Processing math: 82%
Research article

Asymmetric effect of exchange rate volatility on trade balance in Nigeria

  • Received: 06 June 2021 Accepted: 13 September 2021 Published: 24 September 2021
  • JEL Codes: E58, C22, F14

  • The relationship between real exchange rate volatility and the trade balance has been a contentious issue since the fall of Bretton woods agreement of 1973, owing to the lack of unanimity on the effect. This article provides empirical evidence of the link between the real exchange rate volatility and the trade balance in the light of financial development, confirming the assertion that the effect is significantly dependent on the country's level of financial development. Due to Nigeria's relatively undeveloped financial system, its exchange rate dampens the country's exports. Rather than studying the relationship in isolation, we examine the moderating role of financial development on the link between export and the real exchange rate volatility in this paper. The empirical estimation is based on the Nigeria's data set spanning the years 1980–2019, and it employs threshold autoregressive non-linear co-integration and non-linear ARDL estimation techniques. According to the findings, financial development magnifies the beneficial benefits of the real exchange rate on Nigeria's foreign trade. It also states that the uncertainty in foreign capital flows has a negative impact on Nigeria's international trade. The findings have broad policy implications, implying that in order to diversify and improve the economy's future growth and associated international trade, Nigeria's policymakers should promote adequate financial sector development, as financial shocks are amplified by poorly implemented credit markets.

    Citation: Nuraddeen Umar Sambo, Ibrahim Sambo Farouq, Mukhtar Tijjani Isma'il. Asymmetric effect of exchange rate volatility on trade balance in Nigeria[J]. National Accounting Review, 2021, 3(3): 342-359. doi: 10.3934/NAR.2021018

    Related Papers:

    [1] Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505
    [2] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [3] Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098
    [4] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [5] Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135
    [6] Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321
    [7] Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85
    [8] Hisashi Inaba . The Malthusian parameter and R0 for heterogeneous populations in periodic environments. Mathematical Biosciences and Engineering, 2012, 9(2): 313-346. doi: 10.3934/mbe.2012.9.313
    [9] Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643
    [10] Jie Bai, Xiunan Wang, Jin Wang . An epidemic-economic model for COVID-19. Mathematical Biosciences and Engineering, 2022, 19(9): 9658-9696. doi: 10.3934/mbe.2022449
  • The relationship between real exchange rate volatility and the trade balance has been a contentious issue since the fall of Bretton woods agreement of 1973, owing to the lack of unanimity on the effect. This article provides empirical evidence of the link between the real exchange rate volatility and the trade balance in the light of financial development, confirming the assertion that the effect is significantly dependent on the country's level of financial development. Due to Nigeria's relatively undeveloped financial system, its exchange rate dampens the country's exports. Rather than studying the relationship in isolation, we examine the moderating role of financial development on the link between export and the real exchange rate volatility in this paper. The empirical estimation is based on the Nigeria's data set spanning the years 1980–2019, and it employs threshold autoregressive non-linear co-integration and non-linear ARDL estimation techniques. According to the findings, financial development magnifies the beneficial benefits of the real exchange rate on Nigeria's foreign trade. It also states that the uncertainty in foreign capital flows has a negative impact on Nigeria's international trade. The findings have broad policy implications, implying that in order to diversify and improve the economy's future growth and associated international trade, Nigeria's policymakers should promote adequate financial sector development, as financial shocks are amplified by poorly implemented credit markets.



    In this paper, we study the coupled chemotaxis-fluid models with the initial-bounary conditions

    {nt+un=Δn(nc)+γnμn2,in Q(0,T)×Ω,ct+uc=Δcc+n+f,in Q,ut+uu=Δuπ+nφ,in Q,u=0,in Q,nν=cν=0,u=0,on (0,T)×Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω, (1.1)

    where ΩR2 is a bounded domain with smooth boundary Ω. ν is the outward normal vector to Ω, and γ, μ are positive constants. n, c denote the bacterial density, the oxygen concentration, respectively. u, π are the fluid velocity and the associated pressure. Here, the function f denotes a control that acts on chemical concentration, which lies in a closed convex set U. We observe that in the subdomains where f0 we inject oxygen, and conversely where f0 we extract oxygen.

    In order to understand the development of system (1.1), let us mention some previous contributions in this direction. Jin [11] dealed with the time periodic problem of (1.1) in spatial dimension n=2,3. Jin [12] also obtained the existence of large time periodic solution in ΩR3 without the term uu.

    Espejo and Suzuki [6] discussed the chemotaxis-fluid model

    nt+un=Δn(nc)+n(γμn), (1.2)
    ct+uc=Δcc+n, (1.3)
    ut=Δuπ+nφ, (1.4)
    u=0, (1.5)
    nν=cν=0,u=0. (1.6)

    They proved the global existence of weak solution. Tao and Winkler [17] proved the existence of global classical solution and the uniform boundedness. Tao and Winkler [18] also obtained the global classical solution and uniform boundedness under the condition of μ>23.

    The optimal control problems governed by the coupled partial differential equations is important. Colli et al. [4] studied the distributed control problem for a phase-field system of conserved type with a possibly singular potential. Liu and Zhang [14] considered the optimal control of a new mechanochemical model with state constraint. Chen et al. [3] studied the distributed optimal control problem for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-González et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model with the linear production term. The existence, uniqueness and regularity of strong solutions of this model are deduced. They also derived the first-order optimality conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Some other results can be found in [2,5,13,15,19].

    In this paper, we discuss the optimal control problem for (1.1). We adjust the external source f, so that the bacterial density n, oxygen concentration c and fluid velocity u are as close as possible to a desired state nd, cd and ud, and at the final moment T is as close as possible to a desired state nΩ, cΩ and uΩ. The main difficulties for treating the problem are caused by the nonlinearity of uu. Our method is based on fixed point method and Simon's compactness results. We overcome the above difficulties and derive first-order optimality conditions by using a Lagrange multipliers theorem.

    In this section, we will construct the existence and some priori estimates of the linearized problem for the chemotaxis-Navier-Stokes system in a bounded domain ΩR2. The proofs in this section will be established for a detailed framework.

    In the following lemmas we will state the Gagliardo-Nirenberg interpolation inequality [7].

    Lemma 2.1. Let l and k be two integers satisfying 0l<k. Suppose that 1q, r, p>0 and lka1 such that

    1plN=a(1qkN)+(1a)1r. (2.1)

    Then, for any uWk,q(Ω)Lr(Ω), there exist two positive constants C1 and C2 depending only on Ω, q, k, r and N such that the following inequality holds

    DluLpc1DkuaLqu1aLr+c2uLr

    with the following exception: If 1<q< and klNq is a non-negative integer, the (2.1) holds only for a satisfying lka<1.

    The following log-interpolation inequality has been proved by [1].

    Lemma 2.2. Let ΩR2 be a bounded domain with smooth boundary. Then for all non-negative uH1(Ω), there holds

    u3L3(Ω)δu2H1(Ω)(u+1)log(u+1)L1(Ω)+p(δ1)uL1(Ω),

    where δ is any positive number, and p() is an increasing function.

    We first consider the existence of solutions to the linear problem of system (1.1). Assume functions u0H1(Ω), ˆuL4(0,T;L4(Ω)),ˆnL2(0,T;L2(Ω)), and consider

    {utΔu+ˆuu=π+ˆnφ,in Q,u=0,in Q,u=0,on Ω,u(x,0)=u0(x),in Ω. (2.2)

    By using fixed point method, the existence of solutions can be easily obtained. Therefore, we ignore the process of proof and just give the regularity estimate.

    Lemma 2.3. Let u0H1(Ω), ˆuL4(0,T;L4(Ω)), ˆnL2(0,T;H1(Ω)),φL(Q), and u be the solution of the problem (2.2), then uL(0,T;H1(Ω))L2(0,T;H2(Ω)) and utL2(0,T;L2(Ω)).

    Proof. Multiplying the first equation of (2.2) by u, and integrating it over Ω, we get

    12ddtΩu2dx+Ω|u|2dx+Ωu2dx=Ωˆnφudx+Ωu2dxˆnL2uL2+u2L2C(ˆn2L2+u2L2).

    By Gronwall's inequality, we have

    u2L2+T0u2H1dτC(T0ˆn2L2dτ+u02L2).

    Operating the Helmholtz projection operator P to the first equation of (2.2), we know

    ut+Au+P(ˆuu)=P(ˆnφ),

    where A:=PΔ is called Stokes operator, which is an unbounded self-adjoint positive operator in L2 with compact inverse, for more properties of Stokes operator, we refer to [10]. Note that u=0, that is Pu=u, PΔu=Δu, Put=ut. So, in following calculations, we ignore the projection operator P. Multiplying this equation by Δu, and integrating it over Ω, we get

    12ddtΩ|u|2dx+Ω|Δu|2dx+Ω|u|2dx=ΩP(ˆuu)ΔudxΩP(ˆnφ)Δudx+Ω|u|2dx.

    For the terms on the right, we have

    ΩP(ˆuu)ΔudxΩP(ˆnφ)Δudx+Ω|u|2dxˆuL4uL4ΔuL2+ˆnL2ΔuL2+u2L2ˆuL4u1/2L2Δu3/2L2+ˆuL4uL2ΔuL2+ˆnL2ΔuL2+u2L212Δu2L2+C(ˆu4L4+ˆu2L4+1)u2L2+ˆn2L2.

    Therefore, we get

    ddtu2L2+u2H1C(ˆu4L4+ˆu2L4+1)u2L2+Cˆn2L2+C.

    By Gronwall's inequality, we derive

    u2L2+T0u2H1dτC.

    Multiplying the first equation of (2.2) by ut, and combining with above inequality, we have

    T0Ω|ut|2dxdtC.

    Summing up, we complete the proof.

    For the above solution u, we consider the following linear problem

    {ctΔc+uc+c=ˆn++f,in Q,cν=0,on (0,T)×Ω,c(x,0)=c0(x),in Ω. (2.3)

    Along with fixed point method, the existence of solutions can be easily obtained. Thus we omit the proof and only give the regularity estimate.

    Lemma 2.4. Let c0H2(Ω), ˆnL2(0,T;H1(Ω)), fL2(0,T;H1(Ω)), u be the solution of the problem (2.2), and c be the solution of (2.3). Then cL((0,T),H2(Ω))L2((0,T),H3(Ω)) and ctL2(0,T;L2(Ω)).

    Proof. Multiplying the first equation of (2.3) by c, and integrating it over Ω, we infer from Ωc(uc)=12Ωc2udx=0 that

    12ddtΩc2dx+Ω|c|2dx+Ωc2dxˆnL2cL2+fL2cL2.

    Therefore, we have

    c2L2+c2H1C(c02L2+t0(ˆn2L2+f2L2)dτ).

    Multiplying the first equation of (2.3) by Δc, and integrating it over Ω, we get

    12ddtΩ|c|2dx+Ω|Δc|2dx+Ω|c|2dx=ΩucΔcdxΩΔcˆndxΩΔcfdx.

    Using the Young inequality and the Hölder inequality, we obtain

    ΩucΔcdxΩΔcˆndxΩΔcfdxuL4cL4ΔcL2+ˆnL2ΔcL2+fL2ΔcL2CuH1(c12L2Δc12L2+cL2)ΔcL2+ˆnL2ΔcL2+fL2ΔcL2=CuH1c12L2Δc32L2+CcL2ΔcL2+ˆnL2ΔcL2+fL2ΔcL212Δc2L2+Cu4H1c2L2+C(ˆn2L2+f2L2).

    Combining this and above inequalities, we conclude

    ddtc2L2+c2H1Cu4H1c2L2+C(ˆn2L2+f2L2).

    We therefore verify that

    c2L2+t0c2H1C(t0ˆn2L2dτ+t0f2L2dτ).

    Applying to the first equation of (2.3), multiplying it by Δc, and integrating over Ω give

    12ddtΩ|Δc|2dx+Ω|Δc|2dx+Ω|Δc|2dx=Ω(uc)ΔcdxΩˆn+ΔcdxΩfΔcdx.

    For the terms on the right, we obtain

    Ω(uc)ΔcdxΩˆn+ΔcdxΩfΔcdxΔcL2(uL4ΔcL4+uL4cL4)+ˆnL2ΔcL2+fL2ΔcL2ΔcL2(uL4Δc12L2Δc12L2+uL4ΔcL2+u12L2Δu12L2c12L2Δc12L2+uL2c12L2Δc12L2+u12L2Δu12L2cL2+uL2cL2)+ˆnL2ΔcL2+fL2ΔcL212Δc2L2+C(1+Δc2L2+Δu2L2+ˆn2L2+f2L2).

    Straightforward calculations yield

    Δc2L2+t0Δc2H1dτC(1+t0ˆn2H1dτ+t0f2H1dτ).

    Multiplying the first equation of (2.3) by ct, and combining with above inequality, we have

    T0Ω|ct|2dxdtC,

    and thereby precisely arrive at the conclusion.

    With above solutions u and c in hand, we deal with the following linear problem.

    {ntΔn+un+n=(nc)+(1+γ)ˆn+μˆn+n,in Q,nν|Ω=0,n(x,0)=n0(x),in Ω. (2.4)

    By a similar argument as the above two problems, the existence of solutions can be easily obtained. Therefore, we only give the regularity estimate.

    Lemma 2.5. Suppose 0n0H1(Ω), ˆnL2(0,T;H1(Ω))L4(0,T;L4(Ω)), and u, c, n are the solutions of the problem (2.2), (2.3) and (2.4), respectively. Then n0, nL(0,T;H1(Ω))L2(0,T;H2(Ω)) and ntL2(0,T;L2(Ω)).

    Proof. Firstly, we verify the nonnegativity of n. We examine the set A(t)={x:n(x,t)<0}. Along with (2.4), we get

    ddtA(t)ndxA(t)nνds+A(t)ndx=(1+γ)A(t)ˆn+dxμA(t)ˆn+ndx.

    Since nν0 on {n<0}, from this we deduce that the right hand side is nonnegative. Integrating this equality on [0,t] gives

    A(t)ndxdτ+t0A(t)ndxdτ=0.

    Then, we get n0.

    Next, multiplying the first equation of (2.4) by n, and integrating it over Ω, we get

    12ddtΩn2dx+Ω(n2+|n|2)dx+μΩˆn+n2dx=Ωncndx+(1+γ)Ωnˆn+dxnL4cL4nL2+(1+γ)ˆnL2nL2C(n12L2n12L2+nL2)cH2nL2+(1+γ)ˆnL2nL2C(n2L2c4H2+n2L2c2H2+ˆnL2)+12n2H1.

    So, we derive that

    n2L2+T0n2H1dtC(1+T0ˆn2L2dt).

    Multiplying the first equation of (2.4) by Δn, and integrating it over Ω, we get

    12ddtΩ|n|2dx+Ω|Δn|2dx+Ω|n|2dx=ΩunΔndx+Ω((nc)Δn(1+γ)ˆn+Δn+μˆn+nΔn)dxuL4nL4ΔnL2+nL4ΔcL4ΔnL2+nL4cL4ΔnL2+(1+γ)ˆnL2ΔnL2+μnL4ˆnL4ΔnL2CuH1(n12L2Δn12L2+nL2)ΔnL2+nL4(Δc12L2Δc12L2+ΔcL2)ΔnL2+μnL4ˆnL4ΔnL2+(n12L2Δn12L2+nL2)cH1ΔnL2+(1+γ)ˆnL2ΔnL212Δn2L2+C(n2L2+n4L4+Δc4L2+Δc2L2+ˆn2L2+ˆn4L4)12Δn2L2+C(1+n2L2+n4L2+n2L2n2L2+Δc2L2+ˆn2L2+ˆn4L4).

    Straightforward calculations yield

    n2L2+T0Ω(|Δn|2+|n|2+ˆn+|n|2)dxdtC.

    Multiplying the first equation of (2.4) by nt, and combining with above inequality, we have

    T0Ω|nt|2dxdtC.

    The proof is complete.

    Introduce the spaces

    Xu=L4(0,T;L4(Ω)),Xn=L4(0,T;L4(Ω))L2(0,T;H1(Ω)),Yu=L(0,T;H1(Ω))L2(0,T;H2(Ω)),Yn=L(0,T;H1(Ω))L2(0,T;H2(Ω)).

    Define a map

    F:Xu×XnXu×Xn,F(ˆu,ˆn)=(u,n),

    where the (u,n) is the solution of the decoupled linear problem

    {ntΔn+un+n=(nc)+(1+γ)ˆn+μˆn+n,in (0,T)×ΩQ,ctΔc+uc+c=ˆn++f,in (0,T)×ΩQ,utΔu+ˆuu=π+ˆnφ,in (0,T)×ΩQ,u=0,in (0,T)×ΩQ,nν=cν=0,u=0,on (0,T)×Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω.

    Next, we use fixed point method to prove the local existence of solutions of the problem (1.1).

    Lemma 2.6. The map F:Xu×XnXu×Xn is well defined and compact.

    Proof. Let (ˆn,ˆu)Xu×Xn, by Lemmas 2.3, 2.4, 2.5 we deduce that (n,u)=F(ˆn,ˆu) is bounded in Yu×Yn. Note that the embeddings H2(Ω)H1(Ω) is compact and interpolating between L(0,T;H1(Ω)) and L2(0,T;H2(Ω)). It is easy to get that u is bounded in L4(0,T;L4(Ω)) and n is bounded in L4(0,T;L4(Ω))L2(0,T;H1(Ω)). Therefore, the operator F:Xu×XnXu×Xn is a compact operator.

    From Lemma 2.6, (n,u)Yn×Yu satisfies pointwisely a.e. in Q the following problem

    {ntΔn+un+n=(nc)+α(1+γ)nμn2,in Q,ctΔc+uc+c=n+αf,in Q,utΔu+uu=π+αnφ,in Q,u=0,in Q,nν=cν=0,u=0,on (0,T)×Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. (3.1)

    In order to prove the existence of solution, we first give some a priori estimates.

    Lemma 3.1. Let (n,c,u) be a local solution to (3.1). Then, it holds that

    nL1+t0(nL1+nL2)dτC, (3.2)
    u2L2+t0u2H1dτC, (3.3)
    c2L2+t0c2H1dτC. (3.4)

    Proof. With Lemma 2.5 in hand, we get n0. Integrating the first equation of (3.1) over Ω, we see that

    ddtΩndx+Ωndx+μΩn2dx=α(1+γ)Ωndxμ2Ωn2dx+C.

    Solving this differential inequality, we obtain that

    nL1+t0(nL1+nL2)dτC.

    Multiplying the third equation of (3.1) by u, and integrating it over Ω, we get

    12ddtΩu2dx+Ω|u|2dx+Ωu2dx=αΩnφudx+Ωu2dxnL2uL2+u2L2C(n2L2+u2L2).

    Therefore, we see that

    u2L2+t0uH1dτC.

    By the Gagliardo-Nirenberg interpolation inequality, we deduce that

    t0u4L4dτCt0(u2L2u2L2d+u2L2)τu2L2t0u2L2dτ+t0u2L2dτC.

    Multiplying the third equation of (3.1) by Δu, and integrating it over Ω, we get

    ddtu2L2+u2H1C(u4L4+u2L4+1)u2L2+Cn2L2+C.

    Thus, we know

    u2L2+t0u2H1dτC.

    Multiplying the second equation of (3.1) by c, and integrating it over Ω, we have

    12ddtΩc2dx+Ω|c|2dx+Ωc2dxnL2cL2+αfL2cL2.

    Then, we have

    cL2+t0cH1dτC.

    Multiplying the second equation of (3.1) by Δc, and integrating it over Ω, we get

    ddtc2L2+c2H1Cu4H1c2L2+C(n2L2+f2L2).

    Further, we have

    c2L2+t0c2H1dτC.

    The proof is complete.

    Lemma 3.2. Let (n,c,u) be a local solution to (3.1). Then, it holds that

    (n+1)ln(n+1)L1+c2L2+c2H1C. (3.5)

    Proof. We rewrite the first equation of (3.1) as

    ddt(n+1)+u(n+1)Δ(n+1)=((n+1)c)+Δc+α(1+γ)nμn2.

    Multiplying the above equation by ln(n+1) and integrating the equation, we have

    ddtΩ(n+1)ln(n+1)dx+4Ω|n+1|2dxΩ(n+1)cdx+ΩΔcln(n+1)dx+α(1+γ)Ωnln(n+1)dx=I1+I2+I3.

    For I1, integrating by parts and using Young's inequality with small δ, we get

    I1=ΩnΔcdxnL2ΔcL2δΔc2L2+Cn2L2.

    For the term I2, we have

    I2=ΩΔcln(n+1)dxδΔc2L2+Cln(n+1)2L2δΔc2L2+CΩ(n+1)ln(n+1)dx.

    For the rest term I3, straightforward calculations yield

    I3=α(1+γ)Ωnln(n+1)dx(1+γ)Ω(n+1)ln(n+1)dx.

    Combining I1, I2 with I3, we conduct that

    ddtΩ(n+1)ln(n+1)dx+4Ω|n+1|2dxδΔc2L2+CΩ(n+1)ln(n+1)dx+Cn2L2. (3.6)

    Multiplying the second equation of (3.1) by Δc, and integrating it over Ω, we get

    12ddtΩ|c|2dx+Ω|Δc|2dx+Ω|c|2dx=ΩucΔcdxΩΔcndxαΩΔcfdx.

    Straightforward calculations yield

    ddtc2L2+c2H1Cc2L2+C(n2L2+f2L2). (3.7)

    Combing (3.6) and (3.7), it follows that

    ddtΩ(n+1)ln(n+1)dx+ddtc2L2+(1δ)c2H1+4Ω|n+1|2dxCΩ(n+1)ln(n+1)dx+C(f2L2+n2L2).

    Taking δ small enough, and solving this differential inequality, we obtain that

    (n+1)ln(n+1)L1+c2L2+c2H1C.

    The proof is complete.

    Lemma 3.3. Assume fL2(0,T;H1(Ω)), let (n,c,u) be a local solution to (3.1). Then, it holds that

    n2L2+Δc2L2+t0nH1dτ+t0ΔcH1dτC. (3.8)

    Proof. Taking the L2-inner product with n for the first equation of (3.1) implies

    12ddtΩn2dx+Ω(n2+|n|2)dx+μΩn3dx=Ωncndx+α(1+γ)Ωn2dx=12Ωn2Δcdx+α(1+γ)Ωn2dx.

    Here, we note that

    |Ωn2Δcdx|n2L3ΔcL3Cn2L3(Δc23L2c13L2+cL2)Cn2L3(Δc23L2+1).

    From Lemma 2.2 and (3.2), it follows that

    χ2Ωn2ΔcdxC(δn2H1(n+1)log(n+1)L1+p(δ1)nL1)23(Δc23L2+1)C(δn2H1+p(δ1))23(Δc23L2+1)C(δn43H1Δc23L2+δn43H1+p23(δ1)Δc23L2+p23(δ1))δΔc2L2+Cδ12n2H1+C1/2δp(δ1).

    As an immediate consequence

    ddtn2L2+n2H1δΔc2L2+Cδ12n2H1+Cn2L2. (3.9)

    Applying to the first equation of (3.1), multiplying it by Δc, and integrating over Ω give

    12ddtΩ|Δc|2dx+Ω|Δc|2dx+Ω|Δc|2dx=Ω(uc)ΔcdxΩnΔcdxΩfΔcdx=I4+I5.

    For I4, by using the Gagliardo-Nirenberg interpolation inequality, we get

    I4=Ω(uc)ΔcdxΔcL2(uL4ΔcL4+uL4cL4)ΔcL2(uL4Δc12L2Δc12L2+uL4ΔcL2+u12L2Δu12L2c12L2Δc12L2+uL2c12L2Δc12L2+u12L2Δu12L2cL2+uL2cL2)14Δc2L2+C(1+Δc2L2+Δu2L2).

    For the term I5, we have

    I5=ΩnΔcdxΩfΔcdxC(n2L2+f2L2)+14Δc2L2.

    Along with I4 and I5, we conclude

    ddtΔc2L2+Δc2L2+Δc2L2C(1+Δc2L2+Δu2L2+n2L2+f2L2). (3.10)

    Combining (3.9) and (3.10), it follows that

    ddt(n2L2+Δc2L2)+Δc2L2+(1Cδ12)n2H1+(1δ)Δc2L2C(1+Δc2L2+Δu2L2+n2L2+f2L2).

    By choosing δ small enough and using (3.3) and (3.5), we have

    n2L2+Δc2L2+t0nH1dτ+t0ΔcH1dτC.

    The proof is complete.

    Lemma 3.4. Assume fL2(0,T;H1(Ω)), let (n,c,u) be a local solution to (3.1). Then, it holds that

    n2L2+t0n2H2dτC. (3.11)

    Proof. Taking the L2-inner product with Δn for the first equation of (3.1) implies

    12ddtΩ|n|2dx+Ω|Δn|2dx+Ω|n|2dx=ΩunΔndx+Ω(nc)Δndx+(1+γ)Ω|n|2dx+μΩn2Δndx=I6+I7+I8.

    For the term I6, with the estimate (3.3), we have

    I6=ΩunΔndx=12Ωu(n)2dxuL2n2L4uL2(n12L2Δn12L2+nL2)2δΔn2L2+Cn2L2.

    For the term I7, taking (3.8) into considering, we conduct that

    I7=Ω(nc)Δndx=Ω(nc+nΔc)ΔndxΔnL2(nL3cL6+nCΔcL2)CΔnL2(nH13cH1+nH43ΔcL2)CnH2nH43cH2Cn53H2n13L2cH2δn2H2+C(δ)n2L2c6H2δn2H2+C.

    For the term I8, thanks to the nonnegativity of n, we see that

    I8=(1+γ)Ω|n|2dx+μΩn2Δndx=(1+γ)Ω|n|2dx2μΩ|n|2ndx(1+γ)n2L2.

    Combine the estimates about I6, I7 and I8, it follows that

    ddtn2L2+(14δ)n2H2Cn2L2+C.

    By taking δ small enough, we get

    n2L2+t0n2H2dτC.

    Therefore, this proof is complete.

    Lemma 3.5. The operator F:Xu×XnXu×Xn, is continuous.

    Proof. Let {(ˆnm,ˆum)}mN be a sequence of Xu×Xn, Then, with Lemmas 2.3, 2.4 and 2.5 in hand, we conduct that {(nm,um)=F(ˆnm,ˆum)}mN is bounded in Yu×Yn. Taking the compactness of Yu×Yn in Xu×Xn into consider, we see that F is a compact operator, which means there exists a subsequence of {F(ˆnm,ˆum)}mN, for convenience, still denoted as {F(ˆnm,ˆum)}mN, and exists an element (ˆn,ˆu) in Yu×Yn such that

    F(ˆnm,ˆum)(ˆn,ˆu) weakly in Yu×Yn and strongly in Xu×Xn.

    Let m and take the limit, it is clear that (n,u)=F(ˆnm,ˆum) and (ˆnm,ˆum)=(ˆn,ˆu), this means that F(ˆnm,ˆum)=(ˆnm,ˆum). Since uniqueness of limit, the map F is continuous.

    Theorem 3.1. Let u0H1(Ω), n0H1(Ω), c0H2(Ω) with n00 in Ω, and fL2(0,T;H1(Ω)), then (1.1) exists unique strong solution (n,c,u). Moreover, there exists a positive C constant such that

    nL(0,T;H1(Ω))+nL2(0,T;H2(Ω))+ntL2(0,T;L2(Ω))+cL(0,T;H2(Ω))+cL2(0,T;H3(Ω))+ctL2(0,T;L2(Ω))+uL(0,T;H1(Ω))+uL2(0,T;H2(Ω))+utL2(0,T;L2(Ω))C. (3.12)

    Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution and (3.11). Therefore, we will prove the uniqueness of the solution in the following part. For convenience, we set n=n1n2, c=c1c2 and u=u1u2, where (ni,ci,ui) is the strong solution of the system, where i=1,2. Thus, we obtain the following system

    ntΔn+u1n+un2=(n1c)(nc2)+γnμn(n1+n2),in (0,T)×ΩQ, (3.13)
    ctΔc+u1c+uc2+c=n,in (0,T)×ΩQ, (3.14)
    utΔu+u1u+uu2=nφ,in (0,T)×ΩQ, (3.15)
    u=0,in (0,T)×ΩQ, (3.16)
    nν=cν=0,u=0,on (0,T)×Ω, (3.17)
    n0(x)=c0(x)=u0(x)=0,in Ω. (3.18)

    Taking the L2-inner product with n for the (3.13) implies

    12ddtΩn2dx+Ω|n|2dx+Ωn2dxΩun2ndx+Ωn1cndx+Ωnc2ndx+(1+γ)Ωn2dx=I9+I10+I11+I12.

    For the term I9, due to the estimates (3.3) and (3.8), we have

    I9=Ωun2ndxn2L2uL4nL4Cn2L2uH1(n12L2n12L2+nL2)δ3n2L2+Cn2L2.

    For the term I10, with the estimate (3.8) and (3.11), we get

    I10=Ωn1cndxnL2n1L4cL4CnL2n1H1cH1δ3n2L2+C.

    For the term I11,

    I11=Ωnc2ndxnL2c2L4nL4nL2c2H1nH1δ3n2L2+C.

    With the use of estimates Ii(i=9,10,11,12), we have

    ddtn2L2+nH1δn2L2+Cn2L2+C. (3.19)

    Taking the L2-inner product with c for the (3.14) implies

    12ddtΩc2dx+Ω|c|2dx+Ωc2dx=Ωu1ccdxΩuc2cdx+Ωncdxc2L4u1L2+uL2c2L4cL4+nL2cL2C(c12L2c12L2+cL2)2u1L2+(c12L2c12L2+cL2)uL2c2H1+nL2cL2δc2L2+Cc2L2.

    Then, we get

    ddtc2L2+cH1δc2L2+Cc2L2. (3.20)

    Taking the L2-inner product with c for the (3.15) implies

    12Ωu2dx+Ω|u|2dx=Ωnφudx.

    Straightforward calculations yield

    ddtu2L2+uH1C(u2L2+n2L2). (3.21)

    Then, a combination of (3.19), (3.20) and (3.21) yields

    ddt(n2L2+c2L2+u2L2)+(nH1+cH1+uH1)δ(n2L2+c2L2+u2L2)+(n2L2+c2L2+u2L2)+C.

    By choosing δ small enough, we get

    ddt(n2L2+c2L2+u2L2)C(n2L2+c2L2+u2L2)+C.

    Applying Gronwall's lemma to the resulting differential inequality, we finally obtain the uniqueness of the solution.

    In this section, we will prove the existence of the optimal solution of control problem. The method we use for treating this problem was inspired by some ideas of Guillén-González et al [9]. Assume UL2(0,T;H1(Ωc)) is a nonempty, closed and convex set, where control domain ΩcΩ, and ΩdΩ is the observability domain. We adjust the external source f, so that the bacterial density n, oxygen concentration c and fluid velocity u are as close as possible to a desired state nd, cd and ud, and at the final moment T is as close as possible to a desired state nΩ, cΩ and uΩ. We consider the optimal control problem as follows

    Minimize the cost functional

    J(n,c,u,f)=β12nnd2L2(Qd)+β22ccd2L2(Qd)+β32uud2L2(Qd)+β42n(T)nΩ2L2(Ωd)+β52c(T)cΩ2L2(Ωd)+β62u(T)uΩ2L2(Ωd)+β72f(x,t)2L2(Qc), (4.1)

    subject to the system (1.1). Moreover, the nonnegative constants βi,i=1,2,,7 are given but not all zero, the functions nd, cd, ud represents the desired states satisfying

    ndL2(Qd),cdL2(Qd),udL2(Qd),nΩL2(Ωc),cΩL2(Ωc),uΩL2(Ωc),fU.

    The set of admissible solutions of optimal control problem (4.1) is defined by

    Sad={s=(n,c,u,f)H:s is a strong solution of (1.1)}.

    The function space H is given by

    H=Yn×Yc×Yu×U,

    where Yc=L(0,T;H2(Ω))L2(0,T;H3(Ω)).

    Now, we prove the existence of a global optimal control for problem (1.1).

    Theorem 4.1. Suppose fU is satisfied, and n00, then the optimal control problem (4.1) admits a solution (ˉn,ˉc,ˉu,ˉf)Sad.

    Proof. Along with Theorem 3.1, we conduct that Sad, then there exists the minimizing sequence {(nm,cm,um,fm)}mNSad such that

    limm+J(nm,cm,um,fm)=inf(n,c,u,f)SadJ(n,c,u,f). (4.2)

    According to the definition of Sad, for each mN there exists (nm,cm,um,fm) satisfying

    {nmt+umnm=Δnm(nmcm)+γnmμn2m,in Q,cmt+umcm=Δcmcm+nm+fm,in Q,umt+umum=Δumπ+nmφ,in Q,um=0,in Q,nmν|Ω=cmν|Ω=0,um|Ω=0,nm(0)=n0,cm(0)=c0,um(0)=u0,in Ω. (4.3)

    Observing that U is a closed convex subset of L2(0,T;H1(Ωc)). According to the definition of Sad, we deduce that there exists (ˉn,ˉc,ˉu,ˉf) bounded in H such that, for subsequence of (nm,cm,um,fm)mN, for convenience, still denoted by (nm,cm,um,fm), as m+

    nmˉn, weakly in L2(0,T;H2(Ω)) and weakly*  in L(0,T;H1(Ω)),cmˉc, weakly in L2(0,T;H3(Ω)) and weakly*  in L(0,T;H2(Ω)),umˉu, weakly in L2(0,T;H2(Ω)) and weakly*  in L(0,T;H1(Ω)),fmˉf, weakly in L2(0,T;H1(Ωc)), and ˜fU.

    According to the Aubin-Lions lemma [16] and the compact embedding theorems, we obtain

    nmˉn, strongly in C([0,T];L2(Ω))L2(0,T;H1(Ω)),cmˉc, strongly in C([0,T];H1(Ω))L2(0,T;H2(Ω)),umˉu, strongly in C([0,T];L2(Ω))L2(0,T;H1(Ω)).

    Since (nmcm)=nmcm+nmΔcm is bounded in L2(0,T;L2(Ω)), then

    (nmcm)χ, weakly in L2(0,T;L2(Ω)).

    Recalling that

    nmcmˉnˉc, weakly in L(0,T;L2(Ω)).

    Therefore, we get that χ=(ˉnˉc). Owing to (ˉn,ˉc,ˉu,ˉf)H, we see that (ˉn,ˉc,ˉu,ˉf) is solution of the system (1.1), along with (4.2) implies that

    limm+J(nm,cm,um,fm)=inf(u,c,u,f)SadJ(u,c,u,f)J(ˉn,ˉc,ˉu,ˉf).

    On the other hand, we deduce from the weak lower semicontinuity of the cost functional

    J(ˉn,ˉc,ˉu,ˉf)lim infm+J(nm,cm,um,fm).

    Therefore, this implies that (ˉn,ˉc,ˉu,ˉf) is an optimal pair for problem (1.1).

    In order to derive the first-order necessary optimality conditions for a local optimal solution of problem (4.1). To this end, we will use a result on existence of Lagrange multipliers in Banach spaces ([20]). First, we discuss the following problem

    minJ(s) subject to sS={sH:G(s)N}, (5.1)

    where J:XR is a functional, G:XY is an operator, X and Y are Banach spaces, and nonempty closed convex set H is subset of X and nonempty closed convex cone N with vertex at the origin in Y.

    A+ denotes its polar cone

    A+={ρX:ρ,aX0,aA}.

    We consider the following Banach spaces

    X=Vn×Vc×Vu×L2(0,T;H1(Ωc)),Y=L2(Q)×L2(0,T;H1(Ω))×L2(Q)×H1(Ω)×H2(Ω)×H1(Ω),

    where

    Vn={nYn:nν on (0,T)×Ω},Vc={nYc:cν on (0,T)×Ω},Vu={nYu:u=0 on (0,T)×Ω and u=0 in (0,T)×Ω}

    and the operator G=(G1,G2,G3,G4,G5,G6):XY, where

    G1:XL2(Q),G2:XL2(0,T;H1(Ω)),G3:XL2(Q),G4:XH1(Ω),G5:XH2(Ω),G6:XH1(Ω),

    which are defined at each point s=(n,c,u,f)X by

    {G1=nt+unΔn+(nc)γn+μn2,G2=ct+ucΔc+cnf,G3=ut+uuΔu+πnφ,G4=n(0)n0,G5=c(0)c0,G6=u(0)u0. (5.2)

    The function spaces are given as follows

    H=Vn×Vc×Vu×U.

    We see that H is a closed convex subset of X and N={0}, and rewrite the optimal control problem

    minJ(s) subject to sSad={sH:G(s)=0}. (5.3)

    Taking the differentiability of J and G into consider, it follows that

    Lemma 5.1. The functional J:XR is Fréchet differentiable and the Fréchet derivative of J in ˉs=(ˉn,ˉc,ˉu,ˉf)X in the direction r=(˜n,˜c,˜u,˜f) is given by

    J(ˉs)[r]=β1T0Ωd(ˉnnd)˜ndxdt+β2T0Ωd(ˉccd)˜cdxdt+β3T0Ωd(ˉuud)˜u(T)dxdt+β4Ωd(ˉn(T)nΩ)˜n(T)dx+β5Ωd(ˉc(T)cΩ)˜cdx+β6Ωd(ˉu(T)uΩ)˜u(T)dx+β7T0Ωdˉf˜fdxdt. (5.4)

    Lemma 5.2. The operator G:XY is continuous-Fréchet differentiable and the Fréchet derivative of J in ˉs=(ˉn,ˉc,ˉu,ˉf)X in the direction r=(˜n,˜c,˜u,˜f), is the linear operator

    G(ˉs)[r]=(G1(ˉs)[r],G2(ˉs)[r],G3(ˉs)[r],G4(ˉs)[r],G5(ˉs)[r],G6(ˉs)[r])

    defined by

    {G1(ˉs)[r]=˜ntΔ˜n+ˉu˜n+˜uˉn+(ˉn˜c)+(˜nˉc)γ˜n+2μ˜nˉn,inQ,G2(ˉs)[r]=˜ctΔ˜c+ˉu˜c+˜uˉc+˜c˜n˜f,inQ,G3(ˉs)[r]=˜utΔ˜u+ˉu˜u+˜uˉu˜nφ,inQ,˜u=0,inQ,˜nν=˜cν=0,˜u=0,on(0,T)×Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,inΩ.

    Lemma 5.3. Let ˉs=(ˉn,ˉc,ˉu,ˉf)Sad, then ˉs is a regular point.

    Proof. For any fixed (ˉn,ˉc,ˉu,ˉf)Sad, we set (gn,gc,gu,˜n0,˜c0,˜u0)Y. Since 0C(ˉf), it suffices to show the existence of (˜n,˜c,˜u)Yn×Yc×Yu such that

    {˜ntΔ˜n+ˉu˜n+˜uˉn+(ˉn˜c)+(˜nˉc)γ˜n+2μ˜nˉn=gn,in Q,˜ctΔ˜c+ˉu˜c+˜uˉc+˜c˜n=gc,in Q,˜utΔ˜u+ˉu˜u+˜uˉu˜nφ=gu,in Q,˜u=0,in Q,˜nν=˜cν=0,˜u=0,on (0,T)×Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,in Ω. (5.5)

    Next, we use Leray-Schauder's fixed point method to prove the existence of solutions of the problem (5.5), the operator T:(˙n,˙u)Xn×Xu(˜n,˜u)Yn×Yu with (˜n,˜c,˜u) solving the decoupled problem:

    {˜ntΔ˜n+ˉu˜n+˜uˉn+(ˉn˜c)+(˜nˉc)γ˜n+2μ˙nˉn=gn,in Q,˜ctΔ˜c+ˉu˜c+˜uˉc+˜c˙n=gc,in Q,˜utΔ˜u+ˉu˜u+˙uˉu˙nφ=gu,in Q. (5.6)

    The system (5.6) is complemented by the corresponding Neumann boundary and initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct that operator T:Xn×XuXn×Xu is well-defined and compact.

    Similar to the proof of Theorem 3.1, (˜n,˜u) solves the coupled problem (ˉn,ˉc,ˉu,ˉf)Sad, and we set (gn,gc,gu,˜n0,˜c0,˜u0)Y. Since 0C(ˉf), it suffices to show the existence of (˜n,˜c,˜u)Yn×Yc×Yu such that

    {˜ntΔ˜n+˜n=ˉu˜n˜uˉn(ˉn˜c)(˜nˉc)+α(γ+1)˜n2μ˜nˉn+αgn,in Q,˜ctΔ˜c+˜c=ˉu˜c˜uˉc+α˜n+αgc,in Q,˜utΔ˜u=ˉu˜u˜uˉu+α˜nφ+αgu,in Q, (5.7)

    complemented by the corresponding Neumann boundary and initial conditions.

    Taking the L2-inner product with ˜u for the third equation of (5.7) implies

    12Ω˜u2dx+Ω|˜u|2dx=αΩ˜nφ˜udx+αΩ˜ugudx.

    By the Poincaré inequality and Young's inequality, we have

    ddt˜u2L2+˜u2H1C(˜n2L2+gu2L2)+C˜u2L2. (5.8)

    Taking the L2-inner product with ˜c for the second equation of (5.7) implies

    12Ω˜c2dx+Ω|˜c|2dx+Ω˜c2dx=Ω˜uˉc˜cdx+αΩ˜n˜cdx+αΩgc˜cdx.

    With the Poincaré inequality and Young's inequality in hand, we see that

    ddt˜c2L2+˜c2H1C(˜n2L2+gc2L2)+C˜c2L2. (5.9)

    Taking the L2-inner product with Δ˜c for the second equation of (5.7) implies

    12Ω|˜c|2dx+Ω|Δ˜c|2dx+Ω|˜c|2dx=Ω˜uˉcΔ˜cdx+Ωˉu˜cΔ˜cdxαΩ˜nΔ˜cdxαΩgcΔ˜cdx=J1+J2+J3.

    For the term J1

    J1=Ω˜uˉcΔ˜cdxΔ˜cL2ˉcL4˜uL416Δ˜c2L2+Cˉc2H1˜u2H1.

    For the term J2, we see that

    J2=Ωˉu˜cΔ˜cdx=12Ωˉu|˜c|2dxˉuL2˜c2L4ˉuL2(˜c12L2Δ˜c12L2+˜cL2)16Δ˜c2L2+C˜c2L2.

    For the term J3, we get

    J3=αΩ˜nΔ˜cdxαΩgcΔ˜cdx16Δ˜c2L2+C(˜n2L2+gc2L2).

    Therefore, combining J1, J2 and J3, we have

    ddt˜c2L2+˜c2H1C˜c2L2+C(˜n2L2+gc2L2). (5.10)

    Taking the L2-inner product with ˜n for the first equation of (5.7) implies

    ddtΩ˜n2dx+Ω|˜n|2dx+Ω˜n2dx=Ω˜uˉn˜ndx+Ω˜nˉn˜cdx+Ω˜n˜nˉcdx+α(γ+1)Ω˜n2dx+2μΩˉn˜n2dx+αΩ˜ngndx=J4+J5+J6+J7.

    For the term J4, by Gagliardo-Nirenberg interpolation inequality, we have

    J4=Ω˜uˉn˜ndx˜uL4ˉnL2˜nL4C(˜u12L2˜u12L2+˜uL2)ˉnL2˜nH1δ˜n2H1+C˜uL2˜uL2+C˜u2L2δ˜n2H1+δ˜u2L2+C˜u2L2.

    For the term J5,

    J5=Ω˜nˉn˜cdx˜nL2ˉnL4˜cL4˜nL2ˉnH1(˜c12L2Δ˜c12L2+˜cL2)δ˜n2L2+˜cL2Δ˜cL2+C˜c2L2δ˜n2L2+δΔ˜cL2+C˜c2L2.

    For the term J6,

    J6=Ω˜n˜nˉcdx˜n2L4ΔˉcL2(˜n12L2˜n12L2+˜nL2)ΔˉcL2δ˜n2L2+C˜n2L2+C.

    For the term J7,

    J7=α(γ+1)Ω˜n2dx+2μΩˉn˜n2dx+αΩ˜ngndx(γ+1)˜n2L2+gnL2˜nL2+ˉnL2˜n2L4(γ+1)˜n2L2+gnL2˜nL2+ˉnL2(˜n12L2˜n12L2+˜nL2)δ˜nL2+C˜n2L2+Cgn2L2.

    Therefore, by choosing δ small enough, from J4, J5, J6 and J7, it follows that

    ddt˜n2L2+˜n2H1C(˜n2L2+˜c2L2+˜u2L2)+δΔ˜cL2+δ˜u2L2+Cgn2L2. (5.11)

    By choosing \delta small enough and combining (5.8)-(5.11), we get

    \begin{align*} &\frac{d}{d t}(\|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2})+\|\tilde{n}\|^2_{H^1}+\|\tilde{c}\|^2_{H^2}+\|\tilde{u}\|^2_{H^1} \\ \leq& C(\|g_n\|^2_{L^2}+\|g_c\|^2_{L^2}+\|g_u\|^2_{L^2})+C(\|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2}). \end{align*}

    Applying Gronwall's lemma to the resulting differential inequality, we obatin

    \begin{align} \|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2} +\int_0^t\|\tilde{n}\|^2_{H^1}d\tau+\int_0^t\|\tilde{c}\|^2_{H^2}d\tau+\int_0^t\|\tilde{u}\|^2_{H^1}d\tau\leq C. \end{align} (5.12)

    Taking the L^2 -inner product with -\Delta\tilde{u} for the third equation of (5.7) implies

    \begin{align*} &\frac{1}{2} \frac{d}{d t}\int_{\Omega} |\nabla\tilde{u}|^2 d x+ \int_{\Omega} |\Delta\tilde{u}|^2 d x \\ = &\int_{\Omega}\bar{u}\cdot\nabla \tilde{u} \Delta\tilde{u} d x+\int_{\Omega}\tilde{u}\cdot\nabla\bar{u}\Delta \tilde{u} d x-\alpha \int_{\Omega} \tilde{n} \nabla \varphi \Delta \tilde{u} d x-\alpha \int_{\Omega}g_u \Delta \tilde{u} d x \\ = &J_8+J_9+J_{10}. \end{align*}

    With the use of the Gagliardo-Nirenberg interpolation inequality, we derive

    \begin{align*} J_8 = &\int_{\Omega}\bar{u}\cdot\nabla \tilde{u} \Delta\tilde{u} d x \leq \|\bar{u}\|_{L^4} \|\nabla\tilde{u}\|_{L^4}\|\Delta\tilde{u}\|_{L^2} \\ \leq&\|\bar{u}\|_{H^1}(\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla\tilde{u}\|_{L^2})\|\Delta\tilde{u}\|_{L^2} \\ \leq& \delta\|\Delta \tilde{u}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2} \end{align*}

    and

    \begin{align*} J_9 = &\int_{\Omega}\tilde{u}\cdot\nabla\bar{u}\Delta \tilde{u} d x\leq \|\Delta \tilde{u}\|_{L^2}\|\nabla\bar{u}\|_{L^4}\|\tilde{u}\|_{L^4} \\ \leq& C\|\Delta \tilde{u}\|_{L^2}\|\nabla\bar{u}\|_{H^1}(\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\tilde{u}\|_{L^2}) \\ \leq& \delta\|\Delta \tilde{u}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2}. \end{align*}

    For the term J_{10} , we deduce

    \begin{align*} J_{10} = &\alpha \int_{\Omega} \tilde{n} \nabla \varphi \Delta \tilde{u} d x-\alpha \int_{\Omega}g_u \Delta \tilde{u} d x \\ \leq&\delta\|\Delta \tilde{u}\|^2_{L^2}+C(\|\tilde{n}\|^2_{L^2}+\|g_u\|^2_{L^2}) . \end{align*}

    By choosing \delta small enough, with the estimates J_8 , J_9 and J_{10} , we have

    \begin{align} \frac{d}{d t}\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta \tilde{u}\|^2_{L^2}\leq C\|\nabla\tilde{u}\|^2_{L^2}+C\|g_u\|^2_{L^2}. \end{align} (5.13)

    Applying \nabla to the first equation of (5.7), multiplying it by \nabla \Delta \tilde{c} , and integrating over \Omega give

    \begin{align*} &\frac{1}{2}\frac{d}{ d t}\int_{\Omega} |\Delta c|^2 d x + \int_{\Omega}|\nabla\Delta c|^2 d x+\int_{\Omega} |\Delta c|^2 d x \\ = &-\int_{\Omega}\nabla (\bar{u}\nabla\tilde{c})\nabla\Delta\tilde{c}d x-\int_{\Omega}\nabla(\tilde{u}\nabla\bar{c})\nabla\Delta\tilde{c} d x+\alpha\int_{\Omega}\nabla \tilde{n}\nabla\Delta\tilde{c} d x \\ &+\alpha \int_{\Omega}\nabla g_c\nabla\Delta\tilde{c} d x \\ = &J_{11}+J_{12}+J_{13}. \end{align*}

    For the first term J_{11} , we have

    \begin{align*} J_{11} = &-\int_{\Omega}\nabla (\bar{u}\nabla\tilde{c})\nabla\Delta\tilde{c}d x = - \int_{\Omega}\nabla \bar{u}\nabla\tilde{c} \nabla\Delta\tilde{c}d x-\int_{\Omega}\bar{u}\Delta\tilde{c} \nabla\Delta\tilde{c}d x \\ \leq& \|\nabla\Delta\tilde{c}\|_{L^2}\|\nabla \bar{u}\|_{L^4}\|\nabla\tilde{c}\|_{L^4}+\|\nabla\Delta\tilde{c}\|_{L^2}\|\bar{u}\|_{L^4}\|\Delta\tilde{c}\|_{L^4} \\ \leq &\|\nabla\Delta\tilde{c}\|_{L^2} (\|\nabla \bar{u}\|^{\frac{1}{2}}_{L^2}\|\Delta \bar{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla \bar{u}\|_{L^2})(\|\nabla \bar{c}\|^{\frac{1}{2}}_{L^2}\|\Delta \bar{c}\|^{\frac{1}{2}}_{L^2}+\|\nabla \bar{c}\|_{L^2}) \\ &+\|\nabla\Delta\tilde{c}\|_{L^2}\|\bar{u}\|_{H^1}(\|\nabla\Delta\tilde{c}\|^\frac{1}{2}_{L^2}\|\Delta\tilde{c}\|^\frac{1}{2}_{L^2}+\|\Delta\tilde{c}\|_{L^2}) \\ \leq&\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+C\|\Delta \bar{u}\|^2_{L^2}+C\|\Delta \tilde{c}\|^2_{L^2}. \end{align*}

    Similarly, for the term J_{12} ,

    \begin{align*} J_{12} = &-\int_{\Omega}\nabla(\tilde{u}\nabla\bar{c})\nabla\Delta\tilde{c} d x = -\int_{\Omega}\nabla\tilde{u}\nabla\bar{c} \nabla\Delta\tilde{c} d x-\int_{\Omega}\tilde{u}\Delta\bar{c}\nabla\Delta\tilde{c} d x \\ \leq&\|\nabla\Delta\tilde{c}\|_{L^2}\|\nabla \tilde{u}\|_{L^4}\|\nabla \bar{c}\|_{L^4}+\|\tilde{u}\|_{L^4}\|\Delta\bar{c}\|_{L^4}\|\nabla\Delta\tilde{c}\|_{L^2} \\ \leq &C\|\nabla\Delta\tilde{c}\|_{L^2}(\|\nabla \tilde{u}\|^{\frac{1}{2}}_{L^2}\|\Delta \tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla \tilde{u}\|_{L^2})\|\nabla \bar{c}\|_{H^1} \\ &+(\|\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\tilde{u}\|_{L^2})(\|\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\bar{c}\|_{L^2})\|\nabla\Delta\tilde{c}\|_{L^2} \\ \leq&\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+\delta \|\Delta \tilde{u}\|^2_{L^2}+C \|\nabla\Delta\bar{c}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2}. \end{align*}

    For the rest term J_{13} , we see

    \begin{align*} J_{13} = &\alpha\int_{\Omega}\nabla \tilde{n}\nabla\Delta\tilde{c} d x +\alpha \int_{\Omega}\nabla g_c\nabla\Delta\tilde{c} d x \\ \leq &\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+C(\|\nabla \tilde{n}\|^2_{L^2}+\|\nabla g_c\|^2_{L^2}). \end{align*}

    By choosing \delta small enough, we get

    \begin{align} &\frac{d}{d t}\|\Delta\tilde{c}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{H^1} \\ \leq& C(\|\nabla \tilde{n}\|^2_{L^2}+\|\Delta \tilde{c}\|^2_{L^2}+\|\nabla\tilde{u}\|^2_{L^2})+ C \|\Delta \bar{u}\|^2_{L^2}+\delta \|\Delta \tilde{u}\|^2_{L^2} \\ &+C \|\nabla\Delta\bar{c}\|^2_{L^2}+C\|\nabla g_c\|^2_{L^2}. \end{align} (5.14)

    From (5.13) and (5.14), along with \delta small enough, it follows that

    \begin{align*} &\frac{d}{d t}(\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2})+\|\Delta \tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{H^1} \\ \leq& C(\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2})+(\|\nabla \tilde{n}\|^2_{L^2}+\|\Delta \bar{u}\|^2_{L^2}+ \|\nabla\Delta\bar{c}\|^2_{L^2}+\|\nabla g_c\|^2_{L^2}) +C\|g_u\|^2_{L^2}. \end{align*}

    Applying Gronwall's lemma to the resulting differential inequality, we know

    \begin{align*} \|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2}+\int_{0}^t \|\Delta \tilde{u}\|^2_{L^2} d\tau+\int_{0}^t \|\Delta\tilde{c}\|^2_{H^1} d\tau\leq C. \end{align*}

    Taking the L^2 -inner product with -\Delta\tilde{n} for the first equation of (5.7) implies

    \begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega} |\nabla \tilde{n}|^2 d x +\int_{\Omega} |\Delta \tilde{n}|^2 d x+\int_{\Omega} |\nabla \tilde{n}|^2 d x \\ = &-\int_{\Omega}\bar{u}\cdot \nabla\tilde{n} \Delta \tilde{n}d x-\int_{\Omega}\tilde{u}\cdot \nabla\bar{n}\Delta \tilde{n}d x-\int_{\Omega} \nabla(\tilde{n}\nabla \bar{c})\Delta\tilde{n} d x-\int_{\Omega} \nabla(\bar{n}\nabla \tilde{c})\Delta\tilde{n} d x \\ &-\alpha(1+\gamma)\int_{\Omega}\tilde{n}\Delta\tilde{n} d x+2\mu\int_{\Omega}\tilde{n}\bar{n} \Delta\tilde{n}d x-\alpha \int_{\Omega}g_n\Delta\tilde{n} d x \\ = &J_{14}+J_{15}+J_{16}+J_{17}+J_{18}. \end{align*}

    With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate J_{14} as follows

    \begin{align*} J_{14} = &-\int_{\Omega}\bar{u}\cdot \nabla\tilde{n} \Delta \tilde{n}d x\leq \|\bar{u}\|_{L^4}\|\nabla\tilde{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &C\|\bar{u}\|_{H^1}(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\tilde{n}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}. \end{align*}

    Similar to above estimates, we see

    \begin{align*} J_{15} = &-\int_{\Omega}\tilde{u}\cdot \nabla\bar{n}\Delta \tilde{n}d x\leq \|\tilde{u}\|_{L^4}\|\nabla \bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&C\|\tilde{u}\|_{H^1}\|\nabla \bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ \leq& \delta \|\Delta\tilde{n}\|_{L^2}+C\|\nabla \bar{n}\|^2_{H^1}. \end{align*}

    Similarly, we derive

    \begin{align*} J_{16} = &-\int_{\Omega} \nabla(\tilde{n}\nabla \bar{c})\Delta\tilde{n} d x = -\int_{\Omega}\nabla\tilde{n}\nabla \bar{c}\Delta\tilde{n} d x-\int_{\Omega}\tilde{n}\Delta \bar{c}\Delta\tilde{n} d x \\ \leq &\|\nabla\tilde{n}\|_{L^4}\|\nabla\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\tilde{n}\|_{L^4}\|\Delta\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2} +\|\nabla\tilde{n}\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})(\|\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\bar{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq&\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|\nabla\Delta\bar{c}\|^{2}_{L^2}+C \end{align*}

    and

    \begin{align*} J_{17} = &-\int_{\Omega} \nabla(\bar{n}\nabla \tilde{c})\Delta\tilde{n} d x = -\int_{\Omega} \nabla\bar{n}\nabla \tilde{c}\Delta\tilde{n} d x-\int_{\Omega} \nabla\bar{n}\Delta \tilde{c}\Delta\tilde{n} d x \\ \leq&\|\nabla\bar{n}\|_{L^4}\|\nabla\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\bar{n}\|_{L^4}\|\Delta\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &(\|\nabla\bar{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\bar{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\bar{n}\|_{L^2})\|\nabla \tilde{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|\bar{n}\|_{H^1}(\|\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\tilde{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+C. \end{align*}

    For the rest terms, we know

    \begin{align*} J_{18} = &-\alpha(1+\gamma)\int_{\Omega}\tilde{n}\Delta\tilde{n} d x+2\mu\int_{\Omega}\tilde{n}\bar{n} \Delta\tilde{n}d x-\alpha \int_{\Omega}g_n\Delta\tilde{n} d x \\ \leq&(1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+2\mu\|\tilde{n}\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq& (1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+C(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})\|\bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|g_n\|^2_{L^2}. \end{align*}

    Therefore, Taking \delta small enough and together with J_{14}-J_{18} , we see that

    \begin{align*} &\frac{d}{d t}\|\nabla\tilde{n}\|^{2}_{L^2}+ \|\nabla\tilde{n}\|^{2}_{H^1} \\ \leq& C(\|\nabla\tilde{n}\|^{2}_{L^2} +\|\nabla \bar{n}\|^2_{H^1}+ \|\nabla\Delta\bar{c}\|^{2}_{L^2}+\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+\|g_n\|^2_{L^2})+C. \end{align*}

    Applying Gronwall's lemma to the resulting differential inequality, we know

    \begin{align*} \|\nabla\tilde{n}\|^{2}_{L^2}+\int_0^t \|\nabla\tilde{n}\|^{2}_{H^1}d\tau \leq C. \end{align*}

    Therefore, from Leray-Schauder theorem, we derive the existence of solution for (5.5). Along with the regularity of (\tilde{n}, \tilde{c}, \tilde{u}) , the uniqueness of solution can easily get, so we omit the process.

    Theorem 5.1. Assume that \bar{s} = (\bar{n},\bar{c},\bar{u},\bar{f})\in \mathcal{S}_{a d} be an optimal solution for the control problem (5.3). Then, there exist Lagrange multipliers (\lambda, \eta,\rho,\xi,\varphi,\omega)\in L^2(Q)\times (L^2(0,T;H^1(\Omega)))^{\prime}\times L^2(Q)\times (H^1(\Omega))^{\prime}\times(H^2(\Omega))^{\prime}\times(H^1(\Omega))^{\prime} such that for all (\tilde{n}, \tilde{c}, \tilde{u},\tilde{f})\in V_n\times V_c\times V_u\times\mathcal{C}(\bar{f}) has

    \begin{align} &\beta_1\int_{0}^T\int_{\Omega_d} (\bar{n}-n_d)\tilde{n}d x d t + \beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t + \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t \\ &+\beta_4\int_{\Omega_d} (\bar{n}(T)-n_{\Omega})\tilde{n}(T)d x +\beta_5\int_{\Omega_d} (\bar{c}(T)-c_{\Omega})\tilde{c}(T)d x \\ &-\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n}+\tilde{u}\cdot\nabla \bar{n}+\nabla \cdot(\bar{n} \nabla \tilde{c}) +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{u}\cdot\nabla \bar{c}+\tilde{c}- \tilde{n}\right)\eta d x d t+\beta_7\int_{0}^T\int_{\Omega_d} \tilde{f}\bar{f}d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u}-\tilde{n} \nabla \varphi \right) \rho d x d t +\int_{\Omega}\tilde{n}(0)\xi d x+\int_{\Omega}\tilde{c}(0)\varphi d x \\ &+\int_{\Omega}\tilde{u}(0)\omega d x+\beta_6\int_{\Omega_d} (\bar{u}(T)-u_{\Omega})\tilde{u}(T)d x+\int_{0}^T\int_{\Omega}\tilde{f}\eta d x d t \geq 0, \end{align} (5.15)

    where \mathcal{C}(\bar{f}) = \{\theta(f-\bar{f}):\theta\geq 0, f\in \mathcal{U}\} .

    Proof. With the Lemma 5.3 in hand, we get that \bar{s}\in\mathcal{S}_{ad} is a regular point. Then, togather with Theorem 3.1 in [20], it follows that there exist Lagrange multipliers (\lambda, \eta,\rho,\xi,\varphi,\omega)\in L^2(Q)\times (L^2(0,T;H^1(\Omega)))^{\prime}\times L^2(Q)\times (H^1(\Omega))^{\prime}\times(H^2(\Omega))^{\prime}\times(H^1(\Omega))^{\prime} such that

    \begin{align*} &J^{\prime}(\bar{s})[r]-\langle G_1^{\prime}(\bar{s})[r],\lambda \rangle-\langle G_2^{\prime}(\bar{s})[r],\eta \rangle-\langle G_3^{\prime}(\bar{s})[r],\rho \rangle-\langle G_4^{\prime}(\bar{s})[r],\xi \rangle \\ &-\langle G_5^{\prime}(\bar{s})[r],\varphi \rangle -\langle G_6^{\prime}(\bar{s})[r],\omega \rangle \geq 0, \end{align*}

    for all r = (\tilde{n}, \tilde{c}, \tilde{u},\tilde{f})\in V_n\times V_c\times V_u\times\mathcal{C}(\bar{f}) . Hence, the proof follows from Lemmas 5.1 and 5.2.

    Corollary 5.1. Assume that \bar{s} = (\bar{n},\bar{c},\bar{u},\bar{f})\in \mathcal{S}_{a d} be an optimal solution for the control problem (5.3). Then, there exist Lagrange multipliers (\lambda, \eta,\rho)\in L^2(Q)\times (L^2(0,T;H^1(\Omega)))^{\prime}\times L^2(Q) , satisfying

    \begin{align} &\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n} +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t -\int_{0}^T\int_{\Omega}\tilde{n}\eta d x d t \\ &-\int_{0}^T\int_{\Omega}\tilde{n} \nabla \varphi \rho d x d t = \beta_1\int_{0}^T\int_{\Omega_d}(\bar{n}-n_d)\tilde{n}d x d t, \end{align} (5.16)
    \begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{c}\right)\eta d x d t+\int_{0}^T\int_{\Omega} \nabla \cdot(\bar{n} \nabla \tilde{c})\lambda d x d t \\ = &\beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t, \end{align} (5.17)
    \begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u} \right) \rho d x d t + \int_{0}^T\int_{\Omega}\tilde{u}\nabla \bar{n} \lambda d x d t \\ &+\int_{0}^T\int_{\Omega} \tilde{u}\cdot\nabla \bar{c}\eta d x d t = \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t, \end{align} (5.18)

    which corresponds to the linear system

    \begin{align} \left\{\begin{aligned} &-\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d), \\ &-\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d), \\ &-\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d), \end{aligned} \right. \end{align} (5.19)

    subject to the following boundary and final conditions

    \begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\mathit{\text{in}}\; Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \mathit{\text{on}}\; (0,T)\times \partial\Omega, \\ &\lambda(T) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(T) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(T) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \mathit{\text{in}}\; \Omega, \end{aligned} \right. \end{align*}

    and the following identities hold

    \begin{align} \int_{0}^T\int_{\Omega_d}(\beta_7\bar{f}+\eta)(f-\bar{f}) d x d t \geq 0, \;\forall f \in\mathcal{U}. \end{align} (5.20)

    Proof. By taking (\tilde{c},\tilde{u},\tilde{f}) = (0,0,0) in (5.15), then it follows that the equation (5.16) holds. In light of an analogous argument, and in light of the (5.15), it guarantees that (5.17) and (5.18) hold. On the other hand, let (\tilde{n},\tilde{c},\tilde{u}) = (0,0,0) , as an immediate consequence we obtain

    \begin{align*} \beta_7\int_{0}^{T}\tilde{f}\bar{f} d x d t+\int_{0}^{T}\tilde{f}\eta d x d t\geq 0, \quad \forall \tilde{f} \in \mathcal{C}(\bar{f}). \end{align*}

    By choosing \tilde{f} = f-\bar{f}\in \mathcal{C}(\bar{f}) for all \bar{f}\in \mathcal{U} , thus we achieve (5.20).

    Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique weak solution such that

    \begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*}

    Proof. For convenience, we set \tilde{\lambda} = \lambda(T-t) , \tilde{\eta} = \eta(T-t) , \tilde{\rho} = \rho(T-t) , in order to simplify notations, we still write \lambda , \eta , \rho instead of \tilde{\lambda} , \tilde{\eta} , \tilde{\rho} , then the adjoint system (5.19) can be written as follow

    \begin{align} \left\{\begin{aligned} &\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d),&&\text{ in } Q, \\ &\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d),&&\text{ in } Q, \\ &\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d),&&\text{ in } Q, \end{aligned} \right. \end{align} (5.21)

    subject to the following boundary and final conditions

    \begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\text{ in } Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \text{ on } (0,T)\times\partial \Omega, \\ &\lambda(0) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(0) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(0) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \text{ in } \Omega. \end{aligned} \right. \end{align*}

    Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process and just give a number of a priori estimates as follows.

    Taking the L^2 -inner product with \lambda for the first equation of (5.21) implies

    \begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\lambda^2 d x+ \int_{\Omega}|\nabla\lambda|^2 d x +2\mu\int_{\Omega}\lambda^2\bar{n} d x \\ = &\int_{\Omega} \nabla \lambda \nabla \bar{c}d x+\gamma\int_{\Omega}\lambda^2 d x +\int_{\Omega}\lambda \eta d x+\int_{\Omega}\lambda \nabla \varphi \rho d x+ \beta_1\int_{\Omega}(\bar{n}-n_d) \lambda d x \\ \leq &\|\nabla\lambda\|_{L^2}\|\nabla\bar{c}\|_{L^2}+\gamma\|\lambda\|^2_{L^2}+\|\lambda\|_{L^2}(\|\eta\|_{L^2}+\|\rho\|_{L^2})+\beta_1\|\bar{n}-n_d\|_{L^2}\|\lambda\|_{L^2} \\ \leq& \frac{1}{2}\|\nabla\lambda\|^2_{L^2}+C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align*}

    Then, we have

    \begin{align} \frac{d}{d t}\|\lambda\|^2_{L^2}+\|\lambda\|^2_{H^1}\leq C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} (5.22)

    Taking the L^2 -inner product with -\Delta\eta for the first equation of (5.21) implies

    \begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}|\nabla\lambda|^2 d x + \int_{\Omega}|\Delta\lambda|^2 d x \\ = &\int_{\Omega}\bar{u}\cdot \nabla \lambda \Delta\lambda d x -\int_{\Omega}\nabla \lambda \nabla \bar{c}\Delta \lambda d x-\gamma \int_{\Omega}\lambda \Delta \lambda d x +2\mu \int_{\Omega}\lambda \bar{n}\Delta \lambda d x \\ &- \int_{\Omega}\eta \Delta \lambda d x-\int_{\Omega}\nabla \varphi \rho\Delta \lambda d x +\beta_1\int_{\Omega}(\bar{n}-n_d)\Delta\lambda d x \\ \leq&\|\bar{u}\|_{L^4}\|\nabla \lambda\|_{L^4}\|\Delta \lambda \|_{L^2} +\|\nabla \lambda\|_{L^4}\|\nabla \bar{c}\|_{L^4}\|\Delta \lambda \|_{L^2} +\gamma\|\nabla \lambda\|^2_{L^2} \\ &+\| \lambda\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta \lambda \|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2}+ \| \rho\|_{L^2} \|\Delta \lambda \|_{L^2} \\ &+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq& \|\bar{u}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\Delta \lambda\|_{L^2}+\gamma\|\nabla \lambda\|^2_{L^2} \\ &+(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta \lambda\|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2} \\ &+\| \rho\|_{L^2} \|\Delta \lambda \|_{L^2}+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq&\frac{1}{2}\|\Delta \lambda\|^{2}_{L^2}+C(\|\nabla \lambda\|^{2}_{L^2}+\|\eta\|^2_{L^2}+\| \rho\|^2_{L^2} ). \end{align*}

    Thus, we get

    \begin{align} \frac{d}{d t}\|\nabla\lambda\|^2_{L^2}+\|\nabla\lambda\|^2_{H^1}\leq C(\|\nabla\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} (5.23)

    Taking the L^2 -inner product with \eta for the second equation of (5.21) implies

    \begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\eta^2 d x+ \int_{\Omega}|\nabla\eta|^2 d x+ \int_{\Omega}\eta^2 d x \\ = & \int_{\Omega}\bar{n}\nabla\lambda \nabla \eta d x+\beta_2 \int_{\Omega}\eta (\bar{c}-c_d) d x \\ \leq& \|\bar{n}\|_{L^{4}}\|\nabla \lambda\|_{L^4}\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq&\|\bar{n}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq &\frac{1}{2}\|\nabla \eta\|^2_{L^2}+\delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align*}

    As an immediate consequence, we obtain

    \begin{align} \frac{d}{d t}\|\eta \|^2_{L^2}+\|\eta \|^2_{H^1} \leq \delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align} (5.24)

    Taking the L^2 -inner product with \rho for the third equation of (5.21) implies

    \begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\rho^2 d x+ \int_{\Omega}|\nabla\rho|^2 d x \\ = &-\int_{\Omega} (\rho\cdot\nabla^{T})\bar{u} \rho d x-\lambda\int_{\Omega}\nabla \bar{n} \rho d x-\int_{\Omega}\eta \nabla \bar{c} \rho d x+\beta_3\int_{\Omega}(\bar{u}-u_d) \rho d x \\ \leq &\|\rho\|_{L^2}\|\nabla \bar{u}\|_{L^4}\|\rho\|_{L^4}+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2}+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{L^4}\|\rho\|_{L^4} \\ &+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq& \|\rho\|_{L^2}\|\nabla \bar{u}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2} \\ &+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq&\frac{1}{2}\|\nabla\rho\|^{2}_{L^2}+C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*}

    Therefore, we see that

    \begin{align} \frac{d}{d t}\|\rho\|^{2}_{L^2}+\|\rho\|^{2}_{H^1}\leq C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align} (5.25)

    Combining (5.22)-(5.25) and taking \delta small enough, we have

    \begin{align*} &\frac{d}{ d t}(\|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+ \|\lambda\|^2_{H^2}+ \|\eta\|^2_{H^1} +\|\rho\|^2_{H^1} \\ \leq& C(\|\nabla \bar{u}\|^2_{H^1}+1)( \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2} \\ &+C\|\bar{c}-c_d\|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*}

    Applying Gronwall's lemma to the resulting differential inequality, we know

    \begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*}

    The proof is complete.

    The authors would like to express their deep thanks to the referee's valuable suggestions for the revision and improvement of the manuscript.



    [1] Adelowokan Oluwaseyi A, Balogun Oluwakemi D, Adesoye AB (2015) Exchange rate volatility on investment and growth in Nigeria, an empirical analysis. Global J Manage Bus Res.
    [2] Adelowokan OA (2012) Exchange rate in Nigeria: A dynamic evidence. Eur J Humanit Social Sci 16: 785-801.
    [3] Adeniran JO, Yusuf SA, Adeyemi OA (2014) The impact of exchange rate fluctuation on the Nigerian economic growth: An empirical investigation. Int J Acad Res Bus Social Sci 4: 224.
    [4] Adeoye BW, Atanda A (2012) Exchange rate volatility in Nigeria: A convergence analysis. Bus Manage J 2.
    [5] Adusei M (2016) Determinants of bank technical efficiency: Evidence from rural and community banks in Ghana. Cogent Bus Manage 3: 1199519.
    [6] Afonso A, Blanco Arana C (2018) Financial development and economic growth: a study for OECD countries in the context of crisis. REM Working Paper, 046-2018.
    [7] Aghion P, Bacchetta P, Ranciere R, et al. (2009) Exchange rate volatility and productivity growth: The role of financial development. J Monetary Econ 56: 494-513. doi: 10.1016/j.jmoneco.2009.03.015
    [8] Ahmad AU, Loganathan N, STREIMIKIENE D, et al. (2018) FINANCIAL INSTABILITY, TRADE OPENNESS AND ENERGY PRICES ON LEADING AFRICAN COUNTRIES SUSTAINABLE GROWTH. Econ Comput Econ Cybernetics Stud Res 52: 127-142. doi: 10.24818/18423264/52.1.18.08
    [9] Ajakaiye O, Ojowu O (1994) Exchange rate depreciation and the structure of sectoral prices in Nigeria under an alternative pricing regime, 1986-89. AERC, Nairobi, KE.
    [10] Andersen ES, Schumpeter JA (2011) A theory of social and economic evolution. Basing-stoke: Palgrave Macmillan.
    [11] Asteriou D, Spanos K (2019) The relationship between financial development and economic growth during the recent crisis: Evidence from the EU. Financ Res Lett 28: 238-245. doi: 10.1016/j.frl.2018.05.011
    [12] Bank TW (2019) The world bank data. Available from: POpulation Grwoth: https://data.worldbank.org/indicator/SP. POP. GROW.
    [13] Baxter M, Stockman AC (1989) Business cycles and the exchange-rate regime: some international evidence. J Monetary Econ 23: 377-400. doi: 10.1016/0304-3932(89)90039-1
    [14] Belke AH, Setzer R (2003) Exchange rate volatility and employment growth: Empirical evidence from the CEE economies.
    [15] Belke A, Gros D (2001) Real impacts of intra-European exchange rate variability: a case for EMU? Open Econ Rev 12: 231-264.
    [16] Berument H, Pasaogullari M (2003) Effects of the real exchange rate on output and inflation: evidence from Turkey. Dev Econ 41: 401-435. doi: 10.1111/j.1746-1049.2003.tb01009.x
    [17] Bilas V, Bošnjak M, Novak I (2017) Examining the relationship between financial development and international trade in Croatia. South East Eur J Econ Bus 12.
    [18] Bostan I, Firtescu BN (2018) Exchange rate effects on international commercial trade competitiveness. J Risk Financ Manage 11: 19.
    [19] Central Bank of Nigeria (2016) Foreign exchange: Education in economics series. 4: 1-50.
    [20] Chan KS (1993) Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann Stat 21: 520-533.
    [21] Chu P (2001) Using BDS statistics to detect nonlinearity in time series. 53rd session of the International Statistical Institute (ISI).
    [22] Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16: 548-558. doi: 10.1107/S0021889883010985
    [23] Danlami MR, Loganathan N, Streimikiene D, et al. (2018) The Effects of Financial Development-Trade Openness Nexus on Nigeria's Dynamic Economic Growth. Econ Sociol 11: 128.
    [24] Danmola RA (2013) The impact of exchange rate volatility on the macro economic variables in Nigeria. Eur Sci J 9.
    [25] Dorina L, Simina U (2007) Testing efficiency of the stock market in emerging economies. J Faculty Econ-Econ Sci Series 2: 827-831.
    [26] Ductor L, Grechyna D (2015) Financial development, real sector, and economic growth. Int Rev Econ Financ 37: 393-405. doi: 10.1016/j.iref.2015.01.001
    [27] Edwards S (1986) The pricing of bonds and bank loans in international markets: An empirical analysis of developing countries' foreign borrowing. Eur Econ Rev 30: 565-589. doi: 10.1016/0014-2921(86)90009-7
    [28] Elbadawi IA, Kaltani L, Soto R (2012) Aid, real exchange rate misalignment, and economic growth in Sub-Saharan Africa. World Dev 40: 681-700. doi: 10.1016/j.worlddev.2011.09.012
    [29] Elliott G, Müller UK (2006) Minimizing the impact of the initial condition on testing for unit roots. J Econometrics 135: 285-310. doi: 10.1016/j.jeconom.2005.07.024
    [30] El-Ramly H, Abdel-Haleim SM (2008) The effect of devaluation on output in the Egyptian economy: A vector autoregression analysis. Int Res J Financ Econ 14: 82-99.
    [31] Enders W, Granger CWJ (1998) Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates. J Bus Econ Stat 16: 304-311.
    [32] Eneji MA, Nanwul DF, Eneji AI, et al. (2018) Effect of Exchange Rate Policy and its Volatility on Economic Growth in Nigeria. Int J Adv Stud Econ Public Sector Manage 6: 166-190.
    [33] Farouq I, Sulong Z, Ahmad U, et al. (2020) Heterogeneous Data Approach on Financial development of Selected African Leading Economies. Data Brief 30: 105670.
    [34] Farouq IS, Sulong Z, Sambo NU (2020) An empirical review of the role economic growth and financial globalization uncertainty plays on financial development. Afr J Econ Sust Dev 3: 48-63.
    [35] Farouq IS, Sulong Z (2020) The impact of economic growth, oil price, and financial globalization uncertainty on financial development: evidence from selected leading African countries. Int J Bus Econ Manage 7: 274-289. doi: 10.18488/journal.62.2020.75.274.289
    [36] Farouq IS, Sulong Z (2021) The effects of foreign direct investment uncertainty on financial development in Nigeria: an asymmetric approach. Iran J Manage Stud (IJMS) 14: 383-399.
    [37] Farouq IS, Sulong Z, Ahmad AU, et al. (2020) The effects of economic growth on financial development in Nigeria: Interacting role of foreign direct investment: An application of NARDL. Int J Sci Technol Res 9: 6321-6328.
    [38] Sulong Z, Farouq IS (2021) Energy-Finance Nexus: Evidence from African Oil Exporting Countries. Int Energy J 21: 171-181.
    [39] Farouq IS, Sulong Z, Sambo NU (2020) The Effects of Environmental Quality, Trade Openness, And Economic Growth on Financial Development in Algeria: A Diks And Panchenko Approach. J Crit Rev 7: 545-554.
    [40] Farouq IS, Sulong Z, Sanusi SS (2020) The empirical relationship between economic growth, ICT, financial globalization uncertainty and financial development: Evidence from selected leading African economies. Islamic Univ Multidiscip J 7: 1-14.
    [41] Farouq IS, Sulong Z, Sambo NU (2020) Covid-19 Perception: A Survey in Kano Metropolis, Nigeria. J Manage Theory Pract (JMTP) 1: 83-89. doi: 10.37231/jmtp.2020.1.3.53
    [42] Farouq IS, Sambo NU, Ahmad AU, et al. (2021) Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries. Quant Financ Econ 5: 247-263. doi: 10.3934/QFE.2021011
    [43] Farouq IS, Sambo NU, Jakada AH, et al. (2021) Real Exchange Rate and Economic Growth: The Interacting Role of Financial Development in Nigeria. Iran Econ Rev.
    [44] Garber PM, Svensson LE (1995) The operation and collapse of fixed exchange rate regimes. Handbook Int Econ 3: 1865-1911. doi: 10.1016/S1573-4404(05)80016-4
    [45] Gül H, Özer M (2018) Frequency domain causality analysis of tourism and economic activity in Turkey. Eur J Tourism Res 19: 86-97.
    [46] Gylfason T, Radetzki M (1985) Does devaluation make sense in the least developed coun tries? Seminar paper No 314. Institute for International Economics Studies, University of Stockholm.
    [47] Gylfason T, Schmid M (1983) Does devaluation cause stagflation? Canadian J Econ, 641-654.
    [48] Hirschman AO (1943) The commodity structure of world trade. Q J Econ 57: 565-595. doi: 10.2307/1884656
    [49] Ismaila M (2016) Exchange rate depreciation and Nigeria economic performance after Structural Adjustment Programmes (SAPs). NG-J Social Dev 417: 1-11.
    [50] Iyeli II, Utting C (2017) Exchange rate volatility and economic growth in Nigeria. Int J Econ Commer Manage 5: 583-595.
    [51] Jehan Z, Irshad I (2020) Exchange Rate Misalignment and Economic Growth in Pakistan: The Role of Financial Development. Pakistan Dev Rev 59: 81-99. doi: 10.30541/v59i1pp.81-99
    [52] Kamin SB, Klau M (1998) Some multi-country evidence on the effects of real exchange rates on output. FRB International Finance Discussion Paper.
    [53] Kapetanios G, Shin Y, Snell A (2003) Testing for a unit root in the nonlinear STAR framework. J Econometrics 112: 359-379. doi: 10.1016/S0304-4076(02)00202-6
    [54] Karimo TM, Ogbonna OE (2017) Financial deepening and economic growth nexus in Nigeria: Supply-leading or demand-following? Economies 5: 4.
    [55] Kassi DF, Sun G, Gnangoin YT, et al. (2019) Dynamics between Financial development, Energy consumption and Economic growth in Sub-Saharan African countries: Evidence from an asymmetrical and nonlinear analysis.
    [56] King RG, Levine R (1993) Finance and growth: Schumpeter might be right. Q J Econ 108: 717-737. doi: 10.2307/2118406
    [57] Lawal AI, Somoye RO, Babajide AA (2016) Impact of oil price shocks and exchange rate volatility on stock market behavior in Nigeria. Binus Bus Rev 7: 171-177. doi: 10.21512/bbr.v7i2.1453
    [58] Bahmani-Oskooee M, Nasir MA (2020) Asymmetric J-curve: evidence from industry trade between US and UK. Appl Econ 52: 2679-2693. doi: 10.1080/00036846.2019.1693700
    [59] Moses TK, Victor OU, Uwawunkonye EG, et al. (2020) Does Exchange Rate Volatility Affect Economic Growth in Nigeria? Int J Econ Financ 12: 1-54.
    [60] Nasir MA, Leung M (2021) US trade deficit, a reality check: New evidence incorporating asymmetric and non-linear effects of exchange rate dynamics. World Econ 44: 818-836. doi: 10.1111/twec.12986
    [61] Nasir MA, Simpson J (2018) Brexit associated sharp depreciation and implications for UK's inflation and balance of payments. J Econ Stud 45: 231-246. doi: 10.1108/JES-02-2017-0051
    [62] Nasir MA, Jackson K (2019) An inquiry into exchange rate misalignments as a cause of major global trade imbalances. J Econ Stud 46: 902-924. doi: 10.1108/JES-03-2018-0102
    [63] Nnanna OJ (2002) Monetary policy and exchange rate stability in Nigeria.
    [64] Nsofor ES, Takon SM, Ugwuegbe SU (2017) Modeling Exchange Rate Volatility and Economic Growth in Nigeria. Noble Int J Econ Financ Res 2: 88-97.
    [65] Nwosu NCF (2016) Impact of exchange rate volatility on economic growth in Nigeria, 1987-2014 (unpublished Ph. D Thesis). Department of Banking and Finance, University of Nigeria, Enugu.
    [66] Obeng CK (2017) Effects of Exchange Rate Volatility on Non-Traditional Exports in Ghana.
    [67] Obstfeld M, Rogoff KS, Wren-Lewis S (1996) Foundations of international macroeconomics. Cambridge, MA: MIT press.
    [68] Odusola AF, Akinlo AE (2001) Output, inflation, and exchange rate in developing countries: An application to Nigeria. Dev Econ 39: 199-222. doi: 10.1111/j.1746-1049.2001.tb00900.x
    [69] Ohlan R (2017) The relationship between tourism, financial development and economic growth in India. Future Bus J 3: 9-22. doi: 10.1016/j.fbj.2017.01.003
    [70] Oloyede JA, Fapetu O (2018) Effect of exchange rate volatility on economic growth in Nigeria (1986-2014). Afro-Asian J Financ Account 8: 404-412. doi: 10.1504/AAJFA.2018.095243
    [71] Owolabi SA, Adegbite RO (2013) Nigeria and the Structural Adjustment Programme. Nigerian Economic Structure, Growth and Development., Benin City, 387-402.
    [72] Ozer M, Kamisli M (2016) Frequency domain causality analysis of interactions between financial markets of Turkey. Int Bus Res 9: 176-186. doi: 10.5539/ibr.v9n1p176
    [73] Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Appl Econometrics 16: 289-326. doi: 10.1002/jae.616
    [74] Phiri A (2018) Nonlinear relationship between exchange rate volatility and economic growth (No. 08/2018). EERI Research Paper Series.
    [75] Rebelo S (1991) Long-run policy analysis and long-run growth. J Political Econ 99: 500-521. doi: 10.1086/261764
    [76] Rhodd RT (1993) The effect of real exchange rate changes on output: Jamaica's devaluation experience. J Int Dev 5: 291-303. doi: 10.1002/jid.3380050305
    [77] Sehrawat M, Giri AK (2016) Financial development, poverty and rural-urban income inequality: evidence from South Asian countries. Qual Quant 50: 577-590. doi: 10.1007/s11135-015-0164-6
    [78] Sekkat K (2012) Exchange rate undervaluation, financial development and growth. In Economic Research Forum, Working Paper (No. 742).
    [79] Serven L (1997) Irreversibility, uncertainty and private investment: Analytical issues and some lessons for Africa. J Afr Econ 6: 229-268.
    [80] Shahbaz M, Van Hoang TH, Mahalik MK, et al. (2017) Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis. Energy Econ 63: 199-212. doi: 10.1016/j.eneco.2017.01.023
    [81] Shin Y, Yu B, Greenwood-Nimmo M (2009) Modelling asymmetric cointegration and dynamic multipliers in an ARDL framework, In: International Conference on Applied Economics and Time Series Econometrics.
    [82] Velasco C (1999) Gaussian semiparametric estimation of non‐stationary time series. J Time Series Anal 20: 87-127. doi: 10.1111/1467-9892.00127
    [83] World Bank (2020) World Development Indicators (dataset). Available from: https://databank.worldbank.org/source/world-development-indicators.
    [84] Yakub MU, Sani Z, Obiezue TO, et al. (2019) Empirical investigation on exchange rate volatility and trade flows in Nigeria. Central Bank Nigeria Econ Financ Rev 57: 23-46.
    [85] Yakubu AS, Aboagye AQ, Mensah L, et al. (2018) Effect of financial development on international trade in Africa: Does measure of finance matter? J Int Trade Econ Dev 27: 917-936.
    [86] Zhou P, Qi Z, Zheng S, et al. (2016) Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv: 1611.06639.
  • This article has been cited by:

    1. Shenxing Li, Wenhe Li, Dynamical Behaviors of a Stochastic Susceptible-Infected-Treated-Recovered-Susceptible Cholera Model with Ornstein-Uhlenbeck Process, 2024, 12, 2227-7390, 2163, 10.3390/math12142163
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4027) PDF downloads(246) Cited by(2)

Figures and Tables

Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog