Recently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a vertex $ u $ in $ G $. In this paper, we give sharp lower and upper bounds on the exponential Randić index of unicyclic graphs.
Citation: Qian Lin, Yan Zhu. Unicyclic graphs with extremal exponential Randić index[J]. Mathematical Modelling and Control, 2021, 1(3): 164-171. doi: 10.3934/mmc.2021015
Recently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a vertex $ u $ in $ G $. In this paper, we give sharp lower and upper bounds on the exponential Randić index of unicyclic graphs.
| [1] | B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin., 50 (1998), 225–233. |
| [2] | Z. Du, B. Zhou, On Randić indices of trees, unicyclic graphs, and bicyclic graphs, Int. J. Quantum. Chem., 111 (2011), 2760–2770. |
| [3] | X. Li, Y. Yuan, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155–166. |
| [4] | Y. Hu, X. Li, Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem., 52 (2004), 119–128. |
| [5] | Y. Hu, X. Li, Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem., 52 (2004), 129–146. |
| [6] | X. Li, Y. Shi, T. Xu, Unicyclic graphs with maximum general Randić index for $\alpha >0$, MATCH Commun. Math. Comput. Chem., 56 (2006), 557–570. |
| [7] | B. Wu, L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem., 54 (2005), 455–464. |
| [8] | J. Gao, M. Lu, On the Randić index of unicyclic graphs, MATCH Commun. Math. Comput. Chem., 53 (2005), 377–384. |
| [9] | I. Gutman, B. Furtula, Recent results in the theory of Randić index, Univ. Kragujevac, 2008. |
| [10] |
I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. doi: 10.1016/j.akcej.2017.09.006
|
| [11] | G. Liu, Y. Zhu, J. Cai, On the Randić index of unicyclic graphs with girth $g$, MATCH Commun. Math. Comput. Chem., 58 (2007), 127–138. |
| [12] | J. Rada, S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem., 81 (2019), 315–323. |
| [13] |
S. O. Y. Shi, Sharp bounds for the Randić index of graphs with given minimum and maximum degree, Discrete Appl. Math., 247 (2018), 111–115. doi: 10.1016/j.dam.2018.03.064
|
| [14] | J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem., 82 (2019), 29–41. |
| [15] | R. Cruz, M. Londoño, J. Rada, Minimal value of the exponential of the generalized Randić index over trees, MATCH Commun. Math. Comput. Chem., 85 (2021), 427–440. |
| [16] |
R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randić index, Discrete Appl. Math., 283 (2020), 634–643. doi: 10.1016/j.dam.2020.03.009
|
| [17] |
D. Stevanović, A. Ilić. On the Laplacian coefficients of unicyclic graphs, Linear Algebra Appl., 430 (2009), 2290–2300. doi: 10.1016/j.laa.2008.12.006
|