
In this study, we introduce a family of hypersurfaces of revolution characterized by six parameters in the seven-dimensional pseudo-Euclidean space E73. These hypersurfaces exhibit intriguing geometric properties, and our aim is to analyze them in detail. To begin, we calculate the matrices corresponding to the fundamental form, Gauss map, and shape operator associated with this hypersurface family. These matrices provide essential information about the local geometry of the hypersurfaces, including their curvatures and tangent spaces. Using the Cayley-Hamilton theorem, we employ matrix algebra techniques to determine the curvatures of the hypersurfaces. This theorem allows us to express the characteristic polynomial of a matrix in terms of the matrix itself, enabling us to compute the curvatures effectively. In addition, we establish equations that describe the interrelation between the mean curvature and the Gauss-Kronecker curvature of the hypersurface family. These equations provide insights into the geometric behavior of the surfaces and offer a deeper understanding of their intrinsic properties. Furthermore, we investigate the relationship between the Laplace-Beltrami operator, a differential operator that characterizes the geometry of the hypersurfaces, and a specific 7×7 matrix denoted as A. By studying this relation, we gain further insights into the geometric structure and differential properties of the hypersurface family. Overall, our study contributes to the understanding of hypersurfaces of revolution in E73, offering mathematical insights and establishing connections between various geometric quantities and operators associated with this family.
Citation: Yanlin Li, Erhan Güler. Hypersurfaces of revolution family supplying Δr=Ar in pseudo-Euclidean space E73[J]. AIMS Mathematics, 2023, 8(10): 24957-24970. doi: 10.3934/math.20231273
[1] | Haifa Bin Jebreen, Yurilev Chalco Cano, Ioannis Dassios . An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation. AIMS Mathematics, 2021, 6(2): 1296-1308. doi: 10.3934/math.2021080 |
[2] | Muhammad Usman, Hidayat Ullah Khan, Zareen A Khan, Hussam Alrabaiah . Study of nonlinear generalized Fisher equation under fractional fuzzy concept. AIMS Mathematics, 2023, 8(7): 16479-16493. doi: 10.3934/math.2023842 |
[3] | Xiao Qin, Xiaozhong Yang, Peng Lyu . A class of explicit implicit alternating difference schemes for generalized time fractional Fisher equation. AIMS Mathematics, 2021, 6(10): 11449-11466. doi: 10.3934/math.2021663 |
[4] | Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364 |
[5] | Jafar Biazar, Fereshteh Goldoust . Multi-dimensional Legendre wavelets approach on the Black-Scholes and Heston Cox Ingersoll Ross equations. AIMS Mathematics, 2019, 4(4): 1046-1064. doi: 10.3934/math.2019.4.1046 |
[6] | Ahmed M. Zidan, Adnan Khan, Rasool Shah, Mohammed Kbiri Alaoui, Wajaree Weera . Evaluation of time-fractional Fisher's equations with the help of analytical methods. AIMS Mathematics, 2022, 7(10): 18746-18766. doi: 10.3934/math.20221031 |
[7] | Haifa Bin Jebreen, Hongzhou Wang . On the effective method for the space-fractional advection-diffusion equation by the Galerkin method. AIMS Mathematics, 2024, 9(9): 24143-24162. doi: 10.3934/math.20241173 |
[8] | Kamal Shah, Hafsa Naz, Muhammad Sarwar, Thabet Abdeljawad . On spectral numerical method for variable-order partial differential equations. AIMS Mathematics, 2022, 7(6): 10422-10438. doi: 10.3934/math.2022581 |
[9] | Jagbir Kaur, Vivek Sangwan . Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049 |
[10] | Lanyin Sun, Kunkun Pang . Numerical solution of unsteady elastic equations with C-Bézier basis functions. AIMS Mathematics, 2024, 9(1): 702-722. doi: 10.3934/math.2024036 |
In this study, we introduce a family of hypersurfaces of revolution characterized by six parameters in the seven-dimensional pseudo-Euclidean space E73. These hypersurfaces exhibit intriguing geometric properties, and our aim is to analyze them in detail. To begin, we calculate the matrices corresponding to the fundamental form, Gauss map, and shape operator associated with this hypersurface family. These matrices provide essential information about the local geometry of the hypersurfaces, including their curvatures and tangent spaces. Using the Cayley-Hamilton theorem, we employ matrix algebra techniques to determine the curvatures of the hypersurfaces. This theorem allows us to express the characteristic polynomial of a matrix in terms of the matrix itself, enabling us to compute the curvatures effectively. In addition, we establish equations that describe the interrelation between the mean curvature and the Gauss-Kronecker curvature of the hypersurface family. These equations provide insights into the geometric behavior of the surfaces and offer a deeper understanding of their intrinsic properties. Furthermore, we investigate the relationship between the Laplace-Beltrami operator, a differential operator that characterizes the geometry of the hypersurfaces, and a specific 7×7 matrix denoted as A. By studying this relation, we gain further insights into the geometric structure and differential properties of the hypersurface family. Overall, our study contributes to the understanding of hypersurfaces of revolution in E73, offering mathematical insights and establishing connections between various geometric quantities and operators associated with this family.
The concept of the hyperchaos was first put forward by Rössler [1] in 1979. Any system with at least two positive Lyapunov exponents is defined as hyperchaotic. Compared to chaotic attractors, hyperchaotic attractors have more complicated dynamical phenomena and stronger randomness and unpredictability. Hyperchaotic systems have aroused wide interest from more and more researchers in the last decades. A number of papers have investigated various aspects of hyperchaos and many valuable results have been obtained. For instance, in applications, in order to improve the security of the cellular neural network system, the chaotic degree of the system can be enhanced by designing 5D memristive hyperchaotic system [2]. For higher computational security, a new 4D hyperchaotic cryptosystem was constructed by adding a new state to the Lorenz system and well used in the AMr-WB G.722.2 codec to fully and partially encrypt the speech codec [3]. In fact, hyperchaos has a wide range applications such as image encryption [4], Hopfield neural network [5] and secure communication [6] and other fields [7,8]. Meanwhile, there are many hyperchaotic systems have been presented so far. Aimin Chen and his cooperators constructed a 4D hyperchaotic system by adding a state feedback controller to Lü system [9]. Based on Chen system, Z. Yan presented a new 4D hyperchaotic system by introducing a state feedback controller [10]. By adding a controlled variable, Gao et al. introduced a new 4D hyperchaotic Lorenz system [11]. Likewise, researchers also formulated 5D Shimizu-Morioka-type hyperchaotic system [12], 5D hyperjerk hypercaotic system [13] and 4D T hyperchaotic system [14] and so on.
In [15], a chaotic Rabinovich system was introduced
{˙x=hy−ax+yz,˙y=hx−by−xz,˙z=−cz+xy, | (1.1) |
where (x,y,z)T∈R3 is the state vector. When (h,a,b,c)=(0.04,1.5,−0.3,1.67), (1.1) has chaotic attractor[15,16]. System (1.1) has similar properties to Lorenz system, the two systems can be considered as special cases of generalized Lorenz system in [17]. Liu and his cooperators formulated a new 4D hyperchaotic Rabinovich system by adding a linear controller to the 3D Rabinovich system [18]. The circuit implementation and the finite-time synchronization for the 4D hyperchaotic Rabinovich system was also studied in [19]. Reference [20] formulated a 4D hyperchaotic Rabinovich system and the dynamical behaviors were studied such as the hidden attractors, multiple limit cycles and boundedness. Based on the 3D chaotic Rabinovich system, Tong et al. presented a new 4D hyperchaotic system by introducing new state variable [21]. The hyperchaos can be generated by adding variables to a chaotic system, which has been verificated by scholars [3,9,10,11,14]. In [18,19,20,21], the hyperchaotic systems were presented by adding a variable to the second equation of system (1.1). In fact, hyperchaos can also be generated by adding a linear controller to the first equation and second equation of system (1.1). Based on it, the following hyperchaotic system is obtained
{˙x=hy−ax+yz+k0u,˙y=hx−by−xz+mu,˙z=−dz+xy,˙u=−kx−ky, | (1.2) |
where k0,h,a,b,d,k,k0,m are positive parameters. Like most hyperchaotic studies (see [14,22,23,24] and so on), the abundant dynamical properties of system (1.2) are investigated by divergence, phase diagrams, equilibrium points, Lyapunov exponents, bifurcation diagram and Poincaré maps. The results show that the new 4D Rabinovich system not only exhibit hyperchaotic and Hopf bifurcation behaviors, but also has the rich dynamical phenomena including periodic, chaotic and static bifurcation. In addition, the 4D projection figures are also given for providing more dynamical information.
The rest of this paper is organized as follows: In the next section, boundedness, dissipativity and invariance, equilibria and their stability of (1.2) are discussed. In the third section, the complex dynamical behaviors such as chaos and hyperchaos are numerically verified by Lyapunov exponents, bifurcation and Poincaré section. In the fourth section, the Hopf bifurcation at the zero equilibrium point of the 4D Rabinovich system is investigated. In addition, an example is given to test and verify the theoretical results. Finally, the conclusions are summarized in the last section.
Theorem 2.1. If k0>m, system (1.2) has an ellipsoidal ultimate bound and positively invariant set
Ω={(x,y,z,u)|mx2+k0y2+(k0−m)[z−h(k0+m)k0−m]2+k0mu2k≤M}, |
where
M={14h2d2(m+k0)2(k0−m)a(d−a),(k0>m,d>a),14h2d2(m+k0)2(k0−m)b(−b+d),(k0>m,d>b),(m+k0)2h2k0−m,(k0>m). | (2.1) |
Proof. V(x,y,z,u)=mx2+k0y2+(k0−m)[z−h(k0+m)k0−m]2+k0mu2k. Differentiating V with respect to time along a trajectory of (1.2), we obtain
˙V(x,y,z,u)2=−amx2−by2k0+dhmz+dhzk0+dmz2−dz2k0. |
When ˙V(x,y,z,u)2=0, we have the following ellipsoidal surface:
Σ={(x,y,z,u)|amx2+bk0y2+d(k0−m)(z−hm+hk02k0−2m)2=dh2(k0+m)24(k0−m)}. |
Outside Σ that is,
amx2+bk0y2+d(k0−m)(z−hm+hk02k0−2m)2<dh2(k0+m)24(k0−m), |
˙V<0, while inside Σ, that is,
amx2+bk0y2+d(k0−m)(z−hm+hk02k0−2m)2>dh2(k0+m)24(k0−m), |
˙V>0. Thus, the ultimate bound for system (1.2) can only be reached on Σ. According to calculation, the maximum value of V on Σ is Vmax=14h2d2(m+k0)2(k0−m)a(d−a),(k0>m,d>a) and
Vmax=14h2d2(m+k0)2(k0−m)b(−b+d),(k0>m,d>b);Vmax=(m+k0)2h2k0−m,(k0>m). |
In addition, Σ⊂Ω, when a trajectory X(t)=(x(t),y(t),z(t),u(t)) of (1.2) is outside Ω, we get ˙V(X(t))<0. Then, limt→+∞ρ(X(t,t0,X0),Ω)=0. When X(t)∈Ω, we also get ˙V(X(t))<0. Thus, any trajectory X(t) (X(t)≠X0) will go into Ω. Therefore, the conclusions of theorem is obtained.
We can see that system (1.2) is invariant for the coordinate transformation
(x,y,z,u)→(−x,−y,z,−u). |
Then, the nonzero equilibria of (1.2) is symmetric with respect to z axis. The divergence of (1.2) is
∇W=∂˙x∂x+∂˙y∂y+∂˙z∂z+∂˙u∂u=−(a+b+d), |
system (1.2) is dissipative if and only if a+b+d>0. It shows that each volume containing the system trajectories shrinks to zero as t→∞ at an exponential rate −(a+b+d).
For m≤k0, system (1.2) only has one equilibrium point O(0,0,0,0) and the Jacobian matrix at O is
J=[−ah0k0h−b0m00−d0−k−k00]. |
Then, the characteristic equation is
(d+λ)(λ3+s2λ2+s1λ+s0), | (2.2) |
where
s2=a+b,s1=ab−h2+km+kk0,s0=akm+bkk0+hkm+hkk0. |
According to Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if
d>0,a+b>0,(a+b)(ab−h2)+k(ak0+bm−hm−hk0)>0. | (2.3) |
When m>k0, system (1.2) has other two nonzero equilibrium points E1(x∗1,y∗1,z∗1,u∗1) and E2(−x∗1,−y∗1,z∗1,−u∗1), where
x∗1=√d(am+bk0+hm+hk0)m−k0,y∗1=−√d(am+bk0+hm+hk0)m−k0, |
z∗1=−am+bk0+hm+hk0m−k0,u∗1=−a+b+2hm−k0√d(am+bk0+hm+hk0)m−k0. |
The characteristic equation of Jacobi matrix at E1 and E2 is
λ4+δ3λ3+δ2λ2+δ1λ+δ0=0, |
where
δ3=a+b+d,δ2=x∗14d2+ab+ad+bd−h2+km+kk0, |
δ1=1d[x∗12(3x∗12+ad−bd+kk0−km)+k(m+k0)(d+h)]+abd+akm+bkk0−dh2, |
δ0=3kk0x∗12−3kmx∗12+akmd+bkk0d+hkk0d+hkmd. |
Based on Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if
δ0>0,δ3>0,δ3δ2−δ1>0,δ3δ2δ1−δ21−δ0δ23>0. | (2.4) |
Therefore, we have:
Theorem 2.2. (I) When m≤k0, system (1.2) only has one equilibrium point O(0,0,0,0) and O is asymptotically stable if and only if (2.3) is satisfied.
(II) when m>k0, system (1.2) has two nonzero equilibria E1, E2, (2.4) is the necessary and sufficient condition for the asymptotically stable of E1 and E2.
When (b,d,h,a,k0,k,m)=(1,1,10,10,0.8,0.8,0.8), system (1.2) only has zero-equilibrium point E0(0,0,0,0,0), its corresponding characteristic roots are: −1,0.230,5.232,−16.462, E0 is unstable. The Lyapunov exponents are: LE1=0.199, LE2=0.083, LE3=0.000, LE4=−12.283, system (1.2) is hyperchaotic. Figure 1 shows the hyperchaotic attractors on z−x−y space and y−z−u space. The Poincaré mapping on the x−z plane and power spectrum of time series x(t) are depicted in Figure 2.
In the following, we fix b=1,d=1,h=10,a=10,k0=0.8,m=0.8, Figure 3 indicates the Lyapunov exponent spectrum of system (1.2) with respect to k∈[0.005,1.8] and the corresponding bifurcation diagram is given in Figure 4. These simulation results illustrate the complex dynamical phenomena of system (1.2). When k varies in [0.005,1.8], there are two positive Lyapunov exponents, system (1.2) is hyperchaoic as k varies.
Assume b=1,d=1,h=10,k=0.8,k0=0.8,m=0.8, the different Lyapunov exponents and dynamical properties with different values of parameter a are given in Table 1. It shows that system (1.2) has rich dynamical behaviors including periodic, chaos and hyperchaos with different parameters. The bifurcation diagram of system (1.2) with a∈[0.5,5] is given in Figure 5. Therefore, we can see that periodic orbits, chaotic orbits and hyperchaotic orbits can occur with increasing of parameter a. When a=1.08, Figure 6 indicates the (z,x,y,u) 4D surface of section and the location of the consequents is given in the (z,x,y) subspace and are colored according to their u value. The chaotic attractor and hyperchaotic attractor on y−x−z space and hyperchaotic attractor on y−z−u space are given in Figures 7 and 8, respectively. The Poincaré maps on x−z plane with a=2 and a=4 are depicted in Figure 9.
a | LE1 | LE2 | LE3 | LE4 | Dynamics |
1.08 | 0.000 | −0.075 | −4.661 | −2.538 | Periodic |
2 | 0.090 | 0.000 | −0.395 | −3.696 | Chaos |
4 | 0.325 | 0.047 | −0.000 | −6.373 | Hyperchaos |
Theorem 4.1. Suppose that ab>h2 and k0(a−h)+m(b−h)<0 are satisfied. Then, as m varies and passes through the critical value k=ah2+bh2−a2b−ab2ak0+bm−hm−hk0, system (1.2) undergoes a Hopf bifurcation at O(0,0,0,0).
Proof. Assume that system (1.2) has a pure imaginary root λ=iω,(ω∈R+). From (2.2), we get
s2ω2−s0=0,ω3−s1ω=0, |
then
ω=ω0=√ab−h2+k(k0+m), |
k=k∗=(a+b)(h2−ab)k0(a−h)+m(b−h). |
Substituting k=k∗ into (2.2), we have
λ1=iω,λ2=iω,λ3=−d,λ4=−(a+b). |
Therefore, when ab>h2, k0(a−h)+m(b−h)<0 and k=k∗, the first condition for Hopf bifurcation [26] is satisfied. From (2.2), we have
Re(λ′(k∗))|λ=iω0=h(k0+m)−ak0−bm2(s22+s1)<0, |
Thus, the second condition for a Hopf bifurcation [26] is also met. Hence, Hopf bifurcation exists.
Remark 4.1. When ab−h2+k(k0+m)≤0, system (1.2) has no Hopf bifurcation at the zero equilibrium point.
Theorem 4.2. When ab>h2 and k0(a−h)+m(b−h)<0, the periodic solutions of (1.2) from Hopf bifurcation at O(0,0,0,0) exist for sufficiently small
0<|k−k∗|=|k−(a+b)(h2−ab)k0(a−h)+m(b−h)|. |
And the periodic solutions have the following properties:
(I) if δ1g>0 (resp., δ1g<0), the hopf bifurcation of system (1.2) at (0,0,0,0) is non-degenerate and subcritical (resp. supercritical), and the bifurcating periodic solution exists for m>m∗ (resp., m<m∗) and is unstable (resp., stable), where
δ1g=14dδ(−k2δ01k02+ahδ01s1+kδ01k0s1−2dδ03δ05+2dδ04δ06),δ=ω0[(−ab+h2)(akk0+hkk0−hs1)+k(bm−hk0)(ha+h2+kk0)−k(ak−hm)(a2+ha−kk0+s1)],δ01=kω0(a2bm+a2hk−a2hk0+abhm+ah2k−ah2m−ah2k0+ak2k0−bkmk0−h3m−hkmk0+hkk02+bms1−hk0s1),δ03=ω0(a2bkm−2a2bkk0+a2hk2−a2hkk0+abhkm+2abhkk0+ah2k2−ah2km+ah2kk0−ak3k0+bk2mk0−h3km−2h3kk0+hk2mk0−hk2k02+2a2bs1−2ah2s1−bkms1+hkk0s1),δ04=(−ab+h2)s12+(a3b−a2h2+abh2−2abkm+2abkk0−ahk2+2ahkk0−bhkm−h4+h2km−h2kk0)s1−a2k3k0+abk2mk0−2abk2k02−ahk3k0+ahk2mk0−ahk2k02+bhk2mk0+h2k2mk0+h2k2k02,δ05=12d2+8s1[2ω0(−kk0aω0+hkk0ω0−hω0s1)+d(−hω02a−k2k02+kk0s1],δ06=12d2+8s1[d(−kk0aω0+hkk0ω0−hω0s1)−2ω0(k2k02+ahs1−kk0s1)]. |
(II) The period and characteristic exponent of the bifurcating periodic solution are:
T=2πω0(1+τ2∗ϵ2+O(ϵ4)),β=β2ϵ2+O(ϵ4), |
where ϵ=k−k∗μ2+O[(k−k∗)2] and
μ2=−ReC1(0)α′(0)=−(s22+s1)δ1gh(k0+m)−ak0−bm, |
τ2∗=δ2gω0−δ1g(ams2+bk0s2+hms2+hk0s2+ms1+k0s1)s1(h(k0+m)−ak0−bm), |
β2=δ1g, |
δ2g=14dδ(−k2δ02k02+ahδ02s1+kδ02k0s1−2δ03δ06d−2δ04δ05d). |
(III) The expression of the bifurcating periodic solution is
[xyzu]=[−kk0ϵcos(2πtT)−hω0ϵsin(2πtT)(kk0−s1)ϵcos(2πtT)−aω0ϵsin(2πtT)ϵ2[−kk0(kk0−s1)+hs1a2d+δ05−δ06sin(4πtT)]−k(a+h)ϵcos(2πtT)+kω0ϵsin(2πtT)]+O(ϵ3). |
Proof. Let k=k∗, by straightforward computations, we can obtain
t1=[ihω0−kk0kk0−s1+iaω00−(iω0+a+h)k],t3=[0010],t4=[ak0−hmbm−hk00h2−ab], |
which satisfy
Jt1=iω0t1,Jt3=−dt3,Jt4=−(a+b)t4. |
Now, we use transformation X=QX1, where X=(x,y,z,u)T, X1=(x1,y1,z1,u1)T, and
Q=[−kk0−hω00ak−hmkk0−s1−aω00bm−hk00010−k(a+h)kω00h2−ab], |
then, system (1.2) is transformed into
{˙x1=−ω0y1+F1(x1,y1,z1,u1),˙y1=ω0x1+F2(x1,y1,z1,u1),˙z1=−dz1+F3(x1,y1,z1,u1),˙u1=−(a+b)u1+F4(x1,y1,z1,u1), | (4.1) |
where
δ=ω0 [(−ab+h2)(akk0+hkk0−hs1)+k(bm−hk0)(ha+h2+kk0)−k(ak−hm) (a2+ha−kk0+s1)],
F1(x1,y1,z1,u1) =1δz1(f11x1+f12y1+f13u1),
f11=−kk0ω0(abh−ak2−h3+hkm)+ (kk0−s1)ω0(a2b−ah2−bkm+hkk0),
f12=−kk0ω0(abh−ak2−h3+hkm)+ (kk0−s1)ω0(a2b−ah2−bkm+hkk0),
f13=−kk0ω0(abh−ak2−h3+hkm)+ (kk0−s1)ω0(a2b−ah2−bkm+hkk0),
F2(x1,y1,z1,u1)= −1δz1(f21x1+f22y1+f23u1),
f21=(−ab+h2)(2k2k02−2kk0s1+s12) −k(a+h)(ak2k0−bkmk0−hkmk0+ hkk02+bms1−hk0s1),
f22=−aω0[abk(m−k0)−hk(ak0−bm)] +abs1−h2s1]−hω0[ak(ak+bk0+hk−hm)−h2k(m+k0)],
f23=(h2−ab)[hkk0(m−k0)−kk0(ak−bm)−s1(bm−hk0)]+k(a+h)[ak(ak−2hm) +bm(bm−2hk0)+h2(m2+k02)],
F3(x1,y1,z1,u1)= [−kk0x1−hω0y1+(ak−hm)u1][(kk0−s1)x1−aω0y1+(bm−hk0)u1],
F4(x1,y1,z1,u1)= 1δz1(f41x1+f42y1+f43u1),
f41=kk0 (hω0ka+h2ω0k+k2k0ω0)− (kk0−s1)kω0(a2+ah−kk0+s1),
f42= a3ω02k+a2ω02kh+h2ω02ka−ak2k0ω02+h3 ω02k+k2k0hω02+ akω02s1,
f43=−a2bkmω0−a2hk2ω0+ a2hkk0ω0−abhkmω0−ah2k2 ω0+ah2kmω0+ah2kk0ω0−ak3 k0ω0 +bk2mk0ω0+ h3kmω0+hk2mk0ω0−hk2k02ω0−bkm ω0s1+ hkk0ω0s1.
Furthermore,
g11=14[∂2F1∂x21+∂2F1∂y21+i(∂2F2∂x21+∂2F2∂y21)]=0, |
g02=14[∂2F1∂x21−∂2F1∂y21−2∂2F2∂x1∂y1+i(∂2F2∂x21−∂2F2∂y21+2∂2F1∂x1∂y1)]=0, |
g20=14[∂2F1∂x21−∂2F1∂y21+2∂2F2∂x1∂y1+i(∂2F2∂x21−∂2F2∂y21−2∂2F1∂x1∂y1)]=0, |
G21=18[∂3F1∂x31+∂3F2∂y31+∂3F1∂x1∂y21+∂3F2∂x21∂y1+i(∂3F2∂x31−∂3F2∂y31+∂3F2∂x1∂y21−∂3F1∂x21∂y1)]=0. |
By solving the following equations
[−d00−(a+b)][ω111ω211]=−[h111h211],[−d−2iω000−(a+b)−2iω0][ω120ω220]=−[h120h220], |
where
h111=12[(kk0+ah)s1−k2k02], |
h211=14(∂2F4∂x21+∂2F4∂y21)=0, |
h120=12[−k2k02−hs1a+kk0s1+(hkk0ω0−kk0aω0−hω0s1)i], |
h220=14(∂2F4∂x21−∂2F4∂y21−2i∂2F4∂x1∂y1)=0, |
one obtains
ω111=12d[hs1a−kk0(kk0−s1)],ω211=0,ω220=0, |
ω120=12d2+8s1{2ω0(−kk0aω0+hkk0ω0−hω0s1)+d(−hω02a−k2k02+kk0s1) |
+[d(−kk0aω0+hkk0ω0−hω0s1)−2ω0(k2k02+ahs1−kk0s1)]i}, |
G1110=12[(∂2F1∂x1∂z1+∂2F2∂y1∂z1)+i(∂2F2∂x1∂z1−∂2F1∂y1∂z1)]=12δ(δ01+δ02i), |
where
δ01=kω0(a2bm+a2hk−a2hk0+abhm+ah2k−ah2m−ah2k0+ak2k0−bkmk0−h3m−hkmk0+hkk02+bms1−hk0s1),δ02=(ab−h2)s12+(a3b−a2h2+abh2−2abkk0−ahk2+bhkm−h4+h2km+h2kk0)s1+k2k0(a2k−bma+2abk0+ahk−ahm+ahk0−bhm−h2m−h2k0),G2110=12[(∂2F1∂x1∂u1+∂2F2∂y1∂u1)+i(∂2F2∂x1∂u1−∂2F1∂y1∂u1)]=0,G1101=12[(∂2F1∂x1∂z1−∂2F2∂y1∂z1)+i(∂2F2∂x1∂z1+∂2F1∂y1∂z1)]=−12δ[δ03+δ04i], |
where
δ03=ω0(a2bkm−2a2bkk0+a2hk2−a2hkk0+abhkm+2abhkk0+ah2k2−ah2km+ah2kk0−ak3k0+bk2mk0−h3km−2h3kk0+hk2mk0−hk2k02+2a2bs1−2ah2s1−bkms1+hkk0s1),δ04=(−ab+h2)s12+(a3b−a2h2+abh2−2abkm+2abkk0−ahk2+2ahkk0−bhkm−h4+h2km−h2kk0)s1−a2k3k0+abk2mk0−2abk2k02−ahk3k0+ahk2mk0−ahk2k02+bhk2mk0+h2k2mk0+h2k2k02, |
G2101=12[(∂2F1∂x1∂u1−∂2F2∂y1∂u1)+i(∂2F2∂x1∂u1+∂2F1∂y1∂u1)]=0, |
g21=G21+2∑j=1(2Gj110ωj11+Gj101ωj20)=δ1g+δ2gi, |
where
δ1g=14dδ(−k2δ01k02+ahδ01s1+kδ01k0s1−2dδ03δ05+2dδ04δ06), |
δ2g=14dδ(−k2δ02k02+ahδ02s1+kδ02k0s1−2δ03δ06d−2δ04δ05d), |
δ05=12d2+8s1[2ω0(−kk0aω0+hkk0ω0−hω0s1)+d(−hω02a−k2k02+kk0s1)], |
δ06=12d2+8s1[d(−kk0aω0+hkk0ω0−hω0s1)−2ω0(k2k02+ahs1−kk0s1)]. |
Based on above calculation and analysis, we get
C1(0)=i2ω0(g20g11−2|g11|2−13|g02|2)+12g21=12g21, |
μ2=−ReC1(0)α′(0)=−(s22+s1)δ1gh(k0+m)−ak0−bm, |
τ2∗=δ2gω0−δ1g(ams2+bk0s2+hms2+hk0s2+ms1+k0s1)s1(h(k0+m)−ak0−bm), |
where
ω′(0)=ω0(ams2+bk0s2+hms2+hk0s2+ms1+k0s1)s1s22+s21, |
α′(0)=h(k0+m)−ak0−bm2(s22+s1),β2=2ReC1(0)=δ1g. |
Note α′(0)<0. From ab>h2 and k0(a−h)+m(b−h)<0, we obtain that if δ1g>0 (resp., δ1g<0), then μ2>0 (resp., μ2<0) and β2>0 (resp., β2<0), the hopf bifurcation of system (1.2) at (0,0,0,0) is non-degenerate and subcritical (resp. supercritical), and the bifurcating periodic solution exists for k>k∗ (resp., k<k∗) and is unstable (resp., stable).
Furthermore, the period and characteristic exponent are
T=2πω0(1+τ2∗ϵ2+O(ϵ4)),β=β2ϵ2+O(ϵ4), |
where ϵ=k−k∗μ2+O[(k−k∗)2]. And the expression of the bifurcating periodic solution is (except for an arbitrary phase angle)
X=(x,y,z,u)T=Q(¯y1,¯y2,¯y3,¯y4)T=QY, |
where
¯y1=Reμ,¯y1=Imμ,(¯y3,¯y4,¯y5)T=ω11|μ|2+Re(ω20μ2)+O(|μ|2), |
and
μ=ϵe2itπT+iϵ26ω0[g02e−4itπT−3g20e4itπT+6g11]+O(ϵ3)=ϵe2itπT+O(ϵ3). |
By computations, we can obtain
[xyzu]=[−kk0ϵcos(2πtT)−hω0ϵsin(2πtT)(kk0−s1)ϵcos(2πtT)−aω0ϵsin(2πtT)ϵ2[−kk0(kk0−s1)+hs1a2d+δ05−δ06sin(4πtT)]−k(a+h)ϵcos(2πtT)+kω0ϵsin(2πtT)]+O(ϵ3). |
Based on the above discussion, the conclusions of Theorem 4.2 are proved.
In order to verify the above theoretical analysis, we assume
d=2,h=1,k0=1,m=2,b=1.5,a=0.5. |
According to Theorem 4.1, we get k∗=1. Then from Theorem 4.2, μ2=−4.375 and β2=−0.074, which imply that the Hopf bifurcation of system (1.2) at (0,0,0,0) is nondegenerate and supercritical, a bifurcation periodic solution exists for k<k∗=1 and the bifurcating periodic solution is stable. Figure 10 shows the Hopf periodic solution occurs when k=0.999<k∗=1.
In this paper, we present a new 4D hyperchaotic system by introducing a linear controller to the first equation and second equation of the 3D Rabinovich system, respectively. If k0=0, m=1 and the fourth equation is changed to −ky, system (1.2) will be transformed to 4D hyperchaotic Rabinovich system in [18,19]. Compared with the system in [18], the new 4D system (1.1) has two nonzero equilibrium points which are symmetric about z axis when m>k0 and the dynamical characteristics are more abundant. The complex dynamical behaviors, including boundedness, dissipativity and invariance, equilibria and their stability, chaos and hyperchaos of (1.2) are investigated and analyzed. Furthermore, the existence of Hopf bifurcation, the stability and expression of the Hopf bifurcation at zero-equilibrium point are studied by using the normal form theory and symbolic computations. In order to analyze and verify the complex phenomena of the system, some numerical simulations are carried out including Lyapunov exponents, bifurcations and Poincaré maps, et al. The results show that the new 4D Rabinovich system can exhibit complex dynamical behaviors, such as periodic, chaotic and hyperchaotic. In the real practice, the hyperchaotic Rabinovich system can be applied to generate key stream for the entire encryption process in image encryption scheme [27]. In some cases, hyperchaos and chaos are usually harmful and need to be suppressed such as in biochemical oscillations [8] and flexible shaft rotating-lifting system [28]. Therefore, we will investigate hyperchaos control and chaos control in further research.
Project supported by the Doctoral Scientific Research Foundation of Hanshan Normal University (No. QD202130).
The authors declare that they have no conflicts of interest.
[1] |
L. J. Alias, N. Gürbüz, An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geometriae Dedicata, 121 (2006), 113–127. https://doi.org/10.1007/s10711-006-9093-9 doi: 10.1007/s10711-006-9093-9
![]() |
[2] | Y. Aminov, The geometry of submanifolds, Amsterdam: Gordon and Breach Sci. Pub., 2001. |
[3] |
K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, G. Öztürk, Vranceanu surface in E4 with pointwise 1-type Gauss map, Indian J. Pure Appl. Math., 42 (2011), 41–51. https://doi.org/10.1007/s13226-011-0003-y doi: 10.1007/s13226-011-0003-y
![]() |
[4] |
K. Arslan, B. K. Bayram, B. Bulca, G. Öztürk, Generalized rotation surfaces in E4, Results Math., 61 (2012), 315–327. https://doi.org/10.1007/s00025-011-0103-3 doi: 10.1007/s00025-011-0103-3
![]() |
[5] |
K. Arslan, B. Bulca, B. Kılıç, Y. H. Kim, C. Murathan, G. Öztürk, Tensor product surfaces with pointwıse 1-type Gauss map, Bull. Korean Math. Soc., 48 (2011), 601–609. https://doi.org/10.4134/BKMS.2011.48.3.601 doi: 10.4134/BKMS.2011.48.3.601
![]() |
[6] |
K. Arslan, V. Milousheva, Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwan. J. Math., 20 (2016), 311–332. https://doi.org/10.11650/tjm.20.2016.5722 doi: 10.11650/tjm.20.2016.5722
![]() |
[7] | K. Arslan, A. Sütveren, B. Bulca, Rotational λ -hypersurfaces in Euclidean spaces, Creat. Math. Inform., 30 (2021), 29–40. |
[8] |
A. Arvanitoyeorgos, G. Kaimakamis, M. Magid, Lorentz hypersurfaces in E41 satisfying ΔH=αH, Illinois J. Math., 53 (2009), 581–590. https://doi.org/10.1215/IJM/1266934794 doi: 10.1215/IJM/1266934794
![]() |
[9] |
M. Barros, B. Y. Chen, Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Jap., 39 (1987), 627–648. https://doi.org/10.2969/jmsj/03940627 doi: 10.2969/jmsj/03940627
![]() |
[10] |
M. Barros, O. J. Garay, 2-type surfaces in S3, Geometriae Dedicata, 24 (1987), 329–336. https://doi.org/10.1007/BF00181605 doi: 10.1007/BF00181605
![]() |
[11] | B. Y. Chen, On submanifolds of finite type, Soochow J. Math., 9 (1983), 65–81. |
[12] | B. Y. Chen, Total mean curvature and submanifolds of finite type, Singapore: World Scientific, 1984. |
[13] | B. Y. Chen, Finite type submanifolds and generalizations, Rome: University of Rome, 1985. |
[14] |
B. Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 8 (1985), 358–374. https://doi.org/10.2996/kmj/1138037104 doi: 10.2996/kmj/1138037104
![]() |
[15] |
B. Y. Chen, P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161–186. https://doi.org/10.1017/S0004972700013162 doi: 10.1017/S0004972700013162
![]() |
[16] |
B. Y. Chen, E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Differential geometry of 1-type submanifolds and submanifolds with 1-type Gauss map, Int. Elec. J. Geom., 16 (2023), 4–49. https://doi.org/10.36890/iejg.1216024 doi: 10.36890/iejg.1216024
![]() |
[17] |
Q. M. Cheng, Q. R. Wan, Complete hypersurfaces of R4 with constant mean curvature, Monatsh. Math., 118 (1994), 171–204. https://doi.org/10.1007/BF01301688 doi: 10.1007/BF01301688
![]() |
[18] |
S. Y. Cheng, S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204. https://doi.org/10.1007/BF01425237 doi: 10.1007/BF01425237
![]() |
[19] | M. Choi, Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38 (2001), 753–761. |
[20] |
F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21. https://doi.org/10.2996/kmj/1138039155 doi: 10.2996/kmj/1138039155
![]() |
[21] |
M. Do Carmo, M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685–709. https://doi.org/10.1090/S0002-9947-1983-0694383-X doi: 10.1090/S0002-9947-1983-0694383-X
![]() |
[22] |
U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwan. J. Math., 11 (2007), 1407–1416. https://doi.org/10.11650/twjm/1500404873 doi: 10.11650/twjm/1500404873
![]() |
[23] | A. Ferrandez, O. J. Garay, P. Lucas, On a certain class of conformally at Euclidean hypersurfaces, In Global Analysis and Global Differential Geometry, Springer: Berlin, Germany, 1990, 48–54. |
[24] |
G. Ganchev, V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38 (2014), 883–895. https://doi.org/10.3906/mat-1312-10 doi: 10.3906/mat-1312-10
![]() |
[25] |
O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31. https://doi.org/10.2996/kmj/1138038815 doi: 10.2996/kmj/1138038815
![]() |
[26] |
O. J. Garay, An extension of Takahashi's theorem, Geometriae Dedicata, 34 (1990), 105–112. https://doi.org/10.1007/BF00147319 doi: 10.1007/BF00147319
![]() |
[27] |
E. Güler, Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat., 8 (2020), 2008–2011. https://doi.org/10.26637/MJM0804/0116 doi: 10.26637/MJM0804/0116
![]() |
[28] |
E. Güler, Rotational hypersurfaces satisfying ΔIR=AR in the four-dimensional Euclidean space, J. Polytech., 24 (2021), 517–520. https://doi.org/10.2339/POLITEKNIK.670333 doi: 10.2339/POLITEKNIK.670333
![]() |
[29] |
E. Güler, H. H. Hacısalihoǧlu, Y. H. Kim, The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space, Symmetry, 10 (2018), 1–12. https://doi.org/10.3390/sym10090398 doi: 10.3390/sym10090398
![]() |
[30] |
E. Güler, M. Magid, Y. Yaylı, Laplace -Beltrami operator of a helicoidal hypersurface in four-space, J. Geom. Symmetry. Phys., 41 (2016), 77–95. https://doi.org/10.7546/jgsp-41-2016-77-95 doi: 10.7546/jgsp-41-2016-77-95
![]() |
[31] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface with Δx=Ax in 4-space, Facta Universitatis (Nis) Ser. Math. Inform., 37 (2022), 917–928. |
[32] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space E4, Turkish J. Math., 46 (2022), 2167–2177. https://doi.org/10.55730/1300-0098.3261 |
[33] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface satisfying ΔIIIx=Ax in 4-space, Honam Math. J., 44 (2022), 219–230. |
[34] | E. Güler, Y. Yaylı, H. H. Hacısalihoǧlu, Bi-rotational hypersurface satisfying Δx=Ax in pseudo-Euclidean space E42, TWMS J. Pure Appl. Math., Preprint. |
[35] |
T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145–169. https://doi.org/10.1002/mana.19951720112 doi: 10.1002/mana.19951720112
![]() |
[36] |
D. S. Kim, J. R. Kim, Y. H. Kim, Cheng-Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc., 39 (2016), 1319–1327. https://doi.org/10.1007/s40840-015-0234-x doi: 10.1007/s40840-015-0234-x
![]() |
[37] | W. Kühnel, Differential geometry. Curves-surfaces-manifolds, 3 Eds., Translated from the 2013 German ed. AMS, Providence, RI, 2015. |
[38] | T. Levi-Civita, Famiglie di superficie isoparametriche nellordinario spacio euclideo, Rend. Acad. Lincei, 26 (1937), 355–362. |
[39] |
Y. Li, E. Güler, A hypersurfaces of revolution family in the five-dimensional Pseudo-Euclidean space E52, Mathematics, 11 (2023), 3427. https://doi.org/10.3390/math11153427 doi: 10.3390/math11153427
![]() |
[40] |
C. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math., 21 (1919), 81–93. https://doi.org/10.2307/2007223 doi: 10.2307/2007223
![]() |
[41] | C. Moore, Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26 (1920), 454–460. |
[42] | S. Stamatakis, H. Zoubi, Surfaces of revolution satisfying ΔIIIx=Ax, J. Geom. Graph., 14 (2010), 181–186. |
[43] |
T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380 doi: 10.2969/jmsj/01840380
![]() |
[44] | D. W. Yoon, Some properties of the Clifford torus as rotation surfaces, Indian J. Pure Appl. Math., 34 (2003), 907–915. |
1. | Naied A. Nayied, Firdous A. Shah, M. A. Khanday, Mubashir Qayyum, Fibonacci Wavelet Method for the Numerical Solution of Nonlinear Reaction-Diffusion Equations of Fisher-Type, 2023, 2023, 2314-4785, 1, 10.1155/2023/1705607 | |
2. | Kushal Dhar Dwivedi, Subir Das, Dumitru Baleanu, Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method, 2022, 23, 1565-1339, 1157, 10.1515/ijnsns-2020-0112 | |
3. | A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem, 2022, 2008-1359, 10.1007/s40096-022-00460-6 | |
4. | Tatiyana S. Timofeeva, Sakhayana S. Vinokurova, 2022, 2528, 0094-243X, 020038, 10.1063/5.0107070 | |
5. | Kiran Bala, Geeta Arora, Homan Emadifar, Masoumeh Khademi, Applications of particle swarm optimization for numerical simulation of Fisher’s equation using RBF, 2023, 84, 11100168, 316, 10.1016/j.aej.2023.11.024 | |
6. | W. M. Abd-Elhameed, Afnan Ali, Y. H. Youssri, Richard I. Avery, Newfangled Linearization Formula of Certain Nonsymmetric Jacobi Polynomials: Numerical Treatment of Nonlinear Fisher’s Equation, 2023, 2023, 2314-8888, 1, 10.1155/2023/6833404 | |
7. | Geeta Arora, Kiran Bala, 2025, 3185, 0094-243X, 020056, 10.1063/5.0240436 |
a | LE1 | LE2 | LE3 | LE4 | Dynamics |
1.08 | 0.000 | −0.075 | −4.661 | −2.538 | Periodic |
2 | 0.090 | 0.000 | −0.395 | −3.696 | Chaos |
4 | 0.325 | 0.047 | −0.000 | −6.373 | Hyperchaos |