
The arctan uniform distribution (AUD) is a brand-new bounded distribution that may be used for modeling a variety of existing bounded real-world datasets. Ranked set sampling (RSS) is a useful technique for parameter estimation when accurate measurement of the observation is challenging and/or expensive. In the current study, the parameter estimator of the AUD is addressed based on RSS and simple random sampling (SRS) techniques. Some of the popular conventional estimating techniques are considered. The efficiency of the produced estimates is compared using a Monte Carlo simulation. It appears that the maximum product spacing method has an advantage in assessing the quality of proposed estimates based on the outcomes of our simulations for both the SRS and RSS datasets. In comparison to estimates produced from the SRS datasets, it can be seen that those from the RSS datasets are more reliable. This implies that RSS is a more effective sampling technique in terms of generating estimates with a smaller mean squared error. The benefit of the RSS design over the SRS design is further supported by real data results.
Citation: Salem A. Alyami, Amal S. Hassan, Ibrahim Elbatal, Naif Alotaibi, Ahmed M. Gemeay, Mohammed Elgarhy. Estimation methods based on ranked set sampling for the arctan uniform distribution with application[J]. AIMS Mathematics, 2024, 9(4): 10304-10332. doi: 10.3934/math.2024504
[1] | Olayan Albalawi . Estimation techniques utilizing dual auxiliary variables in stratified two-phase sampling. AIMS Mathematics, 2024, 9(11): 33139-33160. doi: 10.3934/math.20241582 |
[2] | Haidy A. Newer, Bader S Alanazi . Bayesian estimation and prediction for linear exponential models using ordered moving extremes ranked set sampling in medical data. AIMS Mathematics, 2025, 10(1): 1162-1182. doi: 10.3934/math.2025055 |
[3] | Nuran M. Hassan, M. Nagy, Subhankar Dutta . Statistical inference for the bathtub-shaped distribution using balanced and unbalanced sampling techniques. AIMS Mathematics, 2024, 9(9): 25049-25069. doi: 10.3934/math.20241221 |
[4] | Haidy A. Newer, Mostafa M. Mohie El-Din, Hend S. Ali, Isra Al-Shbeil, Walid Emam . Statistical inference for the Nadarajah-Haghighi distribution based on ranked set sampling with applications. AIMS Mathematics, 2023, 8(9): 21572-21590. doi: 10.3934/math.20231099 |
[5] | Mehreen Fatima, Saman Hanif Shahbaz, Muhammad Hanif, Muhammad Qaiser Shahbaz . A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 2022, 7(4): 6478-6488. doi: 10.3934/math.2022361 |
[6] | S. P. Arun, M. R. Irshad, R. Maya, Amer I. Al-Omari, Shokrya S. Alshqaq . Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal distribution via multistage ranked set sampling. AIMS Mathematics, 2025, 10(2): 2083-2097. doi: 10.3934/math.2025098 |
[7] | Hleil Alrweili, Fatimah A. Almulhim . Estimation of the finite population mean using extreme values and ranks of the auxiliary variable in two-phase sampling. AIMS Mathematics, 2025, 10(4): 8794-8817. doi: 10.3934/math.2025403 |
[8] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Analysis of reliability index R=P(Y<X) for newly extended xgamma progressively first-failure censored samples with applications. AIMS Mathematics, 2024, 9(11): 32200-32231. doi: 10.3934/math.20241546 |
[9] | Anoop Kumar, Shashi Bhushan, Abdullah Mohammed Alomair . Assessment of correlated measurement errors in presence of missing data using ranked set sampling. AIMS Mathematics, 2025, 10(4): 9805-9831. doi: 10.3934/math.2025449 |
[10] | Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069 |
The arctan uniform distribution (AUD) is a brand-new bounded distribution that may be used for modeling a variety of existing bounded real-world datasets. Ranked set sampling (RSS) is a useful technique for parameter estimation when accurate measurement of the observation is challenging and/or expensive. In the current study, the parameter estimator of the AUD is addressed based on RSS and simple random sampling (SRS) techniques. Some of the popular conventional estimating techniques are considered. The efficiency of the produced estimates is compared using a Monte Carlo simulation. It appears that the maximum product spacing method has an advantage in assessing the quality of proposed estimates based on the outcomes of our simulations for both the SRS and RSS datasets. In comparison to estimates produced from the SRS datasets, it can be seen that those from the RSS datasets are more reliable. This implies that RSS is a more effective sampling technique in terms of generating estimates with a smaller mean squared error. The benefit of the RSS design over the SRS design is further supported by real data results.
Continuous data that strictly falls in the open interval (0, 1) is something we see rather frequently. Practitioners must represent this using the proper distributions, management, etc. This type of analysis includes studying ratios, percentages, etc. The beta distribution, which is utilized in a variety of situations, is one of the most versatile such distributions. However, there is a disadvantage to utilizing the beta distribution, as it is insufficient for some real-world scenarios, such as hydrological data. Considering this, the Topp-Leone distribution [1] and Kumaraswamy's distribution [2] merit consideration as alternatives to the beta model that have similar structure. The distribution and quantile functions may be represented in closed forms, which is a benefit in this case. To model datasets in the fields of biology, engineering, actuarial science, economics, and financial risk management, among others, several unit distributions have been created. Some of these significant, well-known distributions include the unit logistic distribution [3], unit Gompertz and unit Birnbaum-Saunders distributions [4,5], extended reduced Kies distribution [6], unit-Weibull distributions [7], unit generalized half normal distribution [8], unit Lindley distribution [9], unit Burr XII distribution [10], power unit Burr-XII distribution[11], unit gamma-Gompertz distribution [12], unit Teissier distribution[13], and generalized unit half-logistic geometric distribution[14], etc.
Recently, Kharazmi et al. [15] proposed a new one-parameter unit distribution based on the definition of the arctan function. The new bounded distribution is called the arctan uniform distribution (AUD). The probability density function (PDF) and cumulative distribution function (CDF) of the AUD are given, respectively, by:
f(z)=δtan−1(δ)+δ2z2tan−1(δ),0<z<1,δ>0, | (1.1) |
and
F(z)=tan−1(δz)tan−1(δ),0<z<1,δ>0, | (1.2) |
where δ is the scale parameter. We depict the PDF (1.1) in Figure 1 for a few different choices of the parameter δ to examine the effect of δ on the PDF behavior. It can be concluded that the AUD has asymmetric shapes. Kharazmi et al. [15] also provided the moments of this distribution.
Cost-effective sampling is a major issue in some research, especially when measuring the relevant feature is costly, inconvenient, or time-consuming. It is possible to give the sample items that are gathered additional structure using ranked set sampling (RSS) and to leverage this structure to create effective inferential processes. It is possible to rank tiny groups of units exactly, even without true quantification. The ranking might be carried out using eye examination, preliminary data, expert judgment, prior sampling episodes, or other imprecise techniques without the need for real measurement. The RSS method is a great instrument for attaining observational economy since it increases the accuracy attained per unit of the sample. This method of data collection was initially put forth by McIntyre [16] as an alternative to the widely used simple random sample (SRS) methodology for improving the effectiveness of the sample mean. It is used extensively in the fields of agriculture, biology, engineering, quality control, and environmental studies (see [17,18,19,20,21,22,23,24,25]). The procedures below should be followed to implement the RSS of s observations from a population:
(1) Choose (s) SRS with size (s) each, with s to be a low number.
(2) In each sample, order the units from smallest to greatest. Without actually measuring the units about the variable of interest, ranking is performed.
(3) Only the a1th greatest unit in the a1th sample, a1=1,..,s is used for actual measurements. As a result, the RSS associated with this cycle will be Z1(1:m∘∘),Z2(2:m∘∘),....,Zm∘∘(m∘∘:m∘∘). Note that Za1(a1:m∘∘) stands for the a1th order statistic from the a1th row.
(4) Carry out the preceding steps v times (cycles) to obtain sample size m∘∘=sv, where s is the set size and v is the cycle number. As a result, the observed RSS for this v cycle will be Za1(a1:m∘∘)a2, a1=1,..,s, a2=1,..,v, where s is the set size and v is the cycle count. Hence for simplified form, Za1a2 will be used for the rest of the article instead of Za1(a1:m∘∘)a2.
Statistical inference relies heavily on the parametric estimate approach employing the sampling design strategy. Numerous studies have examined various estimation techniques for estimating parameters based on RSS designs and their extensions. Reference [26] investigated how to estimate the location-scale family distributions' parameters. Some examples included the normal, exponential, and gamma distributions [27], the half logistic distribution [28], the Gumbel distribution [29], the generalized Rayleigh distribution [30], the Pareto distribution[31,32], the x-gamma distribution [33], the new Weibull-Pareto distribution[34], the extended inverted Topp-Leone distribution [35], the generalized quasi-Lindley distribution [36], and the inverse Kumaraswamy distribution [37]. For more, see [38,39,40,41,42].
Statistical inference relies heavily on the parametric estimating approach and the sampling design strategy. The statistical literature frequently proposes different estimation approaches, since parameter estimation is important in practice. Generally, maximum likelihood (ML) estimation is the first step in the estimation process. This method's easy-to-understand formulation is the reason for its popularity. The estimators that are produced using this approach, for instance, are normally distributed and asymptotically consistent. Other, more widely used estimating techniques are available in the literature. These techniques include maximum product of spacing (MPS), least squares (LS), weighted LS (WLS), Cramér-von Mises (CM), Anderson-Darling (AD), minimum spacing absolute-log distance (MSALD), right-tail AD (RAD), left-tail AD (LAD), minimum spacing absolute distance (MSAD), percentile (PS), and a few more.
This study's objective is to present an in-depth assessment of several frequentist approaches to the AUD. The wide range of fields in which the RSS approach is used served as the inspiration for this concentration. In addition, the RSS design offers, for a fixed sample size, more efficient estimators than the SRS design. We use certain significant traditional estimating techniques based on the following procedures: RSS and SRS. The following estimation methods are taken into consideration: MPS, LS, ML, WLS, CM, AD, MSALD, RAD, LAD, MSAD, and PS. A simulation task is then used to compare the suggested estimates based on the RSS design to those offered by the SRS approach for the same sample size. Some precision metrics are used in comparison studies. The novelty of this study stems from the lack of prior research evaluating all of these estimating techniques for the AUD based on RSS. For illustration reasons, an insurance data set is investigated as well. Therefore, the study will serve as a guide for selecting the most appropriate estimating technique for the AUD, which we believe applied statisticians would find fascinating.
The following describes how this article is organized: Section 2 addresses the ML estimate (MLE) of the AUD parameter based on the RSS and SRS approaches. A few essential minimum distances of estimation for the proposed AUD are discussed in Section 3. In Section 4, several maximum and minimum product of spacing estimation are covered. The WLS, LS, and PS estimation techniques of the AUD are presented in Section 5. The effectiveness of the supplied estimating techniques is compared and evaluated in Section 6 using a Monte Carlo simulation. In Sections 7 and 8, respectively, an analysis of an insurance dataset is provided, followed by a conclusion.
In this section, the MLE of parameter δ of the AUD is considered based on RSS and SRS. At first, assume that Za1a2={Za1a2,a1=1,...,s,a2=1,...,v}, is an RSS of size m∘∘ with PDF (1.1) and CDF (1.2), where v is the cycles count and s is the set size. It can be seen from the structure of RSS that the data are all mutually independent, and, in addition, for each a1=1,...,s, the data are identically distributed. It should be noted that, if the judgment ranking is perfect, the PDF of a1th order statistics Za1a2 is as below:
fZa1a2(z)=m∘∘!(a1−1)!(m∘∘−a1)[f(z)]a1−1[1−F(z)]m∘∘−a1. | (2.1) |
The likelihood function (LF) of the AUD, based on RSS, is given by:
L(δ)=s∏a1=1v∏a2=1m∘∘!(a1−1)!(m∘∘−a1)[δtan−1(δ)(1+δ2z2a1a2)]a1−1[1−tan−1(δza1a2)tan−1(δ)]m∘∘−a1. | (2.2) |
The log-LF of (2.2), denoted by ℓ∗, is as follows:
ℓ∗∝s∑a1=1v∑a2=1(a1−1)[lnδ−ln(tan−1(δ))−ln(1+δ2z2a1a2)]+(m∘∘−a1)ln[C(δ)], | (2.3) |
where C(δ)=[1−tan−1(δza1a2)tan−1(δ)]. The MLE of δ says ˆδ1 is obtained by maximizing (2.3), which can be computed as the solution of the following nonlinear equation:
∂ℓ∗∂δ=s∑a1=1v∑a2=1[(a1−1)δ−2δ(a1−1)z2a1a2(1+δ2z2a1a2)−(a1−1)(1+δ2)tan−1(δ)]+s∑a1=1v∑a2=1(m∘∘−a1)C′(δ)C(δ), | (2.4) |
where C′(δ)=tan−1(δza1a2)[tan−1(δ)]2(1+δ2)−1(1+δ2z2a1a2)tan−1(δ).
Setting (2.4) to zero and solving numerically, we get the MLE ˆδ1 of δ.
Additionally, the MLE of the AUD parameter under SRS is the subject of the following discussion. We assume that z1,z2,...,zm∘∘ is an observed SRS of size m∘∘ from the AUD with PDF (1.1). The log-LF, say ℓ∗1, based on SRS, is given by
ℓ∗1=m∘∘ln(δ)−m∘∘ln[tan−1(δ)]−m∘∘∑i=1ln(1+δ2z2i). |
The MLE ⃜δ1, of δ, is provided as the solution of the following non-linear equation after setting with zero:
∂ℓ∗1∂δ=m∘∘δ−m∘∘∑i=0m∘∘(1+δ2)tan−1(δ)−m∘∘∑i=02δzi(1+δ2z2i). | (2.5) |
Then, ⃜δ1 is provided from (2.5) after setting with zero and using the numerical technique.
This section illustrates four estimation methods that minimize goodness-of-fit statistics, including AD, RAD, LAD, and CM. This series of estimating methods was created based on the discrepancy between the estimated CDF and the actual distribution function. This section presents the estimates of AUD parameters for SRS and RSS using the mentioned methodologies.
Reference [43] introduced the AD test as an alternative to traditional statistical procedures to identify sample distribution deviations from the presumed distribution. Here, six estimators of parameter δ are produced based on the RSS and SRS.
Suppose that the ordered items Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) are an RSS drawn from the AUD with sample size m∘∘=sv, where s is set size and v is the cycle count. By minimizing the following equation, the AD estimate (ADE) ˆδ2 of δ for the AUD is generated.
ϑ1=−m∘∘−1m∘∘m∘∘∑k=1(2k−1){logF(z(k:m∘∘)|δ)+logˉF(z(m∘∘−k+1:m∘∘)|δ)}. | (3.1) |
Instead of using (3.1), the ADE ˆδ2 of the AUD may be calculated by solving the nonlinear equation illustrated below:
m∘∘∑k=1(2k−1){φ1(z(k:m∘∘)|δ)F(z(k:m∘∘)|δ)−φ2(z(m∘∘−k+1:m∘∘)|δ)ˉF(z(m∘∘−k+1:m∘∘)|δ)}=0, |
where,
φ1(z(k:m∘∘)|δ)=tan−1(δz(k:m∘∘))[tan−1(δ)]2(1+δ2)−z(k:m∘∘)(1+δ2z2(k:m∘∘))tan−1(δ), | (3.2) |
and
φ2(z(m∘∘−k+1:m∘∘)|δ)=tan−1(δz(m∘∘−k+1:m∘∘))[tan−1(δ)]2(1+δ2)−z(m∘∘−k+1:m∘∘)(1+δ2z2(m∘∘−k+1:m∘∘))tan−1(δ). | (3.3) |
The following function is used to provide the RAD estimate (RADE) ˆδ3 for δ of the AUD:
ϑ2=m∘∘2−2m∘∘∑k=1F(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)logˉF(z(m∘∘+1−k:m∘∘)|δ). | (3.4) |
Instead of using (3.4), the RADE ˆδ3 of the AUD may be calculated by solving the nonlinear equation illustrated below:
−2m∘∘∑k=1φ1(z(k:m∘∘)|δ)+1m∘∘m∘∘∑k=1(2k−1)φ2(z(m∘∘−k+1:m∘∘)|δ)ˉF(z(m∘∘−k+1:m∘∘)|δ)=0, |
where φ1(.) and φ2(.) are defined in (3.2) and (3.3).
The following function is used to provide the LAD estimate (LADE) ˆδ4 for δ of the AUD:
ϑ3=−3m∘∘2+2m∘∘∑k=1F(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)logF(z(k:m∘∘)|δ). |
To obtain the LADE ˆδ4 of the AUD, the following nonlinear equation may be solved:
2m∘∘∑k=1φ1(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)φ1(z(k:m∘∘)|δ)F(z(k:m∘∘)|δ)=0, |
where, φ1(.) is defined in (3.2).
Next, let us consider the scenario in which the ordered items Z(1),Z(2),...,Z(m∘∘) are SRS seen from AUD with sample size m∘∘. The following function is used to provide the ADE ⃜δ2, for δ of the AUD:
ϑ∙1=−m∘∘−1m∘∘m∘∘∑l=1(2l−1){logF(z(l)|δ)+logˉF(z(m∘∘−l+1)|δ)}, | (3.5) |
with respect to δ. The following equation which is equivalent to (3.5) may be solved numerically to provide ⃜δ2
m∘∘∑l=1(2l−1){φ′1(z(l)|δ)F(z(l)|δ)−φ′2(z(m∘∘−l+1)|δ)ˉF(z(m∘∘−l+1)|δ)}=0, |
where
φ′1(z(l)|δ)=tan−1(δz(l))[tan−1(δ)]2(1+δ2)−z(m∘∘−l+1)(1+δ2z(m∘∘−l+1))tan−1(δ), | (3.6) |
and
φ′2(z(m∘∘−l+1)|δ)=tan−1(δz(m∘∘−l+1))[tan−1(δ)]2(1+δ2)−z(m∘∘−l+1)(1+δ2z2(m∘∘−l+1))tan−1(δ). | (3.7) |
The following function is minimized for obtaining the RADE ⃜δ3 for the AUD.
ϑ2∙=m∘∘2−2m∘∘∑l=1F(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)logˉF(z(m∘∘+1−l)|δ). | (3.8) |
The RTDE ⃜δ3 of the AUD is determined by solving the numerically the following nonlinear equation rather than using (3.8):
−2m∘∘∑l=1φ′1(z(l)|δ)+1m∘∘m∘∘∑l=1(2l−1)φ′2(z(m∘∘+1−l)|δ)ˉF(z(m∘∘+1−l)|δ)=0, |
where φ′1(.) and φ′2(.) are defined in (3.6) and (3.7).
The following function is used to provide the LADE ⃜δ4 for δ of the AUD:
ϑ3∙=−3m∘∘2+2m∘∘∑l=1F(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)logF(zl)|δ). |
To obtain the LADE ⃜δ4 of the AUD, the following nonlinear equation may be solved:
ϑ3∙=2m∘∘∑l=1φ′1(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)φ′1(z(l)|δ)F(z1)|δ)=0, |
where φ′1(.) is defined in (3.6).
To support the decision to use minimal distance estimators of the CM type, [44] offered empirical evidence showing the estimator's bias is less than that of other minimum distance estimators. Here, the RSS and SRS techniques are used to produce the CM estimate (CME) for the AUD parameter.
Let us assume that the ordered items Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘), with sample size m∘∘=sv, where s is set size and v is the cycle numbers, are the selected RSS from CDF (1.2). In order to obtain CME ˆδ5 of δ, the following function is minimized with regard to δ :
ψ=112m∘∘+m∘∘∑k=1{F(z(k:m∘∘)|δ)−2k−12m∘∘}2. | (3.9) |
Instead of using (3.9), CME can be derived by resolving the following nonlinear equation:
m∘∘∑k=1{F(z(k:m∘∘)|δ)−2k−12m∘∘}φ1(z(k:m∘∘)|δ)=0, |
where φ1(.) is defined in (3.2).
Currently, suppose that the ordered items Z(1),Z(2),...,Z(m∘∘) are the seen SRS from the AUD with sample size m∘∘. So, the following function is minimized to determine the CME ⃜δ5 of δ:
ψ′=112m∘∘+m∘∘∑l=1{F(z(l)|δ)−2l−12m∘∘}2. | (3.10) |
Or equivalent to (3.10), the CME ⃜δ5 of δ is produced by minimizing the following function
m∘∘∑l=1{F(z(l)|δ)−2l−12m∘∘}φ′1(z(l)|δ)=0, |
where φ′1(.) is defined in (3.6).
The concept of differences in the values of the CDF at successive data points, according to Cheng and Amin [45], may be used to get the MPS estimate (MPSE) of the unknown parameter of the AUD. This approach is just as effective as ML estimators and consistent under a wider range of conditions.
Let Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) be ordered items of the RSS drawn from the AUD with sample size m∘∘=sv, where s is set size and v is the cycle numbers. The uniform spacings may be defined as follows based on a random sample taken from the AUD.
ℏk(δ)=F(z(k:m∘∘)|δ)−F(z(k−1:m∘∘)|δ),k=1,2,...,m, |
where F(z(0:m∘∘)|δ)=0,F(z(m∘∘+1:m∘∘)|δ)=1, such that m∘∘+1∑k=1ℏk(δ)=1.
To get the MPSE ˆδ6 of δ, the geometric mean of the spacing should be maximized.
K(δ)={m∘∘+1∏k=1ℏk(δ)}1m∘∘+1, |
or, alternatively, there is maximizing the function that follows:
H(δ)=1m∘∘+1m∘∘+1∑k=1ln[ℏk(δ)]. |
The MPSE ˆδ6 of δ can also be obtained by numerically resolving the following nonlinear equations:
∂H(δ)∂δ=11+m∘∘m∘∘+1∑k=11[ℏ(δ)][φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
where φ1(z(k:m∘∘)|δ) is defined in (3.2) and φ1(z(k−1:m∘∘)|δ) has the same expression with z(k−1:m∘∘).
Similarly, the minimum spacing distance estimator of δ is created by minimizing the following function.
H∙(δ)=m∘∘+1∑k=1Δ[ℏk(δ),1m∘∘+1], |
where Δ(u1,u2) is the suitable distance. According to Ref. [46], for Δ(u1,u2)=|u1−u2|, Δ(u1,u2)=|logu1−logu2| are referred to the MSAD and MSALD, respectively. As a result, the MSAD estimate (MSADE) and MSALD estimate (MSALDE) of δ are provided by minimizing the following functions:
H∙(δ)=m∘∘+1∑k=1|ℏk(δ)−1m∘∘+1|, | (4.1) |
and
H∙(δ)=m∘∘+1∑k=1|log(ℏk(δ))−log(1m∘∘+1)|, | (4.2) |
with respect to δ. Equivalently to (4.1) and (4.2), the MSADE ˆδ7 and MSALDE ˆδ8 are provided by solving the nonlinear equations
∂H∙(δ)∂δ=m∘∘+1∑k=1ℏk(δ)−1m∘∘+1|ℏk(δ)−1m∘∘+1|[φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
and
∂H∙(δ)∂δ=m∘∘+1∑k=1log(ℏk(δ))−log(1m∘∘+1)|log(ℏk(δ))−log(1m∘∘+1)|[φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
where φ1(z(k:m∘∘)|δ) and φ1(z(k−1:m∘∘)|δ) are defined above.
In addition to the above, the MPSE ⃜δ6 of δ for the AUD under SRS is obtained. Let Z(1),Z(2),...,Z(m∘∘) be SRS of size m∘∘ from CDF (1.2), and the uniform spacings in this situation are
ℏ∙l(δ)=F(z(l)|δ)−F(z(l−1)|δ),l=1,2,...,m∘∘, |
where F(z(0)|δ)=0,F(z(m∘∘+1)|δ)=1, such as m∘∘+1∑l=1ℏ∙l(δ)=1.
The MPSE ⃜δ6 of δ is provided by maximizing the following function:
K(δ)=11+m∘∘m∘∘+1∑l=1ln[ℏ∙l(δ)]. | (4.3) |
Equivalent to (4.3), the MPSE ⃜δ6 of δ is produced by solving the following nonlinear equation numerically:
∂K(δ)∂δ=11+m∘∘m∘∘+1∑l=11[ℏ∙l(δ)][φ′1(z(l)|δ)−φ′1(z(l−1)|δ)]=0, |
where φ′1(z(l)|δ) is defined in (3.6), and φ′1(z(l−1)|δ) has the same expression with z(l−1).
Furthermore, MSADE ⃜δ7 and MSALDE ⃜δ8 are obtained by solving numerically the following equations:
K∙(δ)=m∘∘+1∑k=1|ℏ∙l(δ)−1m∘∘+1|, | (4.4) |
and
K∙(δ)=m∘∘+1∑k=1|log(ℏ∙l(δ))−log(1m∘∘+1)|, | (4.5) |
with respect to δ. Equivalently to (4.4) and (4.5), the MSADE ⃜δ7 and MSALDE ⃜δ8 are provided by solving the nonlinear equations
∂K∙(δ)∂δ=m∘∘+1∑l=1ℏ∙l(δ)−1m∘∘+1|ℏ∙l(δ)−1m∘∘+1|[φ1(z(l)|δ)−φ1(z(l−1)|δ)]=0, |
and
∂K∙(δ)∂δ=m∘∘+1∑l=1log(ℏ∙l(δ))−log(1m∘∘+1)|log(ℏ∙l(δ))−log(1m∘∘+1)|[φ1(z(l)|δ)−φ1(z(l−1)|δ)]=0, |
where, φ1(z(l)|δ) and φ1(z(l−1)|δ) are defined above.
This section offers the LS estimate (LSE), WLS estimate (WLSE), and PS estimate (PSE) for the AUD parameter based on RSS and SRS methods.
Let Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) be an observed ordered RSS with size m∘∘=sv, from the AUD. The LSE ˆδ9 and WLSE ˆδ10 are derived by minimizing the following functions with regard to δ:
γ=m∘∘∑k=1[F(z(k:m∘∘)|δ)−km∘∘+1]2, | (5.1) |
and
γ′=m∘∘∑k=1(m∘∘+1)2(m∘∘+2)k(m∘∘−k+1)[F(z(k:m∘∘)|δ)−km∘∘+1]2. | (5.2) |
These estimators ˆδ9 are ˆδ10, which are equivalent to (5.1) and (5.2), and can be obtained by solving the following equations numerically:
m∘∘∑k=1[F(z(k:m∘∘)|δ)−km∘∘+1]φ1(z(k:m∘∘)|δ)=0, |
and
m∘∘∑k=1(m∘∘+1)2(m∘∘+2)k(m∘∘−k+1)[F(z(k:m∘∘)|δ)−km∘∘+1]φ1(z(k:m∘∘)|δ)=0, |
where φ1(z(k:m∘∘)|δ) is defined before.
Additionally, suppose that Z(1),Z(2),...,Z(m∘∘) is an ordered SRS of size m∘∘ taken from the AUD. The LSE and WLSE ⃜δ9,⃜δ10 of δ are produced by solving numerically the following equations:
m∘∘∑l=1[F(z(l)|δ)−lm∘∘+1]φ1(z(l)|δ)=0, |
and
m∘∘∑l=1(m∘∘+1)2(m∘∘+2)l(m∘∘−l+1)[F(z(l)|δ)−lm∘∘+1]φ1(z(l)|δ)=0, |
where φ1(z(k:m∘∘)|δ) is defined before.
One of the often employed methods for estimating the Weibull distribution's parameters is the percentile approach, which differs from other estimation techniques in terms of its ease of computation and effectiveness in parameter estimation [47]. Here, PSE ˆδ11 of δ of the AUD is provided using RSS and SRS methods.
Consider Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) as an observed ordered RSS, with size m∘∘=sv, available from the AUD. From the PSE of the AUD's parameter one may get ˆδ11 by minimizing the following function and assuming that pk=km∘∘+1 is the estimate of F(z(k:m∘∘)|δ)
Λ=m∘∘∑k=1[z(k:m∘∘)−1δtan(p(k:m∘∘)tan−1(δ))], |
with respect to δ.
In the case of the SRS method, let Z(1),Z(2),...,Z(m∘∘) be an ordered SRS of size m∘∘ drawn from AUD. The PSE ⃜δ11 of δ is obtained, by minimizing the following equation:
Λ1=m∘∘∑l=1[z(l)−1δtan(p(l)tan−1(δ))], |
with respect to δ.
This section focuses on the examination of various estimation methods presented in this paper. The goal is to assess the efficacy of these methods in estimating model parameters through the generation of random datasets derived from the proposed model. Subsequently, these datasets will be ranked, and the estimation methods will be employed to identify the most recommended one. The simulation will be conducted with the assumption of a flawless ranking, outlined as follows:
● To generate an RSS from the AUD with a fixed set size s=5 and different cycle numbers v=3,10,24,40,60, and 90, the corresponding sample sizes m∘∘=sv=15,50,120,200,300, and 450 are employed.
● Generate an SRS from the AUD with the specified sample sizes, m∘∘ = 15, 50, 120, 200, 300, and 450.
● We have a set of estimates corresponding to each sample size, using the true parameter values (δ) of 0.15, 0.6, 1.0, 1.5, 2.0, and 2.5.
● To evaluate the effectiveness of the estimation methods, three measures are employed, which include the following:
Average of absolute bias (bias), |bias(^δδ)|= 1M∑Mi=1|^δδi−δδ|, mean squared errors (MSE), MSE=1M∑Mi=1(^δδi−δδ)2, mean absolute relative errors (MRE) MRE=1M∑Mi=1|^δδi−δδ|/δδ.
● The measures outlined in the previous step serve as objective benchmarks for evaluating the accuracy and reliability of the estimated parameters. Utilizing these evaluation metrics enables a comprehensive assessment of the performance of the estimation techniques. This evaluation process provides valuable insights into the effectiveness and appropriateness of these techniques for the particular model under consideration.
● By repeating this process multiple times through numerous iterations, we can obtain a reliable and robust assessment of the estimation techniques. This repeated evaluation helps ensure that the performance results are consistent and representative, contributing to a more thorough understanding of the effectiveness of these techniques in estimating the model parameters.
● The results of the evaluation measures are presented in Tables 1–12, encompassing both SRS and RSS. These tables offer a comprehensive summary of the outcomes obtained. In these tables, the magnitude of each value signifies its relative effectiveness when compared to all the estimation approaches examined in the study. Lower-ranked values indicate stronger and more significant performance relative to the investigated estimation methods. These tables serve as a valuable reference for assessing the relative power and significance of the different estimation techniques.
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ⃜δ | 0.5128{5} | 0.5108{4} | 0.5268{8} | 0.4521{1} | 0.5305{9} | 0.4879{3} | 0.4799{2} | 0.5257{7} | 0.5755{11} | 0.5345{10} | 0.5223{6} |
MSE | ⃜δ | 0.5886{4} | 0.5957{5} | 0.6356{9} | 0.4704{1} | 0.6343{8} | 0.5022{2} | 0.5088{3} | 0.6309{7} | 0.806{11} | 0.7126{10} | 0.6245{6} | |
MRE | ⃜δ | 3.4184{5} | 3.405{4} | 3.5117{8} | 3.0141{1} | 3.5368{9} | 3.2523{3} | 3.1997{2} | 3.5049{7} | 3.8366{11} | 3.563{10} | 3.4823{6} | |
∑Ranks | 14{5} | 13{4} | 25{8} | 3{1} | 26{9} | 8{3} | 7{2} | 21{7} | 33{11} | 30{10} | 18{6} | ||
50 | bias | ⃜δ | 0.3349{4} | 0.3408{6} | 0.3462{8} | 0.3171{1} | 0.337{5} | 0.329{3} | 0.327{2} | 0.3414{7} | 0.3703{11} | 0.361{10} | 0.3535{9} |
MSE | ⃜δ | 0.1991{4} | 0.2068{6} | 0.2138{8} | 0.1837{1} | 0.205{5} | 0.1905{2} | 0.1917{3} | 0.2082{7} | 0.2532{10} | 0.2582{11} | 0.2295{9} | |
MRE | ⃜δ | 2.2326{4} | 2.2718{6} | 2.3083{8} | 2.1143{1} | 2.2469{5} | 2.1934{3} | 2.18{2} | 2.2762{7} | 2.4686{11} | 2.4064{10} | 2.357{9} | |
∑Ranks | 12{4} | 18{6} | 24{8} | 3{1} | 15{5} | 8{3} | 7{2} | 21{7} | 32{11} | 31{10} | 27{9} | ||
120 | bias | ⃜δ | 0.2637{7} | 0.2659{8} | 0.2568{2} | 0.2537{1} | 0.2628{5} | 0.2617{4} | 0.2591{3} | 0.2635{6} | 0.2767{9} | 0.2825{11} | 0.279{10} |
MSE | ⃜δ | 0.1088{5} | 0.1116{8} | 0.1055{2} | 0.1044{1} | 0.1099{7} | 0.1089{6} | 0.1061{3} | 0.1073{4} | 0.1246{9} | 0.1374{11} | 0.1272{10} | |
MRE | ⃜δ | 1.7582{7} | 1.7728{8} | 1.7119{2} | 1.6911{1} | 1.7523{5} | 1.7446{4} | 1.7271{3} | 1.7564{6} | 1.8445{9} | 1.8832{11} | 1.86{10} | |
∑Ranks | 19{7} | 24{8} | 6{2} | 3{1} | 17{6} | 14{4} | 9{3} | 16{5} | 27{9} | 33{11} | 30{10} | ||
200 | bias | ⃜δ | 0.2313{8} | 0.2301{6} | 0.2294{4} | 0.2173{1} | 0.2272{2} | 0.2307{7} | 0.2277{3} | 0.2297{5} | 0.2403{9} | 0.2447{11} | 0.2438{10} |
MSE | ⃜δ | 0.0796{8} | 0.0781{5} | 0.0788{6} | 0.0722{1} | 0.0761{2} | 0.0791{7} | 0.0764{3} | 0.0769{4} | 0.0874{9} | 0.0958{11} | 0.0907{10} | |
MRE | ⃜δ | 1.5418{8} | 1.534{6} | 1.5293{4} | 1.4486{1} | 1.5149{2} | 1.5379{7} | 1.5181{3} | 1.5314{5} | 1.6019{9} | 1.6315{11} | 1.6256{10} | |
∑Ranks | 24{8} | 17{6} | 14{4.5} | 3{1} | 6{2} | 21{7} | 9{3} | 14{4.5} | 27{9} | 33{11} | 30{10} | ||
300 | bias | ⃜δ | 0.2075{4} | 0.2098{6} | 0.2108{8} | 0.1925{1} | 0.2059{3} | 0.2084{5} | 0.205{2} | 0.2106{7} | 0.2183{9} | 0.223{11} | 0.2207{10} |
MSE | ⃜δ | 0.0603{4} | 0.062{7} | 0.0629{8} | 0.0549{1} | 0.0602{3} | 0.0614{5} | 0.0593{2} | 0.0619{6} | 0.0686{9} | 0.0763{11} | 0.0701{10} | |
MRE | ⃜δ | 1.3836{4} | 1.3986{6} | 1.4053{8} | 1.283{1} | 1.3724{3} | 1.3896{5} | 1.3666{2} | 1.4037{7} | 1.4553{9} | 1.4864{11} | 1.4712{10} | |
∑Ranks | 12{4} | 19{6} | 24{8} | 3{1} | 9{3} | 15{5} | 6{2} | 20{7} | 27{9} | 33{11} | 30{10} | ||
450 | bias | ⃜δ | 0.191{8} | 0.1908{7} | 0.1869{3.5} | 0.1744{1} | 0.1891{5} | 0.1853{2} | 0.1869{3.5} | 0.1905{6} | 0.1957{9} | 0.2039{11} | 0.1996{10} |
MSE | ⃜δ | 0.0488{6} | 0.0492{8} | 0.047{3.5} | 0.0436{1} | 0.0487{5} | 0.0463{2} | 0.047{3.5} | 0.0489{7} | 0.0524{9} | 0.0611{11} | 0.0548{10} | |
MRE | ⃜δ | 1.2732{8} | 1.2723{7} | 1.2459{3} | 1.1625{1} | 1.261{5} | 1.2351{2} | 1.2463{4} | 1.2698{6} | 1.3047{9} | 1.3591{11} | 1.3308{10} | |
∑Ranks | 22{7.5} | 22{7.5} | 10{3} | 3{1} | 15{5} | 6{2} | 11{4} | 19{6} | 27{9} | 33{11} | 30{10} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ˆδ | 0.3505{1} | 0.395{5} | 0.4091{7} | 0.3525{2} | 0.4098{8} | 0.3829{4} | 0.37{3} | 0.3965{6} | 0.4737{11} | 0.4317{10} | 0.4258{9} |
MSE | ˆδ | 0.2218{1} | 0.3044{5} | 0.3299{7} | 0.2503{2} | 0.3354{8} | 0.2813{4} | 0.2668{3} | 0.3068{6} | 0.4836{11} | 0.4161{10} | 0.383{9} | |
MRE | ˆδ | 2.3369{1} | 2.6331{5} | 2.7272{7} | 2.3501{2} | 2.7317{8} | 2.5528{4} | 2.4666{3} | 2.6436{6} | 3.1579{11} | 2.8777{10} | 2.8388{9} | |
∑Ranks | 3{1} | 15{5} | 21{7} | 6{2} | 24{8} | 12{4} | 9{3} | 18{6} | 33{11} | 30{10} | 27{9} | ||
50 | bias | ˆδ | 0.2485{9} | 0.2123{5} | 0.2129{6} | 0.1925{1} | 0.213{7} | 0.2075{2} | 0.2086{3} | 0.212{4} | 0.2296{8} | 0.2735{11} | 0.2679{10} |
MSE | ˆδ | 0.094{9} | 0.0642{5} | 0.0652{7} | 0.0544{1} | 0.0648{6} | 0.0606{2} | 0.0624{3} | 0.0636{4} | 0.0773{8} | 0.1338{11} | 0.1145{10} | |
MRE | ˆδ | 1.6565{9} | 1.4152{5} | 1.4193{6} | 1.2837{1} | 1.4197{7} | 1.383{2} | 1.3908{3} | 1.4134{4} | 1.5306{8} | 1.823{11} | 1.7858{10} | |
∑Ranks | 27{9} | 15{5} | 19{6} | 3{1} | 20{7} | 6{2} | 9{3} | 12{4} | 24{8} | 33{11} | 30{10} | ||
120 | bias | ˆδ | 0.1991{9} | 0.1406{2} | 0.1423{4} | 0.1232{1} | 0.1427{5} | 0.1412{3} | 0.143{6} | 0.1462{7} | 0.1486{8} | 0.2087{11} | 0.2026{10} |
MSE | ˆδ | 0.0542{9} | 0.025{2} | 0.0258{6} | 0.0201{1} | 0.0257{5} | 0.0253{3} | 0.0256{4} | 0.0266{7} | 0.0283{8} | 0.0667{11} | 0.057{10} | |
MRE | ˆδ | 1.3271{9} | 0.9374{2} | 0.9488{4} | 0.8213{1} | 0.9511{5} | 0.9411{3} | 0.9531{6} | 0.9747{7} | 0.9906{8} | 1.3916{11} | 1.3509{10} | |
∑Ranks | 27{9} | 6{2} | 14{4} | 3{1} | 15{5} | 9{3} | 16{6} | 21{7} | 24{8} | 33{11} | 30{10} | ||
200 | bias | ˆδ | 0.1806{10} | 0.1085{2} | 0.1113{5} | 0.0928{1} | 0.1112{4} | 0.1106{3} | 0.1139{6} | 0.1148{7} | 0.1173{8} | 0.1853{11} | 0.1793{9} |
MSE | ˆδ | 0.0422{9} | 0.0152{2} | 0.0157{3.5} | 0.0117{1} | 0.0158{5} | 0.0157{3.5} | 0.0165{6} | 0.0169{7} | 0.0174{8} | 0.05{11} | 0.0429{10} | |
MRE | ˆδ | 1.204{10} | 0.7233{2} | 0.7423{5} | 0.6186{1} | 0.7416{4} | 0.7376{3} | 0.7596{6} | 0.7652{7} | 0.7821{8} | 1.2355{11} | 1.1956{9} | |
∑Ranks | 29{10} | 6{2} | 13.5{5} | 3{1} | 13{4} | 9.5{3} | 18{6} | 21{7} | 24{8} | 33{11} | 28 ^{\{9\}} | ||
300 | bias | \hat{\delta} | 0.1596 ^{\{9\}} | 0.0902 ^{\{4\}} | 0.09 ^{\{3\}} | 0.0691 ^{\{1\}} | 0.0905 ^{\{5\}} | 0.0891 ^{\{2\}} | 0.0912 ^{\{6\}} | 0.0994 ^{\{8\}} | 0.0934 ^{\{7\}} | 0.1697 ^{\{11\}} | 0.1663 ^{\{10\}} |
MSE | \hat{\delta} | 0.0325 ^{\{9\}} | 0.0112 ^{\{5\}} | 0.011 ^{\{3\}} | 0.0073 ^{\{1\}} | 0.0111 ^{\{4\}} | 0.0109 ^{\{2\}} | 0.0114 ^{\{6\}} | 0.0142 ^{\{8\}} | 0.0118 ^{\{7\}} | 0.0405 ^{\{11\}} | 0.0354 ^{\{10\}} | |
MRE | \hat{\delta} | 1.0638 ^{\{9\}} | 0.6017 ^{\{4\}} | 0.6001 ^{\{3\}} | 0.4603 ^{\{1\}} | 0.6035 ^{\{5\}} | 0.5937 ^{\{2\}} | 0.6078 ^{\{6\}} | 0.6626 ^{\{8\}} | 0.6227 ^{\{7\}} | 1.1314 ^{\{11\}} | 1.1087 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 13 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1462 ^{\{9\}} | 0.0824 ^{\{8\}} | 0.0689 ^{\{2\}} | 0.0478 ^{\{1\}} | 0.0694 ^{\{3\}} | 0.0698 ^{\{4\}} | 0.0729 ^{\{6\}} | 0.0761 ^{\{7\}} | 0.0728 ^{\{5\}} | 0.1577 ^{\{11\}} | 0.1518 ^{\{10\}} |
MSE | \hat{\delta} | 0.0273 ^{\{9\}} | 0.0114 ^{\{8\}} | 0.0073 ^{\{2\}} | 0.0041 ^{\{1\}} | 0.0074 ^{\{3.5\}} | 0.0074 ^{\{3.5\}} | 0.0079 ^{\{5.5\}} | 0.0097 ^{\{7\}} | 0.0079 ^{\{5.5\}} | 0.0337 ^{\{11\}} | 0.0293 ^{\{10\}} | |
MRE | \hat{\delta} | 0.9747 ^{\{9\}} | 0.5493 ^{\{8\}} | 0.4592 ^{\{2\}} | 0.3183 ^{\{1\}} | 0.4629 ^{\{3\}} | 0.4656 ^{\{4\}} | 0.486 ^{\{6\}} | 0.507 ^{\{7\}} | 0.4853 ^{\{5\}} | 1.0514 ^{\{11\}} | 1.0123 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 17.5 ^{\{6\}} | 21 ^{\{7\}} | 15.5 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.6207 ^{\{5\}} | 0.6075 ^{\{4\}} | 0.6427 ^{\{8\}} | 0.5986 ^{\{2\}} | 0.6209 ^{\{6\}} | 0.5592 ^{\{1\}} | 0.6055 ^{\{3\}} | 0.6366 ^{\{7\}} | 0.7045 ^{\{10\}} | 0.7067 ^{\{11\}} | 0.6969 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.6293 ^{\{5\}} | 0.5692 ^{\{3\}} | 0.6515 ^{\{7\}} | 0.5246 ^{\{2\}} | 0.6296 ^{\{6\}} | 0.4705 ^{\{1\}} | 0.6066 ^{\{4\}} | 0.6556 ^{\{8\}} | 0.8866 ^{\{10\}} | 0.9346 ^{\{11\}} | 0.7847 ^{\{9\}} | |
MRE | {\ddddot \delta} | 1.0346 ^{\{5\}} | 1.0126 ^{\{4\}} | 1.0711 ^{\{8\}} | 0.9977 ^{\{2\}} | 1.0349 ^{\{6\}} | 0.932 ^{\{1\}} | 1.0091 ^{\{3\}} | 1.061 ^{\{7\}} | 1.1742 ^{\{10\}} | 1.1778 ^{\{11\}} | 1.1615 ^{\{9\}} | |
\sum Ranks | 15 ^{\{5\}} | 11 ^{\{4\}} | 23 ^{\{8\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 22 ^{\{7\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.4557 ^{\{8\}} | 0.4571 ^{\{9\}} | 0.4129 ^{\{4\}} | 0.4021 ^{\{2\}} | 0.4086 ^{\{3\}} | 0.3988 ^{\{1\}} | 0.4154 ^{\{5\}} | 0.4482 ^{\{7\}} | 0.4369 ^{\{6\}} | 0.4633 ^{\{10\}} | 0.4807 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.297 ^{\{9\}} | 0.2957 ^{\{8\}} | 0.246 ^{\{5\}} | 0.226 ^{\{2\}} | 0.2334 ^{\{3\}} | 0.2179 ^{\{1\}} | 0.241 ^{\{4\}} | 0.2817 ^{\{7\}} | 0.2767 ^{\{6\}} | 0.3094 ^{\{10\}} | 0.3237 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.7596 ^{\{8\}} | 0.7618 ^{\{9\}} | 0.6882 ^{\{4\}} | 0.6701 ^{\{2\}} | 0.6809 ^{\{3\}} | 0.6647 ^{\{1\}} | 0.6924 ^{\{5\}} | 0.7471 ^{\{7\}} | 0.7282 ^{\{6\}} | 0.7722 ^{\{10\}} | 0.8012 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 26 ^{\{9\}} | 13 ^{\{4\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3261 ^{\{7\}} | 0.3161 ^{\{5\}} | 0.2963 ^{\{3\}} | 0.2886 ^{\{2\}} | 0.3027 ^{\{4\}} | 0.2852 ^{\{1\}} | 0.3573 ^{\{8\}} | 0.3194 ^{\{6\}} | 0.3818 ^{\{11\}} | 0.3685 ^{\{10\}} | 0.3595 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1668 ^{\{7\}} | 0.1613 ^{\{5\}} | 0.135 ^{\{3\}} | 0.1274 ^{\{2\}} | 0.138 ^{\{4\}} | 0.1264 ^{\{1\}} | 0.2051 ^{\{9\}} | 0.1637 ^{\{6\}} | 0.2333 ^{\{11\}} | 0.2082 ^{\{10\}} | 0.1993 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.5435 ^{\{7\}} | 0.5268 ^{\{5\}} | 0.4939 ^{\{3\}} | 0.4811 ^{\{2\}} | 0.5044 ^{\{4\}} | 0.4754 ^{\{1\}} | 0.5955 ^{\{8\}} | 0.5324 ^{\{6\}} | 0.6364 ^{\{11\}} | 0.6142 ^{\{10\}} | 0.5991 ^{\{9\}} | |
\sum Ranks | 21 ^{\{7\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 26 ^{\{9\}} | ||
200 | bias | {\ddddot \delta} | 0.3121 ^{\{8\}} | 0.2876 ^{\{6\}} | 0.2792 ^{\{4\}} | 0.2252 ^{\{1\}} | 0.2871 ^{\{5\}} | 0.2263 ^{\{2\}} | 0.264 ^{\{3\}} | 0.3165 ^{\{9\}} | 0.291 ^{\{7\}} | 0.3194 ^{\{10\}} | 0.3455 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1814 ^{\{9\}} | 0.1597 ^{\{7\}} | 0.144 ^{\{4\}} | 0.0808 ^{\{1\}} | 0.1537 ^{\{5\}} | 0.0831 ^{\{2\}} | 0.1324 ^{\{3\}} | 0.1883 ^{\{10\}} | 0.1551 ^{\{6\}} | 0.1698 ^{\{8\}} | 0.2015 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.5202 ^{\{8\}} | 0.4793 ^{\{6\}} | 0.4653 ^{\{4\}} | 0.3753 ^{\{1\}} | 0.4785 ^{\{5\}} | 0.3771 ^{\{2\}} | 0.44 ^{\{3\}} | 0.5275 ^{\{9\}} | 0.485 ^{\{7\}} | 0.5324 ^{\{10\}} | 0.5758 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 19 ^{\{6\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 28 ^{\{9.5\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2609 ^{\{6\}} | 0.2871 ^{\{10\}} | 0.2688 ^{\{8\}} | 0.1889 ^{\{1\}} | 0.2707 ^{\{9\}} | 0.1897 ^{\{2\}} | 0.2442 ^{\{5\}} | 0.2357 ^{\{3\}} | 0.244 ^{\{4\}} | 0.2623 ^{\{7\}} | 0.2952 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1497 ^{\{7\}} | 0.182 ^{\{11\}} | 0.1598 ^{\{8\}} | 0.059 ^{\{1\}} | 0.1632 ^{\{9\}} | 0.062 ^{\{2\}} | 0.1263 ^{\{5\}} | 0.1124 ^{\{3.5\}} | 0.1124 ^{\{3.5\}} | 0.1267 ^{\{6\}} | 0.1724 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.4348 ^{\{6\}} | 0.4786 ^{\{10\}} | 0.448 ^{\{8\}} | 0.3148 ^{\{1\}} | 0.4511 ^{\{9\}} | 0.3162 ^{\{2\}} | 0.4071 ^{\{5\}} | 0.3928 ^{\{3\}} | 0.4067 ^{\{4\}} | 0.4372 ^{\{7\}} | 0.492 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 15 ^{\{5\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2359 ^{\{8.5\}} | 0.2146 ^{\{3\}} | 0.2196 ^{\{4\}} | 0.1484 ^{\{1\}} | 0.2215 ^{\{5\}} | 0.1498 ^{\{2\}} | 0.239 ^{\{10\}} | 0.2304 ^{\{6\}} | 0.2359 ^{\{8.5\}} | 0.2309 ^{\{7\}} | 0.2523 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1406 ^{\{9\}} | 0.1139 ^{\{4\}} | 0.1222 ^{\{5\}} | 0.0368 ^{\{1\}} | 0.1232 ^{\{6\}} | 0.0375 ^{\{2\}} | 0.1471 ^{\{11\}} | 0.1298 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1117 ^{\{3\}} | 0.1454 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.3932 ^{\{9\}} | 0.3576 ^{\{3\}} | 0.3661 ^{\{4\}} | 0.2474 ^{\{1\}} | 0.3692 ^{\{5\}} | 0.2497 ^{\{2\}} | 0.3983 ^{\{10\}} | 0.384 ^{\{6\}} | 0.3931 ^{\{8\}} | 0.3848 ^{\{7\}} | 0.4205 ^{\{11\}} | |
\sum Ranks | 26.5 ^{\{9\}} | 10 ^{\{3\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 16 ^{\{5\}} | 6 ^{\{2\}} | 31 ^{\{10\}} | 20 ^{\{7\}} | 23.5 ^{\{8\}} | 17 ^{\{6\}} | 32 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.4538 ^{\{1\}} | 0.472 ^{\{3\}} | 0.5065 ^{\{7\}} | 0.4879 ^{\{5\}} | 0.4887 ^{\{6\}} | 0.4678 ^{\{2\}} | 0.4746 ^{\{4\}} | 0.5331 ^{\{8\}} | 0.543 ^{\{9\}} | 0.5913 ^{\{11\}} | 0.5554 ^{\{10\}} |
MSE | \hat{\delta} | 0.2993 ^{\{1\}} | 0.316 ^{\{3\}} | 0.3685 ^{\{7\}} | 0.3255 ^{\{5\}} | 0.3619 ^{\{6\}} | 0.3087 ^{\{2\}} | 0.3177 ^{\{4\}} | 0.4032 ^{\{8\}} | 0.4637 ^{\{10\}} | 0.5488 ^{\{11\}} | 0.4368 ^{\{9\}} | |
MRE | \hat{\delta} | 0.7563 ^{\{1\}} | 0.7867 ^{\{3\}} | 0.8442 ^{\{7\}} | 0.8132 ^{\{5\}} | 0.8145 ^{\{6\}} | 0.7797 ^{\{2\}} | 0.7909 ^{\{4\}} | 0.8885 ^{\{8\}} | 0.9049 ^{\{9\}} | 0.9854 ^{\{11\}} | 0.9257 ^{\{10\}} | |
\sum Ranks | 3 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 28 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3076 ^{\{9\}} | 0.2821 ^{\{8\}} | 0.201 ^{\{1\}} | 0.2118 ^{\{4\}} | 0.2073 ^{\{3\}} | 0.2034 ^{\{2\}} | 0.2238 ^{\{6\}} | 0.2503 ^{\{7\}} | 0.2234 ^{\{5\}} | 0.3601 ^{\{10\}} | 0.365 ^{\{11\}} |
MSE | \hat{\delta} | 0.1571 ^{\{8\}} | 0.1676 ^{\{9\}} | 0.0668 ^{\{1\}} | 0.0736 ^{\{4\}} | 0.072 ^{\{3\}} | 0.0685 ^{\{2\}} | 0.085 ^{\{6\}} | 0.128 ^{\{7\}} | 0.0804 ^{\{5\}} | 0.1958 ^{\{10\}} | 0.2026 ^{\{11\}} | |
MRE | \hat{\delta} | 0.5127 ^{\{9\}} | 0.4701 ^{\{8\}} | 0.3351 ^{\{1\}} | 0.353 ^{\{4\}} | 0.3455 ^{\{3\}} | 0.3389 ^{\{2\}} | 0.373 ^{\{6\}} | 0.4171 ^{\{7\}} | 0.3723 ^{\{5\}} | 0.6002 ^{\{10\}} | 0.6083 ^{\{11\}} | |
\sum Ranks | 26 ^{\{9\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2623 ^{\{10\}} | 0.146 ^{\{8\}} | 0.083 ^{\{2\}} | 0.0856 ^{\{4\}} | 0.0844 ^{\{3\}} | 0.0799 ^{\{1\}} | 0.1431 ^{\{7\}} | 0.1349 ^{\{6\}} | 0.1195 ^{\{5\}} | 0.2844 ^{\{11\}} | 0.2593 ^{\{9\}} |
MSE | \hat{\delta} | 0.1549 ^{\{11\}} | 0.0865 ^{\{8\}} | 0.0114 ^{\{2.5\}} | 0.0125 ^{\{4\}} | 0.0114 ^{\{2.5\}} | 0.0103 ^{\{1\}} | 0.0809 ^{\{7\}} | 0.0747 ^{\{6\}} | 0.0508 ^{\{5\}} | 0.1489 ^{\{10\}} | 0.1346 ^{\{9\}} | |
MRE | \hat{\delta} | 0.4372 ^{\{10\}} | 0.2433 ^{\{8\}} | 0.1383 ^{\{2\}} | 0.1426 ^{\{4\}} | 0.1406 ^{\{3\}} | 0.1332 ^{\{1\}} | 0.2385 ^{\{7\}} | 0.2248 ^{\{6\}} | 0.1992 ^{\{5\}} | 0.4739 ^{\{11\}} | 0.4322 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10\}} | 24 ^{\{8\}} | 6.5 ^{\{2\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
200 | bias | \hat{\delta} | 0.192 ^{\{9\}} | 0.0877 ^{\{8\}} | 0.0497 ^{\{1\}} | 0.0499 ^{\{2\}} | 0.051 ^{\{4\}} | 0.0502 ^{\{3\}} | 0.0738 ^{\{7\}} | 0.0695 ^{\{6\}} | 0.0688 ^{\{5\}} | 0.2446 ^{\{11\}} | 0.2316 ^{\{10\}} |
MSE | \hat{\delta} | 0.0998 ^{\{9\}} | 0.0529 ^{\{8\}} | 0.0039 ^{\{1\}} | 0.0041 ^{\{3\}} | 0.0049 ^{\{4\}} | 0.004 ^{\{2\}} | 0.0325 ^{\{7\}} | 0.0291 ^{\{6\}} | 0.0222 ^{\{5\}} | 0.1347 ^{\{11\}} | 0.1316 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3201 ^{\{9\}} | 0.1461 ^{\{8\}} | 0.0829 ^{\{1\}} | 0.0832 ^{\{2\}} | 0.0851 ^{\{4\}} | 0.0836 ^{\{3\}} | 0.123 ^{\{7\}} | 0.1159 ^{\{6\}} | 0.1146 ^{\{5\}} | 0.4077 ^{\{11\}} | 0.386 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 8 ^{\{3\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1497 ^{\{9\}} | 0.0474 ^{\{7\}} | 0.0327 ^{\{3.5\}} | 0.0323 ^{\{1.5\}} | 0.0323 ^{\{1.5\}} | 0.0327 ^{\{3.5\}} | 0.0511 ^{\{8\}} | 0.0426 ^{\{5.5\}} | 0.0426 ^{\{5.5\}} | 0.214 ^{\{11\}} | 0.1883 ^{\{10\}} |
MSE | \hat{\delta} | 0.0736 ^{\{9\}} | 0.0199 ^{\{7\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0223 ^{\{8\}} | 0.0133 ^{\{6\}} | 0.0112 ^{\{5\}} | 0.1135 ^{\{11\}} | 0.108 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2496 ^{\{9\}} | 0.0791 ^{\{7\}} | 0.0545 ^{\{3.5\}} | 0.0539 ^{\{1.5\}} | 0.0539 ^{\{1.5\}} | 0.0545 ^{\{3.5\}} | 0.0852 ^{\{8\}} | 0.071 ^{\{5.5\}} | 0.071 ^{\{5.5\}} | 0.3567 ^{\{11\}} | 0.3139 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 21 ^{\{7\}} | 9.5 ^{\{3.5\}} | 5.5 ^{\{1.5\}} | 5.5 ^{\{1.5\}} | 9.5 ^{\{3.5\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 16 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1307 ^{\{9\}} | 0.0459 ^{\{8\}} | 0.0214 ^{\{1\}} | 0.0223 ^{\{4\}} | 0.022 ^{\{3\}} | 0.0219 ^{\{2\}} | 0.0336 ^{\{6\}} | 0.0359 ^{\{7\}} | 0.0289 ^{\{5\}} | 0.1672 ^{\{11\}} | 0.1428 ^{\{10\}} |
MSE | \hat{\delta} | 0.0693 ^{\{9\}} | 0.0304 ^{\{8\}} | 7e-04 ^{\{1\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 0.0136 ^{\{6\}} | 0.0193 ^{\{7\}} | 0.0082 ^{\{5\}} | 0.0865 ^{\{11\}} | 0.0754 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2179 ^{\{9\}} | 0.0765 ^{\{8\}} | 0.0356 ^{\{1\}} | 0.0371 ^{\{4\}} | 0.0367 ^{\{3\}} | 0.0365 ^{\{2\}} | 0.056 ^{\{6\}} | 0.0599 ^{\{7\}} | 0.0481 ^{\{5\}} | 0.2786 ^{\{11\}} | 0.238 ^{\{10\}} | |
\sum Ranks | 23 ^{\{9\}} | 20 ^{\{8\}} | 10 ^{\{1\}} | 18 ^{\{7\}} | 16 ^{\{5\}} | 14 ^{\{3.5\}} | 14 ^{\{3.5\}} | 17 ^{\{6\}} | 11 ^{\{2\}} | 29 ^{\{11\}} | 26 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8474 ^{\{6\}} | 0.7629 ^{\{3\}} | 0.8495 ^{\{7\}} | 0.7981 ^{\{4\}} | 0.8277 ^{\{5\}} | 0.6614 ^{\{1\}} | 0.7295 ^{\{2\}} | 1.1297 ^{\{9\}} | 1.1745 ^{\{10\}} | 1.3548 ^{\{11\}} | 1.1033 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 29 ^{\{9.5\}} | 26 ^{\{8\}} | 29 ^{\{9.5\}} | 30 ^{\{11\}} | ||
50 | bias | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4336 ^{\{7\}} | 0.4738 ^{\{9\}} | 0.2674 ^{\{3\}} | 0.2539 ^{\{2\}} | 0.2684 ^{\{4\}} | 0.2452 ^{\{1\}} | 0.5006 ^{\{10\}} | 0.4405 ^{\{8\}} | 0.3571 ^{\{5\}} | 0.4333 ^{\{6\}} | 0.5013 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 27 ^{\{9\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 22 ^{\{7.5\}} | 15 ^{\{5\}} | 22 ^{\{7.5\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2801 ^{\{8\}} | 0.3012 ^{\{9\}} | 0.2087 ^{\{4\}} | 0.1004 ^{\{1\}} | 0.1845 ^{\{3\}} | 0.1067 ^{\{2\}} | 0.2702 ^{\{6\}} | 0.26 ^{\{5\}} | 0.3326 ^{\{10\}} | 0.2761 ^{\{7\}} | 0.3575 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 25 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 25 ^{\{8.5\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2652 ^{\{9\}} | 0.3161 ^{\{10\}} | 0.2133 ^{\{4\}} | 0.0533 ^{\{1\}} | 0.2146 ^{\{5\}} | 0.0587 ^{\{2\}} | 0.2464 ^{\{7\}} | 0.2208 ^{\{6\}} | 0.2651 ^{\{8\}} | 0.1644 ^{\{3\}} | 0.3641 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 30 ^{\{10\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5.5\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 14 ^{\{4\}} | 26 ^{\{9\}} | 15 ^{\{5.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2032 ^{\{6\}} | 0.2231 ^{\{9\}} | 0.2123 ^{\{8\}} | 0.0349 ^{\{1\}} | 0.2096 ^{\{7\}} | 0.0354 ^{\{2\}} | 0.2314 ^{\{10\}} | 0.1956 ^{\{5\}} | 0.175 ^{\{4\}} | 0.1323 ^{\{3\}} | 0.2854 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1805 ^{\{8\}} | 0.2013 ^{\{10\}} | 0.1525 ^{\{6\}} | 0.0253 ^{\{2\}} | 0.1369 ^{\{5\}} | 0.0241 ^{\{1\}} | 0.1993 ^{\{9\}} | 0.176 ^{\{7\}} | 0.1145 ^{\{4\}} | 0.0973 ^{\{3\}} | 0.215 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 23 ^{\{8\}} | 12 ^{\{4\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} |
MSE | \hat{\delta} | 0.5039 ^{\{7\}} | 0.4254 ^{\{2\}} | 0.4337 ^{\{5\}} | 0.4281 ^{\{3\}} | 0.4289 ^{\{4\}} | 0.3892 ^{\{1\}} | 0.4383 ^{\{6\}} | 0.6202 ^{\{9\}} | 0.5341 ^{\{8\}} | 1.147 ^{\{11\}} | 0.6721 ^{\{10\}} | |
MRE | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 13 ^{\{5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} |
MSE | \hat{\delta} | 0.2806 ^{\{10\}} | 0.1836 ^{\{7\}} | 0.0433 ^{\{2\}} | 0.0468 ^{\{3\}} | 0.0486 ^{\{4\}} | 0.0388 ^{\{1\}} | 0.1309 ^{\{6\}} | 0.1993 ^{\{8\}} | 0.0699 ^{\{5\}} | 0.2681 ^{\{9\}} | 0.3842 ^{\{11\}} | |
MRE | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} |
MSE | \hat{\delta} | 0.2005 ^{\{10\}} | 0.061 ^{\{7\}} | 0.0077 ^{\{2\}} | 0.0074 ^{\{1\}} | 0.008 ^{\{4\}} | 0.0078 ^{\{3\}} | 0.0229 ^{\{6\}} | 0.098 ^{\{8\}} | 0.0142 ^{\{5\}} | 0.1692 ^{\{9\}} | 0.2032 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 8 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 7 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 31 ^{\{10.5\}} | 31 ^{\{10.5\}} | ||
200 | bias | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} |
MSE | \hat{\delta} | 0.1455 ^{\{11\}} | 0.0457 ^{\{7\}} | 0.0027 ^{\{1\}} | 0.0029 ^{\{3.5\}} | 0.0028 ^{\{2\}} | 0.0029 ^{\{3.5\}} | 0.0032 ^{\{6\}} | 0.0701 ^{\{8\}} | 0.003 ^{\{5\}} | 0.0785 ^{\{9\}} | 0.1166 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} | |
\sum Ranks | 33 ^{\{11\}} | 21 ^{\{7\}} | 3 ^{\{1\}} | 11.5 ^{\{4\}} | 8 ^{\{3\}} | 7.5 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} |
MSE | \hat{\delta} | 0.118 ^{\{11\}} | 0.031 ^{\{8\}} | 0.0012 ^{\{1\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0283 ^{\{7\}} | 0.0013 ^{\{4\}} | 0.0708 ^{\{9\}} | 0.1043 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8 ^{\{2\}} | 10 ^{\{3\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 16 ^{\{6\}} | 31 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} |
MSE | \hat{\delta} | 0.0744 ^{\{10\}} | 0.0081 ^{\{7\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 5e-04 ^{\{1\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 0.0159 ^{\{8\}} | 7e-04 ^{\{6\}} | 0.0457 ^{\{9\}} | 0.1471 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} | |
\sum Ranks | 22 ^{\{8\}} | 15 ^{\{4\}} | 14.5 ^{\{3\}} | 12.5 ^{\{2\}} | 8 ^{\{1\}} | 16.5 ^{\{5\}} | 18.5 ^{\{7\}} | 18 ^{\{6\}} | 23 ^{\{9.5\}} | 23 ^{\{9.5\}} | 27 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.8259 ^{\{6\}} | 0.7838 ^{\{3\}} | 0.8036 ^{\{5\}} | 0.7894 ^{\{4\}} | 0.8341 ^{\{7\}} | 0.7285 ^{\{1\}} | 0.7378 ^{\{2\}} | 0.9492 ^{\{9\}} | 0.8732 ^{\{8\}} | 1.0216 ^{\{11\}} | 0.9697 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.2727 ^{\{7\}} | 1.0399 ^{\{3\}} | 1.0808 ^{\{4\}} | 1.0933 ^{\{5\}} | 1.202 ^{\{6\}} | 0.8775 ^{\{1\}} | 0.9547 ^{\{2\}} | 1.6659 ^{\{10\}} | 1.4583 ^{\{8\}} | 2.1721 ^{\{11\}} | 1.6264 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.5506 ^{\{6\}} | 0.5225 ^{\{3\}} | 0.5358 ^{\{5\}} | 0.5263 ^{\{4\}} | 0.5561 ^{\{7\}} | 0.4857 ^{\{1\}} | 0.4919 ^{\{2\}} | 0.6328 ^{\{9\}} | 0.5821 ^{\{8\}} | 0.681 ^{\{11\}} | 0.6465 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 9 ^{\{3\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 20 ^{\{7\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 28 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | {\ddddot \delta} | 0.5183 ^{\{7\}} | 0.586 ^{\{10\}} | 0.4 ^{\{2\}} | 0.4047 ^{\{3\}} | 0.4139 ^{\{4\}} | 0.3985 ^{\{1\}} | 0.5567 ^{\{9\}} | 0.5348 ^{\{8\}} | 0.489 ^{\{5\}} | 0.5173 ^{\{6\}} | 0.6337 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.6396 ^{\{7\}} | 0.8036 ^{\{10\}} | 0.2791 ^{\{2\}} | 0.2805 ^{\{3\}} | 0.288 ^{\{4\}} | 0.2613 ^{\{1\}} | 0.7203 ^{\{9\}} | 0.6572 ^{\{8\}} | 0.4544 ^{\{5\}} | 0.5237 ^{\{6\}} | 0.8491 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3455 ^{\{7\}} | 0.3907 ^{\{10\}} | 0.2666 ^{\{2\}} | 0.2698 ^{\{3\}} | 0.276 ^{\{4\}} | 0.2656 ^{\{1\}} | 0.3711 ^{\{9\}} | 0.3565 ^{\{8\}} | 0.326 ^{\{5\}} | 0.3449 ^{\{6\}} | 0.4225 ^{\{11\}} | |
\sum Ranks | 21 ^{\{7\}} | 30 ^{\{10\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3961 ^{\{10\}} | 0.355 ^{\{5\}} | 0.2711 ^{\{3\}} | 0.2496 ^{\{1\}} | 0.2806 ^{\{4\}} | 0.2575 ^{\{2\}} | 0.393 ^{\{9\}} | 0.3723 ^{\{7\}} | 0.3904 ^{\{8\}} | 0.3606 ^{\{6\}} | 0.4223 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.5109 ^{\{10\}} | 0.4097 ^{\{6\}} | 0.1418 ^{\{3\}} | 0.1005 ^{\{1\}} | 0.1596 ^{\{4\}} | 0.1041 ^{\{2\}} | 0.5078 ^{\{9\}} | 0.4587 ^{\{7\}} | 0.4643 ^{\{8\}} | 0.2852 ^{\{5\}} | 0.5133 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2641 ^{\{10\}} | 0.2367 ^{\{5\}} | 0.1807 ^{\{3\}} | 0.1664 ^{\{1\}} | 0.1871 ^{\{4\}} | 0.1717 ^{\{2\}} | 0.262 ^{\{9\}} | 0.2482 ^{\{7\}} | 0.2603 ^{\{8\}} | 0.2404 ^{\{6\}} | 0.2815 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 16 ^{\{5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 27 ^{\{9\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2728 ^{\{6\}} | 0.2857 ^{\{7\}} | 0.2125 ^{\{4\}} | 0.1934 ^{\{1\}} | 0.2094 ^{\{3\}} | 0.1975 ^{\{2\}} | 0.2908 ^{\{8\}} | 0.3021 ^{\{9\}} | 0.3034 ^{\{10\}} | 0.2703 ^{\{5\}} | 0.3321 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2776 ^{\{6\}} | 0.3128 ^{\{7\}} | 0.1143 ^{\{4\}} | 0.0596 ^{\{1\}} | 0.1093 ^{\{3\}} | 0.0614 ^{\{2\}} | 0.3489 ^{\{8\}} | 0.3503 ^{\{9\}} | 0.3585 ^{\{10\}} | 0.1747 ^{\{5\}} | 0.4016 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1819 ^{\{6\}} | 0.1905 ^{\{7\}} | 0.1417 ^{\{4\}} | 0.1289 ^{\{1\}} | 0.1396 ^{\{3\}} | 0.1316 ^{\{2\}} | 0.1939 ^{\{8\}} | 0.2014 ^{\{9\}} | 0.2023 ^{\{10\}} | 0.1802 ^{\{5\}} | 0.2214 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 21 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2244 ^{\{5\}} | 0.2549 ^{\{8\}} | 0.1945 ^{\{4\}} | 0.1567 ^{\{1\}} | 0.1871 ^{\{3\}} | 0.1656 ^{\{2\}} | 0.2356 ^{\{6\}} | 0.2598 ^{\{10\}} | 0.2597 ^{\{9\}} | 0.2369 ^{\{7\}} | 0.2841 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2361 ^{\{6\}} | 0.3395 ^{\{10\}} | 0.1524 ^{\{4\}} | 0.0393 ^{\{1\}} | 0.1275 ^{\{3\}} | 0.0433 ^{\{2\}} | 0.257 ^{\{7\}} | 0.3273 ^{\{9\}} | 0.3211 ^{\{8\}} | 0.1709 ^{\{5\}} | 0.3588 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1496 ^{\{5\}} | 0.1699 ^{\{8\}} | 0.1297 ^{\{4\}} | 0.1045 ^{\{1\}} | 0.1248 ^{\{3\}} | 0.1104 ^{\{2\}} | 0.1571 ^{\{6\}} | 0.1732 ^{\{10\}} | 0.1731 ^{\{9\}} | 0.1579 ^{\{7\}} | 0.1894 ^{\{11\}} | |
\sum Ranks | 16 ^{\{5\}} | 26 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 19 ^{\{6.5\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | 19 ^{\{6.5\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.1999 ^{\{8\}} | 0.1892 ^{\{7\}} | 0.1614 ^{\{3\}} | 0.1295 ^{\{2\}} | 0.1625 ^{\{4\}} | 0.1291 ^{\{1\}} | 0.2165 ^{\{10\}} | 0.1861 ^{\{6\}} | 0.2033 ^{\{9\}} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
● The ratio of the MSE for SRS to the MSE for RSS is provided in Table 13. This ratio helps to gauge the comparative performance of SRS and RSS in terms of MSE, offering insights into the efficiency of these sampling methods.
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
● For a thorough and detailed analysis of the estimates, we present both their partial and total ranks in Tables 14 and 15 for the SRS and RSS, respectively. These rank tables offer a more nuanced and comprehensive perspective on the performance and comparative effectiveness of each estimation approach, facilitating a deeper understanding of their relative strengths and weaknesses.
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
Upon careful analysis of the simulation results and the rankings presented in the tables, several conclusions can be drawn:
● It is noteworthy that for both SRS and RSS datasets, our model estimates exhibit the consistency property. This property implies that as the sample size increases, the estimates converge to the true parameter values.
● All three measures used exhibit a consistent trend: They decrease as the sample size increases. This pattern suggests that larger sample sizes lead to more accurate and precise parameter estimates.
● Based on our simulation results for both SRS and RSS datasets, it appears that the MPSE has the advantage in determining the quality of our estimates.
● From Table 13, it can be observed that the estimates obtained from the RSS datasets are more efficient compared to those obtained from the SRS datasets. This suggests that RSS is a more efficient sampling method in terms of producing estimates with lower MSE.
To highlight the practical utility of the proposed estimation methods, a real dataset was meticulously selected and is comprehensively elucidated in this section. The objective was to illustrate the practical applications of these proposed estimates by conducting an in-depth analysis of the real-world dataset. This analysis serves as a demonstration of how these estimation techniques can be applied to real-world data, showcasing their effectiveness and relevance in practical research and decision-making contexts. The used real dataset presents the firm's risk management cost-effectiveness and it was studied by Abd El-Bar et al. [48]. Its values are: 0.0432, 0.1271, 0.793, 0.0407, 0.0076, 0.037, 0.18, 0.1129, 0.09, 0.0535, 0.0783, 0.0093, 0.0851, 0.1753, 0.0036, 0.1597, 0.002, 0.1357, 0.0215, 0.0065, 0.079, 0.0329, 0.0458, 0.1192, 0.0431, 0.1245, 0.0255, 0.1396, 0.0122, 0.15, 0.14, 0.0529, 0.2222, 0.0315, 0.0389, 0.0297, 0.0608, 0.1833, 0.0279, 0.0694, 0.15, 0.0818, 0.2912, 0.1261, 0.0931, 0.0216, 0.0525, 0.1938, 0.0433, 0.0351, 0.0629, 0.0125, 0.0571, 0.0094, 0.0885, 0.0411, 0.004, 0.0582, 0.2172, 0.0434, 0.0509, 0.65, 0.0913, 0.1, 0.0375, 0.2886, 0.0206, 0.0028, 0.0407, 0.0849, 0.0612, 0.1333, 0.9755.
Table 16 provides a comprehensive summary of the descriptive analyses performed on the dataset under investigation. Figure 2 displays various graphical representations, including histograms, kernel density plots, violin plots, box plots, total time on test (TTT) plots, and quantile-quantile (Q-Q) plots. These visualizations and descriptive statistics collectively offer insights into the characteristics and distributions of the data, enhancing our understanding of the dataset's key features and patterns. The dataset was subjected to a Kolmogorov-Smirnov (KS) test to assess its compatibility with a specific model. The MLE was utilized to obtain the parameter estimates. The K-S distance (KSD) was computed to be 0.0812933, and the p-value (KSP) was found to be 0.720254. Based on these results, it is apparent that the AUD is a suitable candidate for fitting the firm's real dataset. To visually demonstrate this suitability, Figure 3 presents various graphical representations, including the probability-probability (P-P) plot, estimated CDF, estimated survival function (SF), and a histogram with the estimated PDF. These visualizations collectively suggest that the AUD is a suitable choice for modeling and fitting the firm's real dataset, as they align well with the distributional characteristics of the model.
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
Based on the theoretical findings discussed earlier, the dataset underwent an examination using two sampling techniques, SRS and RSS. Tables 17 and 18 present the SRS and RSS estimates, respectively, derived from the AUD. These estimates are provided for different sample sizes over five cycles, employing various estimation techniques. The process of generating the RSS and SRS observations was facilitated using the R-package. These tables collectively display the results of the estimation techniques applied to the dataset, allowing for a comprehensive comparison of the sampling methods and estimation procedures used. To demonstrate the superiority of RSS over SRS to various estimation methods, we conducted an evaluation using several goodness-of-fit statistics for the model. These statistics encompassed the Anderson-Darling test statistics (ADTS), Cramér-von Mises test statistics (CMTS), and KS test statistics (KSTS), along with their KSP. These tests and their p-values were utilized to assess how well the data conforms to the model, and their results can provide insights into the effectiveness of RSS compared to SRS in capturing the underlying distribution of the dataset. Estimates that outperformed their counterparts typically displayed larger p-values (greater than 5%) and lower goodness-of-fit values. Table 19 provides a comparative analysis between the SRS and RSS designs in terms of their goodness-of-fit values and KSPs. This comparison helps in assessing the relative effectiveness of SRS and RSS in fitting the dataset to the model, with a focus on identifying which design and estimation techniques yield better goodness-of-fit results. The fitting of the model to the dataset can be observed in Figures 4 and 5. Notably, the RSS design demonstrates superior performance compared to the SRS design in terms of efficiency. This is evident from the smaller goodness-of-fit values and the correspondingly larger KSPs. This superiority is consistently observed across all estimates, even when the same number of measurement units is considered. These findings underscore the advantages of RSS over SRS in terms of fitting the dataset to the model and obtaining more efficient estimates.
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |
A brand-new bounded distribution called the arctan uniform distribution may be used to simulate several bounded real-world datasets that already exist. When accurately measuring the observation is difficult or expensive, RSS is a valuable strategy. In the present work, the parameter estimator of the arctan uniform distribution is regarded using RSS and SRS approaches. The PS, WLS, AD, ML, MSALD, CM, LS, MPS, RAD, LAD, and MSAD are a few of the well-known conventional estimating techniques that are used. A Monte Carlo simulation based on some accuracy measures is used to assess the effectiveness of the generated estimates. Based on the results of our simulations for both the SRS and RSS datasets, it appears that the MPS approach is preferred in evaluating the quality of suggested estimates compared to the others. A similar pattern of decline with larger sample sizes is seen in all criteria measures. This trend indicates that parameter estimates are more accurate and trustworthy with higher sample numbers. Estimates derived from the RSS datasets are more trustworthy than those derived from the SRS datasets. This suggests that RSS is a sampling strategy that produces estimates with a lower mean squared error than other sampling methods. Real data findings provide more evidence that the RSS design is superior to the SRS approach.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23048).
The authors declare no conflict of interest.
[1] | C. W. Topp, F. C. Leone, A family of j-shaped frequency functions, J. Amer. Stat. Assoc., 50 (1995), 209–219. |
[2] |
P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydro., 46 (1980), 79–88. http://dx.doi.org/10.1016/0022-1694(80)90036-0 doi: 10.1016/0022-1694(80)90036-0
![]() |
[3] |
A. F. B. Menezes, J. Mazucheli, S. Dey, The unit-logistic distribution: Different methods of estimation, Pes. Oper., 9 (2018), 555–578. https://doi.org/10.1590/0101-7438.2018.038.03.0555 doi: 10.1590/0101-7438.2018.038.03.0555
![]() |
[4] | J. Mazucheli, A. F. B. Menezes, S. Dey, The unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57. |
[5] |
J. Mazucheli, A. F. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497 doi: 10.6092/issn.1973-2201/8497
![]() |
[6] |
M. A. Almuqrin, A. M. Gemeay, M. M. Abd El-Raouf, M. Kilai, R. Aldallal, E. Hussam, A flexible extension of reduced Kies distribution: Properties, inference, and applications in biology, Complexity, 2022 (2022), 6078567. https://doi.org/10.1155/2022/6078567 doi: 10.1155/2022/6078567
![]() |
[7] |
J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. De Oliveira, M. E. Ghitany, The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Stat., 47 (2020), 954–974. https://doi.org/10.1080/02664763.2019.1657813 doi: 10.1080/02664763.2019.1657813
![]() |
[8] | M. C. Korkmaz, The unit generalized half normal distribution: A new bounded distribution with inference and application, U.P.B. Sci. Bull. Series A, 82 (2020), 954–974. |
[9] |
E. Altun, M. El-Morshedy, M. S. Eliwa, A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models, Plos one, 16 (2021), e0245627. https://doi.org/10.1371/journal.pone.0245627 doi: 10.1371/journal.pone.0245627
![]() |
[10] | M. C. Korkmaz, C. Chesneau, On the unit Burr-XII distribution with the quantile regression modeling and applications, Comput. Appl. Math., 40 (2021). https://doi.org/10.1007/s40314-021-01418-5 |
[11] |
E. Yıldırım, E. S. Ilıkkan, A. M. Gemeay, N. Makumi, M. E. Bakr, O. S. Balogun, Power unit Burr-XII distribution: Statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
![]() |
[12] | R. A. R. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Theory and applications of the unit gamma/Gompertz distribution, Mathematics, 9 (2021). https://doi.org/10.3390/math9161850 |
[13] |
A. Krishna, R. Maya, C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012
![]() |
[14] |
S. Nasiru, C. Chesneau, A. G. Abubakari, I. D. Angbing, Generalized unit half-logistic geometric distribution: Properties and regression with applications to insurance, Analytics, 2 (2023), 438–462. https://doi.org/10.3390/analytics2020025 doi: 10.3390/analytics2020025
![]() |
[15] |
O. Kharazmi, M. Alizadeh, J. E. Contreras-Reyes, H. Haghbin, Arctan-based family of distributions: Properties, survival regression, Bayesian analysis and applications, Axioms, 11 (2022), 399. https://doi.org/10.3390/axioms11080399 doi: 10.3390/axioms11080399
![]() |
[16] | G. A. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agri. Res., 3 (1952), 385–390. |
[17] |
H. M. Aljohani, E. M. Almetwally, A. S. Alghamdi, E. H. Hafez, Ranked set sampling with application of modified Kies exponential distribution, Alexandria Eng. J., 60 (2021), 4041–4046. https://doi.org/10.1016/j.aej.2021.02.043 doi: 10.1016/j.aej.2021.02.043
![]() |
[18] | L. K. Halls, T. R. Dell, Trial of ranked-set sampling for forage yields, Forest Sci., 12 (1966), 22–26. |
[19] |
M. H. Sabry, E. M. Almetwally, Estimation of the exponential Pareto distributions parameters under ranked and double ranked set sampling designs, Pak. J. Stat. Oper. Res., 17 (2021), 169–184. https://doi.org/10.18187/PJSOR.v17i1.3448 doi: 10.18187/PJSOR.v17i1.3448
![]() |
[20] |
R. Alharbi, M. S. Mustafa, A. Al-Mutairi, M. Hussein, M. Yusuf, A. Elshenawy, S. G. Nassr, Enhancing mean estimators in median ranked set sampling with dual auxiliary information, Heliyon, 9 (2023), E21427. https://doi.org/10.1016/j.heliyon.2023.e21427 doi: 10.1016/j.heliyon.2023.e21427
![]() |
[21] |
J. M. Cobby, M. S. Ridout, P. J. Bassett, R. V. Large, An investigation into the use of ranked set sampling on grass and grass-clover swards, Grass Forage Sci., 40 (1985), 257–263. https://doi.org/10.1111/j.1365-2494.1985.tb01753.x doi: 10.1111/j.1365-2494.1985.tb01753.x
![]() |
[22] |
G. P. Patil, A. K. Sinha, C. Taille, Relative precision of ranked set sampling: A comparison with the regression estimator, Environmetrics, 4 (1993), 399–412. https://doi.org/10.1111/j.1365-2494.1985.tb01753.x doi: 10.1111/j.1365-2494.1985.tb01753.x
![]() |
[23] |
H. Muttlak, W. Al-Sabah, Statistical quality control based on ranked set sampling, J. Appl. Stat., 30 (2003), 1055–1078. https://doi.org/10.1080/0266476032000076173 doi: 10.1080/0266476032000076173
![]() |
[24] |
N. Alotaibi, A. S. Al-Moisheer, I. Elbatal, M. Shrahili, M. Elgarhy, E. M. Almetwally, Half logistic inverted Nadarajah-Haghighi distribution under ranked set sampling with applications, Mathematics, 11 (2023), 1693. https://doi.org/10.3390/math11071693 doi: 10.3390/math11071693
![]() |
[25] |
F. H. Riad, M. A. Sabry, E. M. Almetwally, R. Aldallal, R. Alharbi, M. M. Hossain, On extended neoteric ranked set sampling plan: Likelihood function derivation and parameter estimation, Complexity, 2022 (2022), 1697481. https://doi.org/10.1155/2022/1697481 doi: 10.1155/2022/1697481
![]() |
[26] |
L. Stokes, Parametric ranked set sampling, Ann. Instit. Statist. Math., 47 (1995), 465–482. https://doi.org/10.1007/BF00773396 doi: 10.1007/BF00773396
![]() |
[27] |
A. B. Shaibu, H. A. Muttlak, Estimating the parameters of the normal, exponential and gamma distributions using median and extreme ranked set samples, Statistica, 64 (2004), 75–98. https://doi.org/10.6092/issn.1973-2201/25 doi: 10.6092/issn.1973-2201/25
![]() |
[28] |
A. Adatia, Estimation of parameters of the half-logistic distribution using generalized ranked set sampling, Comput. Stat. Data Analy., 33 (2000), 1–13. https://doi.org/10.1016/S0167-9473(99)00035-3 doi: 10.1016/S0167-9473(99)00035-3
![]() |
[29] |
O. M. Yousef, S. A. Al-Subh, Estimation of Gumbel parameters under ranked set sampling, J. Modern Appl. Stat. Methods, 13 (2014), 24. https://doi.org/10.56801/10.56801/v13.i.741 doi: 10.56801/10.56801/v13.i.741
![]() |
[30] |
M. Esemen, S. Gurler, Parameter estimation of generalized Rayleigh distribution based on ranked set sample, J. Statist. Comput. Simul., 88 (2018), 615–628. https://doi.org/10.1080/00949655.2017.1398256 doi: 10.1080/00949655.2017.1398256
![]() |
[31] |
W. Chen, R. Yang, D. Yao, C. Long, Pareto parameters estimation using moving extremes ranked set sampling, Statist. Papers, 62 (2021), 1195–1211. https://doi.org/10.1007/s00362-019-01132-9 doi: 10.1007/s00362-019-01132-9
![]() |
[32] |
W. Qian, W. Chen, X. He, Parameter estimation for the Pareto distribution based on ranked set sampling, Statist. Papers, 62 (2021), 395–417. https://doi.org/10.1007/s00362-019-01102-1 doi: 10.1007/s00362-019-01102-1
![]() |
[33] |
A. I. Al-Omari, S. Benchiha, I. M. Almanjahie, Efficient estimation of two-parameter xgamma distribution parameters using ranked set sampling design, Mathematics, 10 (2022), 3170. https://doi.org/10.3390/math10173170 doi: 10.3390/math10173170
![]() |
[34] |
A. I. Samuh, M. H. Al-Omari, N. Koyuncu, Estimation of the parameters of the new Weibull-Pareto distribution using ranked set sampling, Statistica, 80 (2020), 103–123. https://doi.org/10.6092/issn.1973-2201/9368 doi: 10.6092/issn.1973-2201/9368
![]() |
[35] |
R. Bantan, M. Elsehetry, A. S. Hassan, M. Elgarhy, D. Sharma, C. Chesneau, et al., A two-parameter model: properties and estimation under ranked sampling, Mathematics, 9 (2013), 1214. https://doi.org/10.3390/math9111214 doi: 10.3390/math9111214
![]() |
[36] |
A. I. Al-Omari, S. Benchiha, I. M. Almanjahie, Efficient estimation of the generalized quasi- Lindley distribution parameters under ranked set sampling and applications, Math. Prob. Eng., 2021 (2021), 1214. https://doi.org/10.1155/2021/9982397 doi: 10.1155/2021/9982397
![]() |
[37] |
H. F. Nagy, A. I. Al-Omari, A. S. Hassan, G. A. Alomani, Improved estimation of the inverted kumaraswamy distribution parameters based on ranked set sampling with an application to real data, Mathematics, 10 (2022), 4102. https://doi.org/10.3390/math10214102 doi: 10.3390/math10214102
![]() |
[38] |
A. S. Hassan, N. Alsadat, M. Elgarhy, C. Chesneau, H. F. Nagy, Analysis of R = P[Y < X < Z] using ranked set sampling for a generalized inverse exponential model, Axioms, 12 (2023), 302. https://doi.org/10.3390/axioms12030302 doi: 10.3390/axioms12030302
![]() |
[39] |
N. Alsadat, A. S. Hassan, M. Elgarhy, C. Chesneau, R. E. Mohamed, An efficient stress-strength reliability estimate of the unit Gompertz distribution using ranked set sampling, Symmetry, 15 (2023), 1121. https://doi.org/10.3390/sym15051121 doi: 10.3390/sym15051121
![]() |
[40] |
R. Yang, W. Chen, Y. Dong, Log-extended exponential-geometric parameters estimation using simple random sampling and moving extremes ranked set sampling, Commun. Stat. Simul. Comput., 52 (2023), 267–277. https://doi.org/10.1080/03610918.2020.1853167 doi: 10.1080/03610918.2020.1853167
![]() |
[41] |
A. S. Hassan, N. Alsadat, M. Elgarhy, C. Chesneau, R. E. Mohamed, Different classical estimation methods using ranked set sampling and data analysis for the inverse power Cauchy distribution, J. Radiation Res. Appl. Sci., 16 (2023), 100685. https://doi.org/10.1016/j.jrras.2023.100685 doi: 10.1016/j.jrras.2023.100685
![]() |
[42] |
N. Alsadat, A. S. Hassan, A. M. Gemeay, C. Chesneau, M. Elgarhy, Different estimation methods for the generalized unit half-logistic geometric distribution: Using ranked set sampling, J. Radiation Res. Appl. Sci., 13 (2023), 085230. https://doi.org/10.1063/5.0169140 doi: 10.1063/5.0169140
![]() |
[43] |
T. W. Anderson, D. A. Darling, Asymptotic theory of certain goodness of fit criteria based on stochastic processes, The Ann. Math. Stat., 13 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437
![]() |
[44] |
P. D. M. Macdonald, Comments and queries comment on an estimation procedure for mixtures of distributions by Choi and Bulgren, J. Royal Statist. Society Ser. B Statist. Methodol., 33 (1971), 326–329. https://doi.org/10.1111/j.2517-6161.1971.tb00884.x doi: 10.1111/j.2517-6161.1971.tb00884.x
![]() |
[45] |
R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. Royal Statist. Society Ser. B Statist. Methodol., 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
![]() |
[46] | H. Torabi, A general method for estimating and hypotheses testing using spacings, J. Statist. Theory Appl., 8 (2008), 163–168. |
[47] |
E. Castillo, A. S. Hadi, A method for estimating parameters and quantiles of distributions of continuous random variables, Comput. Stat. Data Anal., 20 (1995), 421–439. https://doi.org/10.1016/0167-9473(94)00049-O doi: 10.1016/0167-9473(94)00049-O
![]() |
[48] | A. Abd El-Bar, H. S. Bakouch, S. Chowdhury, A new trigonometric distribution with bounded support and an application, Rev. Unión Mat. Arge., 62 (2021), 459–473. https://doi.org/10.33044/revuma.1872 |
1. | Najwan Alsadat, Amal S. Hassan, Mohammed Elgarhy, Arne Johannssen, Ahmed M. Gemeay, Estimation methods based on ranked set sampling for the power logarithmic distribution, 2024, 14, 2045-2322, 10.1038/s41598-024-67693-4 | |
2. | Mohammed Elgarhy, Mohamed Kayid, Arne Johannssen, Mahmoud Elsehetry, Survival analysis based on an enhanced Rayleigh-inverted Weibull model, 2024, 10, 24058440, e35851, 10.1016/j.heliyon.2024.e35851 | |
3. | Muhammad Riaz, Anwar H. Joarder, M. Hafidz Omar, Tahir Mahmood, Nasir Abbas, On Approaching Normality Through Rectangular Distribution: Industrial Applications to Monitor Electron Gun and File Server Processes, 2025, 2214-1766, 10.1007/s44199-024-00102-x | |
4. | Fatimah A. Almulhim, Dalia Kamal Alnagar, ELsiddig Idriss Mohamed, Nuran M. Hassan, Dependent and independent sampling techniques for modeling radiation and failure data, 2025, 18, 16878507, 101377, 10.1016/j.jrras.2025.101377 | |
5. | Hatem Semary, Ahmad Abubakar Suleiman, Aliyu Ismail Ishaq, Jamilu Yunusa Falgore, Umar Kabir Abdullahi, Hanita Daud, Mohamed A. Abd Elgawad, Mohammad Elgarhy, A new modified Sine-Weibull distribution for modeling medical data with dynamic structures, 2025, 18, 16878507, 101427, 10.1016/j.jrras.2025.101427 |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.5128 ^{\{5\}} | 0.5108 ^{\{4\}} | 0.5268 ^{\{8\}} | 0.4521 ^{\{1\}} | 0.5305 ^{\{9\}} | 0.4879 ^{\{3\}} | 0.4799 ^{\{2\}} | 0.5257 ^{\{7\}} | 0.5755 ^{\{11\}} | 0.5345 ^{\{10\}} | 0.5223 ^{\{6\}} |
MSE | {\ddddot \delta} | 0.5886 ^{\{4\}} | 0.5957 ^{\{5\}} | 0.6356 ^{\{9\}} | 0.4704 ^{\{1\}} | 0.6343 ^{\{8\}} | 0.5022 ^{\{2\}} | 0.5088 ^{\{3\}} | 0.6309 ^{\{7\}} | 0.806 ^{\{11\}} | 0.7126 ^{\{10\}} | 0.6245 ^{\{6\}} | |
MRE | {\ddddot \delta} | 3.4184 ^{\{5\}} | 3.405 ^{\{4\}} | 3.5117 ^{\{8\}} | 3.0141 ^{\{1\}} | 3.5368 ^{\{9\}} | 3.2523 ^{\{3\}} | 3.1997 ^{\{2\}} | 3.5049 ^{\{7\}} | 3.8366 ^{\{11\}} | 3.563 ^{\{10\}} | 3.4823 ^{\{6\}} | |
\sum Ranks | 14 ^{\{5\}} | 13 ^{\{4\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 26 ^{\{9\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | ||
50 | bias | {\ddddot \delta} | 0.3349 ^{\{4\}} | 0.3408 ^{\{6\}} | 0.3462 ^{\{8\}} | 0.3171 ^{\{1\}} | 0.337 ^{\{5\}} | 0.329 ^{\{3\}} | 0.327 ^{\{2\}} | 0.3414 ^{\{7\}} | 0.3703 ^{\{11\}} | 0.361 ^{\{10\}} | 0.3535 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1991 ^{\{4\}} | 0.2068 ^{\{6\}} | 0.2138 ^{\{8\}} | 0.1837 ^{\{1\}} | 0.205 ^{\{5\}} | 0.1905 ^{\{2\}} | 0.1917 ^{\{3\}} | 0.2082 ^{\{7\}} | 0.2532 ^{\{10\}} | 0.2582 ^{\{11\}} | 0.2295 ^{\{9\}} | |
MRE | {\ddddot \delta} | 2.2326 ^{\{4\}} | 2.2718 ^{\{6\}} | 2.3083 ^{\{8\}} | 2.1143 ^{\{1\}} | 2.2469 ^{\{5\}} | 2.1934 ^{\{3\}} | 2.18 ^{\{2\}} | 2.2762 ^{\{7\}} | 2.4686 ^{\{11\}} | 2.4064 ^{\{10\}} | 2.357 ^{\{9\}} | |
\sum Ranks | 12 ^{\{4\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 32 ^{\{11\}} | 31 ^{\{10\}} | 27 ^{\{9\}} | ||
120 | bias | {\ddddot \delta} | 0.2637 ^{\{7\}} | 0.2659 ^{\{8\}} | 0.2568 ^{\{2\}} | 0.2537 ^{\{1\}} | 0.2628 ^{\{5\}} | 0.2617 ^{\{4\}} | 0.2591 ^{\{3\}} | 0.2635 ^{\{6\}} | 0.2767 ^{\{9\}} | 0.2825 ^{\{11\}} | 0.279 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.1088 ^{\{5\}} | 0.1116 ^{\{8\}} | 0.1055 ^{\{2\}} | 0.1044 ^{\{1\}} | 0.1099 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1061 ^{\{3\}} | 0.1073 ^{\{4\}} | 0.1246 ^{\{9\}} | 0.1374 ^{\{11\}} | 0.1272 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.7582 ^{\{7\}} | 1.7728 ^{\{8\}} | 1.7119 ^{\{2\}} | 1.6911 ^{\{1\}} | 1.7523 ^{\{5\}} | 1.7446 ^{\{4\}} | 1.7271 ^{\{3\}} | 1.7564 ^{\{6\}} | 1.8445 ^{\{9\}} | 1.8832 ^{\{11\}} | 1.86 ^{\{10\}} | |
\sum Ranks | 19 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 17 ^{\{6\}} | 14 ^{\{4\}} | 9 ^{\{3\}} | 16 ^{\{5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.2313 ^{\{8\}} | 0.2301 ^{\{6\}} | 0.2294 ^{\{4\}} | 0.2173 ^{\{1\}} | 0.2272 ^{\{2\}} | 0.2307 ^{\{7\}} | 0.2277 ^{\{3\}} | 0.2297 ^{\{5\}} | 0.2403 ^{\{9\}} | 0.2447 ^{\{11\}} | 0.2438 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0796 ^{\{8\}} | 0.0781 ^{\{5\}} | 0.0788 ^{\{6\}} | 0.0722 ^{\{1\}} | 0.0761 ^{\{2\}} | 0.0791 ^{\{7\}} | 0.0764 ^{\{3\}} | 0.0769 ^{\{4\}} | 0.0874 ^{\{9\}} | 0.0958 ^{\{11\}} | 0.0907 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.5418 ^{\{8\}} | 1.534 ^{\{6\}} | 1.5293 ^{\{4\}} | 1.4486 ^{\{1\}} | 1.5149 ^{\{2\}} | 1.5379 ^{\{7\}} | 1.5181 ^{\{3\}} | 1.5314 ^{\{5\}} | 1.6019 ^{\{9\}} | 1.6315 ^{\{11\}} | 1.6256 ^{\{10\}} | |
\sum Ranks | 24 ^{\{8\}} | 17 ^{\{6\}} | 14 ^{\{4.5\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 9 ^{\{3\}} | 14 ^{\{4.5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | {\ddddot \delta} | 0.2075 ^{\{4\}} | 0.2098 ^{\{6\}} | 0.2108 ^{\{8\}} | 0.1925 ^{\{1\}} | 0.2059 ^{\{3\}} | 0.2084 ^{\{5\}} | 0.205 ^{\{2\}} | 0.2106 ^{\{7\}} | 0.2183 ^{\{9\}} | 0.223 ^{\{11\}} | 0.2207 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0603 ^{\{4\}} | 0.062 ^{\{7\}} | 0.0629 ^{\{8\}} | 0.0549 ^{\{1\}} | 0.0602 ^{\{3\}} | 0.0614 ^{\{5\}} | 0.0593 ^{\{2\}} | 0.0619 ^{\{6\}} | 0.0686 ^{\{9\}} | 0.0763 ^{\{11\}} | 0.0701 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.3836 ^{\{4\}} | 1.3986 ^{\{6\}} | 1.4053 ^{\{8\}} | 1.283 ^{\{1\}} | 1.3724 ^{\{3\}} | 1.3896 ^{\{5\}} | 1.3666 ^{\{2\}} | 1.4037 ^{\{7\}} | 1.4553 ^{\{9\}} | 1.4864 ^{\{11\}} | 1.4712 ^{\{10\}} | |
\sum Ranks | 12 ^{\{4\}} | 19 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | {\ddddot \delta} | 0.191 ^{\{8\}} | 0.1908 ^{\{7\}} | 0.1869 ^{\{3.5\}} | 0.1744 ^{\{1\}} | 0.1891 ^{\{5\}} | 0.1853 ^{\{2\}} | 0.1869 ^{\{3.5\}} | 0.1905 ^{\{6\}} | 0.1957 ^{\{9\}} | 0.2039 ^{\{11\}} | 0.1996 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0488 ^{\{6\}} | 0.0492 ^{\{8\}} | 0.047 ^{\{3.5\}} | 0.0436 ^{\{1\}} | 0.0487 ^{\{5\}} | 0.0463 ^{\{2\}} | 0.047 ^{\{3.5\}} | 0.0489 ^{\{7\}} | 0.0524 ^{\{9\}} | 0.0611 ^{\{11\}} | 0.0548 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.2732 ^{\{8\}} | 1.2723 ^{\{7\}} | 1.2459 ^{\{3\}} | 1.1625 ^{\{1\}} | 1.261 ^{\{5\}} | 1.2351 ^{\{2\}} | 1.2463 ^{\{4\}} | 1.2698 ^{\{6\}} | 1.3047 ^{\{9\}} | 1.3591 ^{\{11\}} | 1.3308 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7.5\}} | 22 ^{\{7.5\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 19 ^{\{6\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.3505 ^{\{1\}} | 0.395 ^{\{5\}} | 0.4091 ^{\{7\}} | 0.3525 ^{\{2\}} | 0.4098 ^{\{8\}} | 0.3829 ^{\{4\}} | 0.37 ^{\{3\}} | 0.3965 ^{\{6\}} | 0.4737 ^{\{11\}} | 0.4317 ^{\{10\}} | 0.4258 ^{\{9\}} |
MSE | \hat{\delta} | 0.2218 ^{\{1\}} | 0.3044 ^{\{5\}} | 0.3299 ^{\{7\}} | 0.2503 ^{\{2\}} | 0.3354 ^{\{8\}} | 0.2813 ^{\{4\}} | 0.2668 ^{\{3\}} | 0.3068 ^{\{6\}} | 0.4836 ^{\{11\}} | 0.4161 ^{\{10\}} | 0.383 ^{\{9\}} | |
MRE | \hat{\delta} | 2.3369 ^{\{1\}} | 2.6331 ^{\{5\}} | 2.7272 ^{\{7\}} | 2.3501 ^{\{2\}} | 2.7317 ^{\{8\}} | 2.5528 ^{\{4\}} | 2.4666 ^{\{3\}} | 2.6436 ^{\{6\}} | 3.1579 ^{\{11\}} | 2.8777 ^{\{10\}} | 2.8388 ^{\{9\}} | |
\sum Ranks | 3 ^{\{1\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.2485 ^{\{9\}} | 0.2123 ^{\{5\}} | 0.2129 ^{\{6\}} | 0.1925 ^{\{1\}} | 0.213 ^{\{7\}} | 0.2075 ^{\{2\}} | 0.2086 ^{\{3\}} | 0.212 ^{\{4\}} | 0.2296 ^{\{8\}} | 0.2735 ^{\{11\}} | 0.2679 ^{\{10\}} |
MSE | \hat{\delta} | 0.094 ^{\{9\}} | 0.0642 ^{\{5\}} | 0.0652 ^{\{7\}} | 0.0544 ^{\{1\}} | 0.0648 ^{\{6\}} | 0.0606 ^{\{2\}} | 0.0624 ^{\{3\}} | 0.0636 ^{\{4\}} | 0.0773 ^{\{8\}} | 0.1338 ^{\{11\}} | 0.1145 ^{\{10\}} | |
MRE | \hat{\delta} | 1.6565 ^{\{9\}} | 1.4152 ^{\{5\}} | 1.4193 ^{\{6\}} | 1.2837 ^{\{1\}} | 1.4197 ^{\{7\}} | 1.383 ^{\{2\}} | 1.3908 ^{\{3\}} | 1.4134 ^{\{4\}} | 1.5306 ^{\{8\}} | 1.823 ^{\{11\}} | 1.7858 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 15 ^{\{5\}} | 19 ^{\{6\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
120 | bias | \hat{\delta} | 0.1991 ^{\{9\}} | 0.1406 ^{\{2\}} | 0.1423 ^{\{4\}} | 0.1232 ^{\{1\}} | 0.1427 ^{\{5\}} | 0.1412 ^{\{3\}} | 0.143 ^{\{6\}} | 0.1462 ^{\{7\}} | 0.1486 ^{\{8\}} | 0.2087 ^{\{11\}} | 0.2026 ^{\{10\}} |
MSE | \hat{\delta} | 0.0542 ^{\{9\}} | 0.025 ^{\{2\}} | 0.0258 ^{\{6\}} | 0.0201 ^{\{1\}} | 0.0257 ^{\{5\}} | 0.0253 ^{\{3\}} | 0.0256 ^{\{4\}} | 0.0266 ^{\{7\}} | 0.0283 ^{\{8\}} | 0.0667 ^{\{11\}} | 0.057 ^{\{10\}} | |
MRE | \hat{\delta} | 1.3271 ^{\{9\}} | 0.9374 ^{\{2\}} | 0.9488 ^{\{4\}} | 0.8213 ^{\{1\}} | 0.9511 ^{\{5\}} | 0.9411 ^{\{3\}} | 0.9531 ^{\{6\}} | 0.9747 ^{\{7\}} | 0.9906 ^{\{8\}} | 1.3916 ^{\{11\}} | 1.3509 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 16 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | \hat{\delta} | 0.1806 ^{\{10\}} | 0.1085 ^{\{2\}} | 0.1113 ^{\{5\}} | 0.0928 ^{\{1\}} | 0.1112 ^{\{4\}} | 0.1106 ^{\{3\}} | 0.1139 ^{\{6\}} | 0.1148 ^{\{7\}} | 0.1173 ^{\{8\}} | 0.1853 ^{\{11\}} | 0.1793 ^{\{9\}} |
MSE | \hat{\delta} | 0.0422 ^{\{9\}} | 0.0152 ^{\{2\}} | 0.0157 ^{\{3.5\}} | 0.0117 ^{\{1\}} | 0.0158 ^{\{5\}} | 0.0157 ^{\{3.5\}} | 0.0165 ^{\{6\}} | 0.0169 ^{\{7\}} | 0.0174 ^{\{8\}} | 0.05 ^{\{11\}} | 0.0429 ^{\{10\}} | |
MRE | \hat{\delta} | 1.204 ^{\{10\}} | 0.7233 ^{\{2\}} | 0.7423 ^{\{5\}} | 0.6186 ^{\{1\}} | 0.7416 ^{\{4\}} | 0.7376 ^{\{3\}} | 0.7596 ^{\{6\}} | 0.7652 ^{\{7\}} | 0.7821 ^{\{8\}} | 1.2355 ^{\{11\}} | 1.1956 ^{\{9\}} | |
\sum Ranks | 29 ^{\{10\}} | 6 ^{\{2\}} | 13.5 ^{\{5\}} | 3 ^{\{1\}} | 13 ^{\{4\}} | 9.5 ^{\{3\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 28 ^{\{9\}} | ||
300 | bias | \hat{\delta} | 0.1596 ^{\{9\}} | 0.0902 ^{\{4\}} | 0.09 ^{\{3\}} | 0.0691 ^{\{1\}} | 0.0905 ^{\{5\}} | 0.0891 ^{\{2\}} | 0.0912 ^{\{6\}} | 0.0994 ^{\{8\}} | 0.0934 ^{\{7\}} | 0.1697 ^{\{11\}} | 0.1663 ^{\{10\}} |
MSE | \hat{\delta} | 0.0325 ^{\{9\}} | 0.0112 ^{\{5\}} | 0.011 ^{\{3\}} | 0.0073 ^{\{1\}} | 0.0111 ^{\{4\}} | 0.0109 ^{\{2\}} | 0.0114 ^{\{6\}} | 0.0142 ^{\{8\}} | 0.0118 ^{\{7\}} | 0.0405 ^{\{11\}} | 0.0354 ^{\{10\}} | |
MRE | \hat{\delta} | 1.0638 ^{\{9\}} | 0.6017 ^{\{4\}} | 0.6001 ^{\{3\}} | 0.4603 ^{\{1\}} | 0.6035 ^{\{5\}} | 0.5937 ^{\{2\}} | 0.6078 ^{\{6\}} | 0.6626 ^{\{8\}} | 0.6227 ^{\{7\}} | 1.1314 ^{\{11\}} | 1.1087 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 13 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1462 ^{\{9\}} | 0.0824 ^{\{8\}} | 0.0689 ^{\{2\}} | 0.0478 ^{\{1\}} | 0.0694 ^{\{3\}} | 0.0698 ^{\{4\}} | 0.0729 ^{\{6\}} | 0.0761 ^{\{7\}} | 0.0728 ^{\{5\}} | 0.1577 ^{\{11\}} | 0.1518 ^{\{10\}} |
MSE | \hat{\delta} | 0.0273 ^{\{9\}} | 0.0114 ^{\{8\}} | 0.0073 ^{\{2\}} | 0.0041 ^{\{1\}} | 0.0074 ^{\{3.5\}} | 0.0074 ^{\{3.5\}} | 0.0079 ^{\{5.5\}} | 0.0097 ^{\{7\}} | 0.0079 ^{\{5.5\}} | 0.0337 ^{\{11\}} | 0.0293 ^{\{10\}} | |
MRE | \hat{\delta} | 0.9747 ^{\{9\}} | 0.5493 ^{\{8\}} | 0.4592 ^{\{2\}} | 0.3183 ^{\{1\}} | 0.4629 ^{\{3\}} | 0.4656 ^{\{4\}} | 0.486 ^{\{6\}} | 0.507 ^{\{7\}} | 0.4853 ^{\{5\}} | 1.0514 ^{\{11\}} | 1.0123 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 17.5 ^{\{6\}} | 21 ^{\{7\}} | 15.5 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.6207 ^{\{5\}} | 0.6075 ^{\{4\}} | 0.6427 ^{\{8\}} | 0.5986 ^{\{2\}} | 0.6209 ^{\{6\}} | 0.5592 ^{\{1\}} | 0.6055 ^{\{3\}} | 0.6366 ^{\{7\}} | 0.7045 ^{\{10\}} | 0.7067 ^{\{11\}} | 0.6969 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.6293 ^{\{5\}} | 0.5692 ^{\{3\}} | 0.6515 ^{\{7\}} | 0.5246 ^{\{2\}} | 0.6296 ^{\{6\}} | 0.4705 ^{\{1\}} | 0.6066 ^{\{4\}} | 0.6556 ^{\{8\}} | 0.8866 ^{\{10\}} | 0.9346 ^{\{11\}} | 0.7847 ^{\{9\}} | |
MRE | {\ddddot \delta} | 1.0346 ^{\{5\}} | 1.0126 ^{\{4\}} | 1.0711 ^{\{8\}} | 0.9977 ^{\{2\}} | 1.0349 ^{\{6\}} | 0.932 ^{\{1\}} | 1.0091 ^{\{3\}} | 1.061 ^{\{7\}} | 1.1742 ^{\{10\}} | 1.1778 ^{\{11\}} | 1.1615 ^{\{9\}} | |
\sum Ranks | 15 ^{\{5\}} | 11 ^{\{4\}} | 23 ^{\{8\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 22 ^{\{7\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.4557 ^{\{8\}} | 0.4571 ^{\{9\}} | 0.4129 ^{\{4\}} | 0.4021 ^{\{2\}} | 0.4086 ^{\{3\}} | 0.3988 ^{\{1\}} | 0.4154 ^{\{5\}} | 0.4482 ^{\{7\}} | 0.4369 ^{\{6\}} | 0.4633 ^{\{10\}} | 0.4807 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.297 ^{\{9\}} | 0.2957 ^{\{8\}} | 0.246 ^{\{5\}} | 0.226 ^{\{2\}} | 0.2334 ^{\{3\}} | 0.2179 ^{\{1\}} | 0.241 ^{\{4\}} | 0.2817 ^{\{7\}} | 0.2767 ^{\{6\}} | 0.3094 ^{\{10\}} | 0.3237 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.7596 ^{\{8\}} | 0.7618 ^{\{9\}} | 0.6882 ^{\{4\}} | 0.6701 ^{\{2\}} | 0.6809 ^{\{3\}} | 0.6647 ^{\{1\}} | 0.6924 ^{\{5\}} | 0.7471 ^{\{7\}} | 0.7282 ^{\{6\}} | 0.7722 ^{\{10\}} | 0.8012 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 26 ^{\{9\}} | 13 ^{\{4\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3261 ^{\{7\}} | 0.3161 ^{\{5\}} | 0.2963 ^{\{3\}} | 0.2886 ^{\{2\}} | 0.3027 ^{\{4\}} | 0.2852 ^{\{1\}} | 0.3573 ^{\{8\}} | 0.3194 ^{\{6\}} | 0.3818 ^{\{11\}} | 0.3685 ^{\{10\}} | 0.3595 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1668 ^{\{7\}} | 0.1613 ^{\{5\}} | 0.135 ^{\{3\}} | 0.1274 ^{\{2\}} | 0.138 ^{\{4\}} | 0.1264 ^{\{1\}} | 0.2051 ^{\{9\}} | 0.1637 ^{\{6\}} | 0.2333 ^{\{11\}} | 0.2082 ^{\{10\}} | 0.1993 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.5435 ^{\{7\}} | 0.5268 ^{\{5\}} | 0.4939 ^{\{3\}} | 0.4811 ^{\{2\}} | 0.5044 ^{\{4\}} | 0.4754 ^{\{1\}} | 0.5955 ^{\{8\}} | 0.5324 ^{\{6\}} | 0.6364 ^{\{11\}} | 0.6142 ^{\{10\}} | 0.5991 ^{\{9\}} | |
\sum Ranks | 21 ^{\{7\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 26 ^{\{9\}} | ||
200 | bias | {\ddddot \delta} | 0.3121 ^{\{8\}} | 0.2876 ^{\{6\}} | 0.2792 ^{\{4\}} | 0.2252 ^{\{1\}} | 0.2871 ^{\{5\}} | 0.2263 ^{\{2\}} | 0.264 ^{\{3\}} | 0.3165 ^{\{9\}} | 0.291 ^{\{7\}} | 0.3194 ^{\{10\}} | 0.3455 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1814 ^{\{9\}} | 0.1597 ^{\{7\}} | 0.144 ^{\{4\}} | 0.0808 ^{\{1\}} | 0.1537 ^{\{5\}} | 0.0831 ^{\{2\}} | 0.1324 ^{\{3\}} | 0.1883 ^{\{10\}} | 0.1551 ^{\{6\}} | 0.1698 ^{\{8\}} | 0.2015 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.5202 ^{\{8\}} | 0.4793 ^{\{6\}} | 0.4653 ^{\{4\}} | 0.3753 ^{\{1\}} | 0.4785 ^{\{5\}} | 0.3771 ^{\{2\}} | 0.44 ^{\{3\}} | 0.5275 ^{\{9\}} | 0.485 ^{\{7\}} | 0.5324 ^{\{10\}} | 0.5758 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 19 ^{\{6\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 28 ^{\{9.5\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2609 ^{\{6\}} | 0.2871 ^{\{10\}} | 0.2688 ^{\{8\}} | 0.1889 ^{\{1\}} | 0.2707 ^{\{9\}} | 0.1897 ^{\{2\}} | 0.2442 ^{\{5\}} | 0.2357 ^{\{3\}} | 0.244 ^{\{4\}} | 0.2623 ^{\{7\}} | 0.2952 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1497 ^{\{7\}} | 0.182 ^{\{11\}} | 0.1598 ^{\{8\}} | 0.059 ^{\{1\}} | 0.1632 ^{\{9\}} | 0.062 ^{\{2\}} | 0.1263 ^{\{5\}} | 0.1124 ^{\{3.5\}} | 0.1124 ^{\{3.5\}} | 0.1267 ^{\{6\}} | 0.1724 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.4348 ^{\{6\}} | 0.4786 ^{\{10\}} | 0.448 ^{\{8\}} | 0.3148 ^{\{1\}} | 0.4511 ^{\{9\}} | 0.3162 ^{\{2\}} | 0.4071 ^{\{5\}} | 0.3928 ^{\{3\}} | 0.4067 ^{\{4\}} | 0.4372 ^{\{7\}} | 0.492 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 15 ^{\{5\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2359 ^{\{8.5\}} | 0.2146 ^{\{3\}} | 0.2196 ^{\{4\}} | 0.1484 ^{\{1\}} | 0.2215 ^{\{5\}} | 0.1498 ^{\{2\}} | 0.239 ^{\{10\}} | 0.2304 ^{\{6\}} | 0.2359 ^{\{8.5\}} | 0.2309 ^{\{7\}} | 0.2523 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1406 ^{\{9\}} | 0.1139 ^{\{4\}} | 0.1222 ^{\{5\}} | 0.0368 ^{\{1\}} | 0.1232 ^{\{6\}} | 0.0375 ^{\{2\}} | 0.1471 ^{\{11\}} | 0.1298 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1117 ^{\{3\}} | 0.1454 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.3932 ^{\{9\}} | 0.3576 ^{\{3\}} | 0.3661 ^{\{4\}} | 0.2474 ^{\{1\}} | 0.3692 ^{\{5\}} | 0.2497 ^{\{2\}} | 0.3983 ^{\{10\}} | 0.384 ^{\{6\}} | 0.3931 ^{\{8\}} | 0.3848 ^{\{7\}} | 0.4205 ^{\{11\}} | |
\sum Ranks | 26.5 ^{\{9\}} | 10 ^{\{3\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 16 ^{\{5\}} | 6 ^{\{2\}} | 31 ^{\{10\}} | 20 ^{\{7\}} | 23.5 ^{\{8\}} | 17 ^{\{6\}} | 32 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.4538 ^{\{1\}} | 0.472 ^{\{3\}} | 0.5065 ^{\{7\}} | 0.4879 ^{\{5\}} | 0.4887 ^{\{6\}} | 0.4678 ^{\{2\}} | 0.4746 ^{\{4\}} | 0.5331 ^{\{8\}} | 0.543 ^{\{9\}} | 0.5913 ^{\{11\}} | 0.5554 ^{\{10\}} |
MSE | \hat{\delta} | 0.2993 ^{\{1\}} | 0.316 ^{\{3\}} | 0.3685 ^{\{7\}} | 0.3255 ^{\{5\}} | 0.3619 ^{\{6\}} | 0.3087 ^{\{2\}} | 0.3177 ^{\{4\}} | 0.4032 ^{\{8\}} | 0.4637 ^{\{10\}} | 0.5488 ^{\{11\}} | 0.4368 ^{\{9\}} | |
MRE | \hat{\delta} | 0.7563 ^{\{1\}} | 0.7867 ^{\{3\}} | 0.8442 ^{\{7\}} | 0.8132 ^{\{5\}} | 0.8145 ^{\{6\}} | 0.7797 ^{\{2\}} | 0.7909 ^{\{4\}} | 0.8885 ^{\{8\}} | 0.9049 ^{\{9\}} | 0.9854 ^{\{11\}} | 0.9257 ^{\{10\}} | |
\sum Ranks | 3 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 28 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3076 ^{\{9\}} | 0.2821 ^{\{8\}} | 0.201 ^{\{1\}} | 0.2118 ^{\{4\}} | 0.2073 ^{\{3\}} | 0.2034 ^{\{2\}} | 0.2238 ^{\{6\}} | 0.2503 ^{\{7\}} | 0.2234 ^{\{5\}} | 0.3601 ^{\{10\}} | 0.365 ^{\{11\}} |
MSE | \hat{\delta} | 0.1571 ^{\{8\}} | 0.1676 ^{\{9\}} | 0.0668 ^{\{1\}} | 0.0736 ^{\{4\}} | 0.072 ^{\{3\}} | 0.0685 ^{\{2\}} | 0.085 ^{\{6\}} | 0.128 ^{\{7\}} | 0.0804 ^{\{5\}} | 0.1958 ^{\{10\}} | 0.2026 ^{\{11\}} | |
MRE | \hat{\delta} | 0.5127 ^{\{9\}} | 0.4701 ^{\{8\}} | 0.3351 ^{\{1\}} | 0.353 ^{\{4\}} | 0.3455 ^{\{3\}} | 0.3389 ^{\{2\}} | 0.373 ^{\{6\}} | 0.4171 ^{\{7\}} | 0.3723 ^{\{5\}} | 0.6002 ^{\{10\}} | 0.6083 ^{\{11\}} | |
\sum Ranks | 26 ^{\{9\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2623 ^{\{10\}} | 0.146 ^{\{8\}} | 0.083 ^{\{2\}} | 0.0856 ^{\{4\}} | 0.0844 ^{\{3\}} | 0.0799 ^{\{1\}} | 0.1431 ^{\{7\}} | 0.1349 ^{\{6\}} | 0.1195 ^{\{5\}} | 0.2844 ^{\{11\}} | 0.2593 ^{\{9\}} |
MSE | \hat{\delta} | 0.1549 ^{\{11\}} | 0.0865 ^{\{8\}} | 0.0114 ^{\{2.5\}} | 0.0125 ^{\{4\}} | 0.0114 ^{\{2.5\}} | 0.0103 ^{\{1\}} | 0.0809 ^{\{7\}} | 0.0747 ^{\{6\}} | 0.0508 ^{\{5\}} | 0.1489 ^{\{10\}} | 0.1346 ^{\{9\}} | |
MRE | \hat{\delta} | 0.4372 ^{\{10\}} | 0.2433 ^{\{8\}} | 0.1383 ^{\{2\}} | 0.1426 ^{\{4\}} | 0.1406 ^{\{3\}} | 0.1332 ^{\{1\}} | 0.2385 ^{\{7\}} | 0.2248 ^{\{6\}} | 0.1992 ^{\{5\}} | 0.4739 ^{\{11\}} | 0.4322 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10\}} | 24 ^{\{8\}} | 6.5 ^{\{2\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
200 | bias | \hat{\delta} | 0.192 ^{\{9\}} | 0.0877 ^{\{8\}} | 0.0497 ^{\{1\}} | 0.0499 ^{\{2\}} | 0.051 ^{\{4\}} | 0.0502 ^{\{3\}} | 0.0738 ^{\{7\}} | 0.0695 ^{\{6\}} | 0.0688 ^{\{5\}} | 0.2446 ^{\{11\}} | 0.2316 ^{\{10\}} |
MSE | \hat{\delta} | 0.0998 ^{\{9\}} | 0.0529 ^{\{8\}} | 0.0039 ^{\{1\}} | 0.0041 ^{\{3\}} | 0.0049 ^{\{4\}} | 0.004 ^{\{2\}} | 0.0325 ^{\{7\}} | 0.0291 ^{\{6\}} | 0.0222 ^{\{5\}} | 0.1347 ^{\{11\}} | 0.1316 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3201 ^{\{9\}} | 0.1461 ^{\{8\}} | 0.0829 ^{\{1\}} | 0.0832 ^{\{2\}} | 0.0851 ^{\{4\}} | 0.0836 ^{\{3\}} | 0.123 ^{\{7\}} | 0.1159 ^{\{6\}} | 0.1146 ^{\{5\}} | 0.4077 ^{\{11\}} | 0.386 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 8 ^{\{3\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1497 ^{\{9\}} | 0.0474 ^{\{7\}} | 0.0327 ^{\{3.5\}} | 0.0323 ^{\{1.5\}} | 0.0323 ^{\{1.5\}} | 0.0327 ^{\{3.5\}} | 0.0511 ^{\{8\}} | 0.0426 ^{\{5.5\}} | 0.0426 ^{\{5.5\}} | 0.214 ^{\{11\}} | 0.1883 ^{\{10\}} |
MSE | \hat{\delta} | 0.0736 ^{\{9\}} | 0.0199 ^{\{7\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0223 ^{\{8\}} | 0.0133 ^{\{6\}} | 0.0112 ^{\{5\}} | 0.1135 ^{\{11\}} | 0.108 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2496 ^{\{9\}} | 0.0791 ^{\{7\}} | 0.0545 ^{\{3.5\}} | 0.0539 ^{\{1.5\}} | 0.0539 ^{\{1.5\}} | 0.0545 ^{\{3.5\}} | 0.0852 ^{\{8\}} | 0.071 ^{\{5.5\}} | 0.071 ^{\{5.5\}} | 0.3567 ^{\{11\}} | 0.3139 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 21 ^{\{7\}} | 9.5 ^{\{3.5\}} | 5.5 ^{\{1.5\}} | 5.5 ^{\{1.5\}} | 9.5 ^{\{3.5\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 16 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1307 ^{\{9\}} | 0.0459 ^{\{8\}} | 0.0214 ^{\{1\}} | 0.0223 ^{\{4\}} | 0.022 ^{\{3\}} | 0.0219 ^{\{2\}} | 0.0336 ^{\{6\}} | 0.0359 ^{\{7\}} | 0.0289 ^{\{5\}} | 0.1672 ^{\{11\}} | 0.1428 ^{\{10\}} |
MSE | \hat{\delta} | 0.0693 ^{\{9\}} | 0.0304 ^{\{8\}} | 7e-04 ^{\{1\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 0.0136 ^{\{6\}} | 0.0193 ^{\{7\}} | 0.0082 ^{\{5\}} | 0.0865 ^{\{11\}} | 0.0754 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2179 ^{\{9\}} | 0.0765 ^{\{8\}} | 0.0356 ^{\{1\}} | 0.0371 ^{\{4\}} | 0.0367 ^{\{3\}} | 0.0365 ^{\{2\}} | 0.056 ^{\{6\}} | 0.0599 ^{\{7\}} | 0.0481 ^{\{5\}} | 0.2786 ^{\{11\}} | 0.238 ^{\{10\}} | |
\sum Ranks | 23 ^{\{9\}} | 20 ^{\{8\}} | 10 ^{\{1\}} | 18 ^{\{7\}} | 16 ^{\{5\}} | 14 ^{\{3.5\}} | 14 ^{\{3.5\}} | 17 ^{\{6\}} | 11 ^{\{2\}} | 29 ^{\{11\}} | 26 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8474 ^{\{6\}} | 0.7629 ^{\{3\}} | 0.8495 ^{\{7\}} | 0.7981 ^{\{4\}} | 0.8277 ^{\{5\}} | 0.6614 ^{\{1\}} | 0.7295 ^{\{2\}} | 1.1297 ^{\{9\}} | 1.1745 ^{\{10\}} | 1.3548 ^{\{11\}} | 1.1033 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 29 ^{\{9.5\}} | 26 ^{\{8\}} | 29 ^{\{9.5\}} | 30 ^{\{11\}} | ||
50 | bias | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4336 ^{\{7\}} | 0.4738 ^{\{9\}} | 0.2674 ^{\{3\}} | 0.2539 ^{\{2\}} | 0.2684 ^{\{4\}} | 0.2452 ^{\{1\}} | 0.5006 ^{\{10\}} | 0.4405 ^{\{8\}} | 0.3571 ^{\{5\}} | 0.4333 ^{\{6\}} | 0.5013 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 27 ^{\{9\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 22 ^{\{7.5\}} | 15 ^{\{5\}} | 22 ^{\{7.5\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2801 ^{\{8\}} | 0.3012 ^{\{9\}} | 0.2087 ^{\{4\}} | 0.1004 ^{\{1\}} | 0.1845 ^{\{3\}} | 0.1067 ^{\{2\}} | 0.2702 ^{\{6\}} | 0.26 ^{\{5\}} | 0.3326 ^{\{10\}} | 0.2761 ^{\{7\}} | 0.3575 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 25 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 25 ^{\{8.5\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2652 ^{\{9\}} | 0.3161 ^{\{10\}} | 0.2133 ^{\{4\}} | 0.0533 ^{\{1\}} | 0.2146 ^{\{5\}} | 0.0587 ^{\{2\}} | 0.2464 ^{\{7\}} | 0.2208 ^{\{6\}} | 0.2651 ^{\{8\}} | 0.1644 ^{\{3\}} | 0.3641 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 30 ^{\{10\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5.5\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 14 ^{\{4\}} | 26 ^{\{9\}} | 15 ^{\{5.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2032 ^{\{6\}} | 0.2231 ^{\{9\}} | 0.2123 ^{\{8\}} | 0.0349 ^{\{1\}} | 0.2096 ^{\{7\}} | 0.0354 ^{\{2\}} | 0.2314 ^{\{10\}} | 0.1956 ^{\{5\}} | 0.175 ^{\{4\}} | 0.1323 ^{\{3\}} | 0.2854 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1805 ^{\{8\}} | 0.2013 ^{\{10\}} | 0.1525 ^{\{6\}} | 0.0253 ^{\{2\}} | 0.1369 ^{\{5\}} | 0.0241 ^{\{1\}} | 0.1993 ^{\{9\}} | 0.176 ^{\{7\}} | 0.1145 ^{\{4\}} | 0.0973 ^{\{3\}} | 0.215 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 23 ^{\{8\}} | 12 ^{\{4\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} |
MSE | \hat{\delta} | 0.5039 ^{\{7\}} | 0.4254 ^{\{2\}} | 0.4337 ^{\{5\}} | 0.4281 ^{\{3\}} | 0.4289 ^{\{4\}} | 0.3892 ^{\{1\}} | 0.4383 ^{\{6\}} | 0.6202 ^{\{9\}} | 0.5341 ^{\{8\}} | 1.147 ^{\{11\}} | 0.6721 ^{\{10\}} | |
MRE | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 13 ^{\{5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} |
MSE | \hat{\delta} | 0.2806 ^{\{10\}} | 0.1836 ^{\{7\}} | 0.0433 ^{\{2\}} | 0.0468 ^{\{3\}} | 0.0486 ^{\{4\}} | 0.0388 ^{\{1\}} | 0.1309 ^{\{6\}} | 0.1993 ^{\{8\}} | 0.0699 ^{\{5\}} | 0.2681 ^{\{9\}} | 0.3842 ^{\{11\}} | |
MRE | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} |
MSE | \hat{\delta} | 0.2005 ^{\{10\}} | 0.061 ^{\{7\}} | 0.0077 ^{\{2\}} | 0.0074 ^{\{1\}} | 0.008 ^{\{4\}} | 0.0078 ^{\{3\}} | 0.0229 ^{\{6\}} | 0.098 ^{\{8\}} | 0.0142 ^{\{5\}} | 0.1692 ^{\{9\}} | 0.2032 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 8 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 7 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 31 ^{\{10.5\}} | 31 ^{\{10.5\}} | ||
200 | bias | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} |
MSE | \hat{\delta} | 0.1455 ^{\{11\}} | 0.0457 ^{\{7\}} | 0.0027 ^{\{1\}} | 0.0029 ^{\{3.5\}} | 0.0028 ^{\{2\}} | 0.0029 ^{\{3.5\}} | 0.0032 ^{\{6\}} | 0.0701 ^{\{8\}} | 0.003 ^{\{5\}} | 0.0785 ^{\{9\}} | 0.1166 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} | |
\sum Ranks | 33 ^{\{11\}} | 21 ^{\{7\}} | 3 ^{\{1\}} | 11.5 ^{\{4\}} | 8 ^{\{3\}} | 7.5 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} |
MSE | \hat{\delta} | 0.118 ^{\{11\}} | 0.031 ^{\{8\}} | 0.0012 ^{\{1\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0283 ^{\{7\}} | 0.0013 ^{\{4\}} | 0.0708 ^{\{9\}} | 0.1043 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8 ^{\{2\}} | 10 ^{\{3\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 16 ^{\{6\}} | 31 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} |
MSE | \hat{\delta} | 0.0744 ^{\{10\}} | 0.0081 ^{\{7\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 5e-04 ^{\{1\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 0.0159 ^{\{8\}} | 7e-04 ^{\{6\}} | 0.0457 ^{\{9\}} | 0.1471 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} | |
\sum Ranks | 22 ^{\{8\}} | 15 ^{\{4\}} | 14.5 ^{\{3\}} | 12.5 ^{\{2\}} | 8 ^{\{1\}} | 16.5 ^{\{5\}} | 18.5 ^{\{7\}} | 18 ^{\{6\}} | 23 ^{\{9.5\}} | 23 ^{\{9.5\}} | 27 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.8259 ^{\{6\}} | 0.7838 ^{\{3\}} | 0.8036 ^{\{5\}} | 0.7894 ^{\{4\}} | 0.8341 ^{\{7\}} | 0.7285 ^{\{1\}} | 0.7378 ^{\{2\}} | 0.9492 ^{\{9\}} | 0.8732 ^{\{8\}} | 1.0216 ^{\{11\}} | 0.9697 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.2727 ^{\{7\}} | 1.0399 ^{\{3\}} | 1.0808 ^{\{4\}} | 1.0933 ^{\{5\}} | 1.202 ^{\{6\}} | 0.8775 ^{\{1\}} | 0.9547 ^{\{2\}} | 1.6659 ^{\{10\}} | 1.4583 ^{\{8\}} | 2.1721 ^{\{11\}} | 1.6264 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.5506 ^{\{6\}} | 0.5225 ^{\{3\}} | 0.5358 ^{\{5\}} | 0.5263 ^{\{4\}} | 0.5561 ^{\{7\}} | 0.4857 ^{\{1\}} | 0.4919 ^{\{2\}} | 0.6328 ^{\{9\}} | 0.5821 ^{\{8\}} | 0.681 ^{\{11\}} | 0.6465 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 9 ^{\{3\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 20 ^{\{7\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 28 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | {\ddddot \delta} | 0.5183 ^{\{7\}} | 0.586 ^{\{10\}} | 0.4 ^{\{2\}} | 0.4047 ^{\{3\}} | 0.4139 ^{\{4\}} | 0.3985 ^{\{1\}} | 0.5567 ^{\{9\}} | 0.5348 ^{\{8\}} | 0.489 ^{\{5\}} | 0.5173 ^{\{6\}} | 0.6337 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.6396 ^{\{7\}} | 0.8036 ^{\{10\}} | 0.2791 ^{\{2\}} | 0.2805 ^{\{3\}} | 0.288 ^{\{4\}} | 0.2613 ^{\{1\}} | 0.7203 ^{\{9\}} | 0.6572 ^{\{8\}} | 0.4544 ^{\{5\}} | 0.5237 ^{\{6\}} | 0.8491 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3455 ^{\{7\}} | 0.3907 ^{\{10\}} | 0.2666 ^{\{2\}} | 0.2698 ^{\{3\}} | 0.276 ^{\{4\}} | 0.2656 ^{\{1\}} | 0.3711 ^{\{9\}} | 0.3565 ^{\{8\}} | 0.326 ^{\{5\}} | 0.3449 ^{\{6\}} | 0.4225 ^{\{11\}} | |
\sum Ranks | 21 ^{\{7\}} | 30 ^{\{10\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3961 ^{\{10\}} | 0.355 ^{\{5\}} | 0.2711 ^{\{3\}} | 0.2496 ^{\{1\}} | 0.2806 ^{\{4\}} | 0.2575 ^{\{2\}} | 0.393 ^{\{9\}} | 0.3723 ^{\{7\}} | 0.3904 ^{\{8\}} | 0.3606 ^{\{6\}} | 0.4223 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.5109 ^{\{10\}} | 0.4097 ^{\{6\}} | 0.1418 ^{\{3\}} | 0.1005 ^{\{1\}} | 0.1596 ^{\{4\}} | 0.1041 ^{\{2\}} | 0.5078 ^{\{9\}} | 0.4587 ^{\{7\}} | 0.4643 ^{\{8\}} | 0.2852 ^{\{5\}} | 0.5133 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2641 ^{\{10\}} | 0.2367 ^{\{5\}} | 0.1807 ^{\{3\}} | 0.1664 ^{\{1\}} | 0.1871 ^{\{4\}} | 0.1717 ^{\{2\}} | 0.262 ^{\{9\}} | 0.2482 ^{\{7\}} | 0.2603 ^{\{8\}} | 0.2404 ^{\{6\}} | 0.2815 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 16 ^{\{5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 27 ^{\{9\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2728 ^{\{6\}} | 0.2857 ^{\{7\}} | 0.2125 ^{\{4\}} | 0.1934 ^{\{1\}} | 0.2094 ^{\{3\}} | 0.1975 ^{\{2\}} | 0.2908 ^{\{8\}} | 0.3021 ^{\{9\}} | 0.3034 ^{\{10\}} | 0.2703 ^{\{5\}} | 0.3321 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2776 ^{\{6\}} | 0.3128 ^{\{7\}} | 0.1143 ^{\{4\}} | 0.0596 ^{\{1\}} | 0.1093 ^{\{3\}} | 0.0614 ^{\{2\}} | 0.3489 ^{\{8\}} | 0.3503 ^{\{9\}} | 0.3585 ^{\{10\}} | 0.1747 ^{\{5\}} | 0.4016 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1819 ^{\{6\}} | 0.1905 ^{\{7\}} | 0.1417 ^{\{4\}} | 0.1289 ^{\{1\}} | 0.1396 ^{\{3\}} | 0.1316 ^{\{2\}} | 0.1939 ^{\{8\}} | 0.2014 ^{\{9\}} | 0.2023 ^{\{10\}} | 0.1802 ^{\{5\}} | 0.2214 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 21 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2244 ^{\{5\}} | 0.2549 ^{\{8\}} | 0.1945 ^{\{4\}} | 0.1567 ^{\{1\}} | 0.1871 ^{\{3\}} | 0.1656 ^{\{2\}} | 0.2356 ^{\{6\}} | 0.2598 ^{\{10\}} | 0.2597 ^{\{9\}} | 0.2369 ^{\{7\}} | 0.2841 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2361 ^{\{6\}} | 0.3395 ^{\{10\}} | 0.1524 ^{\{4\}} | 0.0393 ^{\{1\}} | 0.1275 ^{\{3\}} | 0.0433 ^{\{2\}} | 0.257 ^{\{7\}} | 0.3273 ^{\{9\}} | 0.3211 ^{\{8\}} | 0.1709 ^{\{5\}} | 0.3588 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1496 ^{\{5\}} | 0.1699 ^{\{8\}} | 0.1297 ^{\{4\}} | 0.1045 ^{\{1\}} | 0.1248 ^{\{3\}} | 0.1104 ^{\{2\}} | 0.1571 ^{\{6\}} | 0.1732 ^{\{10\}} | 0.1731 ^{\{9\}} | 0.1579 ^{\{7\}} | 0.1894 ^{\{11\}} | |
\sum Ranks | 16 ^{\{5\}} | 26 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 19 ^{\{6.5\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | 19 ^{\{6.5\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.1999 ^{\{8\}} | 0.1892 ^{\{7\}} | 0.1614 ^{\{3\}} | 0.1295 ^{\{2\}} | 0.1625 ^{\{4\}} | 0.1291 ^{\{1\}} | 0.2165 ^{\{10\}} | 0.1861 ^{\{6\}} | 0.2033 ^{\{9\}} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.5128 ^{\{5\}} | 0.5108 ^{\{4\}} | 0.5268 ^{\{8\}} | 0.4521 ^{\{1\}} | 0.5305 ^{\{9\}} | 0.4879 ^{\{3\}} | 0.4799 ^{\{2\}} | 0.5257 ^{\{7\}} | 0.5755 ^{\{11\}} | 0.5345 ^{\{10\}} | 0.5223 ^{\{6\}} |
MSE | {\ddddot \delta} | 0.5886 ^{\{4\}} | 0.5957 ^{\{5\}} | 0.6356 ^{\{9\}} | 0.4704 ^{\{1\}} | 0.6343 ^{\{8\}} | 0.5022 ^{\{2\}} | 0.5088 ^{\{3\}} | 0.6309 ^{\{7\}} | 0.806 ^{\{11\}} | 0.7126 ^{\{10\}} | 0.6245 ^{\{6\}} | |
MRE | {\ddddot \delta} | 3.4184 ^{\{5\}} | 3.405 ^{\{4\}} | 3.5117 ^{\{8\}} | 3.0141 ^{\{1\}} | 3.5368 ^{\{9\}} | 3.2523 ^{\{3\}} | 3.1997 ^{\{2\}} | 3.5049 ^{\{7\}} | 3.8366 ^{\{11\}} | 3.563 ^{\{10\}} | 3.4823 ^{\{6\}} | |
\sum Ranks | 14 ^{\{5\}} | 13 ^{\{4\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 26 ^{\{9\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | ||
50 | bias | {\ddddot \delta} | 0.3349 ^{\{4\}} | 0.3408 ^{\{6\}} | 0.3462 ^{\{8\}} | 0.3171 ^{\{1\}} | 0.337 ^{\{5\}} | 0.329 ^{\{3\}} | 0.327 ^{\{2\}} | 0.3414 ^{\{7\}} | 0.3703 ^{\{11\}} | 0.361 ^{\{10\}} | 0.3535 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1991 ^{\{4\}} | 0.2068 ^{\{6\}} | 0.2138 ^{\{8\}} | 0.1837 ^{\{1\}} | 0.205 ^{\{5\}} | 0.1905 ^{\{2\}} | 0.1917 ^{\{3\}} | 0.2082 ^{\{7\}} | 0.2532 ^{\{10\}} | 0.2582 ^{\{11\}} | 0.2295 ^{\{9\}} | |
MRE | {\ddddot \delta} | 2.2326 ^{\{4\}} | 2.2718 ^{\{6\}} | 2.3083 ^{\{8\}} | 2.1143 ^{\{1\}} | 2.2469 ^{\{5\}} | 2.1934 ^{\{3\}} | 2.18 ^{\{2\}} | 2.2762 ^{\{7\}} | 2.4686 ^{\{11\}} | 2.4064 ^{\{10\}} | 2.357 ^{\{9\}} | |
\sum Ranks | 12 ^{\{4\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 32 ^{\{11\}} | 31 ^{\{10\}} | 27 ^{\{9\}} | ||
120 | bias | {\ddddot \delta} | 0.2637 ^{\{7\}} | 0.2659 ^{\{8\}} | 0.2568 ^{\{2\}} | 0.2537 ^{\{1\}} | 0.2628 ^{\{5\}} | 0.2617 ^{\{4\}} | 0.2591 ^{\{3\}} | 0.2635 ^{\{6\}} | 0.2767 ^{\{9\}} | 0.2825 ^{\{11\}} | 0.279 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.1088 ^{\{5\}} | 0.1116 ^{\{8\}} | 0.1055 ^{\{2\}} | 0.1044 ^{\{1\}} | 0.1099 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1061 ^{\{3\}} | 0.1073 ^{\{4\}} | 0.1246 ^{\{9\}} | 0.1374 ^{\{11\}} | 0.1272 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.7582 ^{\{7\}} | 1.7728 ^{\{8\}} | 1.7119 ^{\{2\}} | 1.6911 ^{\{1\}} | 1.7523 ^{\{5\}} | 1.7446 ^{\{4\}} | 1.7271 ^{\{3\}} | 1.7564 ^{\{6\}} | 1.8445 ^{\{9\}} | 1.8832 ^{\{11\}} | 1.86 ^{\{10\}} | |
\sum Ranks | 19 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 17 ^{\{6\}} | 14 ^{\{4\}} | 9 ^{\{3\}} | 16 ^{\{5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.2313 ^{\{8\}} | 0.2301 ^{\{6\}} | 0.2294 ^{\{4\}} | 0.2173 ^{\{1\}} | 0.2272 ^{\{2\}} | 0.2307 ^{\{7\}} | 0.2277 ^{\{3\}} | 0.2297 ^{\{5\}} | 0.2403 ^{\{9\}} | 0.2447 ^{\{11\}} | 0.2438 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0796 ^{\{8\}} | 0.0781 ^{\{5\}} | 0.0788 ^{\{6\}} | 0.0722 ^{\{1\}} | 0.0761 ^{\{2\}} | 0.0791 ^{\{7\}} | 0.0764 ^{\{3\}} | 0.0769 ^{\{4\}} | 0.0874 ^{\{9\}} | 0.0958 ^{\{11\}} | 0.0907 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.5418 ^{\{8\}} | 1.534 ^{\{6\}} | 1.5293 ^{\{4\}} | 1.4486 ^{\{1\}} | 1.5149 ^{\{2\}} | 1.5379 ^{\{7\}} | 1.5181 ^{\{3\}} | 1.5314 ^{\{5\}} | 1.6019 ^{\{9\}} | 1.6315 ^{\{11\}} | 1.6256 ^{\{10\}} | |
\sum Ranks | 24 ^{\{8\}} | 17 ^{\{6\}} | 14 ^{\{4.5\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 9 ^{\{3\}} | 14 ^{\{4.5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | {\ddddot \delta} | 0.2075 ^{\{4\}} | 0.2098 ^{\{6\}} | 0.2108 ^{\{8\}} | 0.1925 ^{\{1\}} | 0.2059 ^{\{3\}} | 0.2084 ^{\{5\}} | 0.205 ^{\{2\}} | 0.2106 ^{\{7\}} | 0.2183 ^{\{9\}} | 0.223 ^{\{11\}} | 0.2207 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0603 ^{\{4\}} | 0.062 ^{\{7\}} | 0.0629 ^{\{8\}} | 0.0549 ^{\{1\}} | 0.0602 ^{\{3\}} | 0.0614 ^{\{5\}} | 0.0593 ^{\{2\}} | 0.0619 ^{\{6\}} | 0.0686 ^{\{9\}} | 0.0763 ^{\{11\}} | 0.0701 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.3836 ^{\{4\}} | 1.3986 ^{\{6\}} | 1.4053 ^{\{8\}} | 1.283 ^{\{1\}} | 1.3724 ^{\{3\}} | 1.3896 ^{\{5\}} | 1.3666 ^{\{2\}} | 1.4037 ^{\{7\}} | 1.4553 ^{\{9\}} | 1.4864 ^{\{11\}} | 1.4712 ^{\{10\}} | |
\sum Ranks | 12 ^{\{4\}} | 19 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | {\ddddot \delta} | 0.191 ^{\{8\}} | 0.1908 ^{\{7\}} | 0.1869 ^{\{3.5\}} | 0.1744 ^{\{1\}} | 0.1891 ^{\{5\}} | 0.1853 ^{\{2\}} | 0.1869 ^{\{3.5\}} | 0.1905 ^{\{6\}} | 0.1957 ^{\{9\}} | 0.2039 ^{\{11\}} | 0.1996 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0488 ^{\{6\}} | 0.0492 ^{\{8\}} | 0.047 ^{\{3.5\}} | 0.0436 ^{\{1\}} | 0.0487 ^{\{5\}} | 0.0463 ^{\{2\}} | 0.047 ^{\{3.5\}} | 0.0489 ^{\{7\}} | 0.0524 ^{\{9\}} | 0.0611 ^{\{11\}} | 0.0548 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.2732 ^{\{8\}} | 1.2723 ^{\{7\}} | 1.2459 ^{\{3\}} | 1.1625 ^{\{1\}} | 1.261 ^{\{5\}} | 1.2351 ^{\{2\}} | 1.2463 ^{\{4\}} | 1.2698 ^{\{6\}} | 1.3047 ^{\{9\}} | 1.3591 ^{\{11\}} | 1.3308 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7.5\}} | 22 ^{\{7.5\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 19 ^{\{6\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.3505 ^{\{1\}} | 0.395 ^{\{5\}} | 0.4091 ^{\{7\}} | 0.3525 ^{\{2\}} | 0.4098 ^{\{8\}} | 0.3829 ^{\{4\}} | 0.37 ^{\{3\}} | 0.3965 ^{\{6\}} | 0.4737 ^{\{11\}} | 0.4317 ^{\{10\}} | 0.4258 ^{\{9\}} |
MSE | \hat{\delta} | 0.2218 ^{\{1\}} | 0.3044 ^{\{5\}} | 0.3299 ^{\{7\}} | 0.2503 ^{\{2\}} | 0.3354 ^{\{8\}} | 0.2813 ^{\{4\}} | 0.2668 ^{\{3\}} | 0.3068 ^{\{6\}} | 0.4836 ^{\{11\}} | 0.4161 ^{\{10\}} | 0.383 ^{\{9\}} | |
MRE | \hat{\delta} | 2.3369 ^{\{1\}} | 2.6331 ^{\{5\}} | 2.7272 ^{\{7\}} | 2.3501 ^{\{2\}} | 2.7317 ^{\{8\}} | 2.5528 ^{\{4\}} | 2.4666 ^{\{3\}} | 2.6436 ^{\{6\}} | 3.1579 ^{\{11\}} | 2.8777 ^{\{10\}} | 2.8388 ^{\{9\}} | |
\sum Ranks | 3 ^{\{1\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.2485 ^{\{9\}} | 0.2123 ^{\{5\}} | 0.2129 ^{\{6\}} | 0.1925 ^{\{1\}} | 0.213 ^{\{7\}} | 0.2075 ^{\{2\}} | 0.2086 ^{\{3\}} | 0.212 ^{\{4\}} | 0.2296 ^{\{8\}} | 0.2735 ^{\{11\}} | 0.2679 ^{\{10\}} |
MSE | \hat{\delta} | 0.094 ^{\{9\}} | 0.0642 ^{\{5\}} | 0.0652 ^{\{7\}} | 0.0544 ^{\{1\}} | 0.0648 ^{\{6\}} | 0.0606 ^{\{2\}} | 0.0624 ^{\{3\}} | 0.0636 ^{\{4\}} | 0.0773 ^{\{8\}} | 0.1338 ^{\{11\}} | 0.1145 ^{\{10\}} | |
MRE | \hat{\delta} | 1.6565 ^{\{9\}} | 1.4152 ^{\{5\}} | 1.4193 ^{\{6\}} | 1.2837 ^{\{1\}} | 1.4197 ^{\{7\}} | 1.383 ^{\{2\}} | 1.3908 ^{\{3\}} | 1.4134 ^{\{4\}} | 1.5306 ^{\{8\}} | 1.823 ^{\{11\}} | 1.7858 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 15 ^{\{5\}} | 19 ^{\{6\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
120 | bias | \hat{\delta} | 0.1991 ^{\{9\}} | 0.1406 ^{\{2\}} | 0.1423 ^{\{4\}} | 0.1232 ^{\{1\}} | 0.1427 ^{\{5\}} | 0.1412 ^{\{3\}} | 0.143 ^{\{6\}} | 0.1462 ^{\{7\}} | 0.1486 ^{\{8\}} | 0.2087 ^{\{11\}} | 0.2026 ^{\{10\}} |
MSE | \hat{\delta} | 0.0542 ^{\{9\}} | 0.025 ^{\{2\}} | 0.0258 ^{\{6\}} | 0.0201 ^{\{1\}} | 0.0257 ^{\{5\}} | 0.0253 ^{\{3\}} | 0.0256 ^{\{4\}} | 0.0266 ^{\{7\}} | 0.0283 ^{\{8\}} | 0.0667 ^{\{11\}} | 0.057 ^{\{10\}} | |
MRE | \hat{\delta} | 1.3271 ^{\{9\}} | 0.9374 ^{\{2\}} | 0.9488 ^{\{4\}} | 0.8213 ^{\{1\}} | 0.9511 ^{\{5\}} | 0.9411 ^{\{3\}} | 0.9531 ^{\{6\}} | 0.9747 ^{\{7\}} | 0.9906 ^{\{8\}} | 1.3916 ^{\{11\}} | 1.3509 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 16 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | \hat{\delta} | 0.1806 ^{\{10\}} | 0.1085 ^{\{2\}} | 0.1113 ^{\{5\}} | 0.0928 ^{\{1\}} | 0.1112 ^{\{4\}} | 0.1106 ^{\{3\}} | 0.1139 ^{\{6\}} | 0.1148 ^{\{7\}} | 0.1173 ^{\{8\}} | 0.1853 ^{\{11\}} | 0.1793 ^{\{9\}} |
MSE | \hat{\delta} | 0.0422 ^{\{9\}} | 0.0152 ^{\{2\}} | 0.0157 ^{\{3.5\}} | 0.0117 ^{\{1\}} | 0.0158 ^{\{5\}} | 0.0157 ^{\{3.5\}} | 0.0165 ^{\{6\}} | 0.0169 ^{\{7\}} | 0.0174 ^{\{8\}} | 0.05 ^{\{11\}} | 0.0429 ^{\{10\}} | |
MRE | \hat{\delta} | 1.204 ^{\{10\}} | 0.7233 ^{\{2\}} | 0.7423 ^{\{5\}} | 0.6186 ^{\{1\}} | 0.7416 ^{\{4\}} | 0.7376 ^{\{3\}} | 0.7596 ^{\{6\}} | 0.7652 ^{\{7\}} | 0.7821 ^{\{8\}} | 1.2355 ^{\{11\}} | 1.1956 ^{\{9\}} | |
\sum Ranks | 29 ^{\{10\}} | 6 ^{\{2\}} | 13.5 ^{\{5\}} | 3 ^{\{1\}} | 13 ^{\{4\}} | 9.5 ^{\{3\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 28 ^{\{9\}} | ||
300 | bias | \hat{\delta} | 0.1596 ^{\{9\}} | 0.0902 ^{\{4\}} | 0.09 ^{\{3\}} | 0.0691 ^{\{1\}} | 0.0905 ^{\{5\}} | 0.0891 ^{\{2\}} | 0.0912 ^{\{6\}} | 0.0994 ^{\{8\}} | 0.0934 ^{\{7\}} | 0.1697 ^{\{11\}} | 0.1663 ^{\{10\}} |
MSE | \hat{\delta} | 0.0325 ^{\{9\}} | 0.0112 ^{\{5\}} | 0.011 ^{\{3\}} | 0.0073 ^{\{1\}} | 0.0111 ^{\{4\}} | 0.0109 ^{\{2\}} | 0.0114 ^{\{6\}} | 0.0142 ^{\{8\}} | 0.0118 ^{\{7\}} | 0.0405 ^{\{11\}} | 0.0354 ^{\{10\}} | |
MRE | \hat{\delta} | 1.0638 ^{\{9\}} | 0.6017 ^{\{4\}} | 0.6001 ^{\{3\}} | 0.4603 ^{\{1\}} | 0.6035 ^{\{5\}} | 0.5937 ^{\{2\}} | 0.6078 ^{\{6\}} | 0.6626 ^{\{8\}} | 0.6227 ^{\{7\}} | 1.1314 ^{\{11\}} | 1.1087 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 13 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1462 ^{\{9\}} | 0.0824 ^{\{8\}} | 0.0689 ^{\{2\}} | 0.0478 ^{\{1\}} | 0.0694 ^{\{3\}} | 0.0698 ^{\{4\}} | 0.0729 ^{\{6\}} | 0.0761 ^{\{7\}} | 0.0728 ^{\{5\}} | 0.1577 ^{\{11\}} | 0.1518 ^{\{10\}} |
MSE | \hat{\delta} | 0.0273 ^{\{9\}} | 0.0114 ^{\{8\}} | 0.0073 ^{\{2\}} | 0.0041 ^{\{1\}} | 0.0074 ^{\{3.5\}} | 0.0074 ^{\{3.5\}} | 0.0079 ^{\{5.5\}} | 0.0097 ^{\{7\}} | 0.0079 ^{\{5.5\}} | 0.0337 ^{\{11\}} | 0.0293 ^{\{10\}} | |
MRE | \hat{\delta} | 0.9747 ^{\{9\}} | 0.5493 ^{\{8\}} | 0.4592 ^{\{2\}} | 0.3183 ^{\{1\}} | 0.4629 ^{\{3\}} | 0.4656 ^{\{4\}} | 0.486 ^{\{6\}} | 0.507 ^{\{7\}} | 0.4853 ^{\{5\}} | 1.0514 ^{\{11\}} | 1.0123 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 17.5 ^{\{6\}} | 21 ^{\{7\}} | 15.5 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.6207 ^{\{5\}} | 0.6075 ^{\{4\}} | 0.6427 ^{\{8\}} | 0.5986 ^{\{2\}} | 0.6209 ^{\{6\}} | 0.5592 ^{\{1\}} | 0.6055 ^{\{3\}} | 0.6366 ^{\{7\}} | 0.7045 ^{\{10\}} | 0.7067 ^{\{11\}} | 0.6969 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.6293 ^{\{5\}} | 0.5692 ^{\{3\}} | 0.6515 ^{\{7\}} | 0.5246 ^{\{2\}} | 0.6296 ^{\{6\}} | 0.4705 ^{\{1\}} | 0.6066 ^{\{4\}} | 0.6556 ^{\{8\}} | 0.8866 ^{\{10\}} | 0.9346 ^{\{11\}} | 0.7847 ^{\{9\}} | |
MRE | {\ddddot \delta} | 1.0346 ^{\{5\}} | 1.0126 ^{\{4\}} | 1.0711 ^{\{8\}} | 0.9977 ^{\{2\}} | 1.0349 ^{\{6\}} | 0.932 ^{\{1\}} | 1.0091 ^{\{3\}} | 1.061 ^{\{7\}} | 1.1742 ^{\{10\}} | 1.1778 ^{\{11\}} | 1.1615 ^{\{9\}} | |
\sum Ranks | 15 ^{\{5\}} | 11 ^{\{4\}} | 23 ^{\{8\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 22 ^{\{7\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.4557 ^{\{8\}} | 0.4571 ^{\{9\}} | 0.4129 ^{\{4\}} | 0.4021 ^{\{2\}} | 0.4086 ^{\{3\}} | 0.3988 ^{\{1\}} | 0.4154 ^{\{5\}} | 0.4482 ^{\{7\}} | 0.4369 ^{\{6\}} | 0.4633 ^{\{10\}} | 0.4807 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.297 ^{\{9\}} | 0.2957 ^{\{8\}} | 0.246 ^{\{5\}} | 0.226 ^{\{2\}} | 0.2334 ^{\{3\}} | 0.2179 ^{\{1\}} | 0.241 ^{\{4\}} | 0.2817 ^{\{7\}} | 0.2767 ^{\{6\}} | 0.3094 ^{\{10\}} | 0.3237 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.7596 ^{\{8\}} | 0.7618 ^{\{9\}} | 0.6882 ^{\{4\}} | 0.6701 ^{\{2\}} | 0.6809 ^{\{3\}} | 0.6647 ^{\{1\}} | 0.6924 ^{\{5\}} | 0.7471 ^{\{7\}} | 0.7282 ^{\{6\}} | 0.7722 ^{\{10\}} | 0.8012 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 26 ^{\{9\}} | 13 ^{\{4\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3261 ^{\{7\}} | 0.3161 ^{\{5\}} | 0.2963 ^{\{3\}} | 0.2886 ^{\{2\}} | 0.3027 ^{\{4\}} | 0.2852 ^{\{1\}} | 0.3573 ^{\{8\}} | 0.3194 ^{\{6\}} | 0.3818 ^{\{11\}} | 0.3685 ^{\{10\}} | 0.3595 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1668 ^{\{7\}} | 0.1613 ^{\{5\}} | 0.135 ^{\{3\}} | 0.1274 ^{\{2\}} | 0.138 ^{\{4\}} | 0.1264 ^{\{1\}} | 0.2051 ^{\{9\}} | 0.1637 ^{\{6\}} | 0.2333 ^{\{11\}} | 0.2082 ^{\{10\}} | 0.1993 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.5435 ^{\{7\}} | 0.5268 ^{\{5\}} | 0.4939 ^{\{3\}} | 0.4811 ^{\{2\}} | 0.5044 ^{\{4\}} | 0.4754 ^{\{1\}} | 0.5955 ^{\{8\}} | 0.5324 ^{\{6\}} | 0.6364 ^{\{11\}} | 0.6142 ^{\{10\}} | 0.5991 ^{\{9\}} | |
\sum Ranks | 21 ^{\{7\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 26 ^{\{9\}} | ||
200 | bias | {\ddddot \delta} | 0.3121 ^{\{8\}} | 0.2876 ^{\{6\}} | 0.2792 ^{\{4\}} | 0.2252 ^{\{1\}} | 0.2871 ^{\{5\}} | 0.2263 ^{\{2\}} | 0.264 ^{\{3\}} | 0.3165 ^{\{9\}} | 0.291 ^{\{7\}} | 0.3194 ^{\{10\}} | 0.3455 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1814 ^{\{9\}} | 0.1597 ^{\{7\}} | 0.144 ^{\{4\}} | 0.0808 ^{\{1\}} | 0.1537 ^{\{5\}} | 0.0831 ^{\{2\}} | 0.1324 ^{\{3\}} | 0.1883 ^{\{10\}} | 0.1551 ^{\{6\}} | 0.1698 ^{\{8\}} | 0.2015 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.5202 ^{\{8\}} | 0.4793 ^{\{6\}} | 0.4653 ^{\{4\}} | 0.3753 ^{\{1\}} | 0.4785 ^{\{5\}} | 0.3771 ^{\{2\}} | 0.44 ^{\{3\}} | 0.5275 ^{\{9\}} | 0.485 ^{\{7\}} | 0.5324 ^{\{10\}} | 0.5758 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 19 ^{\{6\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 28 ^{\{9.5\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2609 ^{\{6\}} | 0.2871 ^{\{10\}} | 0.2688 ^{\{8\}} | 0.1889 ^{\{1\}} | 0.2707 ^{\{9\}} | 0.1897 ^{\{2\}} | 0.2442 ^{\{5\}} | 0.2357 ^{\{3\}} | 0.244 ^{\{4\}} | 0.2623 ^{\{7\}} | 0.2952 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1497 ^{\{7\}} | 0.182 ^{\{11\}} | 0.1598 ^{\{8\}} | 0.059 ^{\{1\}} | 0.1632 ^{\{9\}} | 0.062 ^{\{2\}} | 0.1263 ^{\{5\}} | 0.1124 ^{\{3.5\}} | 0.1124 ^{\{3.5\}} | 0.1267 ^{\{6\}} | 0.1724 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.4348 ^{\{6\}} | 0.4786 ^{\{10\}} | 0.448 ^{\{8\}} | 0.3148 ^{\{1\}} | 0.4511 ^{\{9\}} | 0.3162 ^{\{2\}} | 0.4071 ^{\{5\}} | 0.3928 ^{\{3\}} | 0.4067 ^{\{4\}} | 0.4372 ^{\{7\}} | 0.492 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 15 ^{\{5\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2359 ^{\{8.5\}} | 0.2146 ^{\{3\}} | 0.2196 ^{\{4\}} | 0.1484 ^{\{1\}} | 0.2215 ^{\{5\}} | 0.1498 ^{\{2\}} | 0.239 ^{\{10\}} | 0.2304 ^{\{6\}} | 0.2359 ^{\{8.5\}} | 0.2309 ^{\{7\}} | 0.2523 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1406 ^{\{9\}} | 0.1139 ^{\{4\}} | 0.1222 ^{\{5\}} | 0.0368 ^{\{1\}} | 0.1232 ^{\{6\}} | 0.0375 ^{\{2\}} | 0.1471 ^{\{11\}} | 0.1298 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1117 ^{\{3\}} | 0.1454 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.3932 ^{\{9\}} | 0.3576 ^{\{3\}} | 0.3661 ^{\{4\}} | 0.2474 ^{\{1\}} | 0.3692 ^{\{5\}} | 0.2497 ^{\{2\}} | 0.3983 ^{\{10\}} | 0.384 ^{\{6\}} | 0.3931 ^{\{8\}} | 0.3848 ^{\{7\}} | 0.4205 ^{\{11\}} | |
\sum Ranks | 26.5 ^{\{9\}} | 10 ^{\{3\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 16 ^{\{5\}} | 6 ^{\{2\}} | 31 ^{\{10\}} | 20 ^{\{7\}} | 23.5 ^{\{8\}} | 17 ^{\{6\}} | 32 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.4538 ^{\{1\}} | 0.472 ^{\{3\}} | 0.5065 ^{\{7\}} | 0.4879 ^{\{5\}} | 0.4887 ^{\{6\}} | 0.4678 ^{\{2\}} | 0.4746 ^{\{4\}} | 0.5331 ^{\{8\}} | 0.543 ^{\{9\}} | 0.5913 ^{\{11\}} | 0.5554 ^{\{10\}} |
MSE | \hat{\delta} | 0.2993 ^{\{1\}} | 0.316 ^{\{3\}} | 0.3685 ^{\{7\}} | 0.3255 ^{\{5\}} | 0.3619 ^{\{6\}} | 0.3087 ^{\{2\}} | 0.3177 ^{\{4\}} | 0.4032 ^{\{8\}} | 0.4637 ^{\{10\}} | 0.5488 ^{\{11\}} | 0.4368 ^{\{9\}} | |
MRE | \hat{\delta} | 0.7563 ^{\{1\}} | 0.7867 ^{\{3\}} | 0.8442 ^{\{7\}} | 0.8132 ^{\{5\}} | 0.8145 ^{\{6\}} | 0.7797 ^{\{2\}} | 0.7909 ^{\{4\}} | 0.8885 ^{\{8\}} | 0.9049 ^{\{9\}} | 0.9854 ^{\{11\}} | 0.9257 ^{\{10\}} | |
\sum Ranks | 3 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 28 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3076 ^{\{9\}} | 0.2821 ^{\{8\}} | 0.201 ^{\{1\}} | 0.2118 ^{\{4\}} | 0.2073 ^{\{3\}} | 0.2034 ^{\{2\}} | 0.2238 ^{\{6\}} | 0.2503 ^{\{7\}} | 0.2234 ^{\{5\}} | 0.3601 ^{\{10\}} | 0.365 ^{\{11\}} |
MSE | \hat{\delta} | 0.1571 ^{\{8\}} | 0.1676 ^{\{9\}} | 0.0668 ^{\{1\}} | 0.0736 ^{\{4\}} | 0.072 ^{\{3\}} | 0.0685 ^{\{2\}} | 0.085 ^{\{6\}} | 0.128 ^{\{7\}} | 0.0804 ^{\{5\}} | 0.1958 ^{\{10\}} | 0.2026 ^{\{11\}} | |
MRE | \hat{\delta} | 0.5127 ^{\{9\}} | 0.4701 ^{\{8\}} | 0.3351 ^{\{1\}} | 0.353 ^{\{4\}} | 0.3455 ^{\{3\}} | 0.3389 ^{\{2\}} | 0.373 ^{\{6\}} | 0.4171 ^{\{7\}} | 0.3723 ^{\{5\}} | 0.6002 ^{\{10\}} | 0.6083 ^{\{11\}} | |
\sum Ranks | 26 ^{\{9\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2623 ^{\{10\}} | 0.146 ^{\{8\}} | 0.083 ^{\{2\}} | 0.0856 ^{\{4\}} | 0.0844 ^{\{3\}} | 0.0799 ^{\{1\}} | 0.1431 ^{\{7\}} | 0.1349 ^{\{6\}} | 0.1195 ^{\{5\}} | 0.2844 ^{\{11\}} | 0.2593 ^{\{9\}} |
MSE | \hat{\delta} | 0.1549 ^{\{11\}} | 0.0865 ^{\{8\}} | 0.0114 ^{\{2.5\}} | 0.0125 ^{\{4\}} | 0.0114 ^{\{2.5\}} | 0.0103 ^{\{1\}} | 0.0809 ^{\{7\}} | 0.0747 ^{\{6\}} | 0.0508 ^{\{5\}} | 0.1489 ^{\{10\}} | 0.1346 ^{\{9\}} | |
MRE | \hat{\delta} | 0.4372 ^{\{10\}} | 0.2433 ^{\{8\}} | 0.1383 ^{\{2\}} | 0.1426 ^{\{4\}} | 0.1406 ^{\{3\}} | 0.1332 ^{\{1\}} | 0.2385 ^{\{7\}} | 0.2248 ^{\{6\}} | 0.1992 ^{\{5\}} | 0.4739 ^{\{11\}} | 0.4322 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10\}} | 24 ^{\{8\}} | 6.5 ^{\{2\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
200 | bias | \hat{\delta} | 0.192 ^{\{9\}} | 0.0877 ^{\{8\}} | 0.0497 ^{\{1\}} | 0.0499 ^{\{2\}} | 0.051 ^{\{4\}} | 0.0502 ^{\{3\}} | 0.0738 ^{\{7\}} | 0.0695 ^{\{6\}} | 0.0688 ^{\{5\}} | 0.2446 ^{\{11\}} | 0.2316 ^{\{10\}} |
MSE | \hat{\delta} | 0.0998 ^{\{9\}} | 0.0529 ^{\{8\}} | 0.0039 ^{\{1\}} | 0.0041 ^{\{3\}} | 0.0049 ^{\{4\}} | 0.004 ^{\{2\}} | 0.0325 ^{\{7\}} | 0.0291 ^{\{6\}} | 0.0222 ^{\{5\}} | 0.1347 ^{\{11\}} | 0.1316 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3201 ^{\{9\}} | 0.1461 ^{\{8\}} | 0.0829 ^{\{1\}} | 0.0832 ^{\{2\}} | 0.0851 ^{\{4\}} | 0.0836 ^{\{3\}} | 0.123 ^{\{7\}} | 0.1159 ^{\{6\}} | 0.1146 ^{\{5\}} | 0.4077 ^{\{11\}} | 0.386 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 8 ^{\{3\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1497 ^{\{9\}} | 0.0474 ^{\{7\}} | 0.0327 ^{\{3.5\}} | 0.0323 ^{\{1.5\}} | 0.0323 ^{\{1.5\}} | 0.0327 ^{\{3.5\}} | 0.0511 ^{\{8\}} | 0.0426 ^{\{5.5\}} | 0.0426 ^{\{5.5\}} | 0.214 ^{\{11\}} | 0.1883 ^{\{10\}} |
MSE | \hat{\delta} | 0.0736 ^{\{9\}} | 0.0199 ^{\{7\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0223 ^{\{8\}} | 0.0133 ^{\{6\}} | 0.0112 ^{\{5\}} | 0.1135 ^{\{11\}} | 0.108 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2496 ^{\{9\}} | 0.0791 ^{\{7\}} | 0.0545 ^{\{3.5\}} | 0.0539 ^{\{1.5\}} | 0.0539 ^{\{1.5\}} | 0.0545 ^{\{3.5\}} | 0.0852 ^{\{8\}} | 0.071 ^{\{5.5\}} | 0.071 ^{\{5.5\}} | 0.3567 ^{\{11\}} | 0.3139 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 21 ^{\{7\}} | 9.5 ^{\{3.5\}} | 5.5 ^{\{1.5\}} | 5.5 ^{\{1.5\}} | 9.5 ^{\{3.5\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 16 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1307 ^{\{9\}} | 0.0459 ^{\{8\}} | 0.0214 ^{\{1\}} | 0.0223 ^{\{4\}} | 0.022 ^{\{3\}} | 0.0219 ^{\{2\}} | 0.0336 ^{\{6\}} | 0.0359 ^{\{7\}} | 0.0289 ^{\{5\}} | 0.1672 ^{\{11\}} | 0.1428 ^{\{10\}} |
MSE | \hat{\delta} | 0.0693 ^{\{9\}} | 0.0304 ^{\{8\}} | 7e-04 ^{\{1\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 0.0136 ^{\{6\}} | 0.0193 ^{\{7\}} | 0.0082 ^{\{5\}} | 0.0865 ^{\{11\}} | 0.0754 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2179 ^{\{9\}} | 0.0765 ^{\{8\}} | 0.0356 ^{\{1\}} | 0.0371 ^{\{4\}} | 0.0367 ^{\{3\}} | 0.0365 ^{\{2\}} | 0.056 ^{\{6\}} | 0.0599 ^{\{7\}} | 0.0481 ^{\{5\}} | 0.2786 ^{\{11\}} | 0.238 ^{\{10\}} | |
\sum Ranks | 23 ^{\{9\}} | 20 ^{\{8\}} | 10 ^{\{1\}} | 18 ^{\{7\}} | 16 ^{\{5\}} | 14 ^{\{3.5\}} | 14 ^{\{3.5\}} | 17 ^{\{6\}} | 11 ^{\{2\}} | 29 ^{\{11\}} | 26 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8474 ^{\{6\}} | 0.7629 ^{\{3\}} | 0.8495 ^{\{7\}} | 0.7981 ^{\{4\}} | 0.8277 ^{\{5\}} | 0.6614 ^{\{1\}} | 0.7295 ^{\{2\}} | 1.1297 ^{\{9\}} | 1.1745 ^{\{10\}} | 1.3548 ^{\{11\}} | 1.1033 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 29 ^{\{9.5\}} | 26 ^{\{8\}} | 29 ^{\{9.5\}} | 30 ^{\{11\}} | ||
50 | bias | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4336 ^{\{7\}} | 0.4738 ^{\{9\}} | 0.2674 ^{\{3\}} | 0.2539 ^{\{2\}} | 0.2684 ^{\{4\}} | 0.2452 ^{\{1\}} | 0.5006 ^{\{10\}} | 0.4405 ^{\{8\}} | 0.3571 ^{\{5\}} | 0.4333 ^{\{6\}} | 0.5013 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 27 ^{\{9\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 22 ^{\{7.5\}} | 15 ^{\{5\}} | 22 ^{\{7.5\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2801 ^{\{8\}} | 0.3012 ^{\{9\}} | 0.2087 ^{\{4\}} | 0.1004 ^{\{1\}} | 0.1845 ^{\{3\}} | 0.1067 ^{\{2\}} | 0.2702 ^{\{6\}} | 0.26 ^{\{5\}} | 0.3326 ^{\{10\}} | 0.2761 ^{\{7\}} | 0.3575 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 25 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 25 ^{\{8.5\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2652 ^{\{9\}} | 0.3161 ^{\{10\}} | 0.2133 ^{\{4\}} | 0.0533 ^{\{1\}} | 0.2146 ^{\{5\}} | 0.0587 ^{\{2\}} | 0.2464 ^{\{7\}} | 0.2208 ^{\{6\}} | 0.2651 ^{\{8\}} | 0.1644 ^{\{3\}} | 0.3641 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 30 ^{\{10\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5.5\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 14 ^{\{4\}} | 26 ^{\{9\}} | 15 ^{\{5.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2032 ^{\{6\}} | 0.2231 ^{\{9\}} | 0.2123 ^{\{8\}} | 0.0349 ^{\{1\}} | 0.2096 ^{\{7\}} | 0.0354 ^{\{2\}} | 0.2314 ^{\{10\}} | 0.1956 ^{\{5\}} | 0.175 ^{\{4\}} | 0.1323 ^{\{3\}} | 0.2854 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1805 ^{\{8\}} | 0.2013 ^{\{10\}} | 0.1525 ^{\{6\}} | 0.0253 ^{\{2\}} | 0.1369 ^{\{5\}} | 0.0241 ^{\{1\}} | 0.1993 ^{\{9\}} | 0.176 ^{\{7\}} | 0.1145 ^{\{4\}} | 0.0973 ^{\{3\}} | 0.215 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 23 ^{\{8\}} | 12 ^{\{4\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} |
MSE | \hat{\delta} | 0.5039 ^{\{7\}} | 0.4254 ^{\{2\}} | 0.4337 ^{\{5\}} | 0.4281 ^{\{3\}} | 0.4289 ^{\{4\}} | 0.3892 ^{\{1\}} | 0.4383 ^{\{6\}} | 0.6202 ^{\{9\}} | 0.5341 ^{\{8\}} | 1.147 ^{\{11\}} | 0.6721 ^{\{10\}} | |
MRE | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 13 ^{\{5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} |
MSE | \hat{\delta} | 0.2806 ^{\{10\}} | 0.1836 ^{\{7\}} | 0.0433 ^{\{2\}} | 0.0468 ^{\{3\}} | 0.0486 ^{\{4\}} | 0.0388 ^{\{1\}} | 0.1309 ^{\{6\}} | 0.1993 ^{\{8\}} | 0.0699 ^{\{5\}} | 0.2681 ^{\{9\}} | 0.3842 ^{\{11\}} | |
MRE | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} |
MSE | \hat{\delta} | 0.2005 ^{\{10\}} | 0.061 ^{\{7\}} | 0.0077 ^{\{2\}} | 0.0074 ^{\{1\}} | 0.008 ^{\{4\}} | 0.0078 ^{\{3\}} | 0.0229 ^{\{6\}} | 0.098 ^{\{8\}} | 0.0142 ^{\{5\}} | 0.1692 ^{\{9\}} | 0.2032 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 8 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 7 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 31 ^{\{10.5\}} | 31 ^{\{10.5\}} | ||
200 | bias | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} |
MSE | \hat{\delta} | 0.1455 ^{\{11\}} | 0.0457 ^{\{7\}} | 0.0027 ^{\{1\}} | 0.0029 ^{\{3.5\}} | 0.0028 ^{\{2\}} | 0.0029 ^{\{3.5\}} | 0.0032 ^{\{6\}} | 0.0701 ^{\{8\}} | 0.003 ^{\{5\}} | 0.0785 ^{\{9\}} | 0.1166 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} | |
\sum Ranks | 33 ^{\{11\}} | 21 ^{\{7\}} | 3 ^{\{1\}} | 11.5 ^{\{4\}} | 8 ^{\{3\}} | 7.5 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} |
MSE | \hat{\delta} | 0.118 ^{\{11\}} | 0.031 ^{\{8\}} | 0.0012 ^{\{1\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0283 ^{\{7\}} | 0.0013 ^{\{4\}} | 0.0708 ^{\{9\}} | 0.1043 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8 ^{\{2\}} | 10 ^{\{3\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 16 ^{\{6\}} | 31 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} |
MSE | \hat{\delta} | 0.0744 ^{\{10\}} | 0.0081 ^{\{7\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 5e-04 ^{\{1\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 0.0159 ^{\{8\}} | 7e-04 ^{\{6\}} | 0.0457 ^{\{9\}} | 0.1471 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} | |
\sum Ranks | 22 ^{\{8\}} | 15 ^{\{4\}} | 14.5 ^{\{3\}} | 12.5 ^{\{2\}} | 8 ^{\{1\}} | 16.5 ^{\{5\}} | 18.5 ^{\{7\}} | 18 ^{\{6\}} | 23 ^{\{9.5\}} | 23 ^{\{9.5\}} | 27 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.8259 ^{\{6\}} | 0.7838 ^{\{3\}} | 0.8036 ^{\{5\}} | 0.7894 ^{\{4\}} | 0.8341 ^{\{7\}} | 0.7285 ^{\{1\}} | 0.7378 ^{\{2\}} | 0.9492 ^{\{9\}} | 0.8732 ^{\{8\}} | 1.0216 ^{\{11\}} | 0.9697 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.2727 ^{\{7\}} | 1.0399 ^{\{3\}} | 1.0808 ^{\{4\}} | 1.0933 ^{\{5\}} | 1.202 ^{\{6\}} | 0.8775 ^{\{1\}} | 0.9547 ^{\{2\}} | 1.6659 ^{\{10\}} | 1.4583 ^{\{8\}} | 2.1721 ^{\{11\}} | 1.6264 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.5506 ^{\{6\}} | 0.5225 ^{\{3\}} | 0.5358 ^{\{5\}} | 0.5263 ^{\{4\}} | 0.5561 ^{\{7\}} | 0.4857 ^{\{1\}} | 0.4919 ^{\{2\}} | 0.6328 ^{\{9\}} | 0.5821 ^{\{8\}} | 0.681 ^{\{11\}} | 0.6465 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 9 ^{\{3\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 20 ^{\{7\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 28 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | {\ddddot \delta} | 0.5183 ^{\{7\}} | 0.586 ^{\{10\}} | 0.4 ^{\{2\}} | 0.4047 ^{\{3\}} | 0.4139 ^{\{4\}} | 0.3985 ^{\{1\}} | 0.5567 ^{\{9\}} | 0.5348 ^{\{8\}} | 0.489 ^{\{5\}} | 0.5173 ^{\{6\}} | 0.6337 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.6396 ^{\{7\}} | 0.8036 ^{\{10\}} | 0.2791 ^{\{2\}} | 0.2805 ^{\{3\}} | 0.288 ^{\{4\}} | 0.2613 ^{\{1\}} | 0.7203 ^{\{9\}} | 0.6572 ^{\{8\}} | 0.4544 ^{\{5\}} | 0.5237 ^{\{6\}} | 0.8491 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3455 ^{\{7\}} | 0.3907 ^{\{10\}} | 0.2666 ^{\{2\}} | 0.2698 ^{\{3\}} | 0.276 ^{\{4\}} | 0.2656 ^{\{1\}} | 0.3711 ^{\{9\}} | 0.3565 ^{\{8\}} | 0.326 ^{\{5\}} | 0.3449 ^{\{6\}} | 0.4225 ^{\{11\}} | |
\sum Ranks | 21 ^{\{7\}} | 30 ^{\{10\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3961 ^{\{10\}} | 0.355 ^{\{5\}} | 0.2711 ^{\{3\}} | 0.2496 ^{\{1\}} | 0.2806 ^{\{4\}} | 0.2575 ^{\{2\}} | 0.393 ^{\{9\}} | 0.3723 ^{\{7\}} | 0.3904 ^{\{8\}} | 0.3606 ^{\{6\}} | 0.4223 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.5109 ^{\{10\}} | 0.4097 ^{\{6\}} | 0.1418 ^{\{3\}} | 0.1005 ^{\{1\}} | 0.1596 ^{\{4\}} | 0.1041 ^{\{2\}} | 0.5078 ^{\{9\}} | 0.4587 ^{\{7\}} | 0.4643 ^{\{8\}} | 0.2852 ^{\{5\}} | 0.5133 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2641 ^{\{10\}} | 0.2367 ^{\{5\}} | 0.1807 ^{\{3\}} | 0.1664 ^{\{1\}} | 0.1871 ^{\{4\}} | 0.1717 ^{\{2\}} | 0.262 ^{\{9\}} | 0.2482 ^{\{7\}} | 0.2603 ^{\{8\}} | 0.2404 ^{\{6\}} | 0.2815 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 16 ^{\{5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 27 ^{\{9\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2728 ^{\{6\}} | 0.2857 ^{\{7\}} | 0.2125 ^{\{4\}} | 0.1934 ^{\{1\}} | 0.2094 ^{\{3\}} | 0.1975 ^{\{2\}} | 0.2908 ^{\{8\}} | 0.3021 ^{\{9\}} | 0.3034 ^{\{10\}} | 0.2703 ^{\{5\}} | 0.3321 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2776 ^{\{6\}} | 0.3128 ^{\{7\}} | 0.1143 ^{\{4\}} | 0.0596 ^{\{1\}} | 0.1093 ^{\{3\}} | 0.0614 ^{\{2\}} | 0.3489 ^{\{8\}} | 0.3503 ^{\{9\}} | 0.3585 ^{\{10\}} | 0.1747 ^{\{5\}} | 0.4016 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1819 ^{\{6\}} | 0.1905 ^{\{7\}} | 0.1417 ^{\{4\}} | 0.1289 ^{\{1\}} | 0.1396 ^{\{3\}} | 0.1316 ^{\{2\}} | 0.1939 ^{\{8\}} | 0.2014 ^{\{9\}} | 0.2023 ^{\{10\}} | 0.1802 ^{\{5\}} | 0.2214 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 21 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2244 ^{\{5\}} | 0.2549 ^{\{8\}} | 0.1945 ^{\{4\}} | 0.1567 ^{\{1\}} | 0.1871 ^{\{3\}} | 0.1656 ^{\{2\}} | 0.2356 ^{\{6\}} | 0.2598 ^{\{10\}} | 0.2597 ^{\{9\}} | 0.2369 ^{\{7\}} | 0.2841 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2361 ^{\{6\}} | 0.3395 ^{\{10\}} | 0.1524 ^{\{4\}} | 0.0393 ^{\{1\}} | 0.1275 ^{\{3\}} | 0.0433 ^{\{2\}} | 0.257 ^{\{7\}} | 0.3273 ^{\{9\}} | 0.3211 ^{\{8\}} | 0.1709 ^{\{5\}} | 0.3588 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1496 ^{\{5\}} | 0.1699 ^{\{8\}} | 0.1297 ^{\{4\}} | 0.1045 ^{\{1\}} | 0.1248 ^{\{3\}} | 0.1104 ^{\{2\}} | 0.1571 ^{\{6\}} | 0.1732 ^{\{10\}} | 0.1731 ^{\{9\}} | 0.1579 ^{\{7\}} | 0.1894 ^{\{11\}} | |
\sum Ranks | 16 ^{\{5\}} | 26 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 19 ^{\{6.5\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | 19 ^{\{6.5\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.1999 ^{\{8\}} | 0.1892 ^{\{7\}} | 0.1614 ^{\{3\}} | 0.1295 ^{\{2\}} | 0.1625 ^{\{4\}} | 0.1291 ^{\{1\}} | 0.2165 ^{\{10\}} | 0.1861 ^{\{6\}} | 0.2033 ^{\{9\}} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |