Review

Properties and applications of natural, synthetic and hybrid fiber reinforced polymer composite: A review

  • Environmental challenges associated with synthetic reinforcement in polymer composites, such as non-biodegradability and poor recyclability, require the exploration of various natural materials, especially from waste streams, to fully or partially replace such reinforcements. However, these natural fibers also present challenges such as high water absorption, low thermal stability, and average mechanical properties. To circumvent these problems, natural fiber-reinforced hybrid composites, which contain one or more types of natural reinforcement, are gaining increasing research interest. This paper presents a review of natural fiber-reinforced hybrid composites. Both thermoplastics and thermosets reinforced by natural and synthetic fibers (hybrid fibers) are reviewed. The properties of fibers and the resulting composites and processing techniques are summarized.

    Citation: Kator Jeff Jomboh, Adele Dzikwi Garkida, Emmanuel Majiyebo Alemaka, Mohammed Kabir Yakubu, Vershima Cephas Alkali, Wilson Uzochukwu Eze, Nuhu Lawal. Properties and applications of natural, synthetic and hybrid fiber reinforced polymer composite: A review[J]. AIMS Materials Science, 2024, 11(4): 774-801. doi: 10.3934/matersci.2024038

    Related Papers:

    [1] Xu Bie, Yuanyuan Tang, Ming Zhao, Yingxi Liu, Shen Yu, Dong Sun, Jing Liu, Ying Wang, Jianing Zhang, Xiuzhen Sun . Pilot study of pressure-flow properties in a numerical model of the middle ear. Mathematical Biosciences and Engineering, 2020, 17(3): 2418-2431. doi: 10.3934/mbe.2020131
    [2] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [3] Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258
    [4] Xiaolong Tan, Rui Zhu, Yan Xie, Yuan Chai . Suppression of absence seizures by using different stimulations in a reduced corticothalamic-basal ganglion-pedunculopontine nucleus model. Mathematical Biosciences and Engineering, 2023, 20(12): 20468-20485. doi: 10.3934/mbe.2023905
    [5] Lorenzo Civilla, Agnese Sbrollini, Laura Burattini, Micaela Morettini . An integrated lumped-parameter model of the cardiovascular system for the simulation of acute ischemic stroke: description of instantaneous changes in hemodynamics. Mathematical Biosciences and Engineering, 2021, 18(4): 3993-4010. doi: 10.3934/mbe.2021200
    [6] Hongtao Liu, Shuqin Liu, Xiaoxu Ma, Yunpeng Zhang . A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device. Mathematical Biosciences and Engineering, 2020, 17(6): 7519-7543. doi: 10.3934/mbe.2020384
    [7] Luca Dedè, Francesco Regazzoni, Christian Vergara, Paolo Zunino, Marco Guglielmo, Roberto Scrofani, Laura Fusini, Chiara Cogliati, Gianluca Pontone, Alfio Quarteroni . Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18(4): 3364-3383. doi: 10.3934/mbe.2021168
    [8] Yuquan Meng, Manjunath Rajagopal, Gowtham Kuntumalla, Ricardo Toro, Hanyang Zhao, Ho Chan Chang, Sreenath Sundar, Srinivasa Salapaka, Nenad Miljkovic, Placid Ferreira, Sanjiv Sinha, Chenhui Shao . Multi-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodology. Mathematical Biosciences and Engineering, 2020, 17(6): 7411-7427. doi: 10.3934/mbe.2020379
    [9] Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa . Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences and Engineering, 2018, 15(4): 827-839. doi: 10.3934/mbe.2018037
    [10] Yuhan Su, Shaoping Shen . Adaptive predefined-time prescribed performance control for spacecraft systems. Mathematical Biosciences and Engineering, 2023, 20(3): 5921-5948. doi: 10.3934/mbe.2023256
  • Environmental challenges associated with synthetic reinforcement in polymer composites, such as non-biodegradability and poor recyclability, require the exploration of various natural materials, especially from waste streams, to fully or partially replace such reinforcements. However, these natural fibers also present challenges such as high water absorption, low thermal stability, and average mechanical properties. To circumvent these problems, natural fiber-reinforced hybrid composites, which contain one or more types of natural reinforcement, are gaining increasing research interest. This paper presents a review of natural fiber-reinforced hybrid composites. Both thermoplastics and thermosets reinforced by natural and synthetic fibers (hybrid fibers) are reviewed. The properties of fibers and the resulting composites and processing techniques are summarized.



    The term "big data" may have different meanings in different fields, so it has thus become a dominant topic in almost all academic and application fields. In a more general sense, big data encapsulates aspects such as quantity, diversity, speed, variability, and accuracy [1]. However, applying statistical models and methods to big data often entails a substantial computational burden, straining computer memory due to its large size and impacting computational efficiency, in that even seemingly simple tasks can demand considerable computation time. In order to solve the dilemma of big data analysis, some researchers have proposed three methods [2]: Subsampling-based approaches [3,4], divide and conquer approaches [5,6,7,8], and online updating approaches [9,10,11,12,13,14]. Differing from the other two methods, online updating approaches focus on streaming data and address statistical problems in an updating framework without storage requirements for historical data. In the era of big data, streaming datasets have gradually appeared in various fields, including investment analysis, medical imaging, and computervision, making streaming data analysis increasingly useful and vital across various industries. For instance, financial institutions track the changes of the stock market in realtime, calculate the value at risk, and automatically rebalance the portfolio according to the stock price movements. Due to the increasing demand for stream processing, online updating became more particularly appealing with its ability to quickly process huge volumes of data so that organisa tions or businesses can react to changing conditions in realtime.

    In the framework for regression-type analysis, Shi et al. [11] developed online updating algorithms for linear models and estimating equations. However, theoretical gurantees of these methods have been established based on some strong regularity conditions. Mohamad and Bouchachia [13] proposed a renewable estimation for the generalized linear model, which overcame the aforementioned limitations. Lin et al. [15] introduced a general framework to execute renewable weighted sum estimation in various online updates. Wang et al. [16] expanded the scope of online update methods by adapting to new predictive variables midway through the data flow. Wu and Chen [17] developed an online update method for survival analysis under the Cox proportional hazard model. Furthermore, Xue et al. [18] proposed a online updating approach to evaluate the proportional hazard hypothesis. Balakrishnan and Madigan [19] proposed a one-pass streaming algorithm for Bayesian regression. Based on sketch drawing technology and random projection, Geppert et al. [20] improved the streaming algorithm for Bayesian regression proposed in [19]. All of the above methods and algorithms are applicable in practice. However, they mainly focus on mean regression, or are built upon likelihood framework. Moreover, it is noteworthy that mean regression and likelihood methods still have limitations in robustness, and are very sensitive to outliers or heavy-tailed distributions.

    As a natural upgrade solution, quantile regression (QR) [21] has been used as a feasible alternative to mean regression and has become a popular data analysis strategy. Quantile regression does not simply focus on the average value of the distribution but considers the entire conditional distribution, thus being more comprehensive. In addition, it is also robust to heavy-tailed distributions and outliers. Because of these advantages, quantile regression has a wide range of applications, namely in health research [22], longitudinal data analysis [23,24], economics [25], and machine learning [26,27]. However, because the datasets arrive continuously in an unbounded stream and the computer memory is usually limited, the traditional quantile regression method cannot retain them when processing stream data. Therefore, the traditional quantile regression strategy, which assumes that the computer memory can adapt to all of the datasets, is no longer applicable. In addition, the estimator obtained by quantile regression has no closed form, and the quantile regression loss function is also nondifferentiable. This also leads to the fact that streaming data analysis methods cannot be directly applied to quantile regression; see Chen et al. [28].

    To circumvent the nondifferentiability of the QR loss function, Chen et al. [28] introduced Horowitz's smoothed QR, involving smoothing the indicator part of the check function through a kernel smoothing survival function. Additionally, Chen and Zhou [29] proposed online QR strategies, employing a smooth function to approximate the nondifferentiable check loss function. The method in [28] introduced a linear-type estimator for QR, and its calculation process needs to select bandwidth parameters through data-driven criteria. Furthermore, the approach in [29] relied on the Taylor expansion of the estimating equations, requiring the estimation of the unknown conditional density function of the response variable. More recently, Wang et al. [30] developed a renewable QR estimation strategy for streaming datasets, which renews the estimator with current data and summarized statistics of historical data rather than historical raw data. In summary, the above methods have effectively solved the dilemma of quantile regression in the case of streaming data, but these methods focus on the solution of frequentist rather than Bayesian. In the field of Bayesian streaming data, current research work is mainly focused on Bayesian flow networks (BFN)[48,49]. Rezende and Mohamed [48] introduced the concept of normalizing flows, which is a key component of Bayesian flow networks. Müller and Quintana[49] provided a comprehensive introduction to the application of Bayesian nonparametric models in data analysis and inference, including streaming data. BFN is a generative model that integrates the advantages of Bayesian inference and deep learning. It has received extensive attention in recent years in areas such as data generation, image generation, and text generation. Bayesian flow networks particularly excel in handling discrete data generation problems, as they can generate continuous and differentiable samples, providing a new solution for discrete data generation. BFN combines the streaming models of deep learning with Bayesian inference, enabling the model to adapt to both continuous and discrete data, and enhancing the interpretability and flexibility of generative models. In tasks such as image generation and text generation, BFN has achieved good experimental results, demonstrating its tremendous potential in practical applications. Therefore, it is interesting to explore a more convenient Bayesian quantile regression strategy for streaming datasets. To the best of our knowledge, there is little related work on Bayesian quantile regression with streaming data.

    In this paper, in contrast to the above methods, we develop a new idea for the analysis of streaming data using the Bayesian quantile model, which renews the posterior distribution with current data and summary statistics of historical data, instead of historical raw data. Specifically, we only need to retain the posterior distribution parameters of previous data and a likehood function for current data stream, and the historical data can be completely discarded. The Bayesian streaming quantile regression (BSQR) model is formulated for streaming data through a conjugate normal-inverse-gamma (NIG) prior distribution. Leveraging the posterior distribution of historical data as the prior for current data stream, a posterior distribution is established without any loss of information. Theoretically, we prove that the Bayesian streaming quantile regression estimator is equivalent to the global oracle estimator calculated based on the entire data. Numerical experiments on both synthetic and real data are also included to validate the theoretical results and illustrate the good performance of our new method.

    The rest of the paper is organized as follows. Section 2 presents the introduction of BQR method. Section 3 gives the detailed expressions of NIG prior and posterior distributions for BQR using an informative g-prior. The BSQR method is developed in Section 4. Sections 5 and 6 validate the obtained theoretical results and illustrate the good performance of the proposed BSQR approach on synthetic and real data. Section 7 contains the discussion and conclusions. In addition, the proof of Theorem 1 is provided in the appendix.

    We consider the following linear quantile regression model

    yi=xiTβ+ei, (2.1)

    where yi is a continuous response variable and xi is an k×1 vector of predictors for the i-th observation, i=1,,n. β is an k×1 vector of unknown parameter of interest, ei is the error term, and its distribution is assumed to have zero τ-th quantile.

    Now, consider a linear conditional quantile function as follows:

    Qτ(yi|xi)=xTiβτ, (2.2)

    where Qτ()=inf{y:Fyi(y|xi)τ} denotes the inverse of the cumulative distribution function of the response conditional on xi. In τ-th quantile regression, the estimation for β can be obtained by minimizing

    minβRpni=1ρτ(yixTiβ), (2.3)

    where ρτ(u)=u(τI(u0)) denotes the check function.

    Koenker and Machado [50] showed that ρτ(u) is exactly matched to the asymmetric Laplace distribution (ALD), whose density function is given by

    f(y|μ,σ,τ)=τ(1τ)σexp{1σρτ(yμ)}, (2.4)

    where μ is the location parameter and σ is the scale parameter.

    Assume that errors {ei}ni=1 are i.i.d ALD(0,σ,τ), the likehood of yi is

    f(yi|β,σ,τ)=τ(1τ)σexp{1σρτ(yixiTβ)}. (2.5)

    According to Koenker and Machado [50], minimizing (2.3) is equivalent to maximizing the above likelihood function (2.5). Yu and Moyeed [51] proposed a Bayesian method for QR by assuming an ALD on the response as a working likelihood. Over the past few years, this working likelihood function has been used in Geraci and Geraci and Bottai [52,53]; among others. So, it is a natural choice to use the ALD error distribution in Bayesian quantile models; "we believe that the ALD approach is a valuable and relatively simple alternative to these other methods that does not need complex choices of prior distributions and prior parameters"; see Section 3 of Benoit et al.[54].

    However, direct use of the likelihood function is rather inconvenient for Bayesian quantile regression. Specifically, the conditional distribution for the regression coefficients is not analytically tractable due to the complexity of the above likelihood function. By Chu et al. [31] and Lum et al. [32], the ei can be denoted as a location-scale mixture of normals as follows:

    ei=12ττ(1τ)zi+ui2τ(1τ)σzi, (2.6)

    where, ziExp(σ1), uiN(0,1), and zi and ui are independent. Let vi=1τ(1τ)zi, then

    (ei|vi,σ)N((12τ)vi,2σvi), (vi|σ)Exp(σ1τ(1τ)). (2.7)

    Then, we have

    (Yτ|β,σ,Σ,X)Nn(Xβ+(12τ)V,2σΣ), (2.8)

    where, Y={y1,y2,,yn}T is an n×1 response vector of yi, X is an n×k predictor matrix with i-th row xTi, V denotes an n×1 vector of vi, and Σ is the diagonal matrix of vi.

    Subsequently, let Yτ=12(Y(12τ)V) and X=12X, we have

    (Yτ|X,β,σ,Σ)Nn(Xβ,σΣ),

    and

    f(Yτ|X,β,σ,Σ)=(2πσ)n2|Σ|12exp{12σ[YτXβ]TΣ1[YτXβ]}. (2.9)

    According to Chu et al. [31], a NIG distribution is given by the following definition.

    Definition 1. Let β be k-dimensional vector and σ>0, if the joint distribution of (β,σ) has the following form

    f(β,σ)=Cσ(a+k2+1)exp{1σ[b+12(βμ)TΛ(βμ)]}, (2.10)

    where C is a proportionality constant, then we have that (β,σ) follows the k-dimensional distribution of NIGk(μ,Λ,a,b), that is, f(σ)IG(a,b), f(β|σ)Nk(μ,σΛ1).

    Let ˆβτ=(XTΣ1X)1XΣ1Yτ, the likelihood (2.8) can be reformulated as:

    f(Yτ|X,β,σ,V,Σ)σnk2exp{12σ[YτXˆβτ]TΣ1[YτXˆβτ]}×σk2exp{12σ(βˆβτ)TΛ(βˆβτ)}=(σ)(a+k2+1)exp{1σ[bτ+12(βμτ)TΛ(βμτ)]}, (2.11)

    where μτ=ˆβτ, Λ=XTΣ1X, a=nk22 and bτ=12[YXˆβτ]TΣ1[YXˆβτ].

    According to Definition 1, the likelihood function (2.8) can be represented as the NIG(μτ,Λ,a,bτ) distribution,

    f(Yτ|X,β,σ,Σ)NIG(μτ,Λ,a,bτ). (2.12)

    Now, for the sake of computational convenience, a conjugate NIG prior distribution is needed to construct our Bayesian model of streaming data. According to the study of Chu et al. [31], a conjugate prior for (β,σ) with a modification of Zellner's informative g-prior in quantile regression could be expressed as:

    (β|σ,X,Σ)Nk(0k,gσ(XTΣ1X)1), (2.13)
    (σ)σ1. (2.14)

    Based on the above prior distributions of β and σ, a joint g-NIG prior distribution can be obtained by

    π(β,σ|X,Σ)σ(k2+1)exp{1σ[12βTXTΣ1Xgβ]}NIGk(μ0,Λg0,a0,b0), (2.15)

    where μ0=0k, Λg0=XTΣ1Xg, a0=0, b0=0, g>0 is a known parameter and can be set freely.

    By (2.11) and (2.14), we have the following hierarchical model.

    y | β,σNIG(μτ,Λ,a,bτ), (2.16)
    β | σ,X,ΣNk(0k,gσ(XTΣ1X)1), (2.17)
    vi | σExp(σ1τ(1τ)), (2.18)
    σσ1. (2.19)

    Given the informative g-prior distribution, the model becomes computationally easier to solve since the full conditional distributions now are

    π(β,σ,V|Yτ,X)f(Yτ|X,β,σ,V)f(β|X,σ,V)f(V|σ)f(σ)σ(3n+k+22)(ni=1vi12)|XTΣ1X|12exp{12σ[(YτXβ)TΣ1(YτXβ)+βTXTΣ1Xgβ+2τ(1τ)ni=1vi]}. (2.20)

    (1) Sample vi from

    π(vi|β,σ,Yi,Xi)GIG(0,ˉξi,ˉζi), (2.21)

    where, ˉξi=(yixTiβ)2+(βTxixTiβ)/g2σ, ˉζi=12σ,i=1,2,,n.

    (2) Sample β from

    π(β|Yτ,X,σ,V)exp{12σ[(YτXβ)TΣ1(YτXβ)+βTXTΣ1Xgβ]}Nk(ˉμτ,σˉΛ1), (2.22)

    where, ˉμτ=[(1+1g)XTΣ1X]1XTΣ1Yτ, ˉΛ=(1+1g)XTΣ1X.

    (3) Sample σ from

    π(σ|Yτ,X,β,V)σ3n+k2+1exp{12σ[(YτXβ)TΣ1(YτXβ)+βTXTΣ1Xgβ]+2τ(1τ)ni=1vi}IG(a,b), (2.23)

    where, a=3n+k2, b=12[(YτXβ)TΣ1(YτXβ)+βTXTΣ1Xgβ+2τ(1τ)ni=1vi].

    Here, GIG(0,ˉξi,ˉζi) is the generalized inverse Gaussian distribution with probability density function x1exp{12(ˉζx1+ˉξx)} for x>0.

    For the convenience of calculation and expression, based on the posterior distribution of β and σ, we have a joint posterior distribution of π(β,σ|Yτ,X,V) as follows:

    π(β,σ|Yτ,X,V)NIG(ˉμτ,ˉΛ,ˉa,ˉbτ), (2.24)

    where, ˉμτ=[(1+1g)XTΣ1X]1XTΣ1Yτ, ˉΛ=(1+1g)XTΣ1X, ˉa=32n, ¯bτ=12YτTΣ1Yτ12ˉμTτˉΛˉμτ+τ(1τ)ni=1vi.

    Different from traditional regression datasets, our focus in this paper is on streaming data sets. Assume {Dm,m=1,,M,} are aggregated streaming data, Dm={(ymi,xmi),i=1,,nm} are the streaming data of m-th batch with sample size nm, and the total sample size up to M is NM=Mi=1ni. To construct the posterior distribution for streaming data, the NIG multiplier operator defined in Chu et al. [31] will be used, as presented in the following proposition.

    Proposition 1. The multiplication of H k-dimensional distributions NIGk(μh,Λh,ah,bh) is also a NIG distribution, that is

    NIGk(μ,Λ,a,b)=Hh=1NIGk(μh,Λh,ah,bh), (3.1)

    where μ=(Hh=1Λh)1(Hh=1Λhμh), Λ=Hh=1Λh, a=Hh=1ah+(H1)(k+2)2,b=Hh=1bh+12Hh=1(μhμ)TΛh(μnμ).

    We begin with the m-th batch of streaming data Dm. Let Yτ,m and Xm be the data in m-th batch Dm, Σm be an nm×nm diagonal matrix, ˆβτ,m=(XTmΣ1mXTm)1XmΣ1mYτ,m. From (2.10), the likelihood function can be derived for the m-th batch of streaming data as follows:

    f(Yτ,m|Xm,β,σ,Σ)σnk2exp{12σ[Yτ,mXmˆβτ,m]TΣ1[Yτ,mXmˆβτ,m]}×σk2exp{12σ(βˆβτ,m)TΛm(βˆβτ,m)}=(σ)(am+k2+1)exp{1σ[bτ,m+12(βμτ,m)TΛm(βμτ,m)]}, (3.2)

    where, μτ,m=ˆβτ,m=(XTmΣ1mXm)1XmΣ1mYτ,m, Λm=XTmΣ1mXm, am=nmk22, bτ,m=12[Yτ,mXTmˆβτ,m]TΣ1m[Yτ,mXTmˆβτ,m].

    Subsequently, the posterior distribution of the streaming data can be obtained by multiplying the NIG prior of the stream data with the likelihood function of the m-th batch data. To implement our BSQR method, the prior distribution of the m-th batch of streaming data is introduced in the following definition.

    Definition 2. The prior distribution of the m-th batch is defined by NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m), which consists of two parts, the adjusted posterior distribution of historical data and the g-NIG prior of current data, that is

    NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m)=NIG(m1)k(ˉμτ,m1,ˉΛm1,ˉam1k+22,ˉbτ,m1)×NIG(μ0,Λm,0,a0,b0), (3.3)

    where, NIG(m1)k denotes the posterior distribution of the (m1)-th batch for streaming data,

    μp,τ,m=(ˉΛm1+Λm,0)1(ˉΛm1ˉμτ,m1+Λm,0μ0),
    Λp,m=ˉΛm1+Λm,0,
    ap,m=ˉam1+a0,
    bp,τ,m=ˉbτ,m1+b0+12(ˉμτ,m1μp,τ,m)TΛm1(ˉμτ,m1μp,τ,m)+12μTp,τ,mΛm,0μp,τ,m.

    Remark 1. For streaming data D1,D2,Dm,, if n1k+23, where n1 is the sample size of the first batch of streaming data, the prior distribution NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m) exists.

    Through the prior distribution of stream data NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m), we can get the posterior distribution of the streaming data. Theorem 1 describes the renewability of the posterior distribution of streaming data obtained through the NIG multiplier operator.

    Theorem 1. Consider a linear QR model with streaming data observations D1,D2,Dm,. Setting the prior distribution of the initial streaming data as the g-NIG prior NIGk(μ0,Λg0,a0,b0). When the m-th batch of streaming data is received, the posterior distribution of the streaming data NIG(m)k(ˉμτ,m,ˉΛm,ˉam,ˉbτ,m) can be expressed as

    NIG(m)k(ˉμτ,m,ˉΛm,ˉam,ˉbτ,m)=NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m)×NIG(L)k(μτ,m,Λm,am,bτ,m), (3.8)

    where, NIG(L)k(μτ,m,Λm,am,bτ,m) is the likelihood function for the m-th block of data nodes,

    ˉμτ,m=(ˉΛm1+Λm,0+Λm)1(μ0Λm,0+ˉμτ,m1ˉΛm1+μτ,mΛm)=((1+1g)mi=1XTiΣ1iXi)1(mi=1XTiΣ1iYi),

    ˉΛm=ˉΛm1+Λm,0+Λm =(1+1g)mi=1XTiΣ1iXi,

    ˉam=ˉam1+a0+am+k+22=32nm+a0,

    ¯bτ,m=ˉbτ,m1+b0+bτ,m+12(ˉμτ,m1ˉμτ,m)TˉΛm1(ˉμτ,m1ˉμτ,m)+12ˉμTτ,mΛm,0ˉμτ,m+12(μτ,mˉμτ,m)TΛm(μτ,mˉμτ,m) =12mi=1YTτ,iΣiYτ,i12ˉμTτ,mˉΛmˉμτ,m+τ(1τ)ni=1vi+b0.

    According to Theorem 1, the update of parameters in the posterior distribution of the streaming data only requires the parameters of the posterior distribution of historical data. Specifically, after receiving the streaming data, we only need to calculate and store the parameters of the posterior distribution ˉμτ,m, ˉΛm, ˉam and ˉbτ,m. In addition, when given all the values of vi, we can see from Theorem 1 that the posterior distribution parameters of streaming data are equal to the posterior distribution parameters of the entire data. The proof of Theorem 1 is provided in the appendix.

    Under Theorem 1 and Proposition 1, an effective algorithm for the Bayesian streaming quantile regression (BSQR) is developed in Algorithm 1.

    Algorithm 1: Bayesian streaming data quantile regression algorithm
    Step 1. Receive streaming data for the m-th batch and calculate the NIG likelihood function
                NIGk(μτ,m,Λm,am,bτ,m),
    where, μτ,m=ˆβτ,m=(XTmΣ1mXm)1XmΣm1Yτ,m, Λm=XTmΣ1mXm, am=nk22,
    bτ,m=12[Yτ,mXTmˆβτ,m]TΣ1m[Yτ,mXTmˆβτ,m].
    Step 2. Calculate the prior distribution of the m-th batch of streaming data:
    NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m)=NIG(ˉμτ,m1,ˉΛm1,ˉam1k+22,ˉbτ,m1)×NIG(μ0,Λm,0,0,0).
    Step 3. Calculate the posterior distribution of the m-th batch of streaming data:
    NIGk(ˉμτ,m,ˉΛm,ˉam,ˉbτ,m)=NIG(μp,τ,m,Λp,m,ap,m,bp,τ,m)×NIG(L)k(μτ,m,Λm,am,bτ,m).
    Step 4. Gibbs sampling:
    (1) Denote j as the iteration count. Then set j = 0 and establish a set of initial values: v(j), σ(j), β(j).
    (2) Follow the posterior distributions of βm, σm and vm.
    (ⅰ) Sample v(j+1)m from f(vmβ(j)m,σ(j)m).
    (ⅱ) Sample σ(j+1)m from f(σmβ(j)m,v(j+1)m).
    (ⅲ) Sample β(j+1)m from f(βmσ(j+1)m,v(j+1)m).
    (3) Set j = j + 1 and return to (2) until j = I, where I is the number of iteration times.

    In this section, the proposed BSQR will be illustrated by simulated data.

    We consider datasets in different cases and generate the streaming datasets D1,D2,,DM up to batch M, where Dm={(ymi,xmi):1inm}.

    ymi=xTmiβ0+emi,i=1,,nm, (4.1)

    where, the elements of xmi are independently and identically distributed as the standard normal distribution, and the vector β0=(1,3,2,10,4,3,1,4,5,0)T. For the random error emi, in order to illustrate the robustness, the following three cases are considered.

    Case 1. emi follows the asymmetric Laplace distribution.

    Case 2. emi follows the standard normal distribution.

    Case 3. emi follows t(3) distribution.

    For a comprehensive illustration, we compare our method with four competing estimators in the current literature.

    (1) The oracle Bayesian quantile regression (BQR) obtained by processing the entire data once.

    (2) The renewable quantile regression (RQR) proposed in Wang et al. [30].

    (3) The renewable SQR (RSQR) estimator proposed in Jiang et al. [37].

    (4) The online linear estimator for the QR (OLEQR) proposed in Chen et al. [28].

    The first competing estimator BQR is used to show that our method is statistically equivalent to the oracle one and verify the theoretical results of Theorem 1 for the situation of finite sample. The second to fourth estimator RQR is used to compare our method with the method of streaming data in the frequentist framework, which makes our simulation experiments more comprehensive.

    For the selection of hyperparameter g in g-NIG prior, Smith and Kohn[33] found that choosing g between 10 and 1000 can achieve good results. Meanwhile, they set g=100 as the final value. Dao and Wang [34] also used g-NIG priors and found that their numerical results for different choices of g within the range of 100g1000 yielded very similar results. For our model, we also validated the selection of g using simulation experiments, and the results are shown in Figure 1. It can be observed that the choice of g has little impact on MSE. Therefore, we follow the suggestions of Smith and Kohn and set g=100, a choice adopted by various researchers, such as Lee et al.[35] and Chen et al.[36].

    Figure 1.  The choice of the hyperparameter g.

    To examinate the perfomance of the BSQR method, we fix n with varying batch size nm. Specifically, M streaming datasets with n=104 observations are generated independently, where batch number M is between 50 and 100, with each batch having 10000M observations. We repeat the experiment 500 times and define ˆβj(s) as the estimator of βj in the s-th replication. In order to compare estimation accuracy, the mean square errors (MSE) MSE(ˆβj)=1500500s=1(ˆβj(s)β0j)2,j=1,2,,10, are calculated for the three methods. The results of case 1 are shown in Tables 1 and 2.

    Table 1.  Comparison between Bayesian streaming data method and other methods in the case of ALD error distribution and m = 50 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.109 1.98E-03 6.64E-03 5.78E-03 5.41E-02 8.93E-03 5.45E-03 2.12E-04 1.09E-03 1.04E-02 2.98E-03
    BSQR 0.107 1.47E-03 7.73E-03 3.13E-03 5.08E-02 7.75E-03 9.96E-03 2.82E-03 9.23E-03 1.29E-02 1.88E-03
    RQR 0.117 6.12E-03 1.33E-02 5.12E-03 8.30E-03 4.78E-03 9.79E-03 1.54E-03 2.22E-02 5.98E-03 4.43E-02
    RSQR 0.117 4.67E-03 4.25E-03 6.44E-03 9.21E-02 9.71E-03 9.79E-03 5.92E-03 6.59E-03 7.74E-03 9.41E-02
    OLEQR 0.121 5.05E-03 5.30E-02 5.77E-03 5.06E-03 8.42E-03 7.34E-03 3.77E-03 6.18E-02 8.04E-03 7.47E-02
    τ=0.3 BQR 0.063 8.50E-04 3.61E-03 2.06E-03 2.85E-02 5.75E-03 5.81E-03 4.41E-03 6.05E-03 8.01E-03 1.96E-03
    BSQR 0.066 1.54E-03 3.50E-03 1.35E-03 3.14E-02 5.22E-03 6.49E-03 1.36E-03 6.07E-03 8.50E-03 1.15E-03
    RQR 0.068 9.59E-03 2.29E-03 7.05E-03 7.57E-03 5.79E-03 1.62E-03 1.76E-03 6.46E-03 2.11E-02 6.61E-03
    RSQR 0.067 3.67E-03 3.25E-02 5.44E-03 9.21E-03 9.74E-03 4.92E-03 6.59E-03 7.77E-02 7.31E-03 9.41E-03
    OLEQR 0.075 4.76E-03 2.33E-03 5.28E-03 6.32E-03 4.54E-03 7.79E-03 1.14E-03 2.32E-03 1.98E-03 5.43E-03
    τ=0.5 BQR 0.057 3.33E-03 1.00E-03 8.50E-05 2.23E-02 9.09E-03 5.58E-04 4.93E-03 5.09E-03 1.04E-02 8.90E-04
    BSQR 0.057 1.11E-03 3.43E-03 1.83E-03 2.84E-02 5.32E-03 3.70E-03 8.20E-04 5.32E-03 6.97E-03 9.79E-04
    RQR 0.060 1.47E-03 6.15E-03 4.15E-03 1.46E-02 8.96E-03 5.96E-03 4.39E-03 3.44E-03 8.48E-02 7.64E-03
    RSQR 0.060 5.05E-03 5.30E-02 5.77E-03 5.06E-03 8.42E-03 7.43E-03 3.77E-03 1.18E-02 8.04E-03 7.41E-03
    OLEQR 0.071 1.12E-03 6.53E-03 2.12E-03 6.12E-03 1.78E-03 2.59E-03 2.46E-03 1.26E-03 9.98E-03 2.43E-03
    τ=0.7 BQR 0.064 1.47E-03 4.19E-03 1.69E-03 3.23E-03 5.06E-03 3.53E-03 1.60E-03 5.74E-03 7.29E-03 1.60E-03
    BSQR 0.064 1.80E-03 4.10E-03 2.68E-03 3.20E-02 4.11E-03 3.83E-03 1.27E-03 7.01E-03 9.22E-03 1.36E-03
    RQR 0.068 5.08E-03 2.59E-03 5.11E-03 2.26E-03 3.55E-03 1.38E-02 2.26E-03 7.64E-03 3.34E-02 1.01E-02
    RSQR 0.068 2.89E-03 2.89E-03 1.12E-03 5.30E-03 3.78E-03 5.79E-03 3.25E-03 5.02E-03 5.98E-03 2.63E-02
    OLEQR 0.076 1.48E-03 9.74E-02 4.28E-03 2.35E-03 2.63E-03 1.44E-03 1.84E-03 2.44E-02 1.84E-03 1.99E-02
    τ=0.9 BQR 0.111 3.52E-02 6.70E-03 4.40E-03 5.24E-02 1.06E-02 5.68E-03 4.16E-03 8.57E-03 1.17E-02 3.46E-03
    BSQR 0.111 4.06E-03 6.60E-03 3.85E-03 5.04E-02 1.12E-02 6.47E-03 3.82E-03 1.24E-02 1.58E-02 3.55E-03
    RQR 0.119 1.60E-02 2.08E-03 2.58E-03 1.52E-02 1.97E-03 1.25E-02 4.43E-03 1.07E-02 1.19E-02 8.86E-03
    RSQR 0.117 7.64E-03 1.67E-02 8.70E-03 2.12E-02 7.01E-03 3.83E-03 5.22E-03 2.45E-02 7.58E-03 1.11E-02
    OLEQR 0.124 1.53E-02 1.65E-02 1.66E-03 2.48E-03 5.92E-03 1.04E-03 7.04E-03 3.88E-02 1.28E-02 8.55E-03

     | Show Table
    DownLoad: CSV
    Table 2.  Comparison between Bayesian streaming data method and other methods in the case of ALD error distribution and m = 100 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.109 1.98E-03 6.64E-03 5.78E-03 5.41E-02 8.93E-03 5.45E-03 2.12E-04 1.09E-03 1.04E-02 2.98E-03
    BSQR 0.110 3.35E-03 5.54E-03 2.29E-03 5.08E-02 9.47E-03 9.36E-02 3.19E-02 9.40E-03 1.96E-02 1.16E-03
    RQR 0.119 2.04E-02 1.12E-02 4.16E-03 9.22E-03 8.87E-03 1.44E-02 1.08E-03 2.23E-02 9.69E-03 7.12E-03
    RSQR 0.117 1.82E-02 1.01E-02 4.12E-03 8.30E-03 6.78E-03 9.79E-03 1.28E-03 2.20E-02 5.98E-03 7.43E-03
    OLEQR 0.121 2.56E-02 1.33E-02 5.10E-03 9.30E-03 8.78E-03 1.79E-02 1.13E-03 9.22E-03 4.98E-03 1.43E-02
    τ=0.3 BQR 0.063 2.01E-04 1.32E-02 4.80E-03 2.35E-02 6.33E-03 1.26E-03 8.03E-05 4.59E-03 1.39E-03 1.55E-03
    BSQR 0.066 1.48E-03 3.99E-03 2.30E-03 3.10E-02 5.49E-03 4.37E-03 1.44E-03 6.09E-03 8.88E-03 1.52E-03
    RQR 0.066 3.19E-03 6.94E-03 4.59E-03 5.50E-02 5.56E-03 2.20E-03 6.33E-03 1.43E-02 2.10E-02 1.80E-02
    RSQR 0.066 3.12E-03 5.94E-02 5.59E-03 8.30E-02 2.78E-03 2.79E-03 6.28E-03 1.22E-02 2.30E-03 1.79E-02
    OLEQR 0.079 3.21E-03 5.33E-02 5.98E-03 9.12E-03 4.78E-03 5.79E-03 6.54E-03 4.25E-02 2.98E-03 2.12E-02
    τ=0.5 BQR 0.057 3.33E-03 1.00E-03 8.50E-05 2.23E-02 9.09E-03 5.58E-04 4.93E-03 5.09E-03 1.04E-02 8.90E-04
    BSQR 0.057 1.58E-03 2.49E-03 1.53E-03 2.75E-02 3.90E-03 5.51E-03 9.75E-04 5.32E-03 7.89E-03 1.05E-04
    RQR 0.060 4.76E-03 7.50E-04 6.99E-03 3.88E-03 7.35E-03 7.98E-03 1.18E-02 5.27E-03 6.75E-03 5.35E-03
    RSQR 0.060 4.12E-03 6.43E-03 6.12E-03 2.30E-03 6.28E-03 7.79E-03 9.54E-03 1.01E-02 5.98E-03 6.03E-03
    OLEQR 0.065 1.32E-03 5.33E-03 5.12E-03 2.30E-03 1.38E-03 2.78E-03 3.54E-03 6.12E-03 2.28E-03 6.23E-02
    τ=0.7 BQR 0.064 1.47E-03 4.19E-03 1.69E-03 3.23E-03 5.06E-03 3.53E-03 1.60E-03 5.74E-03 7.29E-03 1.60E-03
    BSQR 0.065 1.72E-03 5.21E-03 2.42E-03 3.01E-02 6.50E-03 3.56E-03 1.50E-03 6.14E-03 7.30E-03 1.13E-03
    RQR 0.070 1.32E-03 1.01E-03 5.14E-03 1.16E-02 2.50E-03 9.91E-03 1.49E-03 4.27E-03 1.13E-02 4.60E-03
    RSQR 0.068 1.56E-03 6.33E-03 5.65E-03 5.30E-03 5.38E-03 8.79E-03 2.56E-03 1.02E-02 2.98E-03 1.56E-02
    OLEQR 0.075 1.98E-03 1.33E-02 5.89E-03 6.89E-03 6.78E-03 8.29E-03 2.54E-03 9.56E-03 3.98E-03 8.98E-02
    τ=0.9 BQR 0.111 3.52E-02 6.70E-03 4.40E-03 5.24E-02 1.06E-02 5.68E-03 4.16E-03 8.57E-03 1.17E-02 3.46E-03
    BSQR 0.115 3.31E-03 7.17E-03 5.11E-03 5.20E-03 9.83E-03 6.41E-03 3.89E-03 1.02E-03 1.41E-03 1.02E-03
    RQR 0.118 2.21E-02 1.18E-02 7.33E-03 1.15E-02 5.19E-03 1.41E-03 1.65E-03 3.07E-03 5.07E-02 9.56E-03
    RSQR 0.117 1.12E-02 1.01E-02 9.89E-03 5.63E-03 4.78E-03 8.79E-03 4.54E-03 1.22E-02 5.98E-03 2.01E-02
    OLEQR 0.126 1.49E-02 1.50E-02 1.19E-02 9.27E-03 5.70E-03 5.47E-03 1.32E-02 1.60E-02 1.49E-03 2.30E-02

     | Show Table
    DownLoad: CSV

    In practice, the error term emi may not be distributed as AL distribution. Therefore, Cases 2 and 3 are also simulated when the error term follows t-distribution with a degree of freedom 3, and standard normal distribution, respectively. The results are shown in Tables 36.

    Table 3.  Comparison between Bayesian streaming data method and other methods in the case of normal error distribution and m = 50 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.032 1.99E-03 1.57E-03 3.33E-04 1.62E-02 7.34E-04 1.78E-04 9.46E-05 1.04E-02 2.28E-02 2.26E-03
    BSQR 0.034 1.12E-03 2.41E-03 1.49E-03 2.14E-02 4.44E-03 2.63E-03 1.03E-03 3.20E-03 5.46E-03 2.13E-03
    RQR 0.028 2.82E-03 2.72E-03 3.33E-03 3.15E-02 3.15E-03 2.77E-03 2.92E-03 2.28E-03 9.92E-04 7.63E-03
    RSQR 0.026 3.12E-03 2.33E-03 2.12E-03 8.30E-03 1.78E-03 1.79E-03 1.94E-03 2.02E-03 1.98E-03 2.43E-03
    OLEQR 0.051 4.12E-03 4.33E-03 5.12E-03 9.90E-03 4.78E-03 3.79E-03 1.54E-03 5.22E-03 5.98E-03 4.53E-03
    τ=0.3 BQR 0.041 7.24E-04 1.79E-03 4.08E-04 1.50E-02 7.87E-03 7.75E-04 8.83E-04 3.34E-04 1.27E-02 1.38E-03
    BSQR 0.041 9.42E-04 2.35E-03 1.42E-03 2.03E-02 4.03E-03 2.17E-03 9.27E-04 3.57E-03 5.35E-03 7.81E-04
    RQR 0.021 2.02E-03 2.37E-03 1.47E-03 2.35E-02 1.96E-03 2.06E-03 2.39E-03 2.03E-03 2.41E-03 3.22E-03
    RSQR 0.019 9.11E-04 2.34E-03 1.31E-03 1.37E-03 2.18E-03 2.47E-03 3.05E-03 2.44E-03 1.78E-03 1.45E-03
    OLEQR 0.046 3.84E-03 1.47E-03 1.05E-03 2.86E-03 2.41E-03 1.69E-03 1.12E-03 3.78E-02 2.30E-03 3.34E-03
    τ=0.5 BQR 0.040 9.16E-04 5.78E-03 2.52E-03 1.62E-02 3.50E-03 6.26E-04 7.71E-05 2.70E-03 8.09E-03 3.13E-04
    BSQR 0.041 6.67E-04 2.03E-03 1.14E-03 2.13E-02 4.26E-03 2.10E-03 7.64E-04 3.24E-03 5.32E-03 7.32E-04
    RQR 0.009 1.17E-03 8.77E-04 1.15E-03 7.73E-04 9.54E-04 7.48E-04 7.11E-04 7.47E-04 8.34E-04 7.74E-04
    RSQR 0.007 1.12E-03 1.33E-03 1.12E-03 1.30E-03 1.58E-03 9.79E-04 1.54E-03 2.22E-04 5.98E-04 5.84E-04
    OLEQR 0.042 2.07E-03 2.37E-03 1.34E-03 1.73E-03 1.41E-03 1.33E-03 1.58E-03 1.02E-03 1.10E-03 1.07E-03
    τ=0.7 BQR 0.046 3.60E-04 1.38E-04 3.47E-03 1.98E-02 9.46E-03 1.82E-04 2.77E-03 1.75E-03 5.60E-03 2.91E-03
    BSQR 0.043 5.92E-04 2.00E-03 1.00E-03 2.11E-02 4.22E-03 1.98E-03 6.07E-04 3.28E-03 4.96E-03 4.10E-04
    RQR 0.015 1.94E-03 2.08E-03 1.38E-03 1.43E-02 1.09E-03 1.30E-03 1.40E-03 1.16E-03 1.26E-02 1.48E-03
    RSQR 0.015 1.01E-03 1.28E-02 6.94E-04 9.75E-04 3.07E-03 3.10E-03 1.38E-03 1.60E-02 2.34E-03 1.22E-02
    OLEQR 0.047 9.63E-04 2.13E-02 1.52E-03 1.20E-03 1.24E-03 1.26E-03 1.66E-03 1.31E-02 2.68E-03 1.48E-03
    τ=0.9 BQR 0.039 1.27E-04 5.80E-04 2.06E-05 2.14E-02 5.26E-04 2.35E-03 9.00E-05 3.59E-03 9.84E-03 1.00E-03
    BSQR 0.040 5.27E-04 2.06E-03 9.60E-04 2.09E-02 4.23E-03 1.91E-03 5.45E-04 3.69E-03 4.93E-04 4.10E-04
    RQR 0.023 2.66E-03 3.17E-03 2.55E-03 2.45E-02 2.89E-03 2.60E-03 2.05E-03 3.62E-03 2.22E-02 2.86E-03
    RSQR 0.023 3.58E-03 2.15E-03 5.12E-03 8.30E-03 4.78E-03 9.09E-03 1.52E-03 1.98E-03 5.28E-03 2.01E-03
    OLEQR 0.048 3.05E-03 2.33E-03 9.12E-03 7.30E-03 3.78E-03 4.79E-03 1.88E-03 7.22E-02 5.98E-03 2.43E-03

     | Show Table
    DownLoad: CSV
    Table 4.  Comparison between Bayesian streaming data method and other methods in the case of normal error distribution and m = 100 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.032 1.99E-03 1.57E-03 3.33E-04 1.62E-02 7.34E-04 1.78E-04 9.46E-05 1.04E-02 2.28E-02 2.26E-03
    BSQR 0.033 1.08E-03 3.00E-03 1.64E-03 2.02E-02 4.45E-03 2.51E-03 1.04E-03 3.60E-03 5.34E-03 9.94E-04
    RQR 0.020 1.50E-03 1.45E-03 2.97E-03 1.42E-03 2.12E-03 3.06E-03 6.78E-04 2.82E-03 4.99E-02 1.58E-03
    RSQR 0.020 2.72E-03 3.33E-03 8.25E-03 2.56E-03 3.35E-03 2.13E-03 1.42E-03 1.55E-03 1.47E-03 1.16E-03
    OLEQR 0.048 2.51E-03 2.47E-03 7.04E-03 6.03E-03 4.66E-03 8.57E-03 5.03E-03 6.50E-02 1.277E-03 1.06E-02
    τ=0.3 BQR 0.041 7.24E-04 1.79E-03 4.08E-04 1.50E-02 7.87E-03 7.75E-04 8.83E-04 3.34E-04 1.27E-02 1.38E-03
    BSQR 0.043 8.46E-04 2.17E-03 1.28E-03 2.13E-03 4.26E-03 2.36E-03 1.03E-03 3.21E-03 5.32E-03 7.32E-04
    RQR 0.016 1.21E-03 1.71E-03 2.64E-03 1.19E-02 1.82E-03 1.20E-03 2.08E-03 9.26E-04 2.23E-03 2.89E-03
    RSQR 0.014 1.22E-03 6.43E-03 7.45E-03 1.89E-03 5.11E-04 7.33E-03 1.13E-03 1.19E-02 1.47E-03 1.16E-03
    OLEQR 0.045 3.96E-03 8.64E-02 2.47E-03 5.08E-03 2.38E-03 2.65E-03 6.34E-03 7.35E-03 5.98E-03 2.73E-03
    τ=0.5 BQR 0.040 9.16E-04 5.78E-03 2.52E-03 1.62E-02 3.50E-03 6.26E-04 7.71E-05 2.70E-03 8.09E-03 3.13E-04
    BSQR 0.040 6.76E-04 2.23E-03 1.24E-03 2.08E-02 4.09E-03 2.03E-03 6.74E-04 3.48E-03 4.85E-03 5.43E-04
    RQR 0.009 7.25E-04 1.25E-03 2.56E-04 1.24E-03 4.41E-04 1.23E-03 1.18E-03 1.39E-03 2.68E-04 7.56E-04
    RSQR 0.007 1.27E-03 1.16E-03 1.96E-03 1.09E-03 1.20E-03 1.17E-03 5.11E-04 4.43E-04 8.50E-03 1.17E-03
    OLEQR 0.042 3.96E-03 8.64E-03 2.47E-03 5.08E-03 2.38E-03 2.65E-03 6.34E-03 7.35E-03 5.88E-03 2.73E-03
    τ=0.7 BQR 0.046 3.60E-04 1.38E-04 3.47E-03 1.98E-02 9.46E-03 1.82E-04 2.77E-03 1.75E-03 5.60E-03 2.91E-03
    BSQR 0.039 5.66E-04 2.17E-03 1.20E-03 2.10E-02 4.09E-03 1.91E-03 4.35E-04 3.28E-03 4.64E-03 3.67E-04
    RQR 0.018 1.02E-03 1.64E-03 1.70E-03 1.72E-02 1.67E-03 1.31E-03 2.67E-03 2.44E-03 1.74E-02 2.41E-03
    RSQR 0.018 1.09E-03 1.16E-03 1.09E-03 8.27E-04 1.14E-03 2.03E-03 1.43E-03 1.83E-02 1.49E-03 1.48E-03
    OLEQR 0.045 1.02E-03 6.54E-02 4.93E-03 4.36E-03 4.55E-03 3.44E-03 3.85E-03 2.62E-02 7.03E-03 3.78E-03
    τ=0.9 BQR 0.039 1.27E-04 5.80E-04 2.06E-05 2.14E-02 5.26E-04 2.35E-03 9.00E-05 3.59E-03 9.84E-03 1.00E-03
    BSQR 0.040 5.31E-04 2.15E-03 1.17E-03 2.15E-02 4.41E-03 1.74E-03 4.41E-04 3.26E-03 4.53E-04 4.44E-04
    RQR 0.021 2.81E-03 3.00E-03 2.66E-03 2.49E-02 2.31E-03 2.08E-03 1.90E-03 2.74E-03 2.18E-02 2.32E-03
    RSQR 0.021 1.22E-03 1.33E-02 5.12E-03 8.30E-03 4.78E-03 9.79E-03 1.54E-03 2.22E-02 5.98E-03 4.43-02
    OLEQR 0.047 1.51E-02 1.04E-02 3.63E-03 8.15E-03 6.74E-03 8.05E-03 6.05E-03 9.05E-03 1.05E-03 2.83E-03

     | Show Table
    DownLoad: CSV
    Table 5.  Comparison between Bayesian streaming data method and other methods in the case of t-distribution error distribution and m = 50 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.049 6.53E-06 1.18E-04 6.64E-04 2.92E-02 1.81E-05 1.59E-03 2.72E-04 1.53E-03 3.32E-03 1.65E-03
    BSQR 0.048 1.31E-03 3.05E-03 2.45E-03 2.11E-02 3.91E-03 3.91E-03 1.35E-03 3.51E-03 6.63E-03 1.17E-03
    RQR 0.035 1.86E-03 1.89E-03 1.43E-03 2.84E-02 3.42E-03 3.72E-03 2.82E-03 6.85E-03 3.01E-02 5.39E-03
    RSQR 0.034 1.85E-03 2.53E-03 4.28E-03 6.49E-03 4.12E-03 3.83E-03 2.17E-03 4.32E-03 4.82E-03 4.10E-03
    OLEQR 0.061 1.02E-02 5.26E-03 1.05E-03 1.08E-02 3.86E-03 5.27E-03 5.60E-03 2.60E-02 2.14E-03 3.86E-02
    τ=0.3 BQR 0.047 1.02E-03 3.02E-03 2.26E-03 2.11E-02 3.98E-03 3.77E-03 1.02E-04 3.48E-03 6.48E-02 9.08E-04
    BSQR 0.047 1.30E-03 2.59E-04 2.24E-03 2.27E-02 4.19E-03 2.29E-03 1.35E-03 3.59E-03 5.57E-03 1.06E-03
    RQR 0.021 2.43E-03 3.11E-03 1.84E-03 2.67E-02 1.74E-03 1.53E-03 1.12E-03 1.24E-03 2.34E-02 2.43E-03
    RSQR 0.020 3.80E-03 1.45E-03 3.64E-03 2.40E-03 3.36E-03 1.73E-03 2.04E-03 2.22E-02 2.70E-03 2.27E-03
    OLEQR 0.054 3.72E-03 5.24E-02 1.33E-02 3.39E-03 2.22E-03 1.06E-02 3.08E-03 5.92E-03 9.16E-03 2.19E-03
    τ=0.5 BQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
    BSQR 0.046 1.05E-03 2.39E-03 2.10E-03 2.23E-02 4.43E-03 2.49E-03 1.03E-03 3.72E-03 5.57E-03 8.61E-04
    RQR 0.015 1.89E-03 8.26E-03 1.05E-03 1.10E-02 4.13E-03 6.59E-03 6.85E-03 1.10E-03 1.56E-03 1.26E-03
    RSQR 0.015 1.72E-03 9.26E-03 1.12E-03 9.30E-03 4.01E-03 3.79E-03 1.54E-03 3.21E-02 1.98E-03 5.43-04
    OLEQR 0.048 5.12E-03 1.63E-03 1.12E-03 8.30E-03 6.78E-03 7.79E-03 5.14E-03 5.12E-03 2.98E-03 5.51E-03
    τ=0.7 BQR 0.045 4.79E-04 4.15E-03 1.61E-04 2.03E-02 4.15E-03 2.96E-04 1.21E-04 3.66E-04 6.12E-03 4.59E-04
    BSQR 0.044 9.14E-04 2.43E-03 1.14E-03 2.24E-02 4.82E-03 2.23E-03 8.31E-04 4.21E-03 5.79E-03 5.58E-04
    RQR 0.025 1.36E-03 2.11E-03 3.56E-03 1.38E-02 2.75E-03 2.94E-03 1.41E-03 3.16E-03 1.91E-02 2.20E-03
    RSQR 0.024 2.28E-03 1.41E-03 2.57E-03 3.55E-03 3.39E-03 1.94E-03 2.54E-03 1.41E-02 3.51E-03 2.86E-03
    OLEQR 0.050 1.12E-02 6.26E-03 1.26E-03 1.28E-03 3.86E-03 4.72E-03 5.60E-03 2.69E-03 2.14E-03 3.68E-03
    τ=0.9 BQR 0.044 7.26E-03 2.63E-03 1.14E-04 2.26E-02 3.70E-03 2.77E-03 9.24E-04 3.57E-03 5.39E-03 6.72E-04
    BSQR 0.043 5.52E-04 2.72E-03 1.55E-03 2.13E-02 3.72E-03 2.88E-03 4.70E-04 3.56E-03 6.43E-03 5.92E-04
    RQR 0.033 6.73E-03 1.43E-03 3.51E-03 7.05E-02 2.25E-03 3.38E-03 4.35E-03 2.53E-03 2.70E-02 9.95E-04
    RSQR 0.030 6.23E-03 2.33E-03 8.12E-03 5.30E-03 1.78E-03 6.79E-03 3.54E-03 1.22E-02 8.98E-03 6.43E-03
    OLEQR 0.055 1.62E-02 1.32E-02 2.13E-03 1.35E-03 3.88E-03 4.75E-03 5.22E-03 2.74E-02 2.21E-03 3.72E-03

     | Show Table
    DownLoad: CSV
    Table 6.  Comparison between Bayesian streaming data method and other methods in the case of t-distribution error distribution and m = 100 batches.
    τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
    τ=0.1 BQR 0.049 6.53E-06 1.18E-04 6.64E-04 2.92E-02 1.81E-05 1.59E-03 2.72E-04 1.53E-03 3.32E-03 1.65E-03
    BSQR 0.047 1.31E-03 3.05E-04 2.45E-03 2.11E-03 3.91E-03 3.91E-03 1.35E-03 3.51E-03 6.63E-03 1.17E-03
    RQR 0.038 3.69E-03 3.23E-03 5.21E-03 7.80E-03 3.15E-03 2.37E-03 2.69E-03 1.68E-03 3.52E-03 2.43E-03
    RSQR 0.036 1.85E-03 2.53E-03 5.34E-03 2.74E-03 2.38E-03 4.47E-03 5.16E-03 4.69E-03 4.07E-03 3.43E-03
    OLEQR 0.060 3.45E-03 6.55E-02 9.47E-03 2.66E-03 5.93E-03 8.90E-03 4.11E-03 8.99E-03 5.93E-03 1.11E-02
    τ=0.3 BQR 0.047 1.02E-03 3.02E-04 2.22E-03 2.11E-02 3.98E-03 3.77E-03 1.02E-03 3.48E-03 6.48E-03 9.08E-04
    BSQR 0.048 1.04E-03 2.51E-04 2.90E-03 2.05E-02 3.43E-03 2.93E-03 1.43E-03 3.79E-03 9.09E-03 8.67E-04
    RQR 0.025 3.76E-03 3.25E-03 2.77E-03 1.32E-02 1.97E-03 1.76E-03 4.75E-03 1.90E-03 1.89E-02 3.55E-03
    RSQR 0.023 3.12E-03 3.33E-03 3.12E-03 2.30E-03 1.78E-03 1.79E-03 1.54E-02 4.22E-03 8.98E-03 3.43E-03
    OLEQR 0.051 5.12E-03 2.53E-02 5.12E-03 9.30E-03 6.78E-03 1.79E-03 1.54E-02 1.02E-02 6.98E-03 6.43E-03
    τ=0.5 BQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
    BSQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
    RQR 0.018 8.93E-03 2.82E-03 2.23E-03 2.34E-02 2.08E-03 7.20E-03 1.07E-03 9.43E-03 1.15E-02 8.11E-03
    RSQR 0.018 8.67E-04 1.75E-02 2.93E-03 6.34E-04 2.84E-03 8.65E-04 2.20E-03 2.56E-02 1.96E-03 7.32E-03
    OLEQR 0.048 2.12E-03 3.33E-02 6.12E-03 5.30E-03 1.78E-03 1.79E-03 6.54E-03 1.22E-02 2.98E-03 1.43E-02
    τ=0.7 BQR 0.045 4.79E-04 4.15E-03 1.61E-04 2.03E-02 4.15E-03 2.96E-04 1.21E-04 3.66E-04 6.12E-03 4.59E-04
    BSQR 0.043 5.06E-04 3.16E-03 1.81E-03 2.15E-02 4.28E-03 2.35E-03 6.68E-04 3.19E-03 5.22E-03 7.17E-04
    RQR 0.025 2.65E-03 1.66E-03 3.47E-03 4.19E-02 4.48E-03 2.56E-03 2.54E-03 1.05E-03 1.72E-02 1.88E-03
    RSQR 0.024 8.02E-03 2.63E-02 5.92E-03 5.30E-03 5.78E-03 3.79E-03 2.94E-03 3.12E-03 5.96E-03 2.03E-02
    OLEQR 0.051 4.32E-03 1.33E-02 5.12E-03 4.30E-03 4.78E-03 4.79E-03 6.14E-03 2.22E-03 5.98E-03 1.23E-02
    τ=0.9 BQR 0.044 7.26E-03 2.63E-03 1.14E-04 2.26E-02 3.70E-03 2.77E-03 9.24E-04 3.57E-03 5.39E-03 6.72E-04
    BSQR 0.044 7.50E-04 2.20E-03 1.55E-03 2.14E-02 4.19E-03 2.96E-03 1.12E-04 3.73E-03 6.19E-03 7.48E-04
    RQR 0.040 3.01E-03 1.57E-03 7.49E-03 4.59E-02 7.03E-03 3.52E-03 1.78E-03 7.71E-03 4.06E-03 5.04E-03
    RSQR 0.040 5.84E-03 5.63E-03 1.02E-03 8.32E-03 4.52E-03 3.00E-03 2.22E-03 4.91E-03 2.21E-03 4.96E-03
    OLEQR 0.059 1.32E-03 1.33E-02 5.12E-03 4.30E-03 6.78E-03 2.79E-02 6.54E-03 1.02E-02 2.98E-03 1.43E-02

     | Show Table
    DownLoad: CSV

    From the simulation results, we have several findings. First, our streaming data Bayesian quantile regression method can always estimate the parameters consistently under three error distributions. In the meantime, the estimation results are not affected by the data batch size, since the MSE values of our method are almost in the same scale as the batch number increases from 50 to 100. Second, under ALD error distribution, our method performs better than the other three methods, and also performs comparably with the oracle Bayesian quantile regression, as the BQR and BSQR methods are very close. Third, under other error distributions, our method performs worse than RQR and RSQR methods, but still performs better than the OLEQR method.

    Additionally, we consider an interesting scenario 2 where streaming datasets arrive at a high speed and the batch size is small. For convenience, we fix the batch size n1==nm=100, and let n increases from 105 to 106. The results are shown in Table 7 with ALD error distribution. The results for other quantile levels and error distributions are similar and thus omitted. We can see from Table 7 that the performance of our method improves (the MSE values all decrease) as the number of batches increase from 1000 to 10000, and it always works comparably with the oracle Bayesian quantile regression estimator. These results imply that our method is not affected as more data streams are processed; in other words, it is robust to the number of batches.

    Table 7.  MSE results of Bayesian experiment on streaming data with varying n and fixed batch sizes, n1=n2==nm=100.
    Method N τ=0.3 τ=0.5 τ=0.7
    BSQR 105 0.056 0.052 0.057
    106 0.050 0.048 0.052
    BQR 105 0.057 0.053 0.060
    106 0.052 0.048 0.054

     | Show Table
    DownLoad: CSV

    For Algorithm 1, we conduct an analysis of its computational complexity. By analyzing the computational process of Algorithm 1, we determine that its computational complexity is O((nmk)2). Furthermore, we record its running time and compare it with the distributed algorithm. For the convenience of recording and computational efficiency, we fix the batch size n1==nm=100, and let m increases from 10 to 100. All results are based on 1000 draws obtained from the Gibbs samplers. Through this comparative analysis of running times, we observe that the streaming data algorithm has better computational efficiency. The comparison result is shown in Figure 1, where the horizontal axis represents the number of batches and the vertical axis represents the running time unit in minutes. Additionally, by comparing Tables 17 and Figure 2, it can be observed that our method is similar to the full data method, but our method has better effiency than the distributed algorithm. Therefore, the BSQR method can be used as an alternative to distributed algorithms to improve computational efficiency, especially when the number of data batches is large.

    Figure 2.  Comparative analysis of algorithm running times.

    Example 1. The online news popularity dataset. In this example, we illustrate our Bayesian streaming quantile regression method by using the Online News Popularity dataset. The dataset is from the UCI machine learning repository. This is a large-scale dataset with N=39,640 observations. In our analysis, the number of shares in social networks is set as the response variable, and the perspective of web environment factors such as positive words, topic keywords, etc., are chosen as 7 predictors. For comprehensiveness, five different quantile levels from small to large are considered, i.e., τ=0.1,0.3,0.5,0.7, and 0.9.

    We fit our method to the above dataset by implementing Algorithm 1. In each τ, we partition the dataset into 100 subsets with the size of nm=396 for m=1,,99 and n100=436. All results are based on 15,000 draws obtained from the Gibbs samplers with a burn-in of 5000 iterations. The estimated coefficients and posterior standard deviations at the specified quantile levels are presented in Table 8.

    Table 8.  BSQR estimation of coefficient for the online news popularity data.
    τ=0.10 τ= 0.30 τ= 0.50 τ= 0.70 τ= 0.90
    Coeff Std Coeff Std Coeff Std Coeff Std Coeff Std
    Intercept 3.1184 2.0746 5.2757 2.8087 5.9701 2.3922 6.2598 3.0828 9.5841 3.9952
    length 0.0795 0.0362 0.1569 0.0387 0.1775 0.0619 0.2471 0.1224 0.3397 0.2512
    num-keywords 0.4674 0.3502 0.6723 0.4962 0.7225 0.5124 0.7658 0.5625 0.7824 0.6314
    title sentiment polarity 3.8472 3.2691 6.3682 4.2569 6.8923 4.3521 4.6130 3.9825 2.3569 1.9857
    num-img 2.8009 1.7910 3.3239 2.1156 6.8448 3.0791 6.9821 4.1231 7.2656 4.5981
    num-videos 1.0320 0.9432 1.6572 1.1152 1.8656 1.1974 1.9245 1.0358 2.0123 1.5699
    num-positive -0.6779 0.2505 -0.6185 0.3244 -0.5812 0.2216 -0.4213 0.1985 -0.3320 0.2569
    num-negitive 1.4053 1.3506 1.5691 1.4651 2.2664 1.3015 2.5688 1.8856 2.9851 2.0344

     | Show Table
    DownLoad: CSV

    We observe that the number of positive words is negatively correlated with the popularity, while length, num-img, num-video, and num-negitive have positive impacts across all quantiles. Additionally, as the quantile increases, the impact of title sentiment polarity first increases and then decreases, which means that the title of a popular news cannot be too polarized. This empirical study shows that the BSQR method we proposed is helpful in investigating the impact of different factors on news popularity in streaming data scenarios.

    Example 2. The Beijing multi-site air-quality dataset. This example illustrates the streaming data algorithm for BSQR by using the Beijing multi-site air-quality dataset. The data were collected from the Beijing Municipal Environmental Monitoring Center, which is a reputable institution responsible for monitoring air quality, meteorological parameters, and other environmental factors in Beijing. The dataset includes measurements of pollutants such as PM2.5, PM10, NO2, SO2, CO, and O3, as well as meteorological variables like temperature, humidity, wind speed, and wind direction. The data were recorded at multiple monitoring stations across the city, providing a spatially diverse dataset. The dataset is publicly available at https://www.bjmemc.com.cn/, spanning the period from July 1, 2017 to March 30, 2023. The dataset includes 430,524 hourly air pollutant data points from 12 district-controlled air quality monitoring stations in Beijing. The reasons for using air quality data are as follows: (1) Air quality data necessitates frequent real-time updates to accurately depict the current state of air quality. Streaming data frameworks are capable of rapidly processing and providing feedback on real-time data. (2) Air quality monitoring stations continuously and extensively generate data. These stations are dispersed across various locations, with each site persistently producing a substantial volume of data. Streaming data frameworks can efficiently handle this continuous data flow.

    In this study, we explore the relationship between the PM2.5 concentration (ug/m3) and ten variables in Table 9. For model diagnostics, we use the AIC method for model selection. Specifically, we collected the historical Beijing multi-site air-quality dataset from March 2013 to February 2017, and calculated the AIC values under three different models based on the historical data, namely the classic linear regression model and the quantile regression model with τ=0.1 and 0.9. The AIC results are shown in Figure 3. From Figure 3, we can observe that the model with 10 variables is the best model.

    Table 9.  Covariates and their descriptions.
    Name Description
    PM10 PM1.0 concentration (ug/m3)
    SO2 SO2 concentration (ug/m3)
    NO2 NO2 concentration (ug/m3)
    CO CO concentration (ug/m3)
    O3 O3 concentration (ug/m3)
    TEMP temperature (degrees Celsius)
    PRES pressure (hPa)
    DEMP dew point remperature (degrees Celsius)
    RAIN rainfall (mm/m3)
    WSPM wind speed (m/s)

     | Show Table
    DownLoad: CSV
    Figure 3.  The results of AIC using historical data.

    Because this data was collected by air quality monitoring sites in chronological order, we set the number of batches b=48 based on the number of months. This air quality dataset and model have been analyzed in Jiang and Yu [37], which also focused on quantile regression for streaming data.

    We fit the streaming data to the Bayesian quantile regression model by implementing Algorithm 1 for five quantile levels, specifically τ= 0.10, 0.30, 0.50, 0.70, and 0.90. In each scenario, the entire set of observations is divided into 48 subsets. Subsequently, the informative g-prior is assigned with g = 100. All reported results are based on 15,000 draws obtained from the Gibbs samplers, with a burn-in period of 5000 iterations. Table 10 and Figure 4 present the estimated coefficients for the specified quantile levels.

    Table 10.  BSQR estimation of the coefficient for the air quality data.
    τ=0.10 τ= 0.30 τ= 0.50 τ= 0.70 τ= 0.90
    Coeff Std Coeff Std Coeff Std Coeff Std Coeff Std
    Intercept -3.37E-04 1.12E-04 -4.58E-04 1.07E-04 -4.17E-04 1.25E-04 -2.83E-04 9.35E-05 -9.31E-04 3.93E-05
    PM10 0.2051 1.78E-03 0.2661 2.79E-03 0.5478 3.27E-03 0.7472 2.95E-03 0.9397 2.34E-03
    SO2 0.1393 7.49E-03 0.067 9.18E-03 0.0225 7.59E-03 0.0158 6.50E-03 0.0021 6.81E-03
    NO2 0.0976 4.91E-03 0.0303 6.05E-03 0.0240 5.89E-03 -0.0730 5.53E-03 -0.075 3.53E-03
    CO 0.0217 1.75E-04 0.0342 2.12E-04 0.0210 2.27E-04 0.0486 2.09E-04 0.0796 2.27E-04
    O3 0.0873 2.04E-03 0.0902 2.81E-03 0.0692 3.19E-03 0.0507 2.14E-04 0.0111 1.45E-03
    Temp -0.2712 1.29E-02 -0.415 1.59E-02 -0.465 1.91E-03 -0.4800 1.48E-03 -0.8166 9.98E-03
    PRES -0.0083 3.27E-04 -0.0061 3.13E-04 -0.0004 3.79E-04 -0.0003 3.47E-04 -0.0003 2.09E-04
    DEWP 0.3681 1.17E-02 0.5439 1.26E-02 0.6366 1.58E-02 0.5431 1.36E-02 0.9628 1.03E-03
    RAIN -0.4460 8.72E-02 -0.4162 1.05E-02 -0.4335 7.62E-01 -0.3509 6.97E-02 -0.2513 4.95E-02
    WSPM -0.4897 7.08E-02 -0.2915 9.63E-02 -0.1941 9.58E-02 -0.1218 8.23E-02 -0.0809 4.46E-02

     | Show Table
    DownLoad: CSV
    Figure 4.  The estimated coefficients of BSQR under different quantiles for the air quality data.

    At different quantiles, the coefficients of five air factors are all significant and positive, indicating that these air pollutants have a positive impact on PM2.5 concentration. As the quantile τ increases, the estimated coefficients of SO2, NO2, and O3 decrease, which means that the impact of SO2, NO2, and O3 on PM2.5 concentration gradually decreases with the increase of PM2.5 concentration. Additionally, the estimated coefficients of PM0 and CO increase with increasing quantile τ, indicating that as the concentration of PM2.5 increases, the impact of PM10 and CO is increasing.

    For the other five meteorological factors, TEMP, PRES, DEWP, RAIN, and WSPM, RAIN and WSPM have significant and negative coefficients at each quantile, indicating that they have a negative impact on PM2.5 concentration, and this effect become weaker as PM2.5 concentration increases. The coefficient of PRES is not significant at the 0.9 quantile, indicating that air pressure has no significant effect on PM2.5 at high concentrations. The TEMP coefficient is significantly negative at five quantiles, and the absolute value of the coefficient gradually increases, meaning that as the concentration of PM2.5 increases, the impact of temperature becomes stronger. The coefficients of DEWP at each quantile are significantly positive, and as the quantile increases, the coefficients show an increasing trend. This indicates that as the concentration of PM2.5 increases, the impact of DWEP increases.

    Compared with the method in [37], we added three new covariates, PM10, O3, and RAIN, making the analysis of the real data more comprehensive. In addition, the conclusion of BSQR method indicates that the estimated coefficients of SO2 and NO2 decrease as quantity τ increases, and the estimated coefficients of WSPM are negative. These findings are different from the conclusions of [34], but are consistent with the research results of PM2.5 in Li[38] and Zhang and Zhang[39].

    This paper extends the traditional frequency QR. This extension involves the utilization of an ALD-based likelihood function, a conjugate NIG prior, and an adjusted NIG posterior. The streaming data method we proposed does not require storing historical data; it only needs to save the parameters of the posterior distribution and the current data. Furthermore, theoretical results establish the equivalency between the proposed posterior distribution for streaming data and the one computed using the full data. Both simulation studies and real data evaluations affirm the strong performance of the new approach proposed in this paper.

    Real data analysis of Example 1 shows that the popularity of news is related to factors such as the number of positive words, images, video content, keywords and length. Among them, the number of positive words has a negative impact on the popularity of news. In Example 2, air pollutants and meteorological factors have varying impacts on PM2.5 concentration, with the influence of some factors changing as PM2.5 concentration increase. Specifically, the impact of air pollutants SO2, NO2, and O3 decreases, while that of PM10 and CO increases. Among meteorological factors, the influence of RAIN and WSPM decreases, and the impact of TEMP and DEWP becomes more pronounced at high PM2.5 concentrations.

    This study reveals the degree and trend of the impact of different air pollutants and meteorological factors on PM2.5 concentrations, which helps to more accurately understand the complex mechanisms of PM2.5 formation and provides a scientific basis for air quality management. The following air quality management strategies are recommended: (1) Prioritize the control of SO2, NO2, and O3 emissions, especially in areas with lower PM2.5 concentrations, as these pollutants have a significant impact on PM2.5; (2) in areas with higher PM2.5 concentrations, strengthen the control of PM10 and CO to reduce their contribution to PM2.5 concentrations; (3) strengthen the study of air pressure to determine its impact at different PM2.5 concentrations, providing a more comprehensive basis for management strategies.

    Nonetheless, there are several issues requiring future research. First, in conjunction with penalty functions such as LASSO [40] and SCAD[41], it is necessary to further explore the high-dimensional regularization for streaming data. Specifically, there are several versions of regularization that could be used[42]. In the frequency framework, Ma et al.[43] proposed an online updating coordinate descent algorithm, and a tuning lasso parameter selection was also suggested. Wang et al. [45] proposed a provable online feature selection algorithm that utilizes the online leverage score. For the Bayesian framework, we will explore Bayesian variable selection strategies in the streaming data context in our subsequent work. Based on current research, we aim to propose more accurate and efficient regularization methods for streaming data. Second, the new approach focuses on Bayesian linear QR models, and the issue of concept drift [44,46] is not considered. Thus, one can further consider more complex Bayesian streaming data models like Bayesian deep neural networks, and invest the concept drift problem in the online BQR setting. Lastly, the new algorithm is geared to independent data, while in practical scenarios, dependent or non-stationary data [47] are more commonly used, including time series data or longitudinal data. Hence, it will be interesting to develop the corresponding algorithms for such kinds of datasets.

    This research was funded by Natural Science Basic Research Program of Shaanxi (Program No. 2023-JC-QN-0059).

    We would like to express our sincere gratitude to the editor and the reviewers for their valuable time, efforts, and expertise in reviewing our manuscript.

    The authors declare no conflict of interest.



    [1] Kafi A, Abedin MZ, Beg MDH, et al. (2006) Study on the mechanical properties of jute/glass fibre-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation. J Reinf Plast Comp 25: 575–588. https://doi.org/10.1177/0731684405056437 doi: 10.1177/0731684405056437
    [2] Egbo MK (2021) A fundamental review on composite materials and some of their applications in biomedical engineering. J King Saud Univ–Eng Sci 33: 557–568. https://doi.org/10.1016/j.jksues.2020.07.007 doi: 10.1016/j.jksues.2020.07.007
    [3] SmiComposites (2018) The most popular composite fabrication methods. Available from: https://www.smicomposites.com/the-most-popular-composite-fabrication-methods/.
    [4] Keya KN, Kona NA, Koly FA, et al. (2019) Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res 1: 69–85. https://doi.org/10.25082/MER.2019.02.006 doi: 10.25082/MER.2019.02.006
    [5] Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6: 2247–2273. https://doi.org/10.3390/polym6082247 doi: 10.3390/polym6082247
    [6] Li H, Wang D, Zhang H, et al. (2022) Optimal design of vibro-impact resistant fiber reinforced composite plates with polyurea coating. Compos Struct 292: 115680. https://doi.org/10.1016/j.compstruct.2022.115680 doi: 10.1016/j.compstruct.2022.115680
    [7] De B, Bera M, Bhattacharjee D, et al. (2024) A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management. Progr Mater Sci 146: 101326. https://doi.org/10.1016/j.pmatsci.2024.101326 doi: 10.1016/j.pmatsci.2024.101326
    [8] Isa A, Nosbi N, Ismail MC, et al. (2022) A review on recycling of carbon fibers: Methods to reinforce and expected fiber composite degradations. Materials 15: 4991. https://doi.org/10.3390/ma15144991 doi: 10.3390/ma15144991
    [9] Laouicia H, Benkhelladic A, Drouichea F, et al. (2024) Study of thermal and mechanical properties of fibers extracted from Algerian Agave americana L. and their polymer composites. Int J Mech Sci Adv Mat (IJMSAM) 1: 1–7. Available from: https://ensta.edu.dz/wp-content/uploads/2024/05/IJMSAM-24.pdf.
    [10] Ismail SO, Akpan E, Dhakal HN (2022) Review on natural plant fibers and their hybrid composites for structural applications: Recent trends and future perspectives. Compos Part C 9: 100322. https://doi.org/10.1016/j.jcomc.2022.100322 doi: 10.1016/j.jcomc.2022.100322
    [11] Aldosari SM, Alotaibi BM, Alblalaihid KS, et al. (2024) Mechanical recycling of carbon fibee-reinforced polymer in a circular economy. Polymers 16: 1363. https://doi.org/10.3390/polym16101363 doi: 10.3390/polym16101363
    [12] Rodriguez‐Castellanos W, Rodrigue D (2016) Production and characterization of hybrid polymer composites based on natural fibers, In: Poletto M, Composites from Renewable and Sustainable Materials, London: IntechOpen Limited. http://dx.doi.org/10.5772/64995
    [13] Kim H (2014) Hybrid composites with natural fibers. Available from: Available from: https://core.ac.uk/download/pdf/33528249.pdf.
    [14] Almansour FA (2009) Interlaminar fracture toughness behaviour of flax/basalt reinforced vinyl ester hybrid composites. Available from: https://researchportal.port.ac.uk/en/studentTheses/interlaminar-fracture-toughness-behaviour-of-flaxbasalt-reinforce.
    [15] Singh H, Singh T (2019) Effect of fillers of various sizes on mechanical characterization of natural fibee polymer hybrid composites: A review. Mater Today Proc 18: 5345–5350. https://doi.org/10.1016/j.matpr.2019.07.560 doi: 10.1016/j.matpr.2019.07.560
    [16] Sergi C, Sbardella F, Lilli M, et al. (2020) Hybrid cellulose–basalt polypropylene composites with enhanced compatibility: The role of coupling agent. Molecule 25: 4384. https://doi.org/10.3390/molecules25194384 doi: 10.3390/molecules25194384
    [17] Egbo MK (2020) A fundamental review on composite materials and some of their applications in biomedical engineering. J King Saud Univ–Eng Sci 33: 557–568. https://doi.org/10.1016/j.jksues.2020.07.007 doi: 10.1016/j.jksues.2020.07.007
    [18] Techapaitoon M (2015) Tough natural-fiber composites. Available from: https://core.ac.uk/download/pdf/76996962.pdf.
    [19] Dawoud MM, Saleh HM (2018) Introductory chapter: Background on composite materials, In: Saleh HEM, Koller M, Characterizations of Some Composite Materials, London: IntechOpen Limited. https://doi.org/10.5772/intechopen.80960
    [20] Advanced Materials in Transport Aircraft Structures "AMTAS" (2003) Overview of advanced composite materials and structures. Available from: https://courses.washington.edu/mengr450/Overview.pdf.
    [21] Squire GN, Abhyankar A, Watson KJ (2008) Composite material manufactured from a binder system including waste powder coating powder. WO 2008/020768 A1. Available from: https://patentimages.storage.googleapis.com/07/c5/ce/c86429e304a908/WO2008020768A1.pdf.
    [22] Atmakuri A, Palevicius A, Vilkauskas A, et al. (2020) Review of hybrid fiber based composites with nano particles—Material properties and applications. Polymers 12: 2088. https://doi.org/10.3390/polym12092088 doi: 10.3390/polym12092088
    [23] Nurazzi NM, Asyraf MRM, Athiyah SF, et al. (2021) A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers 13: 2170. https://doi.org/10.3390/polym13132170 doi: 10.3390/polym13132170
    [24] Premnath K, Arunprasath K, Sanjeevi R, et al. (2024) Natural/synthetic fiber reinforced hybrid composites on their mechanical behaviors—A review. Interactions 245: 111. https://doi.org/10.1007/s10751-024-01924-y doi: 10.1007/s10751-024-01924-y
    [25] Rajak DK, Pagar DD, Menezes PL, et al. (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11: 1667. https://doi.org/10.3390/polym11101667 doi: 10.3390/polym11101667
    [26] Almushaikeh AM, Alaswad SO, Alsuhybani MS, et al. (2023) Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review. Polym Test 122: 108029. https://doi.org/10.1016/j.polymertesting.2023.108029 doi: 10.1016/j.polymertesting.2023.108029
    [27] Obande W, Brádaigh CMO, Ray D (2021) Continuous fiber-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion—A review. Compos Part B-Eng 215: 108771. https://doi.org/10.1016/j.compositesb.2021.108771 doi: 10.1016/j.compositesb.2021.108771
    [28] Periasamy K, Kandare E, Das R, et al. (2023) Interfacial engineering methods in thermoplastic composites: An overview. Polymers 15: 415. https://doi.org/10.3390/polym15020415 doi: 10.3390/polym15020415
    [29] Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Carbohydr Polym 86: 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043 doi: 10.1016/j.carbpol.2011.04.043
    [30] Fredi G, Dorigato A, Fambri L, et al. (2020) Multifunctional structural composites for thermal energy storage. Multifunct Mater 3: 042001. https://doi.org/10.1088/2399-7532/abc60c doi: 10.1088/2399-7532/abc60c
    [31] Girijappa YGT, Rangappa SM, Parameswaranpillai J, et al. (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers Mater 6. https://doi.org/10.3389/fmats.2019.00226
    [32] Peç as P, Carvalho H, Salman H, et al. (2018) Natural fiber composites and their applications. J Compos Sci 2: 66. https://doi.org/10.3390/jcs2040066 doi: 10.3390/jcs2040066
    [33] Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos Part A Appl Sci Manuf 83: 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038 doi: 10.1016/j.compositesa.2015.08.038
    [34] Awais H, Nawab Y, Amjad A, et al. (2021) Environmental benign natural fiber reinforced thermoplastic composites: A review. Compos Part C 4: 100082. https://doi.org/10.1016/j.jcomc.2020.100082 doi: 10.1016/j.jcomc.2020.100082
    [35] Uzochukwu MI, Eze WU, Garba P, et al. (2020) Study on the physico-mechanical properties of treated baobab fiber (Adansonia Digitata) nano-filler/epoxy composite. Multiscale and Multidiscip Model Exp and Des 3: 151–159. https://doi.org/10.1007/s41939-020-00068-0 doi: 10.1007/s41939-020-00068-0
    [36] Zeleke Y, Rotich GK (2021) Design and development of false ceiling board using polyvinyl acetate (PVAc) composite reinforced with false banana fibers and filled with sawdust. Int J Polym Sci 2021: 5542329. https://doi.org/10.1155/2021/5542329 doi: 10.1155/2021/5542329
    [37] Madu OG, Nwankwojike BN, Ani OI (2018) Optimal design for rice husk-saw dust reinforced polyester ceiling board. AJER 7: 11–16. Available from: https://www.ajer.org/papers/Vol-7-issue-6/B07061116.pdf.
    [38] Jomboh KJ, Yakubu MK, Eze WU, et al. (2023) Weathering resistance of post-consumer glass and sawdust reinforced polyester composites, In: Li BW, Ghosh D, Olevsky EA, et al, Advances in Powder and Ceramic Materials Science 2023. TMS 2023. The Minerals, Metals & Materials Series, Cham: Springer. https://doi.org/10.1007/978-3-031-22622-9_10
    [39] Jomboh KJ, Garkida AD, Alemaka EM, et al. (2023) Optimization of post-consumer glass and sawdust reinforced polyester hybrid composites by mixture design analysis, In: The Minerals, Metals & Materials Society, TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Minerals, Metals & Materials Series, Cham: Springer. https://doi.org/10.1007/978-3-031-22524-6_70
    [40] Garadimani KR, Raju GU, Kodancha KG (2015) Study on mechanical properties of corn cob particle and e-glass fiber reinforced hybrid polymer composites. Am J Mater Sci 5: 86–91. https://doi.10.5923/c.materials.201502.18
    [41] Motoc DL (2015) Tailoring the effective properties of hybrid polymer based composite materials. Available from: https://www.unitbv.ro/documente/cercetare/doctorat-postdoctorat/abilitare/teze-de-abilitare/motoc-dana/05-MOTOC_LUCA-Teza_abilitare_ENG.pdf.
    [42] Jomboh KJ, Garkida AD, Alkali VC (2022) The effect of particle size on the morphology of polyester and epoxy-based auto-hybrid composites. In: The Minerals, Metals & Materials Society, TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, Cham: Springer, 599–608. https://doi.org/10.1007/978-3-030-92381-5_57
    [43] Intertek (2015) Taber Abrasion ASTM D1044 (Haze), ASTM D4060 (Weight Loss). Available from: https://www.intertek.com/polymers/testlopedia/taber-abrasion/.
    [44] Mohammed M, Jawad AJM, Mohammed AM, et al. (2023) Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym Test 124: 108083. https://doi.org/10.1016/j.polymertesting.2023.108083 doi: 10.1016/j.polymertesting.2023.108083
    [45] Khalid MA, Imran R, Arif ZU, et al. (2021) Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11: 293. https://doi.org/10.3390/coatings11030293 doi: 10.3390/coatings11030293
    [46] Midani M, Elseify LA (2022) Natural fiber composites—A practical guide for industrial utilization. Int Fibre J. Available from: https://www.fiberjournal.com/natural-fiber-composites-a-practical-guide-for-industrial-utilization/.
    [47] Petroudy SRD (2017) 3-Physical and mechanical properties of natural fibers, In: Fan M, Fu F, Advanced High Strength Natural Fibre Composites in Construction, Cambridge: Woodhead Publishing, 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0
    [48] Owonubi JS, Agwuncha CS, Anusionwu GC, et al. (2019) Fiber-matrix relationship for composites preparation, In: Pereira AB, Fernandes FAO, Renewable and Sustainable Composites, London: IntechOpen Limited. https://doi.org/10.5772/intechopen.84753
    [49] Eze WU, Yakubu MK, Buba MA, et al. (2022) Effect of nano-structured bambara nut shell (Vigna Subterranea (L) Verdc) as filler on the physical mechanical and morphological properties of epoxy matrix. J Mater Environ Sci 13: 1155–1170. Available from: https://www.jmaterenvironsci.com/Document/vol13/vol13_N10/JMES-2022-13104-Eze.pdf.
    [50] Sahu P, Gupta MK (2019) A review on the properties of natural fibers and its bio-composites: Effect of alkali treatment. J Mater Des Appl 234: 198–217. https://doi.org/10.1177/1464420719875163 doi: 10.1177/1464420719875163
    [51] Dhaliwal JS (2019) Natural fibers: Application, In: Abbas M, Jeon HY, Generation, Development and Modifications of Natural Fibers, London: IntechOpen Limited. https://doi.org/doi:10.5772/intechopen.86884
    [52] Patel R, Dhar P, Babaei-Ghazvini A, et al. (2023) Transforming lignin into renewable fuels, chemicals and materials: A review. Bioresour Technol Rep 22: 101463. https://doi.org/10.1016/j.biteb.2023.101463 doi: 10.1016/j.biteb.2023.101463
    [53] Ahmad R, Hamid R, Osman SA (2019) Physical and chemical modifications of plant fibers for reinforcement in cementitious composites. Adv Civil Eng 2019: 5185806. https://doi.org/10.1155/2019/5185806 doi: 10.1155/2019/5185806
    [54] Kamarudin SH, Basri MSM, Rayung M, et al. (2022) A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers 14: 3698. https://doi.org/10.3390/polym14173698 doi: 10.3390/polym14173698
    [55] Begum K, Islam M (2013) Natural fiber as a substitute to synthetic fiber in polymer composites: A review. Res J Eng Sci 2278: 9472. Available from: https://www.isca.me/IJES/Archive/v2/i4/10.ISCA-RJEngS-2013-010.pdf.
    [56] Karim MA, Abdullah MZ, Deifalla AF, et al. (2023) An assessment of the processing parameters and application of fiber-reinforced polymers (FRPs) in the petroleum and natural gas industries: A review. Results Eng 18: 101091. https://doi.org/10.1016/j.rineng.2023.101091 doi: 10.1016/j.rineng.2023.101091
    [57] Mamolo SU, Sodano HA (2024) Interfacial reinforcement of carbon fiber composites through a chlorinated aramid nanofiber interphase. Compos Sci Tech 245: 110351. https://doi.org/10.1016/j.compscitech.2023.110351 doi: 10.1016/j.compscitech.2023.110351
    [58] Nguyen H, Zatar W, Mutsuyoshi H (2017) Mechanical properties of hybrid polymer composite, In: Thakur VK, Thakur MK, Pappu A, Hybrid Polymer Composite MaterialsProperties and Characterization, Cambridge: Woodhead Publishing, 83–113. https://doi.org/10.1016/B978-0-08-100787-7.00004-4
    [59] Bavan DS, Kumar GCM (2012) Finite element analysis of a natural fiber (maize) composite beam. J Eng 2013: 450381. https://doi.org/10.1155/2013/450381 doi: 10.1155/2013/450381
    [60] Gupta MK, Srivastava RK (2016) Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Poly-Plast Technol Eng 55: 626–642. https://doi.org/10.1080/03602559.2015.1098694 doi: 10.1080/03602559.2015.1098694
    [61] Feng J, Safaei B, Qin Z, et al. (2023) Nature-inspired energy dissipation sandwich composites reinforced with high-friction grapheme. Compos Sci Technol 233: 109925. https://doi.org/10.1016/j.compscitech.2023.109925 doi: 10.1016/j.compscitech.2023.109925
    [62] Rajak DK, Wagh PH, Linul E (2022) A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications. Materials 15: 4790. https://doi.org/10.3390/ma15144790 doi: 10.3390/ma15144790
    [63] Zeeshan M, Ali M, Anjum AS, et al. (2021) Optimization of mechanical/thermal properties of glass/flax/waste cotton hybrid composite. J Indust Textil 51: 768–787. https://doi.org/10.1177/1528083719891420 doi: 10.1177/1528083719891420
    [64] Kessler E, Gadow R, Straub J (2016) Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load. AIMS Mater Sci 3: 1561–1576. https://doi.org/10.3934/matersci.2016.4.1561 doi: 10.3934/matersci.2016.4.1561
    [65] Maiti S, Islam MI, Uddin MA, et al. (2022) Sustainable fiber-reinforced composites: A review. Adv Sustainable Syst 2200258. https://doi.org/10.1002/adsu.202200258
    [66] Munalli D, Dimitrakis G, Chronopoulos D, et al. (2019) Electromagnetic shielding effectiveness of carbon fiber reinforced composites. Compos Part B-Eng 173: 106906. https://doi.org/10.1016/j.compositesb.2019.106906 doi: 10.1016/j.compositesb.2019.106906
    [67] Begum S, Fazia S, Hashmi MSJ (2020) Polymer matrix composite with natural and synthetic fibers. Adv Mater Proc Tech 6: 547–564. https://doi.org/10.1080/2374068X.2020.1728645 doi: 10.1080/2374068X.2020.1728645
    [68] Umunakwe R, Oyetunji A, Adewuyi BO, et al. (2019) Mechanical properties and microstructure of hybrid vulcanized natural rubber filled with carbon black and nano-CaCO3 from achatina achatina shells. J Met Mater Miner 29: 80–89. https://doi.org/10.55713/jmmm.v29i4.555 doi: 10.55713/jmmm.v29i4.555
    [69] Kausar A (2017) 5—Physical properties of hybrid polymer/clay composites, In: Thakur VK, Thakur MK, Pappu A, Hybrid Polymer Composite Materials—Properties and Characterization, Cambridge: Woodhead Publishing, 115–132. https://doi.org/10.1016/B978-0-08-100787-7.00005-6
    [70] Abdul-Khalil HPS, Kang CW, Khairul A, et al. (2009) The effect of different laminations on mechanical and physical properties of hybrid composites. J Reinf Plast Compos 28: 1123–1137. https://doi.org/10.1177/0731684407087755 doi: 10.1177/0731684407087755
    [71] Corrosionpedia (2018) Weathering test—What does weathering test mean. Available from: https://www.corrosionpedia.com/definition/1396/weathering.
    [72] Krishnasamy S, Thiagamani SMK, Kumar CM, et al. (2019) Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int J Biol Macromol 141: 1–13. https://doi.org/10.1016/j.ijbiomac.2019.08.231 doi: 10.1016/j.ijbiomac.2019.08.231
    [73] Zheng X, Kim S, Park CV (2019) Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Compos Part A Appl Sci Manuf 121: 449–456. https://doi.org/10.1016/j.compositesa.2019.03.030 doi: 10.1016/j.compositesa.2019.03.030
    [74] Yang X, Liang C, Ma T, et al. (2018) A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1: 207–230. https://doi.org/10.1007/s42114-018-0031-8 doi: 10.1007/s42114-018-0031-8
    [75] Neto JSS, de Queiroz HFM, Aguiar RAA, et al. (2021) A review on the thermal characterization of natural and hybrid fiber composites. Polymers 13: 4425. https://doi.org/10.3390/polym13244425 doi: 10.3390/polym13244425
    [76] Ahmad S, Ali S, Salman M, et al. (2021) A comparative study on the effect of carbon-based and ceramic additives on the properties of fiber reinforced polymer matrix composites for high temperature applications. Ceram Inter 47: 33956–33971. https://doi.org/10.1016/j.ceramint.2021.08.356 doi: 10.1016/j.ceramint.2021.08.356
    [77] Kim Y, Lee S, Yoon H (2021) Fire-safe polymer composites: flame-retardant effect of nanofillers. Polymers 13: 540. https://doi.org/10.3390/polym13040540 doi: 10.3390/polym13040540
    [78] Ngo TD (2018) Natural fibers for sustainable bio-composites, In: Günay E, Natural and Artificial Fiber-reinforced Composites as Renewable Sources, London: IntechOpen Limited. https://doi.org/10.5772/intechopen.71012
    [79] Corinaldesi V (2012) Study of lightweight mortars made of wooden waste. Adv Mater Res 2012: 34–41. https://doi.org/10.4028/www.scientific.net/AMR.548.34 doi: 10.4028/www.scientific.net/AMR.548.34
    [80] Vieitez ER, Eder P, Villanueva A, et al. (2011) End-of-waste criteria (EoW) for glass cullet: Technical proposals. Available from: https://www.researchgate.net/publication/257987351_Study_of_Lightweight_Mortars_Made_of_Wooden_Waste.
    [81] Jomboh KJ (2023) Development of post-consumer glass and sawdust reinforced unsaturated polyester hybrid composite for particle board application, Ahmadu Bello University, Zaria.
    [82] Krishnaiah P (2017) Development of polylactide and polypropylene composites reinforced with sisal fibers and halloysite nanotubes for automotive and structural engineering applications. Available from: http://eprints.nottingham.ac.uk/43498/1/PhD%20Thesis_Prakash%20Krishnaiah.pdf.
    [83] Roylance D (2001) Finite element analysis. Available from: https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2012/09/ME1023.2.3.pdf.
    [84] Nikishkov GP (2004) Introduction to the finite element method. Available from: https://citeseerx.ist.psu.edu/document?repid = rep1 & type = pdf & doi = d3fc5d5051cb464be2e4238f18ddf54d40576ddb.
    [85] Liu Y, Zhao T, Ju W, et al. (2017) Materials discovery and design using machine learning. J Materiomics 3: 159–177. https://doi.org/10.1016/j.jmat.2017.08.002 doi: 10.1016/j.jmat.2017.08.002
    [86] Choi W, Advincula RC, Wu HF, et al. (2023) Artificial intelligence and machine learning in the design and additive manufacturing of responsive composites. MRS Communications 13: 714–724. https://doi.org/10.1557/s43579-023-00473-9 doi: 10.1557/s43579-023-00473-9
    [87] Steinhauser MO, Hiermaier S (2009) A review of computational methods in materials science: Examples from shock-wave and polymer physics. Int J Mol Sci 10: 5135–5216. https://doi.org/10.3390/ijms10125135 doi: 10.3390/ijms10125135
    [88] Müzel SD, Bonhin EP, Guimarães NM, et al. (2020) Application of the finite element method in the analysis of composite materials: A review. Polymers 12: 818. https://doi.org/10.3390/polym12040818 doi: 10.3390/polym12040818
    [89] Agarwal M, Pasupathy P, Wu X, et al. (2024) Multiscale computational and artificial intelligence modelsof linear and nonlinear composites. Small Sci 4: 2300185. https://doi.org/10.1002/smsc.202300185 doi: 10.1002/smsc.202300185
    [90] Uzochukwu MI, Momoh OJ, Adebisi AA, et al. (2024) Evaluation of the mechanical properties of natural rubber/baobab (adansonia digitata) fiber nanocomposite using response surface methodology: A pedagogical approach. Chem Afr. https://doi.org/10.1007/s42250-024-00957-8
    [91] Adesina OT, Sadiku ER, Jamiru T, et al. (2019) Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. Int J Adv Manuf Technol 102: 4047–4058. https://doi.org/10.1007/s00170-019-03530-7 doi: 10.1007/s00170-019-03530-7
    [92] Razak SIA, Rahman WAWA, Sharif NFA, et al. (2012) Simultaneous numerical optimization of the mechanical and electrical properties of polyaniline coated kenaf fiber using response surface methodology: Nanostructured polyaniline on natural fiber. Compos Interfaces 19: 411–424. https://doi.org/10.1080/15685543.2012.757957 doi: 10.1080/15685543.2012.757957
    [93] Johnson AF, Pickett AK, Rozycki P (2001) Computational methods for predicting impact damage in composite structures. Compos Sci Tech 61: 2183–2192. https://doi.org/10.1016/S0266-3538(01)00111-7 doi: 10.1016/S0266-3538(01)00111-7
  • This article has been cited by:

    1. Yinxin Kou, Wei Chen, Jie Wang, Wen Liu, Shanguo Yang, Houguang Liu, Personalized prediction of speech intelligibility for hearing-impaired listeners using a physiological model of the human ear, 2024, 221, 0003682X, 110006, 10.1016/j.apacoust.2024.110006
    2. Yinxin Kou, Houguang Liu, Weiwei Guo, Wei Chen, Zhaohai Liu, Jianshu Liu, Nonlinear Electromechanical Analysis of Middle Ear Motion and Stability Induced by the Vibrant Soundbridge Coupled to the Stapes Head, 2025, 09977538, 105675, 10.1016/j.euromechsol.2025.105675
    3. Houguang Liu, Zhaohai Liu, Jianshu Liu, Thomas Lenarz, Hannes Maier, Effect of electromagnetic transducer design parameters on round-window stimulation in otosclerosis: a nonlinear dynamic analysis, 2025, 0924-090X, 10.1007/s11071-025-11149-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2582) PDF downloads(198) Cited by(3)

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog