Processing math: 100%
Research article Special Issues

Special type convex functions on Riemannian manifolds with application

  • Received: 28 January 2023 Revised: 24 March 2023 Accepted: 06 April 2023 Published: 23 April 2023
  • MSC : 52A20, 52A41, 53C20, 53C22

  • In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.

    Citation: Ehtesham Akhter, Musavvir Ali, Mohd Bilal. Special type convex functions on Riemannian manifolds with application[J]. AIMS Mathematics, 2023, 8(7): 15081-15091. doi: 10.3934/math.2023770

    Related Papers:

    [1] Ming Wei, Congxin Yang, Bo Sun, Binbin Jing . A multi-objective optimization model for green demand responsive airport shuttle scheduling with a stop location problem. Electronic Research Archive, 2023, 31(10): 6363-6383. doi: 10.3934/era.2023322
    [2] Gang Cheng, Changliang He . Analysis of bus travel characteristics and predictions of elderly passenger flow based on smart card data. Electronic Research Archive, 2022, 30(12): 4256-4276. doi: 10.3934/era.2022217
    [3] Ming Wei, Shaopeng Zhang, Bo Sun . Comprehensive operating efficiency measurement of 28 Chinese airports using a two-stage DEA-Tobit method. Electronic Research Archive, 2023, 31(3): 1543-1555. doi: 10.3934/era.2023078
    [4] Xiaojie Huang, Gaoke Liao . Identifying driving factors of urban digital financial network—based on machine learning methods. Electronic Research Archive, 2022, 30(12): 4716-4739. doi: 10.3934/era.2022239
    [5] Jiaqi Chang, Xuhan Xu . Network structure of urban digital financial technology and its impact on the risk of commercial banks. Electronic Research Archive, 2022, 30(12): 4740-4762. doi: 10.3934/era.2022240
    [6] Jian Wan, Peiyun Yang, Wenbo Zhang, Yaxing Cheng, Runlin Cai, Zhiyuan Liu . A taxi detour trajectory detection model based on iBAT and DTW algorithm. Electronic Research Archive, 2022, 30(12): 4507-4529. doi: 10.3934/era.2022229
    [7] Gang Cheng, Yijie He . Enhancing passenger comfort and operator efficiency through multi-objective bus timetable optimization. Electronic Research Archive, 2024, 32(1): 565-583. doi: 10.3934/era.2024028
    [8] Zhenghui Li, Jinhui Zhu, Jiajia He . The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective. Electronic Research Archive, 2022, 30(12): 4697-4715. doi: 10.3934/era.2022238
    [9] Jie Ren, Shiru Qu, Lili Wang, Yu Wang, Tingting Lu, Lijing Ma . Research on en route capacity evaluation model based on aircraft trajectory data. Electronic Research Archive, 2023, 31(3): 1673-1690. doi: 10.3934/era.2023087
    [10] Yaxi Xu, Yi Liu, Ke Shi, Xin Wang, Yi Li, Jizong Chen . An airport apron ground service surveillance algorithm based on improved YOLO network. Electronic Research Archive, 2024, 32(5): 3569-3587. doi: 10.3934/era.2024164
  • In this manuscript, we define a special type convex function on Euclidean space and explore it on the Riemannian manifold. We also detail the fundamental properties of special type convex functions and some examples that illustrate the idea. Moreover, to demonstrate the application to the problems of optimization, these special type convex functions are used.





    [1] T. Rapcsák, Smooth nonlinear optimization in Rn, Dordrecht: Springer Science & Business Media, 2013.
    [2] C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Dordrecht: Springer Science & Business Media, 2013.
    [3] R. Pini, Convexity along curves and invexity, Optimization, 29 (1994), 301–309. https://doi.org/10.1080/02331939408843959 doi: 10.1080/02331939408843959
    [4] S. Mititelu, Generalized invexity and vector optimization on differential manifolds, Differ. Geom. Dyn. Syst., 3 (2001), 21–31.
    [5] A. Barani, M. R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl., 328 (2007), 767–779. https://doi.org/10.1016/j.jmaa.2006.05.081 doi: 10.1016/j.jmaa.2006.05.081
    [6] I. Ahmad, A. Iqbal, S. Ali, On Properties of Geodesic η-Preinvex Functions, Adv. Oper. Res., 2009 (2009), 381831. https://doi.org/10.1155/2009/381831 doi: 10.1155/2009/381831
    [7] L. W. Zhou, N. J. Huang, Roughly geodesic B-invex and optimization problem on Hadamard manifold, Taiwanese J. Math., 17 (2013), 833–855. https://doi.org/10.11650/tjm.17.2013.1937 doi: 10.11650/tjm.17.2013.1937
    [8] S. L. Chen, N. J. Huang, D. O'Regan, Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math., 17 (2014). https://doi.org/10.1155/2014/524698 doi: 10.1155/2014/524698
    [9] R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Geodesic G-invex sets and semistrictly geodesic η-preinvex functions, Optimization, 61 (2012), 1169–1174. https://doi.org/10.1080/02331934.2010.544314 doi: 10.1080/02331934.2010.544314
    [10] R. P. Agarwal, I. Ahmad, A. Iqbal, S. Ali, Generalized invex sets and preinvex functions on Riemannian manifolds, Taiwanese J. Math., 16 (2012), 1719–1732. https://doi.org/10.11650/twjm/1500406792 doi: 10.11650/twjm/1500406792
    [11] M. A. Khan, I. Ahmad, F. R. Al-Solamy, Geodesic r-preinvex functions on Riemannian manifolds, J. Inequal. Appl., 2014 (2014), 144. https://doi.org/10.1186/1029-242X-2014-144 doi: 10.1186/1029-242X-2014-144
    [12] A. Kılıçman, W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl., 2015 (2015), 297. https://doi.org/10.1186/s13660-015-0824-z doi: 10.1186/s13660-015-0824-z
    [13] I. Ahmad, M. A. Khan, A. A. Ishan, Generalized geodesic convexity on Riemannian manifolds, Mathematics, 7 (2019), 547. https://doi.org/10.3390/math7060547 doi: 10.3390/math7060547
    [14] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
  • This article has been cited by:

    1. Ming Wei, Shaopeng Zhang, Tao Liu, Bo Sun, The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method, 2023, 109, 09696997, 102395, 10.1016/j.jairtraman.2023.102395
    2. Zhen Wu, Po-Lin Lai, Fei Ma, Keun-Sik Park, Suthep Nimsai, Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China, 2023, 10, 2226-4310, 138, 10.3390/aerospace10020138
    3. Luigi dell’Olio, Andrés Rodríguez, Silvia Sipone, Modeling Airport Choice Using a Latent Class Logit Model, 2023, 10, 2226-4310, 703, 10.3390/aerospace10080703
    4. Ming Wei, Yu Xiong, Bo Sun, Spatial effects of urban economic activities on airports’ passenger throughputs: A case study of thirteen cities and nine airports in the Beijing-Tianjin-Hebei region, China, 2025, 125, 09696997, 102765, 10.1016/j.jairtraman.2025.102765
    5. Wolfgang Dupeyrat Luque, Chunyan Yu, Evolution of the Airport Industry and Regional Growth in the Pacific Alliance Member Countries, 2025, 127, 09696997, 102811, 10.1016/j.jairtraman.2025.102811
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1789) PDF downloads(72) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog