Research article

Hidden chaotic mechanisms for a family of chameleon systems

  • Chameleon chaotic systems are nonlinear dynamical systems whose chaotic attractors can transform between hidden and self-excited types by tuning system parameters to modify equilibrium points. This paper proposes a novel family of chameleon chaotic systems, which can exhibit three types of chaotic attractors: self-excited attractors with a nonhyperbolic equilibrium, hidden attractors with a stable equilibrium, and hidden attractors with no equilibrium points. Bifurcation analysis uncovers the mechanisms by which self-excited and hidden chaotic attractors arise in this family of chameleon systems. It is demonstrated that various forms of chaos emerge through period-doubling routes associated with changes in the coefficient of a linear term. An electronic circuit is designed and simulated in Multisim to realize a hidden chaotic system with no equilibrium points. It is demonstrated that the electronic circuit simulation is consistent with the theoretical model. This research has the potential to enhance our comprehension of chaotic attractors, especially the hidden chaotic attractors.

    Citation: Xue Zhang, Bo Sang, Bingxue Li, Jie Liu, Lihua Fan, Ning Wang. Hidden chaotic mechanisms for a family of chameleon systems[J]. Mathematical Modelling and Control, 2023, 3(4): 400-415. doi: 10.3934/mmc.2023032

    Related Papers:

    [1] Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077
    [2] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
    [3] Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102
    [4] Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654
    [5] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [6] Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429
    [7] Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129
    [8] Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341
    [9] Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501
    [10] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
  • Chameleon chaotic systems are nonlinear dynamical systems whose chaotic attractors can transform between hidden and self-excited types by tuning system parameters to modify equilibrium points. This paper proposes a novel family of chameleon chaotic systems, which can exhibit three types of chaotic attractors: self-excited attractors with a nonhyperbolic equilibrium, hidden attractors with a stable equilibrium, and hidden attractors with no equilibrium points. Bifurcation analysis uncovers the mechanisms by which self-excited and hidden chaotic attractors arise in this family of chameleon systems. It is demonstrated that various forms of chaos emerge through period-doubling routes associated with changes in the coefficient of a linear term. An electronic circuit is designed and simulated in Multisim to realize a hidden chaotic system with no equilibrium points. It is demonstrated that the electronic circuit simulation is consistent with the theoretical model. This research has the potential to enhance our comprehension of chaotic attractors, especially the hidden chaotic attractors.



    The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:

    ρt+div(ρu)=0, (1.1)
    (ρu)t+div(ρuu)+ρJu+α(t)ρu+p=0, (1.2)
    St+uS=0, (1.3)

    where u=(u1,u2,,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)0 as a coefficient of friction is proportional to the momentum.

    For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].

    If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.

    For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations

    ρt+div(ρu)=0, (1.4)
    (ρu)t+div(ρuu)+p=0, (1.5)
    St+uS=0. (1.6)

    There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking nγ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:

    u=b(t)+A(t)x, (1.7)

    where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.

    Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.

    In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of xRN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.

    In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.

    In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation

    p(ρ)=eSργ, (3.1)

    where the constant γ=cp/cu1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.

    Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations

    BT=B, (3.2)
    Bt+BA+ATB=0, (3.3)

    then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form

    u=b(t)+Ax, (3.4)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ, (3.5)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)], (3.6)

    where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:

    (bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, (3.7)
    ctbT(bt+Ab+Jb+α(t)b)=0. (3.8)

    Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let

    ˉp=γ+1γργ, (3.9)
    pρ=1ρ(esργ)=1ρ(ργ+1)=(γ+1)ργ1ρ=(γ+1γργ)=ˉp. (3.10)

    With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as

    ρt+div(ρu)=0, (3.11)
    ut+(u)u+Ju+α(t)u+ˉp=0, (3.12)
    St+uS=0. (3.13)

    Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have

    ut+(u)u+Ju+α(t)u+ˉp (3.14)
    =bt+Atx+[(b+Ax)](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+ˉp (3.15)
    =bt+Jb+α(t)b+Atx+(b)Ax+(Ax)Ax+JAx+α(t)Ax+ˉp (3.16)
    =bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+ˉp=0. (3.17)

    Let

    B=(bij)N×N=12(At+A2+JA+α(t)A),     J=(gij)N×N. (3.18)

    Then the above equation can be written into a component form

    Qi(x1,,xN)bitα(t)biNk=1(aikbk+gikbk+2bikxk)=ˉpxi,      i=1,2,,N. (3.19)

    Then, the following sufficient and necessary compatible conditions of these N equations,

    Qj(x1,,xN)xi=Qi(x1,,xN)xj,      i,j=1,2,,N, (3.20)

    lead to

    bji=bij,      i,j=1,2,,N, (3.21)

    which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,

    dˉp(x)=Ni=1ˉp(x)xidxi=Ni=1Qi(x1,,xN)dxi. (3.22)

    Therefore we can choose a special integration route to obtain

    ˉp(x,t)=Ni=1(x1,x2,,xN)(0,0,,0)Qi(x1,x2,,xN)dxi (3.23)
    =x10Q1(x1,0,,0)dx1,+x20Q2(x1,x2,0,,0)dx2++xN0QN(x1,x2,,xN)dxN (3.24)
    =Ni=1[bi,t+Nk=1(aikbk+gikbk)+α(t)bi]xiNi=1biix2i2Ni,k=1, i<kbikxixk+c(t) (3.25)
    =xT(bt+Jb+Ab+α(t)b)xTBx+c(t). (3.26)

    Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have

    ρt=(μˉp1γ)t=μγˉp1γ1ˉpt, (3.27)
    ρtr(A)=μˉp1γtr(A)=μγˉp1γ1γtr(A)ˉp, (3.28)
    ρ=(μˉp1γ)=μγˉp1γ1ˉp, (3.29)
    uρ=μγˉp1γ1uTˉp. (3.30)

    From Eqs (3.27)–(3.30), we have

    ρt+div(ρu)=ρt+ρtr(A)+uρ=μγˉp1γ1{xT(bt+Ab+Jb+α(t)b)t+xTBtxct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBxc(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} (3.31)
    =μγˉp1γ1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb][ct+γtr(A)cbT(bt+Ab+Jb+α(t)b)]} (3.32)
    =μγˉp1γ1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb][ctbT(bt+Ab+Jb+α(t)b)]}=0, (3.33)

    where we use the condition of the first term

    xT(Bt+2ATB)x=0, (3.34)

    which is equivalent to

    (Bt+2ATB)T=(Bt+2ATB), (3.35)

    that is,

    Bt+BA+ATB=0, (3.36)

    which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have

    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]=lnρ. (3.37)

    From (3.9), (3.37) is equivalent to

    S=ln(μˉpγ)=lnμ+1γlnˉp, (3.38)
    St=(lnˉp)tγ=1γˉp1ˉpt, (3.39)
    S=1γlnˉp=1γˉp1ˉp. (3.40)

    Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that

    St+uS=1γˉp1(ˉpt+uTˉp) (3.41)
    =1γˉp1[xT(bt+Ab+Jb+α(t)b)txTBtx+ct(t)(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] (3.42)
    =1γˉp{xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]xT[Bt+2ATB]x+ct(t)bT(bt+Ab+Jb+α(t)b)}=0. (3.43)

    We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.

    Corollary 3.1. If A is an anti-symmetric matrix, that is

    AT=A, (3.44)

    and the following conditions are satisfied:

    At+α(t)A=0, (3.45)
    AJ=JA, (3.46)
    Bt=0, (3.47)
    btt+2Atb+(Jb+α(t)b)t=0, (3.48)
    ctbT(bt+Ab+Jb+α(t)b)=0, (3.49)

    then the compressible Euler equations (3.11)–(3.13) admit a general solution

    u=b(t)+Ax, (3.50)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ, (3.51)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]. (3.52)

    Proof. By (3.45) and (3.46),

    BT=12(At+A2+JA+α(t)A)T (3.53)
    =12[(A)(A)+(A)(J)] (3.54)
    =12(A2+JA)=B. (3.55)

    We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have

    BA+ATB=0. (3.56)

    By (3.47), we have

    Bt=0, (3.57)
    Bt+BA+ATB=0. (3.58)

    Thus, Eq (3.3) is ensured.

    Since

    BT=B, (3.59)
    AJ=JA, (3.60)
    AT+A=0, (3.61)

    we have

    (bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb (3.62)
    =btt+Atb+AbtAbtA(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t (3.63)
    =btt+2Atb+(Jb+α(t)b)t=0. (3.64)

    Thus, Eq (3.64) is simplified to (3.48).

    Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.

    Remark 3.1. As (3.5) and (3.6) demand

    xT(bt+Jb+α(t)b+Ab)xTBx+c(t)>0 (3.65)

    for the positivity of the argument of the logarithm and density, the solutions exist locally.

    Example 3.1. When α=0, we have the following examples:

    2-dimensional Case: We take constant matrix

    A=J=k1[0110], b=k2[cos(k1t)sin(k1t)], c(t)=0 (3.66)

    where k1 and k2 are arbitrary constants.

    By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.67)
    =k12[1001]. (3.68)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.69)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.70)
    =k12b+0+Jbt+0 (3.71)
    =k12k2[cos(k1t)sin(k1t)]+k12k2[0110][sin(k1t)cos(k1t)]=0 (3.72)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.73)
    =0k2[cos(k1t)sin(k1t)]T(k1k2[sin(k1t)cos(k1t)]+2k1k2[0110][cos(k1t)sin(k1t)]) (3.74)
    =k1k22[cos(k1t)sin(k1t)]T[sin(k1t)cos(k1t)]=0. (3.75)

    we obtain the following solution:

    u(t)=[k2cos(k1t)+k1x2k2sin(k1t)k1x1], (3.76)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.77)
    =μ[xT(bt+2Ab)xTA2x]1γ (3.78)
    =μ[xT(k1k2[sin(k1t)cos(k1t)]+2k1k2[sin(k1t)cos(k1t)])xTk12[1001]x]1γ (3.79)
    =μ[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)]1γ, (3.80)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.81)
    =lnμ+1γln[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)]. (3.82)

    3-dimensional Case: We take constant matrix

    A=J=k1[011101110], b=k2t[111], c(t)=3k222t2 (3.83)

    where k1 and k2 are arbitrary constants.

    Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.84)
    =k12[211121112]. (3.85)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.86)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.87)
    =0+0+Jbt+0 (3.88)
    =k1k2[011101110][111]=0 (3.89)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.90)
    =3k22tk2[ttt]T(k2[111]+2k1k2[011101110][ttt]) (3.91)
    =3k22t3k22t+0=0. (3.92)

    Therefore we obtain the solution:

    u(t)=[k2t+k1(x2x3)k2t+k1(x3x1)k2t+k1(x1x2)], (3.93)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.94)
    =μ[xT(bt+2Ab)xTA2x+3k222t2]1γ (3.95)
    =μ[xT(k2[111]+0)xTk12[211121112]x+3k222t2]1γ (3.96)
    =μ[2k12(x12+x22+x32x1x2x1x3x2x3)k2(x1+x2+x3)+3k222t2]1γ, (3.97)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.98)
    =lnμ+1γln[2k12(x12+x22+x32x1x2x1x3x2x3)k2(x1+x2+x3)+3k222t2]. (3.99)

    Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.

    4-dimensional Case: We take

    A=J=k1[0211201311021320], (3.100)
    b=k2t[1111], c(t)=2k22t2 (3.101)

    where k1 and k2 are arbitrary constants. By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.102)
    =k12[624821484486284214]. (3.103)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.104)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.105)
    =0+0+Jbt+0 (3.106)
    =k1k2[0211201311021320][1111]=0 (3.107)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.108)
    =4k22tk2[tttt]T(k2[1111]+2k1k2[0211201311021320][tttt]) (3.109)
    =4k22t4k22t+0=0. (3.110)

    We have the following solutions:

    u=k2t[1111]+k1[2x2+x3+x42x1+x33x4x1x2+2x4x1+3x22x3], (3.111)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.112)
    =μ[xT(bt+2Ab)xTA2x+2k22t2]1γ (3.113)
    =μ[xT(k2[1111]+0)xTk12[624821484486284214]x+2k22t2]1γ (3.114)
    =μ[k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x424x1x2+8x1x316x1x416x2x38x2x44x3x4)+2k22t2]1γ, (3.115)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.116)
    =lnμ+1γln[k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x424x1x2+8x1x316x1x416x2x38x2x44x3x4)+2k22t2]. (3.117)

    Example 3.2. When α is a constant, we have the following examples.

    2-dimensional Case: We take

    A=J=k1eαt[0110], b=k2eαt[11],  (3.118)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1x2+k2k1x1+k2], (3.119)
    ρ=μm1γ, (3.120)
    S=lnμ+1γlnm. (3.121)

    3-dimensional Case: We take

    A=J=k1eαt[011101110], b=k2eαt[111], (3.122)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1(x2+x3)+k2k1(x3x1)+k2k1(x1+x2)+k2], (3.123)
    ρ=μm1γ, (3.124)
    S=lnμ+1γlnm. (3.125)

    4-dimensional Case: We take

    A=J=k1eαt[0111101111011110], b=k2eαt[1111], (3.126)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1(x2+x3+x4)+k2k1(x3+x4x1)+k2k1(x4x1x2)+k2k1(x1+x2+x3)+k2], (3.127)
    ρ=μm1γ, (3.128)
    S=lnμ+1γlnm. (3.129)

    N-dimensional Case: We take

    A=k1eαt[0111101111111110]b=k2eαt[111] (3.130)
    J=A,    c(t)=m>0 (3.131)

    where k1, k2, and m are arbitrary constants. Then we get a solution

    ui=eαt[k1(Nk=i+1xki1k=1xk)+k2], (3.132)
    ρ=μm1γ, (3.133)
    S=lnμ+1γlnm. (3.134)

    Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=A, with

    At=αk1eαt=αA, (3.135)

    (3.45) is satisfied. Therefore,

    B=12(At+A2+JA+αA)=0,  Bt=0, (3.136)

    (3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces

    btt+2Atb+(Jb+α(t)b)t (3.137)
    =α2b+2αAb+(αbAb)t (3.138)
    =α2b+2αAbα2b2αAb=0, (3.139)

    and

    ctbT(bt+αb+Ab+Jb) (3.140)
    =0bT(αb+αbJb+Jb)=0. (3.141)

    When α(t) is not a constant, we have the following examples.

    Example 3.3. (2-dimensional case) We take

    A=tk1[0110], J=(tk1k2tk1)[0110], b=tk1[11], c(t)=βα(t)=k1t (3.142)

    where k1<0, k2, and β are arbitrary constants. As

    AJ=JA=(t2k1k2)[1001] (3.143)

    (3.46) is satisfied.

    Denoting

    Q=(qij)N×N=[0110]w=[11] (3.144)

    it is easy to see

    At=k1tk11Q=α(t)A (3.145)

    and,

    B=A2+JA2=(A+J)A2=k22tk1QA=k22I=BT (3.146)
    Bt=(k22I)t=0, (3.147)

    therefore, (3.47) is satisfied. Since

    bt=α(t)b,J=k2tk1QA (3.148)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.149)
    =(α(t)b)t2α(t)Ab+[(k2tk1QA)tk1w]t+(α(t)b)t (3.150)
    =2α(t)Ab(Ab)t (3.151)
    =2α(t)AbAbtAtb (3.152)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.153)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.154)
    =0tk1wT[k1tk11w+tk1Qtk1w+(k2tk1tk1)Qtk1wk1tk11w] (3.155)
    =0tk1wT(k2tk1Qtk1w) (3.156)
    =k2tk1wTQw (3.157)
    =k2tk1Ni=1,j=1qij=0. (3.158)

    Then we get a solution

    u(t)=tk1[1+x21x1], (3.159)
    ρ=μ[k2(x12+x222x1x2)+β]1γ, (3.160)
    S=lnμ+1γln[k2(x12+x222x1x2)+β]. (3.161)

    Example 3.4 (3-dimensional case). We take

    A=tk1[011101110], J=(tk1k2tk1)[011101110], b=tk1[111]c(t)=βα(t)=k1t (3.162)

    where k1<0, k2, and β are arbitrary constants. As

    AJ=JA=(t2k1k2)[211121112] (3.163)

    (3.46) is satisfied.

    Denoting

    Q=(qij)N×N=[011101110]w=[111] (3.164)

    it is easy to see

    At=α(t)A (3.165)
    B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT (3.166)
    B=A2+JA2=k22[211121112], (3.167)

    therefore

    BT=BBt=0 (3.168)

    (3.47) is satisfied.

    Since

    bt=α(t)bJ=k2tk1QA (3.169)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.170)
    =(α(t)b)t2α(t)Ab+[(k2tk1QA)tk1w]t+(α(t)b)t (3.171)
    =2α(t)Ab(Ab)t (3.172)
    =2α(t)AbAbtAtb (3.173)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.174)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.175)
    =0tk1wT[k1tk11w+tk1Qtk1w+(k2tk1tk1)Qtk1wk1tk11w] (3.176)
    =0tk1wT(k2tk1Qtk1w) (3.177)
    =k2tk1wTQw (3.178)
    =k2tk1Ni=1,j=1qij=0. (3.179)

    We then get a solution

    u(t)=tk1[x2+x3+1x3x1+1x1x2+1], (3.180)
    ρ=μ[k2(x12+x22+x32+x1x2+x2x3x1x32x1+2x3)+β]1γ, (3.181)
    S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3x1x32x1+2x3)+β]. (3.182)

    Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting

    Q=(qij)N×N=[0111101111111110]w=[111] (3.183)

    and taking

    A=f(t)Q, J=(k1f(t)f(t))Q, b=f(t)w, α(t)=˙f(t)f(t)c(t)=β, (3.184)

    where ˙f(t)f(t)0, k1 and β are arbitrary constants. As

    AJ=JA=(k1f(t)2)Q2, (3.185)

    (3.46) is satisfied. It is easy to see

    At=α(t)A (3.186)
    B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2 (3.187)

    therefore

    BT=BBt=0 (3.188)

    (3.47) are satisfied. Since

    bt=α(t)bJ=k1f(t)QA (3.189)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.190)
    =(α(t)b)t2α(t)Ab+[(k1f(t)f(t))Qf(t)w]t+(α(t)b)t (3.191)
    =2α(t)Ab+(k1QwAb)t (3.192)
    =2α(t)Ab(Ab)t (3.193)
    =2α(t)AbAbtAtb (3.194)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.195)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.196)
    =0f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)f(t))Qf(t)w˙f(t)w] (3.197)
    =0f(t)wT(k1f(t)Qf(t)w) (3.198)
    =k1f(t)wTQw (3.199)
    =k1f(t)Ni=1,j=1qij=0. (3.200)

    In this paper, we construct the Cartesian solutions

    u=b(t)+A(t)x

    for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.

    The author declares there is no interest in relation to this article.

    Verification of examples on Euler equations

    For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to

    ρ=μˉp1γ, (4.1)
    S=lnμ+1γlnˉp. (4.2)

    It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as

    ρt+Nk=1xkρuk=0, (4.3)
    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ=0, (4.4)
    St+Nk=1ukxkS=0. (4.5)

    Example 1

    For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2) (4.6)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2) (4.7)
    =μγˉp1γγˉpt+(k2cos(k1t)+k1x2)x1μˉp1γ+(k2cos(k1t)k1x1)x2μˉp1γ (4.8)
    =μγˉp1γγ[k21k2cos(k1t)x1k21k2sin(k1t)x2]+μγˉp1γγx1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1γγx2[ˉp(k2cos(k1t)k1x1)] (4.9)
    =μγˉp1γγ{k21k2cos(k1t)x1k21k2sin(k1t)x2+x1[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+x2[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)k1x1)} (4.10)
    =μγˉp1γγ[k21k2cos(k1t)x1k21k2sin(k1t)x2+(2k21x1k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)k1x1)]=0. (4.11)

    Substituting (3.76)–(3.82) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+αu1+γ+1γx1ργ (4.12)
    =k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)k1x1)(k1+k1)+2k21x1k1k2sin(k1t) (4.13)
    =0, (4.14)

    the second momentum gives

    u2t+u1(u2x1+j11)+u2(u2x2+j12)+αu2+γ+1γx2ργ (4.15)
    =k1k2sin(k1t)+(k2cos(k1t)k1x2)(k1k1)+u2(0+0)+2k21x2k1k2cos(k1t) (4.16)
    =0. (4.17)

    Substituting (3.76)–(3.82) into (4.5) gives

    St+u1x1S+u2x2S (4.18)
    =1γˉp(k21k2cos(k1t)x1k21k2sin(k1t)x2)+1γˉp(2k21x1k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)k1x1) (4.19)
    =1γˉp(k21k2cos(k1t)x1k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. (4.20)

    For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2)+x3(ρu3) (4.21)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2)+x3(μˉp1γu3) (4.22)
    =μγˉp1γγˉpt+[k2t+k1(x2x3)]x1μˉp1γ+[k2t+k1(x3x1)]x2μˉp1γ+[k2t+k1(x1x2)]x3μˉp1γ (4.23)
    =μγˉp1γγ3k22t+μγˉp1γγ[k2t+k1(x2x3)]ˉpx1+μγˉp1γγ[k2t+k1(x3x1)]ˉpx2+μγˉp1γγ[k2t+k1(x1x2)]ˉpx3 (4.24)
    =μγˉp1γγ{3k22t+[k2t+k1(x2x3)]ˉpx1+[k2t+k1(x3x1)]ˉpx2+[k2t+k1(x1x2)]ˉpx3} (4.25)
    =μγˉp1γγ{3k22t+[k2t+k1(x2x3)][2k22(2x1x2x3)k2]+[k2t+k1(x3x1)][2k22(2x2x1x3)k2]+[k2t+k1(x1x2)][2k22(2x3x1x2)k2]}=0. (4.26)

    Substituting (3.93)–(3.99) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+u3(u1x3+j13)+αu1+γ+1γx1ργ (4.27)
    =k2+u1(0+0)+[k2t+k1(x3x1)](k1+k1)+[k2t+k1(x1x2)](k1k1)+2k21(2x1x2x3)k2=0, (4.28)

    the second momentum gives

    u2t+u1(u2x1+j21)+u2(u2x2+j22)+u3(u2x3+j23)+αu2+γ+1γx2ργ (4.29)
    =k2+[k2t+k1(x2x3)](k1k1)+u2(0+0)+[k2t+k1(x1x2)](k1+k1)+2k21(2x2x1x3)k2=0, (4.30)

    the third momentum gives

    u3t+u1(u3x1+j31)+u2(u3x2+j32)+u3(u3x3+j33)+αu3+γ+1γx3ργ (4.31)
    =k2+[k2t+k1(x2x3)](k1+k1)+[k2t+k1(x3x1)](k1k1)+u3(0+0)+2k21(2x3x1x2)k2=0. (4.32)

    Substituting (3.93)–(3.99) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S (4.33)
    =1γˉp3k22t+[k2t+k1(x2x3)]x1lnˉp+[k2t+k1(x3x1)]x2lnˉp+[k2t+k1(x1x2)]x3lnˉp (4.34)
    =1γˉp{3k22t+[k2t+k1(x2x3)][2k21(2x1x2x3)k2]+[k2t+k1(x3x1)][2k21(2x2x1x3)k2]+[k2t+k1(x1x2)][2k21(2x3x1x2)k2]}=0. (4.35)

    For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2)+x3(ρu3)+x4(ρu4) (4.36)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2)+x3(μˉp1γu3)+x4(μˉp1γu4) (4.37)
    =μγˉp1γγˉpt+[k2t+k1(2x2+x3+x4)]x1μˉp1γ+[k2t+k1(2x1+x33x4)]x2μˉp1γ+[k2t+k1(x1x2+2x4)]x3μˉp1γ+[k2t+k1(x1+3x22x3)]x4μˉp1γ (4.38)
    =μγˉp1γγ4k22t+μγˉp1γγ[k2t+k1(2x2+x3+x4)]ˉpx1+μγˉp1γγ[k2t+k1(2x1+x33x4)]ˉpx2+μγˉp1γγ[k2t+k1(x1x2+2x4)]ˉpx3+μγˉp1γγ[k2t+k1(x1+3x22x3)]ˉpx4 (4.39)
    =μγˉp1γγ{4k22t+[k2t+k1(2x2+x3+x4)]ˉpx1+[k2t+k1(2x1+x33x4)]ˉpx2+[k2t+k1(x1x2+2x4)]ˉpx3+[k2t+k1(x1+3x22x3)]ˉpx4} (4.40)
    =μγˉp1γγ{4k22t+[k2t+k1(2x2+x3+x4)][k2+k21(12x14x2+8x316x4)]+[k2t+k1(2x1+x33x4)][k2+k21(28x24x116x38x4)]+[k2t+k1(x1x2+2x4)][k2+k21(12x3+8x116x24x4)]+[k2t+k1(x1+3x22x3)][k2+k21(28x416x18x24x3)]}=0. (4.41)

    Substituting (3.111)–(3.117) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+u3(u1x3+j13)+u4(u1x4+j14)+αu1+γ+1γx1ργ (4.42)
    =k2+u1(0+0)+[k2t+k1(2x1+x33x4)](2k12k1)+[k2t+k1(x1x2+2x4)](k1+k1)+[k2t+k1(x1+3x22x3)](k1+k1)k2+k21(12x14x2+8x316x4)=0, (4.43)

    the second momentum gives

    u2t+u1(u2x1+j21)+u2(u2x2+j22)+u3(u2x3+j23)+u4(u2x4+j24)+αu2+γ+1γx2ργ (4.44)
    =k2+[k2t+k1(2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(x1x2+2x4)](k1+k1)+[k2t+k1(x1+3x22x3)](3k13k1)k2+k21(4x1+28x216x38x4)=0, (4.45)

    the third momentum gives

    u3t+u1(u3x1+j31)+u2(u3x2+j32)+u3(u3x3+j33)+u4(u3x4+j34)+αu3+γ+1γx3ργ (4.46)
    =k2+[k2t+k1(2x2+x3+x4)](k1k1)+[k2t+k1(2x1+x33x4)](k1k1)+u3(0+0)+[k2t+k1(x1+3x22x3)](2k1+2k1)k2+k21(8x116x2+12x34x4)=0, (4.47)

    the fourth momentum gives

    u4t+u1(u4x1+j41)+u2(u4x2+j42)+u3(u4x3+j43)+u4(u4x4+j44)+αu4+γ+1γx4ργ (4.48)
    =k2+[k2t+k1(2x2+x3+x4)](k1k1)+[k2t+k1(2x1+x33x4)](3k1+3k1)+[k2t+k1(x1x2+2x4)](2k12k1)+u4(0+0)k2+k21(16x18x24x3+28x4)=0. (4.49)

    Substituting (3.111)–(3.117) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S+u4x4S (4.50)
    =ˉptγˉp+u1x1lnˉpγ+u2x2lnˉpγ+u3x3lnˉpγ+u4x4lnˉpγ (4.51)
    =1γˉp{4k22t+[k2t+k1(2x2+x3+x4)][k2+k21(12x14x2+8x316x4)]+[k2t+k1(2x1+x33x4)][k2+k21(28x24x116x38x4)]+[k2t+k1(x1x2+2x4)][k2+k21(12x3+8x116x24x4)]+[k2t+k1(x1+3x22x3)][k2+k21(28x416x18x24x3)]}=0. (4.52)

    Example 2

    Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by

    ρt+Nk=1xkρuk (4.53)
    =0+ρNk=1xkuk (4.54)
    =ρeαtNk=1xk[k1(Ng=k+1xgk1g=1xg)+k2]=0, (4.55)

    Eq (4.3) is verified.

    uixk=xkeαt[k1(Nk=i+1xki1k=1xk)+k2] (4.56)
    ={k1eαt,for k<i0,for k=ik1eαt,for k>i}=jik, (4.57)

    therefore,

    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ (4.58)
    =αui+0+αui+0=0, (4.59)

    the n-th momentum Eq (4.4) is satisfied.

    Example 3

    Substituting (3.159)–(3.161) into (4.3) produces

    ρt+x1ρu1+x2ρu2 (4.60)
    =0+μγˉp1γγtk1(1+x2)k2(x11)+μγˉp1γγtk1(1x1)k2(x2+1)=0. (4.61)

    Substituting (3.159)–(3.161) into (4.4) gives

    uit+u1(uixk+ji1)+u2(uixk+ji2)+αui+γ+1γxiργ (4.62)
    =u1(uixk+ji1)+u2(uixk+ji2)+0 (4.63)
    =k1tk11[1+x11x2]+tk1(1+x2)(tk1[01]+[0tk1k2tk1])+tk1(1x1)(tk1[10]+[tk1+k2tk10])k1ttk1[1+x11x2]+[k2(x11)k2(x2+1)]=0. (4.64)

    Substituting (3.159)–(3.161) into (4.5) gives

    St+u1x1S+u2x2S (4.65)
    =0+tk1(1+x2)k2(2x11)γˉp+tk1(1x1)k2(2x2+1)γˉp=0. (4.66)

    Example 4

    Substituting (3.180)–(3.182) into (4.3) produces

    ρt+x1ρu1+x2ρu2+x3ρu3 (4.67)
    =0+μγˉp1γγ[tk1(x2+x3+1)k2(2x1+x2x32)+tk1(x3x1+1)k2(2x2+x1+x3)+tk1(x1x2+1)k2(2x3x1+x2+2)]=0. (4.68)

    Substituting (3.180)–(3.182) into (4.4), since

    ut=k1tk11=k1ttk1=α(t)u, (4.69)

    we have

    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ (4.70)
    =u1(uixk+ji1)+u2(uixk+ji2)+u3(uixk+ji3)+0 (4.71)
    =tk1(x2+x3+1)(tk1[011]+[0tk1k2tk1tk1k2tk1])+tk1(x3x1+1)(tk1[101]+[tk1+k2tk10tk1k2tk1])+tk1(x1x2+1)(tk1[110]+[tk1+k2tk1tk1+k2tk10]+[k2(2x1+x2x32)k2(2x2+x1+x3)k2(2x3x1+x22)])=0. (4.72)

    Substituting (3.180)–(3.182) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S (4.73)
    =0+1γˉp[tk1(x2+x3+1)k2(2x1+x2x32)+tk1(x3x1+1)k2(2x2+x1+x3)+tk1(x1x2+1)k2(2x3x1+x2+2)]=0. (4.74)


    [1] V. G. Ivancevic, T. T. Ivancevic, Quantum neural computation, New York: Springer, 2010. http://doi.org/10.1007/978-90-481-3350-5
    [2] D. Toker, F. T. Sommer, M. D'Esposito, A simple method for detecting chaos in nature, Commun. Biol., 3 (2020), 11. http://doi.org/10.1038/s42003-019-0715-9 doi: 10.1038/s42003-019-0715-9
    [3] H. W. Lorenz, Nonlinear dynamical economics and chaotic motion, Berlin: Springer, 1993. http://doi.org/10.1007/978-3-642-78324-1
    [4] S. Lundqvist, N. H. March, M. P. Tosi, Order and chaos in nonlinear physical systems, New York: Springer, 1988. http://doi.org/10.1007/978-1-4899-2058-4
    [5] Q. Lai, B. Bao, C. Chen, J. Kengne, A. Akgul, Circuit application of chaotic systems: modeling, dynamical analysis and control, Eur. Phys. J. Spec. Top., 230 (2021), 1691–1694. http://doi.org/10.1140/epjs/s11734-021-00202-0 doi: 10.1140/epjs/s11734-021-00202-0
    [6] N. Wang, D. Xu, N. V. Kuznetsov, H. Bao, M. Chen, Q. Xu, Experimental observation of hidden Chua's attractor, Chaos Solitons Fract., 170 (2023), 113427. http://doi.org/10.1016/j.chaos.2023.113427 doi: 10.1016/j.chaos.2023.113427
    [7] N. V. Kuznetsov, G. A. Leonov, V. I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua's system, IFAC Proc. Vol., 43 (2010), 29–33. http://doi.org/10.3182/20100826-3-TR-4016.00009 doi: 10.3182/20100826-3-TR-4016.00009
    [8] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 375 (2011), 2230–2233. http://doi.org/10.1016/j.physleta.2011.04.037 doi: 10.1016/j.physleta.2011.04.037
    [9] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Hidden attractor in smooth Chua systems, Phys. D, 241 (2012), 1482–1486. http://doi.org/10.1016/j.physd.2012.05.016 doi: 10.1016/j.physd.2012.05.016
    [10] S. Jafari, J. C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1469–1476. http://doi.org/10.1140/epjst/e2015-02472-1 doi: 10.1140/epjst/e2015-02472-1
    [11] Z. Wang, Z. Wei, K. Sun, S. He, H. Wang, Q. Xu, et al., Chaotic flows with special equilibria, Eur. Phys. J. Spec. Top., 229 (2020), 905–919. http://doi.org/10.1140/epjst/e2020-900239-2 doi: 10.1140/epjst/e2020-900239-2
    [12] X. Wang, N. V. Kuznetsov, G. Chen, Chaotic systems with multistability and hidden attractors, Switzerland: Springer, 2021. http://doi.org/10.1007/978-3-030-75821-9
    [13] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. http://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y
    [14] Z. Wang, A. Ahmadi, H. Tian, S. Jafari, G. Chen, Lower-dimensional simple chaotic systems with spectacular features, Chaos Solitons Fract., 169 (2023), 113299. http://doi.org/10.1016/j.chaos.2023.113299 doi: 10.1016/j.chaos.2023.113299
    [15] G. A. Leonov, N. V. Kuznetsov, On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Appl. Math. Comput., 256 (2015), 334–343. http://doi.org/10.1016/j.amc.2014.12.132 doi: 10.1016/j.amc.2014.12.132
    [16] G. A. Leonov, N. V. Kuznetsov, Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, IFAC Proc. Vol., 47 (2014), 5445–5454. http://doi.org/10.3182/20140824-6-ZA-1003.02501 doi: 10.3182/20140824-6-ZA-1003.02501
    [17] D. Dudkowski, A. Prasad, T. Kapitaniak, Perpetual points: new tool for localization of co-existing attractors in dynamical systems, Int. J. Bifurcat. Chaos, 27 (2017), 1750063. http://doi.org/10.1142/S0218127417500638 doi: 10.1142/S0218127417500638
    [18] D. Dudkowski, A. Prasad, T. Kapitaniak, Perpetual points and hidden attractors in dynamical systems, Phys. Lett. A, 379 (2015), 2591–2596. http://doi.org/10.1016/j.physleta.2015.06.002 doi: 10.1016/j.physleta.2015.06.002
    [19] F. Nazarimehr, B. Saedi, S. Jafari, J. C. Sprott, Are perpetual points sufficient for locating hidden attractors? Int. J. Bifurcat. Chaos, 27 (2017), 1750037. http://doi.org/10.1142/S0218127417500377 doi: 10.1142/S0218127417500377
    [20] X. Wang, Ü. Çavuşoğlu, S. Kacar, A. Akgul, V. T. Pham, S. Jafari, et al., S-box based image encryption application using a chaotic system without equilibrium, Appl. Sci., 9 (2019), 781. http://doi.org/10.3390/app9040781 doi: 10.3390/app9040781
    [21] X. Wang, G. Chen, A chaotic system with only one stable equilibrium, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1264–1272. http://doi.org/10.1016/j.cnsns.2011.07.017 doi: 10.1016/j.cnsns.2011.07.017
    [22] S. Jafari, J. C. Sprott, Simple chaotic flows with a line equilibrium, Chaos Solitons Fract., 57 (2013), 79–84. http://doi.org/10.1016/j.chaos.2013.08.018 doi: 10.1016/j.chaos.2013.08.018
    [23] V. T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Constructing a novel no-equilibrium chaotic system, Int. J. Bifurcat. Chaos, 24 (2014), 1450073. http://doi.org/10.1142/S0218127414500734 doi: 10.1142/S0218127414500734
    [24] V. T. Pham, S. Jafari, T. Kapitaniak, Constructing a chaotic system with an infinite number of equilibrium points, Int. J. Bifurcat. Chaos, 26 (2016), 1650225. http://doi.org/10.1142/S0218127416502254 doi: 10.1142/S0218127416502254
    [25] V. T. Pham, S. Jafari, T. Kapitaniak, C. Volos, S. T. Kingni, Generating a chaotic system with one stable equilibrium, Int. J. Bifurcat. Chaos, 27 (2017), 1750053. http://doi.org/10.1142/S0218127417500535 doi: 10.1142/S0218127417500535
    [26] M. A. Jafari, E. Mliki, A. Akgul, V. T. Pham, S. T. Kingni, X. Wang, et al., Chameleon: the most hidden chaotic flow, Nonlinear Dyn., 88 (2017), 2303–2317. http://doi.org/10.1007/s11071-017-3378-4 doi: 10.1007/s11071-017-3378-4
    [27] F. Wu, T. Hayat, X. An, J. Ma, Can Hamilton energy feedback suppress the chameleon chaotic flow? Nonlinear Dyn., 94 (2018), 669–677. http://doi.org/10.1007/s11071-018-4384-x doi: 10.1007/s11071-018-4384-x
    [28] S. Mobayen, A. Fekih, S. Vaidyanathan, A. Sambas, Chameleon chaotic systems with quadratic nonlinearities: an adaptive finite-time sliding mode control approach and circuit simulation, IEEE Access, 9 (2021), 64558–64573. http://doi.org/10.1109/ACCESS.2021.3074518 doi: 10.1109/ACCESS.2021.3074518
    [29] C. Li, J. C. Sprott, Multistability in a butterfly flow, Int. J. Bifurcat. Chaos, 23 (2013), 1350199. http://doi.org/10.1142/S021812741350199X doi: 10.1142/S021812741350199X
    [30] A. N. Pisarchik, U. Feudel, Control of multistability, Phys. Rep., 540 (2014), 167–218. http://doi.org/10.1016/j.physrep.2014.02.007 doi: 10.1016/j.physrep.2014.02.007
    [31] T. Kapitaniak, G. A. Leonov, Multistability: uncovering hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1405–1408. http://doi.org/10.1140/epjst/e2015-02468-9 doi: 10.1140/epjst/e2015-02468-9
    [32] P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, G. A. Leonov, Control of multistability in hidden attractors, Eur. Phys. J. Spec. Top., 224 (2015), 1485–1491. http://doi.org/10.1140/epjst/e2015-02474-y doi: 10.1140/epjst/e2015-02474-y
    [33] A. Ahmadi, S. Parthasarathy, H. Natiq, S. Jafari, I. Franović, K. Rajagopal, A non-autonomous mega-extreme multistable chaotic system, Chaos Solitons Fract., 174 (2023), 113765. http://doi.org/10.1016/j.chaos.2023.113765 doi: 10.1016/j.chaos.2023.113765
    [34] T. Moalemi, A. Ahmadi, S. Jafari, G. Chen, A novel mega-stable system with attractors in real-life object shapes, Sci. Iran., in press, 2023. http://doi.org/10.24200/SCI.2023.60858.7030
    [35] R. Zhou, Y. Gu, J. Cui, G. Ren, S. Yu, Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems, Nonlinear Dyn., 103 (2021), 2241–2256. http://doi.org/10.1007/s11071-021-06234-4 doi: 10.1007/s11071-021-06234-4
    [36] N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, L. O. Chua, Scenario of the birth of hidden attractors in the Chua circuit, Int. J. Bifurcat. Chaos, 27 (2017), 1730038. http://doi.org/10.1142/S0218127417300385 doi: 10.1142/S0218127417300385
    [37] H. Zhao, Y. Lin, Y. Dai, Hopf bifurcation and hidden attractor of a modified Chua's equation, Nonlinear Dyn., 90 (2017), 2013–2021. http://doi.org/10.1007/s11071-017-3777-6 doi: 10.1007/s11071-017-3777-6
    [38] M. Liu, B. Sang, N. Wang, I. Ahmad, Chaotic dynamics by some quadratic jerk systems, Axioms, 10 (2021), 227. http://doi.org/10.3390/axioms10030227 doi: 10.3390/axioms10030227
    [39] B. Li, B. Sang, M. Liu, X. Hu, X. Zhang, N. Wang, Some jerk systems with hidden chaotic dynamics, Int. J. Bifurcat. Chaos, 33 (2023), 2350069. http://doi.org/10.1142/S0218127423500694 doi: 10.1142/S0218127423500694
    [40] S. Kumarasamy, M. Banerjee, V. Varshney, M. D. Shrimali, N. V. Kuznetsov, A. Prasad, Saddle-node bifurcation of periodic orbit route to hidden attractors, Phys. Rev. E, 107 (2023), L052201. http://doi.org/ 10.1103/PhysRevE.107.L052201 doi: 10.1103/PhysRevE.107.L052201
    [41] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285–317. http://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [42] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, H. Mühlig, Handbook of mathematics, Berlin: Springer, 2015. http://doi.org/10.1007/978-3-662-46221-8
    [43] W. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250–256. http://doi.org/10.1006/jmaa.1994.1079 doi: 10.1006/jmaa.1994.1079
    [44] B. Sang, B. Huang, Bautin bifurcations of a financial system, Electron. J. Qual. Theory Differ. Equations, 95 (2017), 1–22. http://doi.org/10.14232/ejqtde.2017.1.95 doi: 10.14232/ejqtde.2017.1.95
    [45] B. Zhang, L. Liu, Chaos-based image encryption: review, application, and challenges, Mathematics, 11 (2023), 2585. http://doi.org/10.3390/math11112585 doi: 10.3390/math11112585
    [46] A. Noor, Z. G. Ç. Taşkıran, Random number generator and secure communication applications based on infinitely many coexisting chaotic attractors, Electrica, 21 (2021), 180–188. http://doi.org/10.5152/electrica.2021.21017 doi: 10.5152/electrica.2021.21017
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1629) PDF downloads(143) Cited by(0)

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog