t¯n={t(t+1)⋯(t+n−1),n∈ZΓ(t+n)Γ(t),n∈R is rising factorial function.
Theorem 2.15. [20] For |p|<1, α>0, β∈R, |1−s|<1, and |s|α>p, Laplace transform of discrete Mittag-Leffler function is as follows,
La{Ep,α,β(.,a)}(s)=sα−β−1sα−p. |
Definition 2.16. Laplace transform of f(t)∈R+, t≥0 is defined as follows,
L{f}(s)=∞∫0e−stf(t)dt. |
Theorem 2.17. For z, θ∈C,Re(δ)>0, Mittag-Leffler function with two parameters is defined as follows
Eδ,θ(z)=∞∑k=0zkΓ(δk+θ). |
Theorem 2.18. Laplace transform of Mittag-Leffler function is as follows
L{tθ−1Eδ,θ(λtδ)}(s)=sδ−θsδ−λ. |
Property 2.19. [28] f:Na→R, 0<μ<1, Laplace transform of fractional derivative in Caputo sense is as follows, 0<α<1,
L{CDα0+f}(s)=sαL{f}(s)−sα−1f(0). |
Property 2.20. [28] f:Na→R, 0<μ<1, Laplace transform of left fractional derivative in Riemann-Liouville sense is as follows, 0<α<1,
L{Dα0+f}(s)=sαL{f}(s)−I1−α0+f(t)|t=0, |
here Iα0+ is left fractional integral in Riemann-Liouville sense.
We consider discrete fractional Sturm-Liouville equations in three different ways as follows:
First Case: Self-adjoint L1 DFSL operator is defined by (nabla right and left) R-L fractional operator,
L1x(t)=∇μa(p(t)b∇μx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, | (13) |
where p(t)>0, r(t)>0, q(t) is a real valued function on [a+1,b−1] and real valued, λ is the spectral parameter, t∈[a+1,b−1], x(t)∈l2[a+1,b−1]. In ℓ2(a+1,b−1), the Hilbert space of sequences of complex numbers u(a+1),...,u(b−1) with the inner product is given by,
⟨u(n),v(n)⟩=b−1∑n=a+1u(n)v(n), |
for every u∈DL1, let's define as follows
DL1={u(n), v(n)∈ℓ2(a+1,b−1):L1u(n), L1v(n)∈ℓ2(a+1,b−1)}. |
Second Case: Self-adjoint L2 DFSL operator is defined by(delta left and right) G-L fractional operator,
L2x(t)=Δμ−(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, | (14) |
where p,r,λ is as defined above, q(t) is a real valued function on [0,n], t∈[0,n], x(t)∈l2[0,n]. In ℓ2(0,n), the Hilbert space of sequences of complex numbers u(0),...,u(n) with the inner product is given by, n is a finite integer,
⟨u(i),r(i)⟩=n∑i=0u(i)r(i), |
for every u∈DL2, let's define as follows
DL2={u(i), v(i)∈ℓ2(0,n):L2u(n), L2r(n)∈ℓ2(0,n)}. |
Third Case:L3 DFSL operator is defined by (nabla left) R-L fractional operator,
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t), 0<μ<1, | (15) |
p,r,λ is as defined above, q(t) is a real valued function on [a+1,b−1], t∈[a+1,b−1].
Firstly, we consider the first case and give the following theorems and proofs;
Theorem 3.1. DFSL operator L1 is self-adjoint.
Proof.
u(t)L1v(t)=u(t)∇μa(p(t)b∇μv(t))+u(t)q(t)v(t), | (16) |
v(t)L1u(t)=v(t)∇μa(p(t)b∇μu(t))+v(t)q(t)u(t). | (17) |
If (16−17) is subtracted from each other
u(t)L1v(t)−v(t)L1u(t)=u(t)∇μa(p(t)b∇μv(t))−v(t)∇μa(p(t)b∇μu(t)) |
and sum operator from a+1 to b−1 to both side of the last equality is applied, we get
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1u(s)∇μa(p(s)b∇μv(s)) | (18) |
−b−1∑s=a+1v(s)∇μa(p(s)b∇μu(s)). |
If we apply the summation by parts formula in (11) to right hand side of (18), we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1p(s)b∇μv(s)b∇μu(s)−b−1∑s=a+1p(s)b∇μu(s)b∇μv(s)=0, |
⟨L1u,v⟩=⟨u,L1v⟩. |
Hence, the proof completes.
Theorem 3.2. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (13) are orthogonal as λα≠λβ.
Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (13),
∇μa(p(t)b∇μu(t))+q(t)u(t)−λαr(t)u(t)=0,∇μa(p(t)b∇μv(t))+q(t)v(t)−λβr(t)v(t)=0. |
If we multiply last two equations by v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L1, we have
(λα−λβ)b−1∑s=a+1r(s)u(s)v(s)=0, |
since λα≠λβ,
b−1∑s=a+1r(s)u(s)v(s)=0,⟨u(t),v(t)⟩=0. |
Hence, the proof completes.
Theorem 3.3. All eigenvalues of the equation (13) are real.
Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L1, we can write
⟨L1u(t),u(t)⟩=⟨u(t),L1u(t)⟩,⟨λru(t),u(t)⟩=⟨u(t),λr(t)u(t)⟩, |
(λ−¯λ)⟨u(t),u(t)⟩r=0. |
Since ⟨u(t),u(t)⟩r≠0,
λ=¯λ |
and hence β=0. The proof completes.
Secondly, we consider the second case and give the following theorems and proofs;
Theorem 3.4. DFSL operator L2 is self-adjoint.
Proof.
u(t)L2v(t)=u(t)Δμ−(p(t)Δμ+v(t))+u(t)q(t)v(t), | (19) |
v(t)L2u(t)=v(t)Δμ−(p(t)Δμ+u(t))+v(t)q(t)u(t). | (20) |
If (19−20) is subtracted from each other
u(t)L2v(t)−v(t)L2u(t)=u(t)Δμ−(p(t)Δμ+v(t))−v(t)Δμ−(p(t)Δμ+u(t)) |
and definite sum operator from 0 to t to both side of the last equality is applied, we have
t∑s=0(u(s)L1v(s)−v(s)L2u(s))=t∑s=0u(s)Δμ−(p(s)Δμ+v(s))−t∑s=0v(s)Δμ−(p(s)Δμ+u(s)). | (21) |
If we apply the summation by parts formula in (12) to r.h.s. of (21), we get
t∑s=0(u(s)L2v(s)−v(s)L2u(s))=t∑s=0p(s)Δμ+v(s)Δμ+u(s)−t∑s=0p(s)Δμ+u(s)Δμ+v(s)=0, |
⟨L2u,v⟩=⟨u,L2v⟩. |
Hence, the proof completes.
Theorem 3.5. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (14) are orthogonal as λα≠λβ. orthogonal.
Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (14),
Δμ−(p(t)Δμ+u(t))+q(t)u(t)−λαr(t)u(t)=0,Δμ−(p(t)Δμ+v(t))+q(t)v(t)−λβr(t)v(t)=0. |
If we multiply last two equations to v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L2, we get
(λα−λβ)t∑s=0r(s)u(s)v(s)=0, |
since λα≠λβ,
t∑s=0r(s)u(s)v(s)=0⟨u(t),v(t)⟩=0. |
So, the eigenfunctions are orthogonal. The proof completes.
Theorem 3.6. All eigenvalues of the equation (14) are real.
Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L2
⟨L2u(t),u(t)⟩=⟨u(t),L2u(t)⟩,⟨λr(t)u(t),u(t)⟩=⟨u(t),λr(t)u(t)⟩, |
(λ−¯λ)⟨u,u⟩r=0. |
Since ⟨u,u⟩r≠0,
λ=¯λ, |
and hence β=0. The proof completes.
Now, we consider the third case and give the following theorem and proof;
Theorem 3.7.
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t),0<μ<1, | (22) |
x(a+1)=c1,∇μax(a+1)=c2, | (23) |
where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (22)−(23) is found as follows,
x(t)=c1[(1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a)] | (24) |
+c2[Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a)]−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s), |
where |λ|<1, |1−s|<1, and |s|α>λ from Theorem 2.15.
Proof. Let's use the Laplace transform of both side of the equation (22) by Theorem 2.13, and let q(t)x(t)=g(t),
La+1{∇μa(∇μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{∇μax}(s)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s),=sμ(sμLa+1{x}(s)−1−sμ1−sc1)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s), |
=La+1{x}(s)=1−sμ1−s1s2μ−λ(sμc1+c2)−1s2μ−λLa+1{g}(s), |
from Lemma 2.12, we get
La{x}(s)=c1(sμ−λs2μ−λ)−1−ss2μ−λ(11−sLa{g}(s)−11−sg(a+1))+c2(1−sμs2μ−λ). | (25) |
Applying inverse Laplace transform to the equation (25), then we get representation of solution of the problem (22)−(23),
x(t)=c1((1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s). |
Now, let us consider comparatively discrete fractional Sturm-Liouville (DFSL) problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem respectively as follows by taking q(t)=0,
DFSL problem:
∇μ0(∇μ0x(t))=λx(t), | (26) |
x(1)=1, ∇μax(1)=0, | (27) |
and its analytic solution is as follows by the help of Laplace transform in Lemma 2.12
x(t)=Eλ,2μ,μ−1(t,0)−λEλ,2μ,2μ−1(t,0), | (28) |
DSL problem:
∇2x(t)=λx(t), | (29) |
x(1)=1, ∇x(1)=0, | (30) |
and its analytic solution is as follows
x(t)=12(1−λ)−t[(1−√λ)t(1+√λ)−(−1+√λ)(1+√λ)t], | (31) |
FSL problem:
CDμ0+(Dμ0+x(t))=λx(t), | (32) |
I1−μ0+x(t)|t=0=1, Dμ0+x(t)|t=0=0, | (33) |
and its analytic solution is as follows by the help of Laplace transform in Property 2.19 and 2.20
x(t)=tμ−1E2μ,μ(λt2μ), | (34) |
CSL problem:
x′′(t)=λx(t), | (35) |
x(0)=1, x′(0)=0, | (36) |
and its analytic solution is as follows
x(t)=cosht√λ, | (37) |
where the domain and range of function x(t) and Mittag-Leffler functions must be well defined. Note that we may show the solution of CSL problem can be obtained by taking μ→1 in the solution of FSL problem and similarly, the solution of DSL problem can be obtained by taking μ→1 in the solution of DFSL problem.
Firstly, we compare the solutions of DFSL and DSL problems and from here we show that the solutions of DFSL problem converge to the solutions of DSL problem as μ→1 in Figure 1 for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1); let λ=0.01,
Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1). At first view, we observe the solution of DSL and CSL problems almost coincide in any order μ, and we observe the solutions of DFSL and FSL problem almost coincide in any order μ. However, we observe that all of the solutions of DFSL, DSL, FSL and CSL problems almost coincide to each other as μ→1 in Figure 2. Let λ=0.01,
Thirdly, we compare the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1) in the Figure 3;
Eigenvalues of DFSL problem (22−23), correspond to some specific eigenfunctions for numerical values of discrete Mittag-Leffler function Ep,α,β(t,a)=i∑k=0pk(t−a)¯αk+βΓ(αk+β+1), is given with different orders while q(t)=0 in Table 1;
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
Finally, we give the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=100∑k=0pk(t−a)¯αk+βΓ(αk+β+1) in Tables 2–4;
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
Now, let's consider the problems together DFSL (26)−(27), DSL (29)−(30), FSL (32)−(33) and CSL (35)−(36). Eigenvalues of these problems are the roots of the following equation
x(35)=0. |
Thus, if we apply the solutions (28), (31), (34) and (37) of these four problems to the equation above respectively, we can find the eigenvalues of these problems for the orders μ=0.9 and μ=0.99 respectively in Table 5, and Table 6,
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
In here, we observe that these four problems have real eigenvalues under different orders μ=0.9 and μ=0.99, hence we can find eigenfunctions putting these eigenvalues into the four solutions. Furthermore, as the order changes, we can see that eigenvalues change for DFSL problems.
We consider firstly discrete fractional Sturm-Liouville (DFSL) operators with nabla Riemann-Liouville and delta Grünwald-Letnikov fractional operators and we prove self-adjointness of the DFSL operator and fundamental spectral properties. However, we analyze DFSL problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem by taking q(t)=0 in applications. Firstly, we compare the solutions of DFSL and DSL problems and we observe that the solutions of DFSL problem converge to the solutions of DSL problem when μ→1 in Fig. 1. Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems in Fig. 2. At first view, we observe the solutions of DSL and CSL problems almost coincide with any order μ, and we observe the solutions of DFSL and FSL problem almost coincide with any order μ. However, we observe that all of solutions of DFSL, DSL, FSL and CSL problems almost coincide with each other as μ→1. Thirdly, we compare the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues in Fig. 3.
Eigenvalues of DFSL problem (22−23) corresponded to some specific eigenfunctions is given with different orders in Table 1. We give the eigenfunctions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues in Table 2, Table 3 and Table 4.
In Section 4.1, we consider DFSL, DSL, FSL and CSL problems together and thus, we can compare the eigenvalues of these four problems in Table 5 and Table 6 for different values of μ. We observe that these four problems have real eigenvalues under different values of μ, from here we can find eigenfunctions corresponding eigenvalues. Moreover, when the order change, eigenvalues change for DFSL problems.
Consequently, important results in spectral theory are given for discrete Sturm-Liouville problems. These results will lead to open gates for the researchers studied in this area. Especially, representation of solution will be practicable for future studies. It worths noting that visual results both will enable to be understood clearly by readers and verify the results to the integer order discrete case while the order approaches to one.
This paper includes a part of Ph.D. thesis data of Ramazan OZARSLAN.
The authors declare no conflict of interest.
[1] |
Wallemacq S, Hing M, Mahadeb B, et al. (2023) Streptobacillus moniliformis right hand abscess and monoarthritis following a rat bite. IDCases 31: e01663. https://doi.org/10.1016/j.idcr.2022.e01663 ![]() |
[2] |
Ganjeer T, Patyal A, Shakya S, et al. (2021) Rodent borne zoonoses: A brief review. Pharma Innov 10: 721-725. https://doi.org/10.22271/tpi.2021.v10.i8Sk.7406 ![]() |
[3] |
Clement J, Frans J, Van Ranst M (2003) Human Tula virus infection or rat-bite fever?. Eur J Clin Microbiol Infect Dis 22: 332-333. https://doi.org/10.1007/s10096-003-0921-7 ![]() |
[4] |
Krauss H, Weber A, Appel M, et al. Zoonoses: infectious diseases transmissible from animals to humans, ASM press Washington, DC (2003). ![]() |
[5] | Levaditi C, Nicolau S, Poincloux P (1925) Sur le rôle étiologique de Streptobacillus moniliformis (nov. spec.) dans l'érythème polymorphe aigu septicémique. CR Acad Sci 180: 1188-1190. |
[6] |
Brabb T, Newsome D, Burich A, et al. (2012) Chapter 23-Infectious diseases. The laboratory rabbit, guinea pig, hamster, and other rodents. New York: Academic Press 637-683. https://doi.org/10.1016/B978-0-12-380920-9.00023-7 ![]() |
[7] |
Eisenberg T, Imaoka K, Kimura M, et al. (2016) Streptobacillus ratti sp. nov., isolated from a black rat (Rattus rattus). IJSEM 66: 1620-1626. https://doi.org/10.1099/ijsem.0.000869 ![]() |
[8] |
Eisenberg T, Glaeser SP, Nicklas W, et al. (2015) Streptobacillus felis sp. nov., isolated from a cat with pneumonia, and emended descriptions of the genus Streptobacillus and of Streptobacillus moniliformis. IJSEM 65: 2172-2178. https://doi.org/10.1099/ijs.0.000238 ![]() |
[9] |
Eisenberg T, Heydel C, Prenger-Berninghoff E, et al. (2020) Streptobacillus canis sp. nov. isolated from a dog. IJSEM 70: 2648-2656. https://doi.org/10.1099/ijsem.0.004086 ![]() |
[10] |
Eisenberg T, Glaeser SP, Ewers C, et al. (2015) Streptobacillus notomytis sp. nov., isolated from a spinifex hopping mouse (Notomys alexis Thomas, 1922), and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend. IJSEM 65: 4823-4829. https://doi.org/10.1099/ijsem.0.000654 ![]() |
[11] |
Ogawa Y, Kasahara K, Lee ST, et al. (2018) Rat-bite fever in human with Streptobacillus notomytis infection, Japan. Emerg Infect Dis 24: 1377. https://doi.org/10.3201/eid2407.171580 ![]() |
[12] | Graves MH, Janda JM (2001) Rat-bite fever (Streptobacillus moniliformis): a potential emerging disease. IJID 5: 151-154. https://doi.org/10.1016/S1201-9712(01)90090-6 |
[13] |
Bartlett A, Padfield D, Lear L, et al. (2022) A comprehensive list of bacterial pathogens infecting humans. Microbiology 168: 001269. https://doi.org/10.1099/mic.0.001269 ![]() |
[14] |
Sprecher MH, Copeland J (1947) Haverhill fever due to Streptobacillus moniliformis treated with streptomycin. JAMA 134: 1014-1016. ![]() |
[15] |
Gaastra W, Boot R, Ho HT, et al. (2009) Rat bite fever. Vet Microbiol 133: 211-228. https://doi.org/10.1016/j.vetmic.2008.09.079 ![]() |
[16] |
Fukushima K, Yanagisawa N, Imaoka K, et al. (2018) Rat-bite fever due to Streptobacillus notomytis isolated from a human specimen. J Infect Chemother 24: 302-304. https://doi.org/10.1016/j.jiac.2017.10.018 ![]() |
[17] |
Matt U, Schmiedel J, Fawzy A, et al. (2021) Infection in a young immunocompetent male caused by Streptobacillus felis, a putative zoonotic microorganism transmitted by cats. Clin Infect Dis 72: 1826-1829. https://doi.org/10.1093/cid/ciaa968 ![]() |
[18] |
Roughgarden JW (1965) Antimicrobial therapy of rat bite fever: a review. Arch Intern Med 116: 39-54. https://doi.org/10.1001/archinte.1965.03870010041007 ![]() |
[19] | Gunning J (1976) Rat bite fevers. Tropical Medicine. Philadelphia: WB Saunders 246-247. |
[20] |
Elliott SP (2007) Rat bite fever and Streptobacillus moniliformis. CMR 20: 13-22. https://doi.org/10.1128/cmr.00016-06 ![]() |
[21] | Julius RS, Brettschneider H, Chimimba CT, et al. (2021) Focus: Zoonotic disease: Prevalence and diversity of the Streptobacillus Rat-bite fever agent, in three invasive, commensal Rattus species from South Africa. YJBM 94: 217. |
[22] | Azimi T, Azimi L, Fallah F, et al. (2021) Detection and distribution of zoonotic pathogens in wild Norway rats (Rattus norvegicus) from Tehran, Iran. NMNI 42: 100908. https://doi.org/10.1016/j.nmni.2021.100908 |
[23] | Julius RS, Bastos AD, Chimimba CT, et al. (2012) Dynamics of rodent-borne zoonotic diseases and their reservoir hosts: invasive Rattus in South Africa. Proc. 25th Vertebr. Pest Conf. (R. M. Timm, Ed.). Published at Univ. of Calif., Davis : 261-266. https://doi.org/10.5070/V425110574 |
[24] |
de Cock MP, de Vries A, Fonville M, et al. (2023) Increased rat-borne zoonotic disease hazard in greener urban areas. Sci Total Environ 896: 165069. https://doi.org/10.1016/j.scitotenv.2023.165069 ![]() |
[25] |
Kimura M, Tanikawa T, Suzuki M, et al. (2008) Detection of Streptobacillus spp. in feral rats by specific polymerase chain reaction. Microbiol Immunol 52: 9-15. https://doi.org/10.1111/j.1348-0421.2008.00005.x ![]() |
[26] | Wilson ME, Trichopoulos D (1991) A world guide to infections. Diseases, distribution, diagnosis. New York: Oxford University Press 769. |
[27] | Rubin LG (1997) Streptobacillus moniliformis (rat-bite fever). Principles and practice of pediatric infectious diseases. New York: Livingstone 1046-1047. |
[28] |
Matthews C, Ausman S (2021) Rat-bite fever: Taking the bite out of a textbook case of Streptobacillus moniliformis blood stream infection. IDCases 25: e01199. https://doi.org/10.1016/j.idcr.2021.e01199 ![]() |
[29] | Control CfD, Prevention.Fatal rat-bite fever-Florida and Washington, 2003. MMWR Morb Mortal Wkly Rep (2005) 53: 1198-1202. |
[30] |
Paegle RD, Tewari RP, Bernhard WN, et al. (1976) Microbial flora of the larynx, trachea, and large intestine of the rat after long-term inhalation of 100 per cent oxygen. Anesthesiology 44: 287-290. https://doi.org/10.1097/00000542-197604000-00002 ![]() |
[31] |
Strangeways WI (1933) Rats as carriers of Streptobacillus moniliformis. J Pathol Bacteriol 37: 45-51. https://doi.org/10.1002/path.1700370106 ![]() |
[32] |
Holcombe H, Schauer DB (2007) Enterobacteriaceae Pseudomonas aeruginosa and Streptobacillus moniliformis. The mouse in biomedical research.Elsevier 365-387. https://doi.org/10.1016/B978-012369454-6/50043-1 ![]() |
[33] |
Boot R, Van de Berg L, Vlemminx M (2006) Detection of antibodies to Streptobacillus moniliformis in rats by an immunoblot procedure. Lab Anim 40: 447-455. https://doi.org/10.1258/002367706778476442 ![]() |
[34] |
Koopman J, Van den Brink M, Vennix P, et al. (1991) Isolation of Streptobacillus moniliformis from the middle ear of rats. Lab Anim 25: 35-39. https://doi.org/10.1258/002367791780808211 ![]() |
[35] | Wullenweber M, Jonas C, Kunstyr I (1992) Streptobacillus moniliformis isolated from otitis media of conventionally kept laboratory rats. J Exp Anim Sci 35: 49-57. |
[36] |
Glastonbury JRW, Morton JG, Matthews LM (1996) Streptobacillus moniliformis infection in Swiss white mice. J Vet Diagn Invest 8: 202-209. https://doi.org/10.1177/104063879600800210 ![]() |
[37] | Wullenweber M, Hedrich H, Reetz I (1991) Susceptibility to streptobacillosis of mice is highly influenced by genetic factors. AALAS Bulletin 30: 43. |
[38] |
Wullenweber M (1995) Streptobacillus moniliformis-a zoonotic pathogen. Taxonomic considerations, host species, diagnosis, therapy, geographical distribution. Lab Anim 29: 1-15. https://doi.org/10.1258/002367795780740375 ![]() |
[39] | Weisbroth SH (1979) Bacterial and mycotic diseases [of rats]. The laboratory rat Volume 1 Biology and diseases 1: 193-241. |
[40] | Species Mycoplasmopsis pulmonis. https://lpsn.dsmz.de/species/mycoplasmopsis-pulmonis, Oct 29, 2024. |
[41] | Olson L, McCune E (1968) Histopathology of chronic otitis media in the rat. Lab Anim Care 18: 478-485. |
[42] |
Bell DP, Elmes P (1969) Effects of certain organisms associated with chronic respiratory disease on SPF and conventional rats. J Med Microbiol 2: 511-519. https://doi.org/10.1099/00222615-2-4-511 ![]() |
[43] |
Gay F, Maguire M, Baskerville A (1972) Etiology of chronic pneumonia in rats and a study of the experimental disease in mice. Infect Immun 6: 83-91. https://doi.org/10.1128/iai.6.1.83-91.1972 ![]() |
[44] |
Young C, Hill A (1974) Conjunctivitis in a colony of rats. Lab Anim 8: 301-304. https://doi.org/10.1258/002367774780943625 ![]() |
[45] |
Rumley RL, Patrone NA, White L (1987) Rat-bite fever as a cause of septic arthritis: a diagnostic dilemma. Ann Rheum Dis 46: 793-795. https://doi.org/10.1136/ard.46.10.793 ![]() |
[46] |
Regnath T, Kurb N, Wolf M, et al. (2015) Rat-bite fever-two cases of infection with Streptobacillus moniliformis within two months. Dtsch Med Wochenschr 140: 741-743. https://doi.org/10.1055/s-0041-102114 ![]() |
[47] |
Eisenberg T, Ewers C, Rau J, et al. (2016) Approved and novel strategies in diagnostics of rat bite fever and other Streptobacillus infections in humans and animals. Virulence 7: 630-648. https://doi.org/10.1080/21505594.2016.1177694 ![]() |
[48] |
Eisenberg T, Glaeser SP, Ewers C, et al. (2016) Caviibacter abscessus gen. nov., sp. nov., a member of the family Leptotrichiaceae isolated from guinea pigs (Cavia porcellus). IJSEM 66: 1652-1659. https://doi.org/10.1099/ijsem.0.000922 ![]() |
[49] | Staley JT, Whitman WB (2015) Leptotrichiaceae fam. nov. Bergey's Manual of Systematics of Archaea and Bacteria : 1-1. |
[50] |
Eisenberg T, Kämpfer P, Ewers C, et al. (2016) Oceanivirga salmonicida gen. nov., sp. nov., a member of the Leptotrichiaceae isolated from Atlantic salmon (Salmo salar). IJSEM 66: 2429-2437. https://doi.org/10.1099/ijsem.0.001050 ![]() |
[51] |
Eisenberg T, Glaeser SP, Blom J, et al. (2020) Proposal to reclassify Leptotrichia goodfellowii into a novel genus as Pseudoleptotrichia goodfellowii gen. nov., comb. nov. IJSEM 70: 2084-2088. https://doi.org/10.1099/ijsem.0.004024 ![]() |
[52] |
Eisenberg T, Glaeser SP, Blom J, et al. (2020) Proposal to reclassify Streptobacillus hongkongensis into a novel genus as Pseudostreptobacillus hongkongensis gen. nov., comb. nov. IJSEM 70: 2366-2368. https://doi.org/10.1099/ijsem.0.004051 ![]() |
[53] | Collins M, Shah H (1986) Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a New Genus Sebaldella, as Sebaldella termitidis comb. nov. IJSEM 36: 349-350. https://doi.org/10.1099/00207713-36-2-349 |
[54] |
Collins MD, Hoyles L, Törnqvist E, et al. (2001) Characterization of some strains from human clinical sources which resemble “Leptotrichia sanguinegens”: Description of Sneathia sanguinegens sp. nov., gen. nov. Syst Appl Microbiol 24: 358-361. https://doi.org/10.1078/0723-2020-00047 ![]() |
[55] |
Woo PC, Wu AK, Tsang CC, et al. (2014) Streptobacillus hongkongensis sp. nov., isolated from patients with quinsy and septic arthritis, and emended descriptions of the genus Streptobacillus and Streptobacillus moniliformis. IJSEM 64: 3034-3039. https://doi.org/10.1099/ijs.0.061242-0 ![]() |
[56] |
Gourlay R, Flanagan B, Wyld S (1982) Streptobacillus actinoides (Bacillus actinoides): isolation from pneumonic lungs of calves and pathogenicity studies in gnotobiotic calves. Res Vet Sci 32: 27-34. https://doi.org/10.1016/S0034-5288(18)32432-9 ![]() |
[57] | . https://lpsn.dsmz.de/species/streptobacillus-actinoides, Oct 29, 2024 |
[58] |
Wallet F, Savage C, Loïez C, et al. (2003) Molecular diagnosis of arthritis due to Streptobacillus moniliformis. Diagn Microbiol Infect Dis 47: 623-624. https://doi.org/10.1016/S0732-8893(03)00167-6 ![]() |
[59] | Gharbia SE, Edwards KJ (2015) Streptobacillus. Bergey's Manual of Systematics of Archaea and Bacteria : 1-4. |
[60] |
Eisenberg T, Nicklas W, Mauder N, et al. (2015) Phenotypic and genotypic characteristics of members of the genus Streptobacillus. PLoS One 10: e0134312. https://doi.org/10.1371/journal.pone.0134312 ![]() |
[61] |
Eisenberg T, Nesseler A, Nicklas W, et al. (2014) Streptobacillus sp. isolated from a cat with pneumonia. JMM Case Rep 1: e000562. https://doi.org/10.1099/jmmcr.0.000562 ![]() |
[62] |
Lambe DW, McPhedran AM, Mertz JA, et al. (1973) Streptobacillus moniliformis isolated from a case of Haverhill fever: biochemical characterization and inhibitory effect of sodium polyanethol sulfonate. Am J Clin Pathol 60: 854-860. https://doi.org/10.1093/ajcp/60.6.854 ![]() |
[63] |
Uddin A, Phan T, Yassin M (2021) Septic polyarthritis caused by Streptobacillus moniliformis. Emerg Infect Dis 27: 3198. https://doi.org/10.3201/eid2712.210649 ![]() |
[64] | Torres A, Cuende E, De Pablos M, et al. (2001) Remitting seronegative symmetrical synovitis with pitting edema associated with subcutaneous Streptobacillus moniliformis abscess. J Rheumatol 28: 1696-1698. |
[65] |
Loridant S, Jaffar-Bandjee M-C, La Scola B (2011) Case report: shell vial cell culture as a tool for Streptobacillus moniliformis “resuscitation”. Am J Trop Med Hyg 84: 306. https://doi.org/10.4269/ajtmh.2011.10-0466 ![]() |
[66] |
Dendle C, Woolley IJ, Korman T (2006) Rat-bite fever septic arthritis: illustrative case and literature review. Eur J Clin Microbiol Infect Dis 25: 791-797. https://doi.org/10.1007/s10096-006-0224-x ![]() |
[67] | Eisenberg T, Glaeser SP, Blom J, et al. (2015) Streptobacillus. Bergey's Manual of Systematics of Archaea and Bacteria : 1-13. |
[68] |
López P, Euras J, Anglada A, et al. (1992) Infection due to Streptobacillus moniliformis. Clin Microbiol Newsl 14: 38-40. https://doi.org/10.1016/0196-4399(92)90035-8 ![]() |
[69] |
Rosen E, Denzer BS (1944) Rat bite fever caused by Streptobacillus moniliformis: Case report. J Pediatr 24: 544-552. https://doi.org/10.1016/S0022-3476(44)80032-4 ![]() |
[70] |
Blake FG (1916) The etiology of rat-bite fever. J Exp Med 23: 39-60. https://doi.org/10.1084/jem.23.1.39 ![]() |
[71] |
Borgen L, Gaustad V (1948) Infection with Actinomyces muris ratti (Streptobacillus moniliformis) after bite of laboratory rat. Acta Med Scand 130: 189-198. ![]() |
[72] | Kane F (1944) Rat bite fever due to Streptobacillus moniliformis: a case treated by penicillin. Ulster Med J 13: 129. https://doi.org/10.1016/s0140-6736(00)74271-1 |
[73] | Holden F, Mackay J (1964) Rat-bite fever-an occupational hazard. Can Med Assoc J 91: 78. |
[74] |
Hagelskjaer L, Sørensen I, Randers E (1998) Streptobacillus moniliformis infection: 2 cases and a literature review. Scand J Infect Dis 30: 309-311. https://doi.org/10.1080/00365549850161016 ![]() |
[75] |
Rupp ME (1992) Streptobacillus moniliformis endocarditis: case report and review. Clin Infect Dis 14: 769-772. https://doi.org/10.1093/clinids/14.3.769 ![]() |
[76] |
Dijkamns B, Thomeer R, Vielvoye G, et al. (1984) Brain abscess due to Streptobacillus moniliformis and Actinobacterium meyeri. Infection 12: 262-264. https://doi.org/10.1007/bf01645956 ![]() |
[77] |
Szewc AM, Bell ME, Kelly AJ, et al. (2021) Using the BDFX40 automated continuous blood culture system to isolate and recover Streptobacillus moniliformis in the presence of 0.05% SPS: a 55-year, 56-strain retrospective study. Lab Med 52: 536-549. https://doi.org/10.1093/labmed/lmab009 ![]() |
[78] |
Shanson D, Midgley J, Gazzard B, et al. (1983) Streptobacillus moniliformis isolated from blood in four cases of Haverhill fever: first outbreak in Britain. The Lancet 322: 92-94. https://doi.org/10.1016/S0140-6736(83)90072-7 ![]() |
[79] |
Torres L, Lopez A, Escobar S, et al. (2003) Bacteremia by Streptobacillus moniliformis: first case described in Spain. Eur J Clin Microbiol Infect Dis 22: 258-260. https://doi.org/10.1007/s10096-003-0891-9 ![]() |
[80] |
Holroyd KJ, Reiner AP, Dick JD (1988) Streptobacillus moniliformis polyarthritis mimicking rheumatoid arthritis: an urban cae of rat bite fever. Am J Med 85: 711-714. https://doi.org/10.1016/S0002-9343(88)80247-X ![]() |
[81] |
Joshi RM, Al Sweih N, Bin Nakhi HA, et al. (2010) Streptobacillus moniliformis bacteremia in a child: case report. Med Princ Pract 19: 409-411. https://doi.org/10.1159/000316383 ![]() |
[82] |
Shanson D, Pratt J, Greene P (1985) Comparison of media with and without ‘Panmede’for the isolation of Streptobacillus moniliformis from blood cultures and observations on the inhibitory effect of sodium polyanethol sulphonate. J Med Microbiol 19: 181-186. https://doi.org/10.1099/00222615-19-2-181 ![]() |
[83] |
Fenn DW, Ramoutar A, Jacob G, et al. (2014) An unusual tale of rat-bite fever endocarditis. BMJ Case Rep 2014: bcr2014204989. https://doi.org/10.1136/bcr-2014-204989 ![]() |
[84] |
Kusuda T, Ryoko A, Yoshishige M, et al. (2020) Erosive polyarthritis caused by sepsis due to a novel species of Streptobacillus notomytis. Mod Rheumatol Case 4: 95-98. https://doi.org/10.1080/24725625.2019.1655246 ![]() |
[85] | Shadrin IY, Albitar HAH, Paim AC, et al. (2020) Migratory polyarthralgias and skin rash: Rat bite fever with a positive anti-cyclic citrullinated peptide. MCP:IQ&O 4: 223-227. https://doi.org/10.1016/j.mayocpiqo.2019.11.004 |
[86] |
Fatahi-Bafghi M (2018) Nocardiosis from 1888 to 2017. Microb Pathog 114: 369-384. https://doi.org/10.1016/j.micpath.2017.11.012 ![]() |
[87] |
Fatahi-Bafghi M (2019) Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 38: 1599-1624. https://doi.org/10.1007/s10096-019-03580-5 ![]() |
[88] |
Andalibi F, Fatahi-Bafghi M (2017) Gordonia: isolation and identification in clinical samples and role in biotechnology. Folia microbiologica 62: 245-252. https://doi.org/10.1007/s12223-017-0491-1 ![]() |
[89] |
Pins MR, Holden JM, Yang JM, et al. (1996) Isolation of presumptive Streptobacillus moniliformis from abscesses associated with the female genital tract. Clin Infect Dis 22: 471-476. https://doi.org/10.1093/clinids/22.3.471 ![]() |
[90] |
Bottone EJ, Thomas CA, Lindquist D, et al. (1995) Difficulties encountered in identification of a nutritionally deficient Streptococcus on the basis of its failure to revert to streptococcal morphology. J Clin Microbiol 33: 1022-1024. https://doi.org/10.1128/jcm.33.4.1022-1024.1995 ![]() |
[91] |
Freundt E (1956) Experimental investigations into the pathogenicity of the L-phase variant of Streptobacillus moniliformis. Acta Pathol Microbiol Scand 38: 246-258. ![]() |
[92] | Lapage SPGCSa, DaughertyIn: Bergey's Manual of Determinative Bacteriology, & teebBaGW, et al.. |
[93] |
Midgley J (1970) Cardiobacterium hominis endocarditis. J Med Microbiol 3: 91-98. https://doi.org/10.1099/00222615-3-1-91 ![]() |
[94] |
Christiansen J, Birge EA (1951) Streptobacillus moniliformis infection following acute appendicitis: report of a case. Am J Clin Pathol 21: 1062-1064. https://doi.org/10.1093/ajcp/21.11.1062 ![]() |
[95] |
Edwards R, Finch R (1986) Characterisation and antibiotic susceptibilities of Streptobacillus moniliformis. J Med Microbiol 21: 39-42. https://doi.org/10.1099/00222615-21-1-39 ![]() |
[96] | Wilson G, Miles A Topley and Wilson's Principles of Bacteriology and Immunity. Baltimore (1964). |
[97] |
Cohen RL, Wittler RG, Faber JE (1968) Modified biochemical tests for characterization of L-phase variants of bacteria. Appl Environ Microbiol 16: 1655-1662. https://doi.org/10.1128/am.16.11.1655-1662.1968 ![]() |
[98] |
Stuart-Harris C, Wells A, Rosher A, et al. (1935) Four cases of infective endocarditis due to organisms similar to Haemophilus pavainfluenzae, and one case due to a pleo-morphic Streptobacillus. J Pathol Bacteriol 41: 407-421. http://dx.doi.org/10.1002/path.1700410305 ![]() |
[99] |
Sens MA, Brown EW, Wilson LR, et al. (1989) Fatal Streptobacillus moniliformis infection in a two-month-old infant. Am J Clin Pathol 91: 612-616. https://doi.org/10.1093/ajcp/91.5.612 ![]() |
[100] |
Frans J, Verhaegen J, Van Noyen R (2001) Streptobacillus moniliformis: case report and review of the literature. Acta Clinica Belgica 56: 187-190. https://doi.org/10.1179/acb.2001.029 ![]() |
[101] | Pranada AB, Schwarz G, Kostrzewa M (2016) MALDI Biotyping for Microorganism Identification in Clinical Microbiology. Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry. Cham: Springer. https://doi.org/10.1007/978-3-319-04819-2_11 |
[102] |
Yang FA, Li TJ, Ho MW, et al. (2021) Rat-bite fever with bacteremia and lower limb abscess formation caused by Streptobacillus moniliformis. J Microbiol Immunol Infect 55: 175-176. https://doi.org/10.1016/j.jmii.2021.10.003 ![]() |
[103] |
Fokkema AT, Kampschreur LM, Pirii LE, et al. (2022) Rat bite fever in a total knee arthroplasty: an unusual case of periprosthetic joint infection. Arthroplasty 4: 1-4. https://doi.org/10.1186/s42836-022-00114-x ![]() |
[104] |
Boot R, Oosterhuis A, Thuis H (2002) PCR for the detection of Streptobacillus moniliformis. Lab Anim 36: 200-208. https://doi.org/10.1258/0023677021912352 ![]() |
[105] |
Miraflor AP, Ghajar LD, Subramaniam S, et al. (2015) Rat-bite fever: an uncommon cause of fever and rash in a 9-year-old patient. JAAD Case Rep 1: 371-374. https://doi.org/10.1016/j.jdcr.2015.09.008 ![]() |
[106] |
Zhang WW, Hu YB, He GX, et al. (2019) Rat bite fever caused by Streptobacillus moniliformis infection in a Chinese patient. BMC Infect Dis 19: 1-5. https://doi.org/10.1186/s12879-019-4281-z ![]() |
[107] | Rohde J, Rapsch C, Fehr M (2008) Case report: Abscessation due to Streptobacillus moniliformis in a rat. Prakt Tierarzt 89: 466-473. |
[108] |
Hayashimoto N, Yoshida H, Goto K, et al. (2008) Isolation of Streptobacillus moniliformis from a pet rat. J Vet Med Sci 70: 493-495. https://doi.org/10.1292/jvms.70.493 ![]() |
[109] |
Woo PC, Wong SS, Teng JL, et al. (2010) Leptotrichia hongkongensis sp. nov., a novel Leptotrichia species with the oral cavity as its natural reservoir. J Zhejiang Univ Sci 11: 391-401. https://doi.org/10.1631/jzus.B1000056 ![]() |
[110] |
Roussel-Simonin C, Jousset AB, Knafo S, et al. (2021) Streptobacillus moniliformis subdural empyema in a homeless patient. Clin Infect Pract 12: 100098. https://doi.org/10.1016/j.clinpr.2021.100098 ![]() |
[111] | Kawakami Y, Katayama T, Kishida M, et al. (2016) A case of Streptobacillus moniliformis infection with cutaneous leukocytoclastic vasculitis. Acta Med Okayama 70: 377-381. http://doi.org/10.18926/AMO/54596 |
[112] |
Chen PL, Lee NY, Yan JJ, et al. (2007) Prosthetic valve endocarditis caused by Streptobacillus moniliformis: a case of rat bite fever. J Clin Microbiol 45: 3125-3126. https://doi.org/10.1128/jcm.01169-07 ![]() |
[113] |
Dubois D, Robin F, Bouvier D, et al. (2008) Streptobacillus moniliformis as the causative agent in spondylodiscitis and psoas abscess after rooster scratches. J Clin Microbiol 46: 2820-2821. https://doi.org/10.1128/jcm.00744-08 ![]() |
[114] |
Addidle M, Pynn J, Grimwade K, et al. (2012) Epidural abscess caused by Streptobacillus moniliformis. J Clin Microbiol 50: 3122-3124. https://doi.org/10.1128/jcm.01004-12 ![]() |
[115] |
Andre J, Freydiere A, Benito Y, et al. (2005) Rat bite fever caused by Streptobacillus moniliformis in a child: human infection and rat carriage diagnosed by PCR. J Clin Pathol 58: 1215-1216. https://doi.org/10.1136/jcp.2005.026401 ![]() |
[116] | Adam JK, Varan AK, Pong AL, et al. (2014) Fatal Rat-Bite Fever in a child-San Diego county, California, 2013. MMWR Morb Mortal Wkly Rep 63: 1210. |
[117] |
Nakagomi D, Deguchi N, Yagasaki A, et al. (2008) Rat-bite fever identified by polymerase chain reaction detection of Streptobacillus moniliformis DNA. J Dermatol 35: 667-670. https://doi.org/10.1111/j.1346-8138.2008.00541.x ![]() |
[118] |
Stehle P, Dubuis O, So A, et al. (2003) Rat bite fever without fever. Ann Rheum Dis 62: 894-896. https://doi.org/10.1136/ard.62.9.894 ![]() |
[119] |
Ioffe V, Amir G, Zalzstein E, et al. (2018) Streptobacillus moniliformis endocarditis: an unusual case of pulmonary valve erosion resulting in free pulmonary regurgitation and aneurysm. World J Pediatr Congenit Heart Surg 9: 467-469. https://doi.org/10.1177/2150135116637808 ![]() |
[120] |
Pannetier LWX, Lombard E (2020) Rat bite fever in senior health medicine. BMJ Case Rep 13: e233451. https://doi.org/10.1136/bcr-2019-233451 ![]() |
[121] |
Budair B, Goswami K, Dhukaram V (2014) Septic arthritis secondary to rat bite fever: a challenging diagnostic course. BMJ Case Rep 2014: bcr2014204086. https://doi.org/10.1136/bcr-2014-204086 ![]() |
[122] |
Crofton KR, Ye J, Lesho EP (2020) Severe recurrent Streptobacillus moniliformis endocarditis in a pregnant woman, and review of the literature. Antimicrob Resist Infect Control 9: 1-4. https://doi.org/10.1186/s13756-020-00789-4 ![]() |
[123] |
Adizie T, Gayed M, Ravindran J (2014) Rat bite fever causing septic arthritis and osteomyelitis in a young man. Rheumatology 53: 57-57. https://doi.org/10.1093/rheumatology/keu096.001 ![]() |
[124] | Hammer A, Wolff D, Geißdörfer W, et al. (2017) A spinal epidural abscess due to Streptobacillus moniliformis infection following a rat bite: case report. J Neurosurg 27: 92-96. https://doi.org/10.3171/2016.12.SPINE161042 |
[125] |
Islam S, Cooney T, Singh A, et al. (2012) Painful arthritis and extremity rash in an 8-year-old boy. Clin Infect Dis 54: 1514-1515. https://doi.org/10.1093/cid/cir999 ![]() |
[126] |
Mackey JR, Melendez ELV, Farrell JJ, et al. (2014) Direct detection of indirect transmission of Streptobacillus moniliformis rat bite fever infection. J Clin Microbiol 52: 2259-2261. https://doi.org/10.1128/jcm.00259-14 ![]() |
[127] |
Kawashima A, Kutsuna S, Shimomura A, et al. (2022) Streptobacillus notomytis bacteremia after exposure to rat feces. Emerg Infect Dis 28: 886. https://doi.org/10.3201/eid2804.204965 ![]() |
[128] |
Boot R, Van de Berg L, Reubsaet FA, et al. (2008) Positive Streptobacillus moniliformis PCR in guinea pigs likely due to Leptotrichia spp. Vet Microbiol 128: 395-399. https://doi.org/10.1016/j.vetmic.2007.10.007 ![]() |
[129] |
Wouters EG, Ho HT, Lipman LJ, et al. (2008) Dogs as vectors of Streptobacillus moniliformis infection?. Vet Microbiol 128: 419-422. https://doi.org/10.1016/j.vetmic.2007.10.019 ![]() |
[130] |
Eisenberg T, Fawzy A, Nicklas W, et al. (2016) Phylogenetic and comparative genomics of the family Leptotrichiaceae and introduction of a novel fingerprinting MLVA for Streptobacillus moniliformis. BMC genomics 17: 1-12. https://doi.org/10.1186/s12864-016-3206-0 ![]() |
[131] |
Eisenberg T, Poignant S, Jouan Y, et al. (2017) Acute tetraplegia caused by rat bite fever in snake keeper and transmission of Streptobacillus moniliformis. Emerg Infect Dis 23: 719. https://doi.org/10.3201/eid2304.161987 ![]() |
[132] |
MitchellİT T (2017) Detection of Streptobacillus moniliformis in whole blood by real-time PCR and review of clinical cases 2004-2015 in New York State. JMID 7: 88-92. https://doi.org/10.5799/ahinjs.02.2017.02.0260 ![]() |
[133] |
Kelly AJ, Ivey ML, Gulvik CA, et al. (2021) A real-time multiplex PCR assay for detection of the causative agents of rat bite fever, Streptobacillus moniliformis and zoonotic Streptobacillus species. Diagn Microbiol Infect Dis 100: 115335. https://doi.org/10.1016/j.diagmicrobio.2021.115335 ![]() |
[134] |
Fawzy A, Giel A-S, Fenske L, et al. (2022) Development and validation of a triplex real-time qPCR for sensitive detection and quantification of major rat bite fever pathogen Streptobacillus moniliformis. J Microbiol Methods 199: 106525. https://doi.org/10.1016/j.mimet.2022.106525 ![]() |
[135] |
Theodore TS, King JR, Cole RM (1969) Identification of L forms by polyacrylamide-gel electrophoresis. J Bacteriol 97: 495-499. https://doi.org/10.1128/jb.97.2.495-499.1969 ![]() |
[136] |
Goris J, Konstantinidis KT, Klappenbach JA, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. IJSEM 57: 81-91. https://doi.org/10.1099/ijs.0.64483-0 ![]() |
[137] |
Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989-1005. https://doi.org/10.1139/m96-128 ![]() |
[138] |
Rowbotham T (1983) Rapid identification of Streptobacillus moniliformis. The Lancet 322: 567. https://doi.org/10.1016/s0140-6736(83)90591-3 ![]() |
[139] |
Rygg M, Bruun CF (1992) Rat bite fever (Streptobacillus moniliformis) with septicemia in a child. Scand J Infect Dis 24: 535-540. https://doi.org/10.3109/00365549209052641 ![]() |
[140] |
Boot R, Bakker R, Thuis H, et al. (1993) An enzyme-linked immunosorbent assay (ELISA) for monitoring rodent colonies for Streptobacillus moniliformis antibodies. Lab Anim 27: 350-357. https://doi.org/10.1258/002367793780745516 ![]() |
[141] |
Sigge A, Essig A, Wirths B, et al. (2007) Rapid identification of Fusobacterium nucleatum and Fusobacterium necrophorum by fluorescence in situ hybridization. Diagn Microbiol Infect Dis 58: 255-259. https://doi.org/10.1016/j.diagmicrobio.2007.01.001 ![]() |
[142] |
Mathé P, Schmidt K, Schindler V, et al. (2024) Streptobacillus moniliformis and IgM and IgG immune response in patient with endocarditis. Emerg Infect Dis 30: 608. https://doi.org/10.3201/eid3003.230917 ![]() |
[143] | Anderson L, Leary S, Manning P (1983) Rat-bite fever in animal research laboratory personnel. Lab Anim Sci 33: 292-294. |
[144] | Hofmann N Phänotypische und molekulartaxonomische Untersuchungen zur systematischen Stellung von Streptobacillus moniliformis, dem Erreger des Rattenbißfiebers (Thesis): Universität Hannover. (1994). |
[145] |
Savage N (1972) Host-parasite relationships in experimental Streptobacillus moniliformis arthritis in mice. Infect Immun 5: 183-190. https://doi.org/10.1128/iai.5.2.183-190.1972 ![]() |
[146] |
Gaston DC, Peaper DR, Advani SD (2019) Fever, rash, and migratory polyarthralgias. JAMA 321: 1930-1931. https://doi.org/10.1001/jama.2019.4799 ![]() |
[147] |
Wang TK, Wong SS (2007) Streptobacillus moniliformis septic arthritis: a clinical entity distinct from rat-bite fever?. BMC Infect Dis 7: 1-7. https://doi.org/10.1186/1471-2334-7-56 ![]() |
[148] |
Dewing D, Nayar R, McArthur P (2011) Rat bite fever with flexor tenosynovitis: case report and review. Eur J Plast Surg 34: 293-295. https://doi.org/10.1007/s00238-010-0461-1 ![]() |
[149] |
Pongsuttiyakorn S, Kamolvit W, Limsrivanichakorn S, et al. (2021) Rat bite fever due to Streptobacillus notomytis complicated by meningitis and spondylodiscitis: a case report. BMC Infect Dis 21: 1-5. https://doi.org/10.1186/s12879-021-06715-2 ![]() |
[150] |
Raffin BJ, Freemark M (1979) Streptobacillary rat-bite fever: a pediatric problem. Pediatrics 64: 214-217. ![]() |
[151] |
Faro S, Walker C, Pierson RL (1980) Amnionitis with intact amniotic membranes involving Streptobacillus moniliformis. Obstet Gynecol 55: 9S-11S. https://doi.org/10.1097/00006250-198003001-00003 ![]() |
[152] | Centers for Disease Control (CDC).Rat-bite fever in a college student-California. MMWR Morb Mortal Wkly Rep (1984) 33: 318-320. |
[153] |
Wilkins E, Millar J, Cockcroft P, et al. (1988) Rat-bite fever in a gerbil breeder. J Infect 16: 177-180. https://doi.org/10.1016/s0163-4453(88)94047-9 ![]() |
[154] |
Carbeck RB, Murphy JF, Britt EM (1967) Streptobacillary rat-bite fever with massive pericardial effusion. JAMA 201: 703-704. https://doi.org/10.1001/jama.1967.03130090067024 ![]() |
[155] | Downing N, Dewnany G, Radford P (2001) A rare and serious consequence of a rat bite. Ann R Coll Surg Engl 83: 279. |
[156] |
Madhubashini M, George S, Chandrasekaran S (2013) Streptobacillus moniliformis endocarditis: case report and review of literature. Indian Heart J 65: 442-446. https://doi.org/10.1016/j.ihj.2013.06.019 ![]() |
[157] |
Rordorf T, Züger C, Zbinden R, et al. (2000) Streptobacillus moniliformis endocarditis in an HIV-positive patient. Infection 28: 393-394. https://doi.org/10.1007/s150100070012 ![]() |
[158] |
Kondruweit M, Weyand M, Mahmoud FO, et al. (2007) Fulminant endocarditis caused by Streptobacillus moniliformis in a young man. J Thorac Cardiovasc Surg 134: 1579-1580. https://doi.org/10.1016/j.jtcvs.2007.08.010 ![]() |
[159] | Feigin RD, Demmler GJ, Cherry JD, et al. (2004) Textbook of pediatric infectious diseases. Textbook of pediatric infectious diseases : 3626-3626. |
[160] |
Torres-Miranda D, Moshgriz M, Siegel M (2018) Streptobacillus moniliformis mitral valve endocarditis and septic arthritis: the challenges of diagnosing rat-bite fever endocarditis. Infect Dis Rep 10: 7731. https://doi.org/10.4081/idr.2018.7731 ![]() |
[161] |
Balakrishnan N, Menon T, Shanmugasundaram S, et al. (2006) Streptobacillus moniliformis endocarditis. Emerg Infect Dis 12: 1037-1038. https://doi.org/10.3201/eid1206.060069 ![]() |
[162] |
Akter R, Boland P, Daley P, et al. (2016) Rat bite fever resembling rheumatoid arthritis. Can J Infect Dis Med Microbiol 2016: 7. https://doi.org/10.1155/2016/7270413 ![]() |
[163] |
Bougioukas L, Vicks E, Hale AJ, et al. (2022) Rat bite fever in a patient with human immunodeficiency virus. IDCases 29: e01526. https://doi.org/10.1016/j.idcr.2022.e01526 ![]() |
[164] | Ayuthaya RKN, Niumpradit N (2005) Rat-bite fever presenting with rash and septic arthritis. J Med Assoc Thai 88: S247. |
[165] |
Hadvani T, Vallejo JG, Dutta A (2021) Rat bite fever: variability in clinical presentation and management in children. Pediatr Infect Dis J 40: e439-e442. https://doi.org/10.1097/INF.0000000000003222 ![]() |
[166] |
Fansa AM, Tanios M, Ebraheim N (2014) A case of shoulder joint Streptobacillus moniliformis septic arthritis with severe subdeltoid bursitis. Int Musculoskelet Med 36: 117-119. https://doi.org/10.1179/1753615414Y.0000000031 ![]() |
[167] |
Sato R, Kuriyama A, Nasu M (2016) Rat-bite fever complicated by vertebral osteomyelitis: A case report. J Infect Chemother 22: 574-576. https://doi.org/10.1016/j.jiac.2016.01.023 ![]() |
[168] |
Legout L, Senneville E, Mulleman D, et al. (2005) Rat bite fever mimicking rheumatoid arthritis. Scand J Infect Dis 37: 532-533. https://doi.org/10.1080/00365540510032114 ![]() |
[169] | Wegner AM, Look N, Haus BM (2017) Surgical management of multijoint septic arthritis due to rat-bite fever in a pediatric patient: a case study. J Orthop Case Rep 2017. https://doi.org/10.1155/2017/2183941 |
[170] |
Chean R, Stefanski D, Woolley I, et al. (2012) Rat bite fever as a presenting illness in a patient with AIDS. Infection 40: 319-321. https://doi.org/10.1007/s15010-011-0181-x ![]() |
[171] | Dworkin J, Bankowski MJ, Wenceslao SM, et al. (2010) A case of septic arthritis from rat-bite fever in Hawai ‘i. Hawaii Med J 69: 65. |
[172] |
Fordham J, McKay-Ferguson E, Davies A, et al. (1992) Rat bite fever without the bite. Ann Rheum Dis 51: 411-412. https://doi.org/10.1136/ard.51.3.411 ![]() |
[173] | Ban R, Bajolet-Laudinat O, Eschard J, et al. (1991) Acute purulent polyarthritis induced by Streptobacillus moniliformis. Presse Medicale (Paris, France: 1983) 20: 1515-1516. |
[174] |
Okamori S, Nakano M, Nakamura M, et al. (2015) A Japanese patient with a rare case of Streptobacillus moniliformis bacteremia. J Infect Chemother 21: 877-878. https://doi.org/10.1016/j.jiac.2015.08.003 ![]() |
[175] |
Wang NY, Osowicki J (2021) Rat-bite fever in a child without a bite. Arch Dis Child 106: 652-652. https://doi.org/10.1136/archdischild-2020-320327 ![]() |
[176] |
Onodera H, Uekita H, Watanabe T, et al. (2020) Rat-bite fever due to Streptobacillus moniliformis in a patient without bite history: an unexpected cause of consciousness disturbance. Jpn J Infect Dis 73: 85-87. https://doi.org/10.7883/yoken.JJID.2019.271 ![]() |
[177] | Van Nood E, Peters S (2005) Rat-bite fever. Neth J Med 63: 319-321. |
[178] |
Frank L, Perlman HH (1948) Rat bite fever caused by Spirillum minus treated with penicillin: report of a case. Arch Derm Syphilol 57: 261-263. https://doi.org/10.1001/archderm.1948.01520140123015 ![]() |
[179] | Parker R (1989) Rat-bite fever. Infectious diseases. Philadelphia: Lipincott 1310-1312. |
[180] | Bleich A, Nicklas W (2008) Zoonoses transmitted by mouse and rat maintained as laboratory or pet animals. Berliner und Munchener tierarztliche Wochenschrift 121: 241-255. |
[181] | Parker F, Hudson NP (1926) The etiology of Haverhill fever (erythema arthriticum epidemicum). Am J Pathol 2: 357. |
[182] |
Place EH, Sutton LE (1934) Erythema arthriticum epidemicum (Haverhill fever). Arch Intern Med 54: 659-684. https://doi.org/10.1001/archinte.1934.00160170002001 ![]() |
[183] |
Mcevoy M, Noah N, Pilsworth R (1987) Outbreak of fever caused by Streptobacillus moniliformis. The Lancet 330: 1361-1363. https://doi.org/10.1016/S0140-6736(87)91257-8 ![]() |
[184] | Pal M (2023) Can Haver Hill Fever be Transmitted through Ingestion?. EC Microbiol 19: 01-03. |
[185] |
Woolley PV (1941) Miscellaneous notes on ratbite fever: Report of two cases; Review of American reports from 1931 to 1940; Observations on the isolation of Spirillum minus; and results of standard serologic tests during ratbite fever. J Pediatr 19: 513-525. https://doi.org/10.1016/S0022-3476(41)80049-3 ![]() |
[186] | Abdulaziz H, Touchie C, Toye B, et al. (2006) Haverhill fever with spine involvement. J Rheumatol 33: 1409-1410. |
[187] |
Kwon CW, Somers K, Scott G, et al. (2016) Rat bite fever presenting as palpable purpura. JAMA Dermatol 152: 723-724. https://doi.org/10.1001/jamadermatol.2015.6034 ![]() |
[188] | Surana N, Kasper D (2015) Approach to the patient with an infectious disease. Harrison's Principles of Internal Medicine 20th ed Access Medicine website . https://accessmedicine mhmedical com/content aspx |
[189] |
Błaż A, Zalewski J, Masiak A, et al. (2023) Rat bite fever mimicking ANCA-associated vasculitis. Rheumatol Int 43: 1957-1964. https://doi.org/10.1007/s00296-023-05369-4 ![]() |
[190] |
Banerjee P, Ali Z, Fowler DR (2011) Rat bite fever, a fatal case of Streptobacillus moniliformis infection in a 14-month old boy. J Forensic Sci 56: 531-533. https://doi.org/10.1111/j.1556-4029.2010.01675.x ![]() |
[191] |
Kasuga K, Sako M, Kasai S, et al. (2018) Rat bite fever caused by Streptobacillus moniliformis in a cirrhotic patient initially presenting with various systemic features resembling Henoch-Schönlein Purpura. Intern Med 57: 2585-2590. https://doi.org/10.2169/internalmedicine.9856-17 ![]() |
[192] | Rat Bite Fever (RBF) | CDC (2019). Accessed: April 26, 2022: https://www.cdc.gov/rat-bite-fever/index.html |
[193] | Toren D (1953) Mycotic rat-bite fever; report of a case. Del State Med J 25: 334-335. |
[194] | Kämmerer T, Lesmeister T, Wollenberg A, et al. (2021) Rat bite fever, a diagnostic challenge: case report and review of 29 cases. J Dtsch Dermatol Ges 19: 1283-1287. https://doi.org/10.1111/ddg.14526 |
[195] |
Adams SH, Mahapatra R (2021) Rat bite fever with osteomyelitis and discitis: case report and literature review. BMC Infect Dis 21: 479. https://doi.org/10.1186/s12879-021-06172-x ![]() |
[196] |
Gilroy SA, Khan MU (2002) Rat bite fever: case report and review of the literature. Infect Dis Clin Pract 11: 403-405. ![]() |
[197] | Mohamed N, Albahra S, Haley C (2023) Rat-bite fever in a 34-year-old female. Cureus 15: e42453. https://doi.org/10.7759/cureus.42453 |
[198] |
Smallbones M, Monem M, Baganeanu M, et al. (2020) Near-fatal periprosthetic infection with Streptobacillus moniliformis: case and review. J Bone Jt Infect 5: 50-53. https://doi.org/10.7150/jbji.40635 ![]() |
[199] | Sakalkale R, Mansell C, Whalley D, et al. (2007) Rat-bite fever: a cautionary tale. N Z Med J 120: U2545. |
[200] |
Suzuki K, Hirai Y, Morita F, et al. Streptobacillus moniliformis bacteremia in a pet shop employee: Case report and literature review (2017). Open Forum Infect Dis 4: ofx038. https://doi.org/10.1093/ofid/ofx038 ![]() |
[201] |
Kache PA, Person MK, Seeman SM, et al. (2020) Rat-bite fever in the United States: an analysis using multiple national data sources, 2001–2015. Open Forum Infect Dis 7: ofaa197. https://doi.org/10.1093/ofid/ofaa197 ![]() |
[202] | Committee on Urban Pest Management, 1980. Urban pest management. National Acadamy Press: Washinton, D.C.. 273 pp. Ebeling, W. 1978. |
[203] |
Ordog GJ, Balasubramanium S, Wasserberger J (1985) Rat bites: fifty cases. Ann Emerg Med 14: 126-130. https://doi.org/10.1016/S0196-0644(85)81073-8 ![]() |
[204] |
Glaser C, Lewis P, Wong S (2000) Pet-, animal-, and vector-borne infections. Pediatr Rev 21: 219-232. https://doi.org/10.1542/pir.21-7-219 ![]() |
[205] |
Cunningham BB, Paller AS, Katz BZ (1998) Rat bite fever in a pet lover. J Am Acad Dermatol 38: 330-332. https://doi.org/10.1016/S0190-9622(98)70576-6 ![]() |
[206] | Centers for Disease Control and Prevention (CDC).Rat-bite fever-New Mexico, 1996. MMWR Morb Mortal Wkly Rep (1998) 47: 89-91. |
[207] | Sabour S, Azimi T, Nasser A, et al. (2022) A global overview of the most important zoonotic bacteria pathogens transmitted from Rattus norvegicus to humans in urban environments. Inf Med 1: 192-207. https://doi.org/10.1016/j.imj.2022.07.002 |
[208] | (2011) NRCGuide for the Care and Use of Laboratory Animals. Washington DC: National Academies Press. |
[209] | Hankenson FC, Johnston NA, Weigler BJ, et al. (2003) Zoonoses of occupational health importance in contemporary laboratory animal research. Comp Med 53: 579-601. |
![]() |
![]() |
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |