The relationship between real exchange rate volatility and the trade balance has been a contentious issue since the fall of Bretton woods agreement of 1973, owing to the lack of unanimity on the effect. This article provides empirical evidence of the link between the real exchange rate volatility and the trade balance in the light of financial development, confirming the assertion that the effect is significantly dependent on the country's level of financial development. Due to Nigeria's relatively undeveloped financial system, its exchange rate dampens the country's exports. Rather than studying the relationship in isolation, we examine the moderating role of financial development on the link between export and the real exchange rate volatility in this paper. The empirical estimation is based on the Nigeria's data set spanning the years 1980–2019, and it employs threshold autoregressive non-linear co-integration and non-linear ARDL estimation techniques. According to the findings, financial development magnifies the beneficial benefits of the real exchange rate on Nigeria's foreign trade. It also states that the uncertainty in foreign capital flows has a negative impact on Nigeria's international trade. The findings have broad policy implications, implying that in order to diversify and improve the economy's future growth and associated international trade, Nigeria's policymakers should promote adequate financial sector development, as financial shocks are amplified by poorly implemented credit markets.
Citation: Nuraddeen Umar Sambo, Ibrahim Sambo Farouq, Mukhtar Tijjani Isma'il. Asymmetric effect of exchange rate volatility on trade balance in Nigeria[J]. National Accounting Review, 2021, 3(3): 342-359. doi: 10.3934/NAR.2021018
[1] | Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505 |
[2] | Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610 |
[3] | Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098 |
[4] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[5] | Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135 |
[6] | Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321 |
[7] | Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85 |
[8] | Hisashi Inaba . The Malthusian parameter and R0 for heterogeneous populations in periodic environments. Mathematical Biosciences and Engineering, 2012, 9(2): 313-346. doi: 10.3934/mbe.2012.9.313 |
[9] | Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643 |
[10] | Jie Bai, Xiunan Wang, Jin Wang . An epidemic-economic model for COVID-19. Mathematical Biosciences and Engineering, 2022, 19(9): 9658-9696. doi: 10.3934/mbe.2022449 |
The relationship between real exchange rate volatility and the trade balance has been a contentious issue since the fall of Bretton woods agreement of 1973, owing to the lack of unanimity on the effect. This article provides empirical evidence of the link between the real exchange rate volatility and the trade balance in the light of financial development, confirming the assertion that the effect is significantly dependent on the country's level of financial development. Due to Nigeria's relatively undeveloped financial system, its exchange rate dampens the country's exports. Rather than studying the relationship in isolation, we examine the moderating role of financial development on the link between export and the real exchange rate volatility in this paper. The empirical estimation is based on the Nigeria's data set spanning the years 1980–2019, and it employs threshold autoregressive non-linear co-integration and non-linear ARDL estimation techniques. According to the findings, financial development magnifies the beneficial benefits of the real exchange rate on Nigeria's foreign trade. It also states that the uncertainty in foreign capital flows has a negative impact on Nigeria's international trade. The findings have broad policy implications, implying that in order to diversify and improve the economy's future growth and associated international trade, Nigeria's policymakers should promote adequate financial sector development, as financial shocks are amplified by poorly implemented credit markets.
In this paper, we study the coupled chemotaxis-fluid models with the initial-bounary conditions
{nt+u⋅∇n=Δn−∇⋅(n∇c)+γn−μn2,in Q≡(0,T)×Ω,ct+u⋅∇c=Δc−c+n+f,in Q,ut+u⋅∇u=Δu−∇π+n∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω, | (1.1) |
where
In order to understand the development of system (1.1), let us mention some previous contributions in this direction. Jin [11] dealed with the time periodic problem of (1.1) in spatial dimension
Espejo and Suzuki [6] discussed the chemotaxis-fluid model
nt+u⋅∇n=Δn−∇⋅(n∇c)+n(γ−μn), | (1.2) |
ct+u⋅∇c=Δc−c+n, | (1.3) |
ut=Δu−∇π+n∇φ, | (1.4) |
∇⋅u=0, | (1.5) |
∂n∂ν=∂c∂ν=0,u=0. | (1.6) |
They proved the global existence of weak solution. Tao and Winkler [17] proved the existence of global classical solution and the uniform boundedness. Tao and Winkler [18] also obtained the global classical solution and uniform boundedness under the condition of
The optimal control problems governed by the coupled partial differential equations is important. Colli et al. [4] studied the distributed control problem for a phase-field system of conserved type with a possibly singular potential. Liu and Zhang [14] considered the optimal control of a new mechanochemical model with state constraint. Chen et al. [3] studied the distributed optimal control problem for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-González et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model with the linear production term. The existence, uniqueness and regularity of strong solutions of this model are deduced. They also derived the first-order optimality conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Some other results can be found in [2,5,13,15,19].
In this paper, we discuss the optimal control problem for (1.1). We adjust the external source
In this section, we will construct the existence and some priori estimates of the linearized problem for the chemotaxis-Navier-Stokes system in a bounded domain
In the following lemmas we will state the Gagliardo-Nirenberg interpolation inequality [7].
Lemma 2.1. Let
1p−lN=a(1q−kN)+(1−a)1r. | (2.1) |
Then, for any
‖Dlu‖Lp⩽c1‖Dku‖aLq‖u‖1−aLr+c2‖u‖Lr |
with the following exception: If
The following log-interpolation inequality has been proved by [1].
Lemma 2.2. Let
‖u‖3L3(Ω)≤δ‖u‖2H1(Ω)‖(u+1)log(u+1)‖L1(Ω)+p(δ−1)‖u‖L1(Ω), |
where
We first consider the existence of solutions to the linear problem of system (1.1). Assume functions
{ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in Q,∇⋅u=0,in Q,u=0,on ∂Ω,u(x,0)=u0(x),in Ω. | (2.2) |
By using fixed point method, the existence of solutions can be easily obtained. Therefore, we ignore the process of proof and just give the regularity estimate.
Lemma 2.3. Let
Proof. Multiplying the first equation of (2.2) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=∫Ωˆn∇φ⋅udx+∫Ωu2dx≤‖ˆn‖L2‖u‖L2+‖u‖2L2≤C(‖ˆn‖2L2+‖u‖2L2). |
By Gronwall's inequality, we have
‖u‖2L2+∫T0‖u‖2H1dτ≤C(∫T0‖ˆn‖2L2dτ+‖u0‖2L2). |
Operating the Helmholtz projection operator
ut+Au+P(ˆu⋅∇u)=P(ˆn∇φ), |
where
12ddt∫Ω|∇u|2dx+∫Ω|Δu|2dx+∫Ω|∇u|2dx=∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx. |
For the terms on the right, we have
∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx≤‖ˆu‖L4‖∇u‖L4‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤‖ˆu‖L4‖∇u‖1/2L2‖Δu‖3/2L2+‖ˆu‖L4‖∇u‖L2‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤12‖Δu‖2L2+C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+‖ˆn‖2L2. |
Therefore, we get
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+C‖ˆn‖2L2+C. |
By Gronwall's inequality, we derive
‖∇u‖2L2+∫T0‖∇u‖2H1dτ≤C. |
Multiplying the first equation of (2.2) by
∫T0∫Ω|ut|2dxdt≤C. |
Summing up, we complete the proof.
For the above solution
{ct−Δc+u⋅∇c+c=ˆn++f,in Q,∂c∂ν=0,on (0,T)×∂Ω,c(x,0)=c0(x),in Ω. | (2.3) |
Along with fixed point method, the existence of solutions can be easily obtained. Thus we omit the proof and only give the regularity estimate.
Lemma 2.4. Let
Proof. Multiplying the first equation of (2.3) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖ˆn‖L2‖c‖L2+‖f‖L2‖c‖L2. |
Therefore, we have
‖c‖2L2+‖c‖2H1≤C(‖c0‖2L2+∫t0(‖ˆn‖2L2+‖f‖2L2)dτ). |
Multiplying the first equation of (2.3) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx. |
Using the Young inequality and the Hölder inequality, we obtain
∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx≤‖u‖L4‖∇c‖L4‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤C‖u‖H1(‖∇c‖12L2‖Δc‖12L2+‖∇c‖L2)‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2=C‖u‖H1‖∇c‖12L2‖Δc‖32L2+C‖∇c‖L2‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤12‖Δc‖2L2+C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
Combining this and above inequalities, we conclude
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
We therefore verify that
‖∇c‖2L2+∫t0‖∇c‖2H1≤C(∫t0‖ˆn‖2L2dτ+∫t0‖f‖2L2dτ). |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx. |
For the terms on the right, we obtain
∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤12‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇ˆn‖2L2+‖∇f‖2L2). |
Straightforward calculations yield
‖Δc‖2L2+∫t0‖Δc‖2H1dτ≤C(1+∫t0‖ˆn‖2H1dτ+∫t0‖f‖2H1dτ). |
Multiplying the first equation of (2.3) by
∫T0∫Ω|ct|2dxdt≤C, |
and thereby precisely arrive at the conclusion.
With above solutions
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in Q,∂n∂ν|∂Ω=0,n(x,0)=n0(x),in Ω. | (2.4) |
By a similar argument as the above two problems, the existence of solutions can be easily obtained. Therefore, we only give the regularity estimate.
Lemma 2.5. Suppose
Proof. Firstly, we verify the nonnegativity of
ddt∫A(t)ndx−∫∂A(t)∂n∂νds+∫A(t)ndx=(1+γ)∫A(t)ˆn+dx−μ∫A(t)ˆn+ndx. |
Since
∫A(t)ndxdτ+∫t0∫A(t)ndxdτ=0. |
Then, we get
Next, multiplying the first equation of (2.4) by
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωˆn+n2dx=∫Ωn∇c∇ndx+(1+γ)∫Ωnˆn+dx≤‖n‖L4‖∇c‖L4‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖12L2‖∇n‖12L2+‖n‖L2)‖c‖H2‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖2L2‖c‖4H2+‖n‖2L2‖c‖2H2+‖ˆn‖L2)+12‖n‖2H1. |
So, we derive that
‖n‖2L2+∫T0‖n‖2H1dt≤C(1+∫T0‖ˆn‖2L2dt). |
Multiplying the first equation of (2.4) by
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω(∇⋅(n∇c)Δn−(1+γ)ˆn+Δn+μˆn+nΔn)dx≤‖u‖L4‖∇n‖L4‖Δn‖L2+‖n‖L4‖Δc‖L4‖Δn‖L2+‖∇n‖L4‖∇c‖L4‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2≤C‖u‖H1(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖Δn‖L2+‖n‖L4(‖Δc‖12L2‖∇Δc‖12L2+‖Δc‖L2)‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2+(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖∇c‖H1‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2≤12‖Δn‖2L2+C(‖∇n‖2L2+‖n‖4L4+‖Δc‖4L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4)≤12‖Δn‖2L2+C(1+‖∇n‖2L2+‖n‖4L2+‖n‖2L2‖∇n‖2L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4). |
Straightforward calculations yield
‖∇n‖2L2+∫T0∫Ω(|Δn|2+|∇n|2+ˆn+|∇n|2)dxdt≤C. |
Multiplying the first equation of (2.4) by
∫T0∫Ω|nt|2dxdt≤C. |
The proof is complete.
Introduce the spaces
Xu=L4(0,T;L4(Ω)),Xn=L4(0,T;L4(Ω))∩L2(0,T;H1(Ω)),Yu=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)),Yn=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)). |
Define a map
F:Xu×Xn→Xu×Xn,F(ˆu,ˆn)=(u,n), |
where the
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in (0,T)×Ω≡Q,ct−Δc+u⋅∇c+c=ˆn++f,in (0,T)×Ω≡Q,ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in (0,T)×Ω≡Q,∇⋅u=0,in (0,T)×Ω≡Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. |
Next, we use fixed point method to prove the local existence of solutions of the problem (1.1).
Lemma 2.6. The map
Proof. Let
From Lemma 2.6,
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+α(1+γ)n−μn2,in Q,ct−Δc+u⋅∇c+c=n+αf,in Q,ut−Δu+u⋅∇u=−∇π+αn∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. | (3.1) |
In order to prove the existence of solution, we first give some a priori estimates.
Lemma 3.1. Let
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C, | (3.2) |
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C, | (3.3) |
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. | (3.4) |
Proof. With Lemma 2.5 in hand, we get
ddt∫Ωndx+∫Ωndx+μ∫Ωn2dx=α(1+γ)∫Ωndx≤μ2∫Ωn2dx+C. |
Solving this differential inequality, we obtain that
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C. |
Multiplying the third equation of (3.1) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=α∫Ωn∇φ⋅udx+∫Ωu2dx≤‖n‖L2‖u‖L2+‖u‖2L2≤C(‖n‖2L2+‖u‖2L2). |
Therefore, we see that
‖u‖2L2+∫t0‖u‖H1dτ≤C. |
By the Gagliardo-Nirenberg interpolation inequality, we deduce that
∫t0‖u‖4L4dτ≤C∫t0(‖u‖2L2‖∇u‖2L2d+‖u‖2L2)τ≤‖u‖2L2∫t0‖∇u‖2L2dτ+∫t0‖u‖2L2dτ≤C. |
Multiplying the third equation of (3.1) by
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖u‖4L4+‖u‖2L4+1)‖∇u‖2L2+C‖n‖2L2+C. |
Thus, we know
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C. |
Multiplying the second equation of (3.1) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖n‖L2‖c‖L2+α‖f‖L2‖c‖L2. |
Then, we have
‖c‖L2+∫t0‖c‖H1dτ≤C. |
Multiplying the second equation of (3.1) by
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). |
Further, we have
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. |
The proof is complete.
Lemma 3.2. Let
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. | (3.5) |
Proof. We rewrite the first equation of (3.1) as
ddt(n+1)+u⋅∇(n+1)−Δ(n+1)=−∇⋅((n+1)⋅∇c)+Δc+α(1+γ)n−μn2. |
Multiplying the above equation by
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤∫Ω∇(n+1)⋅∇cdx+∫ΩΔcln(n+1)dx+α(1+γ)∫Ωnln(n+1)dx=I1+I2+I3. |
For
I1=−∫ΩnΔcdx≤‖n‖L2‖Δc‖L2≤δ‖Δc‖2L2+C‖n‖2L2. |
For the term
I2=∫ΩΔcln(n+1)dx≤δ‖Δc‖2L2+C‖ln(n+1)‖2L2≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx. |
For the rest term
I3=α(1+γ)∫Ωnln(n+1)dx≤(1+γ)∫Ω(n+1)ln(n+1)dx. |
Combining
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx+C‖n‖2L2. | (3.6) |
Multiplying the second equation of (3.1) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcndx−α∫ΩΔcfdx. |
Straightforward calculations yield
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). | (3.7) |
Combing (3.6) and (3.7), it follows that
ddt∫Ω(n+1)ln(n+1)dx+ddt‖∇c‖2L2+(1−δ)‖∇c‖2H1+4∫Ω|∇√n+1|2dx≤C∫Ω(n+1)ln(n+1)dx+C(‖f‖2L2+‖n‖2L2). |
Taking
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. |
The proof is complete.
Lemma 3.3. Assume
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. | (3.8) |
Proof. Taking the
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωn3dx=∫Ωn∇c∇ndx+α(1+γ)∫Ωn2dx=−12∫Ωn2Δcdx+α(1+γ)∫Ωn2dx. |
Here, we note that
|∫Ωn2Δcdx|≤‖n‖2L3‖Δc‖L3≤C‖n‖2L3(‖∇Δc‖23L2‖∇c‖13L2+‖∇c‖L2)≤C‖n‖2L3(‖∇Δc‖23L2+1). |
From Lemma 2.2 and (3.2), it follows that
−χ2∫Ωn2Δcdx≤C(δ‖n‖2H1‖(n+1)log(n+1)‖L1+p(δ−1)‖n‖L1)23(‖∇Δc‖23L2+1)≤C(δ‖n‖2H1+p(δ−1))23(‖∇Δc‖23L2+1)≤C(δ‖n‖43H1‖∇Δc‖23L2+δ‖n‖43H1+p23(δ−1)‖∇Δc‖23L2+p23(δ−1))≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C−1/2δp(δ−1). |
As an immediate consequence
ddt‖n‖2L2+‖n‖2H1≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C‖n‖2L2. | (3.9) |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx=I4+I5. |
For
I4=∫Ω∇(u∇c)∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)≤14‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2). |
For the term
I5=−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx≤C(‖∇n‖2L2+‖∇f‖2L2)+14‖∇Δc‖2L2. |
Along with
ddt‖Δc‖2L2+‖∇Δc‖2L2+‖Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). | (3.10) |
Combining (3.9) and (3.10), it follows that
ddt(‖n‖2L2+‖Δc‖2L2)+‖Δc‖2L2+(1−Cδ12)‖n‖2H1+(1−δ)‖∇Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). |
By choosing
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. |
The proof is complete.
Lemma 3.4. Assume
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. | (3.11) |
Proof. Taking the
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω∇⋅(n∇c)Δndx+(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=I6+I7+I8. |
For the term
I6=∫Ωu∇nΔndx=−12∫Ω∇u(∇n)2dx≤‖∇u‖L2‖∇n‖2L4≤‖∇u‖L2(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)2≤δ‖Δn‖2L2+C‖∇n‖2L2. |
For the term
I7=∫Ω∇⋅(n∇c)Δndx=∫Ω(∇n∇c+nΔc)Δndx≤‖Δn‖L2(‖∇n‖L3‖∇c‖L6+‖n‖C‖Δc‖L2)≤C‖Δn‖L2(‖∇n‖H13‖∇c‖H1+‖n‖H43‖Δc‖L2)≤C‖n‖H2‖n‖H43‖c‖H2≤C‖n‖53H2‖n‖13L2‖c‖H2≤δ‖n‖2H2+C(δ)‖n‖2L2‖c‖6H2≤δ‖n‖2H2+C. |
For the term
I8=(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=(1+γ)∫Ω|∇n|2dx−2μ∫Ω|∇n|2ndx≤(1+γ)‖∇n‖2L2. |
Combine the estimates about
ddt‖∇n‖2L2+(1−4δ)‖n‖2H2≤C‖∇n‖2L2+C. |
By taking
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. |
Therefore, this proof is complete.
Lemma 3.5. The operator
Proof. Let
F(ˆnm,ˆum)→(ˆn,ˆu) weakly in Yu×Yn and strongly in Xu×Xn. |
Let
Theorem 3.1. Let
‖n‖L∞(0,T;H1(Ω))+‖n‖L2(0,T;H2(Ω))+‖nt‖L2(0,T;L2(Ω))+‖c‖L∞(0,T;H2(Ω))+‖c‖L2(0,T;H3(Ω))+‖ct‖L2(0,T;L2(Ω))+‖u‖L∞(0,T;H1(Ω))+‖u‖L2(0,T;H2(Ω))+‖ut‖L2(0,T;L2(Ω))≤C. | (3.12) |
Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution and (3.11). Therefore, we will prove the uniqueness of the solution in the following part. For convenience, we set
nt−Δn+u1⋅∇n+u∇n2=−∇⋅(n1∇c)−∇(n∇c2)+γn−μn(n1+n2),in (0,T)×Ω≡Q, | (3.13) |
ct−Δc+u1⋅∇c+u∇c2+c=n,in (0,T)×Ω≡Q, | (3.14) |
ut−Δu+u1⋅∇u+u⋅∇u2=n∇φ,in (0,T)×Ω≡Q, | (3.15) |
∇⋅u=0,in (0,T)×Ω≡Q, | (3.16) |
∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω, | (3.17) |
n0(x)=c0(x)=u0(x)=0,in Ω. | (3.18) |
Taking the
12ddt∫Ωn2dx+∫Ω|∇n|2dx+∫Ωn2dx≤−∫Ωu∇n2ndx+∫Ωn1∇c∇ndx+∫Ωn∇c2∇ndx+(1+γ)∫Ωn2dx=I9+I10+I11+I12. |
For the term
I9=−∫Ωu∇n2ndx≤‖∇n2‖L2‖u‖L4‖n‖L4≤C‖∇n2‖L2‖u‖H1(‖n‖12L2‖∇n‖12L2+‖n‖L2)≤δ3‖∇n‖2L2+C‖n‖2L2. |
For the term
I10=∫Ωn1∇c∇ndx≤‖∇n‖L2‖n1‖L4‖∇c‖L4≤C‖∇n‖L2‖n1‖H1‖∇c‖H1≤δ3‖∇n‖2L2+C. |
For the term
I11=∫Ωn∇c2∇ndx≤‖∇n‖L2‖∇c2‖L4‖n‖L4≤‖∇n‖L2‖∇c2‖H1‖n‖H1≤δ3‖∇n‖2L2+C. |
With the use of estimates
ddt‖n‖2L2+‖n‖H1≤δ‖∇n‖2L2+C‖n‖2L2+C. | (3.19) |
Taking the
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx=−∫Ωu1∇ccdx−∫Ωu∇c2cdx+∫Ωncdx≤‖c‖2L4‖∇u1‖L2+‖u‖L2‖∇c2‖L4‖c‖L4+‖n‖L2‖c‖L2≤C(‖c‖12L2‖∇c‖12L2+‖c‖L2)2‖∇u1‖L2+(‖c‖12L2‖∇c‖12L2+‖c‖L2)‖u‖L2‖∇c2‖H1+‖n‖L2‖c‖L2≤δ‖∇c‖2L2+C‖c‖2L2. |
Then, we get
ddt‖c‖2L2+‖c‖H1≤δ‖∇c‖2L2+C‖c‖2L2. | (3.20) |
Taking the
12∫Ωu2dx+∫Ω|∇u|2dx=∫Ωn∇φudx. |
Straightforward calculations yield
ddt‖u‖2L2+‖u‖H1≤C(‖u‖2L2+‖n‖2L2). | (3.21) |
Then, a combination of (3.19), (3.20) and (3.21) yields
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)+(‖n‖H1+‖c‖H1+‖u‖H1)≤δ(‖∇n‖2L2+‖∇c‖2L2+‖∇u‖2L2)+(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
By choosing
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)≤C(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
Applying Gronwall's lemma to the resulting differential inequality, we finally obtain the uniqueness of the solution.
In this section, we will prove the existence of the optimal solution of control problem. The method we use for treating this problem was inspired by some ideas of Guillén-González et al [9]. Assume
Minimize the cost functional
J(n,c,u,f)=β12‖n−nd‖2L2(Qd)+β22‖c−cd‖2L2(Qd)+β32‖u−ud‖2L2(Qd)+β42‖n(T)−nΩ‖2L2(Ωd)+β52‖c(T)−cΩ‖2L2(Ωd)+β62‖u(T)−uΩ‖2L2(Ωd)+β72‖f(x,t)‖2L2(Qc), | (4.1) |
subject to the system (1.1). Moreover, the nonnegative constants
nd∈L2(Qd),cd∈L2(Qd),ud∈L2(Qd),nΩ∈L2(Ωc),cΩ∈L2(Ωc),uΩ∈L2(Ωc),f∈U. |
The set of admissible solutions of optimal control problem (4.1) is defined by
Sad={s=(n,c,u,f)∈H:s is a strong solution of (1.1)}. |
The function space
H=Yn×Yc×Yu×U, |
where
Now, we prove the existence of a global optimal control for problem (1.1).
Theorem 4.1. Suppose
Proof. Along with Theorem 3.1, we conduct that
limm→+∞J(nm,cm,um,fm)=inf(n,c,u,f)∈SadJ(n,c,u,f). | (4.2) |
According to the definition of
{nmt+um⋅∇nm=Δnm−∇⋅(nm⋅∇cm)+γnm−μn2m,in Q,cmt+um⋅∇cm=Δcm−cm+nm+fm,in Q,umt+um⋅∇um=Δum−∇π+nm∇φ,in Q,∇⋅um=0,in Q,∂nm∂ν|∂Ω=∂cm∂ν|∂Ω=0,um|∂Ω=0,nm(0)=n0,cm(0)=c0,um(0)=u0,in Ω. | (4.3) |
Observing that
nm→ˉn, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),cm→ˉc, weakly in L2(0,T;H3(Ω)) and weakly* in L∞(0,T;H2(Ω)),um→ˉu, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),fm→ˉf, weakly in L2(0,T;H1(Ωc)), and ˜f∈U. |
According to the Aubin-Lions lemma [16] and the compact embedding theorems, we obtain
nm→ˉn, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)),cm→ˉc, strongly in C([0,T];H1(Ω))∩L2(0,T;H2(Ω)),um→ˉu, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)). |
Since
∇⋅(nm∇cm)→χ, weakly in L2(0,T;L2(Ω)). |
Recalling that
nm∇cm→ˉn∇ˉc, weakly in L∞(0,T;L2(Ω)). |
Therefore, we get that
limm→+∞J(nm,cm,um,fm)=inf(u,c,u,f)∈SadJ(u,c,u,f)≤J(ˉn,ˉc,ˉu,ˉf). |
On the other hand, we deduce from the weak lower semicontinuity of the cost functional
J(ˉn,ˉc,ˉu,ˉf)≤lim infm→+∞J(nm,cm,um,fm). |
Therefore, this implies that
In order to derive the first-order necessary optimality conditions for a local optimal solution of problem (4.1). To this end, we will use a result on existence of Lagrange multipliers in Banach spaces ([20]). First, we discuss the following problem
minJ(s) subject to s∈S={s∈H:G(s)∈N}, | (5.1) |
where
A+={ρ∈X′:⟨ρ,a⟩X′≥0,∀a∈A}. |
We consider the following Banach spaces
X=Vn×Vc×Vu×L2(0,T;H1(Ωc)),Y=L2(Q)×L2(0,T;H1(Ω))×L2(Q)×H1(Ω)×H2(Ω)×H1(Ω), |
where
Vn={n∈Yn:∂n∂ν on (0,T)×∂Ω},Vc={n∈Yc:∂c∂ν on (0,T)×∂Ω},Vu={n∈Yu:u=0 on (0,T)×∂Ω and ∇⋅u=0 in (0,T)×Ω} |
and the operator
G1:X→L2(Q),G2:X→L2(0,T;H1(Ω)),G3:X→L2(Q),G4:X→H1(Ω),G5:X→H2(Ω),G6:X→H1(Ω), |
which are defined at each point
{G1=nt+u⋅∇n−Δn+∇⋅(n⋅∇c)−γn+μn2,G2=ct+u⋅∇c−Δc+c−n−f,G3=ut+u⋅∇u−Δu+∇π−n∇φ,G4=n(0)−n0,G5=c(0)−c0,G6=u(0)−u0. | (5.2) |
The function spaces are given as follows
H=Vn×Vc×Vu×U. |
We see that
minJ(s) subject to s∈Sad={s∈H:G(s)=0}. | (5.3) |
Taking the differentiability of
Lemma 5.1. The functional
J′(ˉs)[r]=β1∫T0∫Ωd(ˉn−nd)˜ndxdt+β2∫T0∫Ωd(ˉc−cd)˜cdxdt+β3∫T0∫Ωd(ˉu−ud)˜u(T)dxdt+β4∫Ωd(ˉn(T)−nΩ)˜n(T)dx+β5∫Ωd(ˉc(T)−cΩ)˜cdx+β6∫Ωd(ˉu(T)−uΩ)˜u(T)dx+β7∫T0∫Ωdˉf˜fdxdt. | (5.4) |
Lemma 5.2. The operator
G′(ˉs)[r]=(G′1(ˉs)[r],G′2(ˉs)[r],G′3(ˉs)[r],G′4(ˉs)[r],G′5(ˉs)[r],G′6(ˉs)[r]) |
defined by
{G′1(ˉs)[r]=˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn,inQ,G′2(ˉs)[r]=˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n−˜f,inQ,G′3(ˉs)[r]=˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ,inQ,∇⋅˜u=0,inQ,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on(0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,inΩ. |
Lemma 5.3. Let
Proof. For any fixed
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ=gu,in Q,∇⋅˜u=0,in Q,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on (0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,in Ω. | (5.5) |
Next, we use Leray-Schauder's fixed point method to prove the existence of solutions of the problem (5.5), the operator
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˙nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˙n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˙u⋅∇ˉu−˙n∇φ=gu,in Q. | (5.6) |
The system (5.6) is complemented by the corresponding Neumann boundary and initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct that operator
Similar to the proof of Theorem 3.1,
{˜nt−Δ˜n+˜n=−ˉu⋅∇˜n−˜u⋅∇ˉn−∇⋅(ˉn∇˜c)−∇(˜n∇ˉc)+α(γ+1)˜n−2μ˜nˉn+αgn,in Q,˜ct−Δ˜c+˜c=−ˉu⋅∇˜c−˜u⋅∇ˉc+α˜n+αgc,in Q,˜ut−Δ˜u=−ˉu⋅∇˜u−˜u⋅∇ˉu+α˜n∇φ+αgu,in Q, | (5.7) |
complemented by the corresponding Neumann boundary and initial conditions.
Taking the
12∫Ω˜u2dx+∫Ω|∇˜u|2dx=α∫Ω˜n∇φ˜udx+α∫Ω˜ugudx. |
By the Poincaré inequality and Young's inequality, we have
ddt‖˜u‖2L2+‖˜u‖2H1≤C(‖˜n‖2L2+‖gu‖2L2)+C‖˜u‖2L2. | (5.8) |
Taking the
12∫Ω˜c2dx+∫Ω|∇˜c|2dx+∫Ω˜c2dx=∫Ω˜u∇ˉc˜cdx+α∫Ω˜n˜cdx+α∫Ωgc˜cdx. |
With the Poincaré inequality and Young's inequality in hand, we see that
ddt‖˜c‖2L2+‖˜c‖2H1≤C(‖˜n‖2L2+‖gc‖2L2)+C‖˜c‖2L2. | (5.9) |
Taking the
12∫Ω|∇˜c|2dx+∫Ω|Δ˜c|2dx+∫Ω|∇˜c|2dx=∫Ω˜u∇ˉcΔ˜cdx+∫Ωˉu∇˜cΔ˜cdx−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx=J1+J2+J3. |
For the term
J1=∫Ω˜u∇ˉcΔ˜cdx≤‖Δ˜c‖L2‖∇ˉc‖L4‖˜u‖L4≤16‖Δ˜c‖2L2+C‖∇ˉc‖2H1‖˜u‖2H1. |
For the term
J2=∫Ωˉu∇˜cΔ˜cdx=−12∫Ω∇ˉu|∇˜c|2dx≤‖∇ˉu‖L2‖∇˜c‖2L4≤‖∇ˉu‖L2(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤16‖Δ˜c‖2L2+C‖∇˜c‖2L2. |
For the term
J3=−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx≤16‖Δ˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). |
Therefore, combining
ddt‖∇˜c‖2L2+‖∇˜c‖2H1≤C‖∇˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). | (5.10) |
Taking the
ddt∫Ω˜n2dx+∫Ω|∇˜n|2dx+∫Ω˜n2dx=−∫Ω˜u∇ˉn˜ndx+∫Ω∇˜nˉn∇˜cdx+∫Ω∇˜n˜n∇ˉcdx+α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx=J4+J5+J6+J7. |
For the term
J4=−∫Ω˜u∇ˉn˜ndx≤‖˜u‖L4‖∇ˉn‖L2‖˜n‖L4≤C(‖∇˜u‖12L2‖˜u‖12L2+‖˜u‖L2)‖∇ˉn‖L2‖˜n‖H1≤δ‖˜n‖2H1+C‖∇˜u‖L2‖˜u‖L2+C‖˜u‖2L2≤δ‖˜n‖2H1+δ‖∇˜u‖2L2+C‖˜u‖2L2. |
For the term
J5=∫Ω∇˜nˉn∇˜cdx≤‖∇˜n‖L2‖ˉn‖L4‖∇˜c‖L4≤‖∇˜n‖L2‖ˉn‖H1(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤δ‖∇˜n‖2L2+‖∇˜c‖L2‖Δ˜c‖L2+C‖∇˜c‖2L2≤δ‖∇˜n‖2L2+δ‖Δ˜c‖L2+C‖∇˜c‖2L2. |
For the term
J6=∫Ω∇˜n˜n∇ˉcdx≤‖˜n‖2L4‖Δˉc‖L2≤(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)‖Δˉc‖L2≤δ‖∇˜n‖2L2+C‖˜n‖2L2+C. |
For the term
J7=α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2‖˜n‖2L4≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)≤δ‖∇˜n‖L2+C‖˜n‖2L2+C‖gn‖2L2. |
Therefore, by choosing
ddt‖˜n‖2L2+‖˜n‖2H1≤C(‖˜n‖2L2+‖∇˜c‖2L2+‖˜u‖2L2)+δ‖Δ˜c‖L2+δ‖∇˜u‖2L2+C‖gn‖2L2. | (5.11) |
By choosing
\begin{align*} &\frac{d}{d t}(\|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2})+\|\tilde{n}\|^2_{H^1}+\|\tilde{c}\|^2_{H^2}+\|\tilde{u}\|^2_{H^1} \\ \leq& C(\|g_n\|^2_{L^2}+\|g_c\|^2_{L^2}+\|g_u\|^2_{L^2})+C(\|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2}). \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we obatin
\begin{align} \|\tilde{n}\|^2_{L^2}+\|\tilde{c}\|^2_{H^1}+\|\tilde{u}\|^2_{L^2} +\int_0^t\|\tilde{n}\|^2_{H^1}d\tau+\int_0^t\|\tilde{c}\|^2_{H^2}d\tau+\int_0^t\|\tilde{u}\|^2_{H^1}d\tau\leq C. \end{align} | (5.12) |
Taking the
\begin{align*} &\frac{1}{2} \frac{d}{d t}\int_{\Omega} |\nabla\tilde{u}|^2 d x+ \int_{\Omega} |\Delta\tilde{u}|^2 d x \\ = &\int_{\Omega}\bar{u}\cdot\nabla \tilde{u} \Delta\tilde{u} d x+\int_{\Omega}\tilde{u}\cdot\nabla\bar{u}\Delta \tilde{u} d x-\alpha \int_{\Omega} \tilde{n} \nabla \varphi \Delta \tilde{u} d x-\alpha \int_{\Omega}g_u \Delta \tilde{u} d x \\ = &J_8+J_9+J_{10}. \end{align*} |
With the use of the Gagliardo-Nirenberg interpolation inequality, we derive
\begin{align*} J_8 = &\int_{\Omega}\bar{u}\cdot\nabla \tilde{u} \Delta\tilde{u} d x \leq \|\bar{u}\|_{L^4} \|\nabla\tilde{u}\|_{L^4}\|\Delta\tilde{u}\|_{L^2} \\ \leq&\|\bar{u}\|_{H^1}(\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla\tilde{u}\|_{L^2})\|\Delta\tilde{u}\|_{L^2} \\ \leq& \delta\|\Delta \tilde{u}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2} \end{align*} |
and
\begin{align*} J_9 = &\int_{\Omega}\tilde{u}\cdot\nabla\bar{u}\Delta \tilde{u} d x\leq \|\Delta \tilde{u}\|_{L^2}\|\nabla\bar{u}\|_{L^4}\|\tilde{u}\|_{L^4} \\ \leq& C\|\Delta \tilde{u}\|_{L^2}\|\nabla\bar{u}\|_{H^1}(\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\tilde{u}\|_{L^2}) \\ \leq& \delta\|\Delta \tilde{u}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2}. \end{align*} |
For the term
\begin{align*} J_{10} = &\alpha \int_{\Omega} \tilde{n} \nabla \varphi \Delta \tilde{u} d x-\alpha \int_{\Omega}g_u \Delta \tilde{u} d x \\ \leq&\delta\|\Delta \tilde{u}\|^2_{L^2}+C(\|\tilde{n}\|^2_{L^2}+\|g_u\|^2_{L^2}) . \end{align*} |
By choosing
\begin{align} \frac{d}{d t}\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta \tilde{u}\|^2_{L^2}\leq C\|\nabla\tilde{u}\|^2_{L^2}+C\|g_u\|^2_{L^2}. \end{align} | (5.13) |
Applying
\begin{align*} &\frac{1}{2}\frac{d}{ d t}\int_{\Omega} |\Delta c|^2 d x + \int_{\Omega}|\nabla\Delta c|^2 d x+\int_{\Omega} |\Delta c|^2 d x \\ = &-\int_{\Omega}\nabla (\bar{u}\nabla\tilde{c})\nabla\Delta\tilde{c}d x-\int_{\Omega}\nabla(\tilde{u}\nabla\bar{c})\nabla\Delta\tilde{c} d x+\alpha\int_{\Omega}\nabla \tilde{n}\nabla\Delta\tilde{c} d x \\ &+\alpha \int_{\Omega}\nabla g_c\nabla\Delta\tilde{c} d x \\ = &J_{11}+J_{12}+J_{13}. \end{align*} |
For the first term
\begin{align*} J_{11} = &-\int_{\Omega}\nabla (\bar{u}\nabla\tilde{c})\nabla\Delta\tilde{c}d x = - \int_{\Omega}\nabla \bar{u}\nabla\tilde{c} \nabla\Delta\tilde{c}d x-\int_{\Omega}\bar{u}\Delta\tilde{c} \nabla\Delta\tilde{c}d x \\ \leq& \|\nabla\Delta\tilde{c}\|_{L^2}\|\nabla \bar{u}\|_{L^4}\|\nabla\tilde{c}\|_{L^4}+\|\nabla\Delta\tilde{c}\|_{L^2}\|\bar{u}\|_{L^4}\|\Delta\tilde{c}\|_{L^4} \\ \leq &\|\nabla\Delta\tilde{c}\|_{L^2} (\|\nabla \bar{u}\|^{\frac{1}{2}}_{L^2}\|\Delta \bar{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla \bar{u}\|_{L^2})(\|\nabla \bar{c}\|^{\frac{1}{2}}_{L^2}\|\Delta \bar{c}\|^{\frac{1}{2}}_{L^2}+\|\nabla \bar{c}\|_{L^2}) \\ &+\|\nabla\Delta\tilde{c}\|_{L^2}\|\bar{u}\|_{H^1}(\|\nabla\Delta\tilde{c}\|^\frac{1}{2}_{L^2}\|\Delta\tilde{c}\|^\frac{1}{2}_{L^2}+\|\Delta\tilde{c}\|_{L^2}) \\ \leq&\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+C\|\Delta \bar{u}\|^2_{L^2}+C\|\Delta \tilde{c}\|^2_{L^2}. \end{align*} |
Similarly, for the term
\begin{align*} J_{12} = &-\int_{\Omega}\nabla(\tilde{u}\nabla\bar{c})\nabla\Delta\tilde{c} d x = -\int_{\Omega}\nabla\tilde{u}\nabla\bar{c} \nabla\Delta\tilde{c} d x-\int_{\Omega}\tilde{u}\Delta\bar{c}\nabla\Delta\tilde{c} d x \\ \leq&\|\nabla\Delta\tilde{c}\|_{L^2}\|\nabla \tilde{u}\|_{L^4}\|\nabla \bar{c}\|_{L^4}+\|\tilde{u}\|_{L^4}\|\Delta\bar{c}\|_{L^4}\|\nabla\Delta\tilde{c}\|_{L^2} \\ \leq &C\|\nabla\Delta\tilde{c}\|_{L^2}(\|\nabla \tilde{u}\|^{\frac{1}{2}}_{L^2}\|\Delta \tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\nabla \tilde{u}\|_{L^2})\|\nabla \bar{c}\|_{H^1} \\ &+(\|\tilde{u}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{u}\|^{\frac{1}{2}}_{L^2}+\|\tilde{u}\|_{L^2})(\|\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\bar{c}\|_{L^2})\|\nabla\Delta\tilde{c}\|_{L^2} \\ \leq&\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+\delta \|\Delta \tilde{u}\|^2_{L^2}+C \|\nabla\Delta\bar{c}\|^2_{L^2}+C\|\nabla\tilde{u}\|^2_{L^2}. \end{align*} |
For the rest term
\begin{align*} J_{13} = &\alpha\int_{\Omega}\nabla \tilde{n}\nabla\Delta\tilde{c} d x +\alpha \int_{\Omega}\nabla g_c\nabla\Delta\tilde{c} d x \\ \leq &\delta\|\nabla\Delta\tilde{c}\|^2_{L^2}+C(\|\nabla \tilde{n}\|^2_{L^2}+\|\nabla g_c\|^2_{L^2}). \end{align*} |
By choosing
\begin{align} &\frac{d}{d t}\|\Delta\tilde{c}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{H^1} \\ \leq& C(\|\nabla \tilde{n}\|^2_{L^2}+\|\Delta \tilde{c}\|^2_{L^2}+\|\nabla\tilde{u}\|^2_{L^2})+ C \|\Delta \bar{u}\|^2_{L^2}+\delta \|\Delta \tilde{u}\|^2_{L^2} \\ &+C \|\nabla\Delta\bar{c}\|^2_{L^2}+C\|\nabla g_c\|^2_{L^2}. \end{align} | (5.14) |
From (5.13) and (5.14), along with
\begin{align*} &\frac{d}{d t}(\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2})+\|\Delta \tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{H^1} \\ \leq& C(\|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2})+(\|\nabla \tilde{n}\|^2_{L^2}+\|\Delta \bar{u}\|^2_{L^2}+ \|\nabla\Delta\bar{c}\|^2_{L^2}+\|\nabla g_c\|^2_{L^2}) +C\|g_u\|^2_{L^2}. \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we know
\begin{align*} \|\nabla\tilde{u}\|^2_{L^2}+\|\Delta\tilde{c}\|^2_{L^2}+\int_{0}^t \|\Delta \tilde{u}\|^2_{L^2} d\tau+\int_{0}^t \|\Delta\tilde{c}\|^2_{H^1} d\tau\leq C. \end{align*} |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega} |\nabla \tilde{n}|^2 d x +\int_{\Omega} |\Delta \tilde{n}|^2 d x+\int_{\Omega} |\nabla \tilde{n}|^2 d x \\ = &-\int_{\Omega}\bar{u}\cdot \nabla\tilde{n} \Delta \tilde{n}d x-\int_{\Omega}\tilde{u}\cdot \nabla\bar{n}\Delta \tilde{n}d x-\int_{\Omega} \nabla(\tilde{n}\nabla \bar{c})\Delta\tilde{n} d x-\int_{\Omega} \nabla(\bar{n}\nabla \tilde{c})\Delta\tilde{n} d x \\ &-\alpha(1+\gamma)\int_{\Omega}\tilde{n}\Delta\tilde{n} d x+2\mu\int_{\Omega}\tilde{n}\bar{n} \Delta\tilde{n}d x-\alpha \int_{\Omega}g_n\Delta\tilde{n} d x \\ = &J_{14}+J_{15}+J_{16}+J_{17}+J_{18}. \end{align*} |
With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate
\begin{align*} J_{14} = &-\int_{\Omega}\bar{u}\cdot \nabla\tilde{n} \Delta \tilde{n}d x\leq \|\bar{u}\|_{L^4}\|\nabla\tilde{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &C\|\bar{u}\|_{H^1}(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\tilde{n}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}. \end{align*} |
Similar to above estimates, we see
\begin{align*} J_{15} = &-\int_{\Omega}\tilde{u}\cdot \nabla\bar{n}\Delta \tilde{n}d x\leq \|\tilde{u}\|_{L^4}\|\nabla \bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&C\|\tilde{u}\|_{H^1}\|\nabla \bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ \leq& \delta \|\Delta\tilde{n}\|_{L^2}+C\|\nabla \bar{n}\|^2_{H^1}. \end{align*} |
Similarly, we derive
\begin{align*} J_{16} = &-\int_{\Omega} \nabla(\tilde{n}\nabla \bar{c})\Delta\tilde{n} d x = -\int_{\Omega}\nabla\tilde{n}\nabla \bar{c}\Delta\tilde{n} d x-\int_{\Omega}\tilde{n}\Delta \bar{c}\Delta\tilde{n} d x \\ \leq &\|\nabla\tilde{n}\|_{L^4}\|\nabla\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\tilde{n}\|_{L^4}\|\Delta\bar{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq&(\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\tilde{n}\|^{\frac{1}{2}}_{L^2} +\|\nabla\tilde{n}\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})(\|\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\bar{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\bar{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq&\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|\nabla\Delta\bar{c}\|^{2}_{L^2}+C \end{align*} |
and
\begin{align*} J_{17} = &-\int_{\Omega} \nabla(\bar{n}\nabla \tilde{c})\Delta\tilde{n} d x = -\int_{\Omega} \nabla\bar{n}\nabla \tilde{c}\Delta\tilde{n} d x-\int_{\Omega} \nabla\bar{n}\Delta \tilde{c}\Delta\tilde{n} d x \\ \leq&\|\nabla\bar{n}\|_{L^4}\|\nabla\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|\bar{n}\|_{L^4}\|\Delta\tilde{c}\|_{L^4}\|\Delta\tilde{n}\|_{L^2} \\ \leq &(\|\nabla\bar{n}\|^{\frac{1}{2}}_{L^2}\|\Delta\bar{n}\|^{\frac{1}{2}}_{L^2}+\|\nabla\bar{n}\|_{L^2})\|\nabla \tilde{c}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|\bar{n}\|_{H^1}(\|\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}\|\nabla\Delta\tilde{c}\|^{\frac{1}{2}}_{L^2}+\|\Delta\tilde{c}\|_{L^2})\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+C. \end{align*} |
For the rest terms, we know
\begin{align*} J_{18} = &-\alpha(1+\gamma)\int_{\Omega}\tilde{n}\Delta\tilde{n} d x+2\mu\int_{\Omega}\tilde{n}\bar{n} \Delta\tilde{n}d x-\alpha \int_{\Omega}g_n\Delta\tilde{n} d x \\ \leq&(1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+2\mu\|\tilde{n}\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta\tilde{n}\|_{L^2}+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq& (1+\gamma)\|\tilde{n}\|_{L^2}\|\Delta\tilde{n}\|_{L^2}+C(\|\tilde{n}\|^{\frac{1}{2}}_{L^2}\|\nabla\tilde{n}\|^{\frac{1}{2}}_{L^2}+\|\tilde{n}\|_{L^2})\|\bar{n}\|_{H^1}\|\Delta\tilde{n}\|_{L^2} \\ &+\|g_n\|_{L^2}\|\Delta\tilde{n}\|_{L^2} \\ \leq &\delta\|\Delta\tilde{n}\|^2_{L^2}+C\|\nabla\tilde{n}\|^{2}_{L^2}+C\|g_n\|^2_{L^2}. \end{align*} |
Therefore, Taking
\begin{align*} &\frac{d}{d t}\|\nabla\tilde{n}\|^{2}_{L^2}+ \|\nabla\tilde{n}\|^{2}_{H^1} \\ \leq& C(\|\nabla\tilde{n}\|^{2}_{L^2} +\|\nabla \bar{n}\|^2_{H^1}+ \|\nabla\Delta\bar{c}\|^{2}_{L^2}+\|\nabla\Delta\tilde{c}\|^{2}_{L^2}+\|g_n\|^2_{L^2})+C. \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we know
\begin{align*} \|\nabla\tilde{n}\|^{2}_{L^2}+\int_0^t \|\nabla\tilde{n}\|^{2}_{H^1}d\tau \leq C. \end{align*} |
Therefore, from Leray-Schauder theorem, we derive the existence of solution for (5.5). Along with the regularity of
Theorem 5.1. Assume that
\begin{align} &\beta_1\int_{0}^T\int_{\Omega_d} (\bar{n}-n_d)\tilde{n}d x d t + \beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t + \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t \\ &+\beta_4\int_{\Omega_d} (\bar{n}(T)-n_{\Omega})\tilde{n}(T)d x +\beta_5\int_{\Omega_d} (\bar{c}(T)-c_{\Omega})\tilde{c}(T)d x \\ &-\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n}+\tilde{u}\cdot\nabla \bar{n}+\nabla \cdot(\bar{n} \nabla \tilde{c}) +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{u}\cdot\nabla \bar{c}+\tilde{c}- \tilde{n}\right)\eta d x d t+\beta_7\int_{0}^T\int_{\Omega_d} \tilde{f}\bar{f}d x d t \\ &-\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u}-\tilde{n} \nabla \varphi \right) \rho d x d t +\int_{\Omega}\tilde{n}(0)\xi d x+\int_{\Omega}\tilde{c}(0)\varphi d x \\ &+\int_{\Omega}\tilde{u}(0)\omega d x+\beta_6\int_{\Omega_d} (\bar{u}(T)-u_{\Omega})\tilde{u}(T)d x+\int_{0}^T\int_{\Omega}\tilde{f}\eta d x d t \geq 0, \end{align} | (5.15) |
where
Proof. With the Lemma 5.3 in hand, we get that
\begin{align*} &J^{\prime}(\bar{s})[r]-\langle G_1^{\prime}(\bar{s})[r],\lambda \rangle-\langle G_2^{\prime}(\bar{s})[r],\eta \rangle-\langle G_3^{\prime}(\bar{s})[r],\rho \rangle-\langle G_4^{\prime}(\bar{s})[r],\xi \rangle \\ &-\langle G_5^{\prime}(\bar{s})[r],\varphi \rangle -\langle G_6^{\prime}(\bar{s})[r],\omega \rangle \geq 0, \end{align*} |
for all
Corollary 5.1. Assume that
\begin{align} &\int_{0}^T\int_{\Omega}(\tilde{n}_{t}-\Delta \tilde{n}+\bar{u} \cdot \nabla \tilde{n} +\nabla(\tilde{n}\nabla \bar{c})-\gamma \tilde{n} +2\mu \tilde{n}\bar{n})\lambda d x d t -\int_{0}^T\int_{\Omega}\tilde{n}\eta d x d t \\ &-\int_{0}^T\int_{\Omega}\tilde{n} \nabla \varphi \rho d x d t = \beta_1\int_{0}^T\int_{\Omega_d}(\bar{n}-n_d)\tilde{n}d x d t, \end{align} | (5.16) |
\begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{c}_{t}-\Delta \tilde{c}+\bar{u} \cdot \nabla \tilde{c}+\tilde{c}\right)\eta d x d t+\int_{0}^T\int_{\Omega} \nabla \cdot(\bar{n} \nabla \tilde{c})\lambda d x d t \\ = &\beta_2\int_{0}^T\int_{\Omega_d} (\bar{c}-c_d)\tilde{c}d x d t, \end{align} | (5.17) |
\begin{align} &\int_{0}^T\int_{\Omega}\left(\tilde{u}_{t}-\Delta \tilde{u}+\bar{u} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla \bar{u} \right) \rho d x d t + \int_{0}^T\int_{\Omega}\tilde{u}\nabla \bar{n} \lambda d x d t \\ &+\int_{0}^T\int_{\Omega} \tilde{u}\cdot\nabla \bar{c}\eta d x d t = \beta_3\int_{0}^T\int_{\Omega_d} (\bar{u}-u_d)\tilde{u}d x d t, \end{align} | (5.18) |
which corresponds to the linear system
\begin{align} \left\{\begin{aligned} &-\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d), \\ &-\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d), \\ &-\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d), \end{aligned} \right. \end{align} | (5.19) |
subject to the following boundary and final conditions
\begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\mathit{\text{in}}\; Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \mathit{\text{on}}\; (0,T)\times \partial\Omega, \\ &\lambda(T) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(T) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(T) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \mathit{\text{in}}\; \Omega, \end{aligned} \right. \end{align*} |
and the following identities hold
\begin{align} \int_{0}^T\int_{\Omega_d}(\beta_7\bar{f}+\eta)(f-\bar{f}) d x d t \geq 0, \;\forall f \in\mathcal{U}. \end{align} | (5.20) |
Proof. By taking
\begin{align*} \beta_7\int_{0}^{T}\tilde{f}\bar{f} d x d t+\int_{0}^{T}\tilde{f}\eta d x d t\geq 0, \quad \forall \tilde{f} \in \mathcal{C}(\bar{f}). \end{align*} |
By choosing
Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique weak solution such that
\begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*} |
Proof. For convenience, we set
\begin{align} \left\{\begin{aligned} &\lambda_t-\Delta \lambda +\bar{u}\cdot\nabla \lambda -\nabla \lambda\nabla \bar{c}-\gamma \lambda +2\mu\lambda\bar{n}-\eta - \nabla\varphi\rho \\ & = \beta_1(\bar{n}-n_d),&&\text{ in } Q, \\ &\eta_t-\Delta \eta+\bar{u}\cdot\nabla\eta+\eta+\nabla(\bar{n}\nabla\lambda) = \beta_2 (\bar{c}-c_d),&&\text{ in } Q, \\ &\rho_t-\Delta \rho+(\bar{u}\cdot\nabla)\rho+(\rho\cdot\nabla^{T})\bar{u}+\lambda \nabla \bar{n}+\eta \nabla \bar{c} = \beta_3(\bar{u}-u_d),&&\text{ in } Q, \end{aligned} \right. \end{align} | (5.21) |
subject to the following boundary and final conditions
\begin{align*} \left\{\begin{aligned} &\nabla\cdot \rho = 0, &&\text{ in } Q, \\ &\frac{\partial \lambda }{\partial \nu} = \frac{\partial \eta }{\partial \nu}, \rho = 0,&& \text{ on } (0,T)\times\partial \Omega, \\ &\lambda(0) = \beta_4(\bar{n}(T)-n_{\Omega}),\eta(0) = \beta_5 (\bar{c}(T)-c_{\Omega}), \\ &\rho(0) = \beta_5(\bar{c}(T)-c_{\Omega}),&& \text{ in } \Omega. \end{aligned} \right. \end{align*} |
Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process and just give a number of a priori estimates as follows.
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\lambda^2 d x+ \int_{\Omega}|\nabla\lambda|^2 d x +2\mu\int_{\Omega}\lambda^2\bar{n} d x \\ = &\int_{\Omega} \nabla \lambda \nabla \bar{c}d x+\gamma\int_{\Omega}\lambda^2 d x +\int_{\Omega}\lambda \eta d x+\int_{\Omega}\lambda \nabla \varphi \rho d x+ \beta_1\int_{\Omega}(\bar{n}-n_d) \lambda d x \\ \leq &\|\nabla\lambda\|_{L^2}\|\nabla\bar{c}\|_{L^2}+\gamma\|\lambda\|^2_{L^2}+\|\lambda\|_{L^2}(\|\eta\|_{L^2}+\|\rho\|_{L^2})+\beta_1\|\bar{n}-n_d\|_{L^2}\|\lambda\|_{L^2} \\ \leq& \frac{1}{2}\|\nabla\lambda\|^2_{L^2}+C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align*} |
Then, we have
\begin{align} \frac{d}{d t}\|\lambda\|^2_{L^2}+\|\lambda\|^2_{H^1}\leq C(\|\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} | (5.22) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}|\nabla\lambda|^2 d x + \int_{\Omega}|\Delta\lambda|^2 d x \\ = &\int_{\Omega}\bar{u}\cdot \nabla \lambda \Delta\lambda d x -\int_{\Omega}\nabla \lambda \nabla \bar{c}\Delta \lambda d x-\gamma \int_{\Omega}\lambda \Delta \lambda d x +2\mu \int_{\Omega}\lambda \bar{n}\Delta \lambda d x \\ &- \int_{\Omega}\eta \Delta \lambda d x-\int_{\Omega}\nabla \varphi \rho\Delta \lambda d x +\beta_1\int_{\Omega}(\bar{n}-n_d)\Delta\lambda d x \\ \leq&\|\bar{u}\|_{L^4}\|\nabla \lambda\|_{L^4}\|\Delta \lambda \|_{L^2} +\|\nabla \lambda\|_{L^4}\|\nabla \bar{c}\|_{L^4}\|\Delta \lambda \|_{L^2} +\gamma\|\nabla \lambda\|^2_{L^2} \\ &+\| \lambda\|_{L^4}\|\bar{n}\|_{L^4}\|\Delta \lambda \|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2}+ \| \rho\|_{L^2} \|\Delta \lambda \|_{L^2} \\ &+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq& \|\bar{u}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\Delta \lambda\|_{L^2}+\gamma\|\nabla \lambda\|^2_{L^2} \\ &+(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla\bar{c}\|_{H^1}\|\Delta \lambda\|_{L^2}+\|\eta\|_{L^2}\|\Delta \lambda \|_{L^2} \\ &+\| \rho\|_{L^2} \|\Delta \lambda \|_{L^2}+\beta_1\|\Delta \lambda \|_{L^2}\|\bar{n}-n_d\|^2_{L^2} \\ \leq&\frac{1}{2}\|\Delta \lambda\|^{2}_{L^2}+C(\|\nabla \lambda\|^{2}_{L^2}+\|\eta\|^2_{L^2}+\| \rho\|^2_{L^2} ). \end{align*} |
Thus, we get
\begin{align} \frac{d}{d t}\|\nabla\lambda\|^2_{L^2}+\|\nabla\lambda\|^2_{H^1}\leq C(\|\nabla\lambda\|^2_{L^2}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2}. \end{align} | (5.23) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\eta^2 d x+ \int_{\Omega}|\nabla\eta|^2 d x+ \int_{\Omega}\eta^2 d x \\ = & \int_{\Omega}\bar{n}\nabla\lambda \nabla \eta d x+\beta_2 \int_{\Omega}\eta (\bar{c}-c_d) d x \\ \leq& \|\bar{n}\|_{L^{4}}\|\nabla \lambda\|_{L^4}\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq&\|\bar{n}\|_{H^1}(\|\nabla \lambda\|^{\frac{1}{2}}_{L^2}\|\Delta \lambda\|^{\frac{1}{2}}_{L^2}+\|\nabla \lambda\|_{L^2})\|\nabla \eta\|_{L^2}+\beta_2\|\eta \|_{L^2}\|\bar{c}-c_d\|_{L^2} \\ \leq &\frac{1}{2}\|\nabla \eta\|^2_{L^2}+\delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align*} |
As an immediate consequence, we obtain
\begin{align} \frac{d}{d t}\|\eta \|^2_{L^2}+\|\eta \|^2_{H^1} \leq \delta\|\Delta \lambda\|^2_{L^2}+C\|\nabla \lambda\|_{L^2}+C\|\eta \|^2_{L^2}+C\|\bar{c}-c_d\|^2_{L^2}. \end{align} | (5.24) |
Taking the
\begin{align*} &\frac{1}{2}\frac{d}{d t}\int_{\Omega}\rho^2 d x+ \int_{\Omega}|\nabla\rho|^2 d x \\ = &-\int_{\Omega} (\rho\cdot\nabla^{T})\bar{u} \rho d x-\lambda\int_{\Omega}\nabla \bar{n} \rho d x-\int_{\Omega}\eta \nabla \bar{c} \rho d x+\beta_3\int_{\Omega}(\bar{u}-u_d) \rho d x \\ \leq &\|\rho\|_{L^2}\|\nabla \bar{u}\|_{L^4}\|\rho\|_{L^4}+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2}+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{L^4}\|\rho\|_{L^4} \\ &+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq& \|\rho\|_{L^2}\|\nabla \bar{u}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\lambda \|\nabla \bar{n}\|_{L^2}\|\rho\|_{L^2} \\ &+\|\eta \|_{L^2}\|\nabla \bar{c}\|_{H^1}(\|\rho\|^{\frac{1}{2}}_{L^2}\|\nabla\rho\|^{\frac{1}{2}}_{L^2}+\|\rho\|_{L^2})+\beta_3\|\rho\|_{L^2}\|\bar{u}-u_d\|_{L^2} \\ \leq&\frac{1}{2}\|\nabla\rho\|^{2}_{L^2}+C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*} |
Therefore, we see that
\begin{align} \frac{d}{d t}\|\rho\|^{2}_{L^2}+\|\rho\|^{2}_{H^1}\leq C\|\rho\|^2_{L^2}(\|\nabla \bar{u}\|^2_{H^1}+1)+C\|\eta \|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align} | (5.25) |
Combining (5.22)-(5.25) and taking
\begin{align*} &\frac{d}{ d t}(\|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+ \|\lambda\|^2_{H^2}+ \|\eta\|^2_{H^1} +\|\rho\|^2_{H^1} \\ \leq& C(\|\nabla \bar{u}\|^2_{H^1}+1)( \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2})+C\|\bar{n}-n_d\|^2_{L^2} \\ &+C\|\bar{c}-c_d\|^2_{L^2}+C\|\bar{u}-u_d\|^2_{L^2}. \end{align*} |
Applying Gronwall's lemma to the resulting differential inequality, we know
\begin{align*} \|\lambda\|^2_{H^1}+\|\eta\|^2_{L^2}+\|\rho\|^2_{L^2}+\int_0^t\|\lambda\|^2_{H^2}d \tau +\int_0^t\|\eta\|^2_{H^1}d \tau+\int_0^t\|\rho\|^2_{H^1} d \tau \leq C. \end{align*} |
The proof is complete.
The authors would like to express their deep thanks to the referee's valuable suggestions for the revision and improvement of the manuscript.
[1] | Adelowokan Oluwaseyi A, Balogun Oluwakemi D, Adesoye AB (2015) Exchange rate volatility on investment and growth in Nigeria, an empirical analysis. Global J Manage Bus Res. |
[2] | Adelowokan OA (2012) Exchange rate in Nigeria: A dynamic evidence. Eur J Humanit Social Sci 16: 785-801. |
[3] | Adeniran JO, Yusuf SA, Adeyemi OA (2014) The impact of exchange rate fluctuation on the Nigerian economic growth: An empirical investigation. Int J Acad Res Bus Social Sci 4: 224. |
[4] | Adeoye BW, Atanda A (2012) Exchange rate volatility in Nigeria: A convergence analysis. Bus Manage J 2. |
[5] | Adusei M (2016) Determinants of bank technical efficiency: Evidence from rural and community banks in Ghana. Cogent Bus Manage 3: 1199519. |
[6] | Afonso A, Blanco Arana C (2018) Financial development and economic growth: a study for OECD countries in the context of crisis. REM Working Paper, 046-2018. |
[7] |
Aghion P, Bacchetta P, Ranciere R, et al. (2009) Exchange rate volatility and productivity growth: The role of financial development. J Monetary Econ 56: 494-513. doi: 10.1016/j.jmoneco.2009.03.015
![]() |
[8] |
Ahmad AU, Loganathan N, STREIMIKIENE D, et al. (2018) FINANCIAL INSTABILITY, TRADE OPENNESS AND ENERGY PRICES ON LEADING AFRICAN COUNTRIES SUSTAINABLE GROWTH. Econ Comput Econ Cybernetics Stud Res 52: 127-142. doi: 10.24818/18423264/52.1.18.08
![]() |
[9] | Ajakaiye O, Ojowu O (1994) Exchange rate depreciation and the structure of sectoral prices in Nigeria under an alternative pricing regime, 1986-89. AERC, Nairobi, KE. |
[10] | Andersen ES, Schumpeter JA (2011) A theory of social and economic evolution. Basing-stoke: Palgrave Macmillan. |
[11] |
Asteriou D, Spanos K (2019) The relationship between financial development and economic growth during the recent crisis: Evidence from the EU. Financ Res Lett 28: 238-245. doi: 10.1016/j.frl.2018.05.011
![]() |
[12] | Bank TW (2019) The world bank data. Available from: POpulation Grwoth: https://data.worldbank.org/indicator/SP. POP. GROW. |
[13] |
Baxter M, Stockman AC (1989) Business cycles and the exchange-rate regime: some international evidence. J Monetary Econ 23: 377-400. doi: 10.1016/0304-3932(89)90039-1
![]() |
[14] | Belke AH, Setzer R (2003) Exchange rate volatility and employment growth: Empirical evidence from the CEE economies. |
[15] | Belke A, Gros D (2001) Real impacts of intra-European exchange rate variability: a case for EMU? Open Econ Rev 12: 231-264. |
[16] |
Berument H, Pasaogullari M (2003) Effects of the real exchange rate on output and inflation: evidence from Turkey. Dev Econ 41: 401-435. doi: 10.1111/j.1746-1049.2003.tb01009.x
![]() |
[17] | Bilas V, Bošnjak M, Novak I (2017) Examining the relationship between financial development and international trade in Croatia. South East Eur J Econ Bus 12. |
[18] | Bostan I, Firtescu BN (2018) Exchange rate effects on international commercial trade competitiveness. J Risk Financ Manage 11: 19. |
[19] | Central Bank of Nigeria (2016) Foreign exchange: Education in economics series. 4: 1-50. |
[20] | Chan KS (1993) Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann Stat 21: 520-533. |
[21] | Chu P (2001) Using BDS statistics to detect nonlinearity in time series. 53rd session of the International Statistical Institute (ISI). |
[22] |
Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16: 548-558. doi: 10.1107/S0021889883010985
![]() |
[23] | Danlami MR, Loganathan N, Streimikiene D, et al. (2018) The Effects of Financial Development-Trade Openness Nexus on Nigeria's Dynamic Economic Growth. Econ Sociol 11: 128. |
[24] | Danmola RA (2013) The impact of exchange rate volatility on the macro economic variables in Nigeria. Eur Sci J 9. |
[25] | Dorina L, Simina U (2007) Testing efficiency of the stock market in emerging economies. J Faculty Econ-Econ Sci Series 2: 827-831. |
[26] |
Ductor L, Grechyna D (2015) Financial development, real sector, and economic growth. Int Rev Econ Financ 37: 393-405. doi: 10.1016/j.iref.2015.01.001
![]() |
[27] |
Edwards S (1986) The pricing of bonds and bank loans in international markets: An empirical analysis of developing countries' foreign borrowing. Eur Econ Rev 30: 565-589. doi: 10.1016/0014-2921(86)90009-7
![]() |
[28] |
Elbadawi IA, Kaltani L, Soto R (2012) Aid, real exchange rate misalignment, and economic growth in Sub-Saharan Africa. World Dev 40: 681-700. doi: 10.1016/j.worlddev.2011.09.012
![]() |
[29] |
Elliott G, Müller UK (2006) Minimizing the impact of the initial condition on testing for unit roots. J Econometrics 135: 285-310. doi: 10.1016/j.jeconom.2005.07.024
![]() |
[30] | El-Ramly H, Abdel-Haleim SM (2008) The effect of devaluation on output in the Egyptian economy: A vector autoregression analysis. Int Res J Financ Econ 14: 82-99. |
[31] | Enders W, Granger CWJ (1998) Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates. J Bus Econ Stat 16: 304-311. |
[32] | Eneji MA, Nanwul DF, Eneji AI, et al. (2018) Effect of Exchange Rate Policy and its Volatility on Economic Growth in Nigeria. Int J Adv Stud Econ Public Sector Manage 6: 166-190. |
[33] | Farouq I, Sulong Z, Ahmad U, et al. (2020) Heterogeneous Data Approach on Financial development of Selected African Leading Economies. Data Brief 30: 105670. |
[34] | Farouq IS, Sulong Z, Sambo NU (2020) An empirical review of the role economic growth and financial globalization uncertainty plays on financial development. Afr J Econ Sust Dev 3: 48-63. |
[35] |
Farouq IS, Sulong Z (2020) The impact of economic growth, oil price, and financial globalization uncertainty on financial development: evidence from selected leading African countries. Int J Bus Econ Manage 7: 274-289. doi: 10.18488/journal.62.2020.75.274.289
![]() |
[36] | Farouq IS, Sulong Z (2021) The effects of foreign direct investment uncertainty on financial development in Nigeria: an asymmetric approach. Iran J Manage Stud (IJMS) 14: 383-399. |
[37] | Farouq IS, Sulong Z, Ahmad AU, et al. (2020) The effects of economic growth on financial development in Nigeria: Interacting role of foreign direct investment: An application of NARDL. Int J Sci Technol Res 9: 6321-6328. |
[38] | Sulong Z, Farouq IS (2021) Energy-Finance Nexus: Evidence from African Oil Exporting Countries. Int Energy J 21: 171-181. |
[39] | Farouq IS, Sulong Z, Sambo NU (2020) The Effects of Environmental Quality, Trade Openness, And Economic Growth on Financial Development in Algeria: A Diks And Panchenko Approach. J Crit Rev 7: 545-554. |
[40] | Farouq IS, Sulong Z, Sanusi SS (2020) The empirical relationship between economic growth, ICT, financial globalization uncertainty and financial development: Evidence from selected leading African economies. Islamic Univ Multidiscip J 7: 1-14. |
[41] |
Farouq IS, Sulong Z, Sambo NU (2020) Covid-19 Perception: A Survey in Kano Metropolis, Nigeria. J Manage Theory Pract (JMTP) 1: 83-89. doi: 10.37231/jmtp.2020.1.3.53
![]() |
[42] |
Farouq IS, Sambo NU, Ahmad AU, et al. (2021) Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries. Quant Financ Econ 5: 247-263. doi: 10.3934/QFE.2021011
![]() |
[43] | Farouq IS, Sambo NU, Jakada AH, et al. (2021) Real Exchange Rate and Economic Growth: The Interacting Role of Financial Development in Nigeria. Iran Econ Rev. |
[44] |
Garber PM, Svensson LE (1995) The operation and collapse of fixed exchange rate regimes. Handbook Int Econ 3: 1865-1911. doi: 10.1016/S1573-4404(05)80016-4
![]() |
[45] | Gül H, Özer M (2018) Frequency domain causality analysis of tourism and economic activity in Turkey. Eur J Tourism Res 19: 86-97. |
[46] | Gylfason T, Radetzki M (1985) Does devaluation make sense in the least developed coun tries? Seminar paper No 314. Institute for International Economics Studies, University of Stockholm. |
[47] | Gylfason T, Schmid M (1983) Does devaluation cause stagflation? Canadian J Econ, 641-654. |
[48] |
Hirschman AO (1943) The commodity structure of world trade. Q J Econ 57: 565-595. doi: 10.2307/1884656
![]() |
[49] | Ismaila M (2016) Exchange rate depreciation and Nigeria economic performance after Structural Adjustment Programmes (SAPs). NG-J Social Dev 417: 1-11. |
[50] | Iyeli II, Utting C (2017) Exchange rate volatility and economic growth in Nigeria. Int J Econ Commer Manage 5: 583-595. |
[51] |
Jehan Z, Irshad I (2020) Exchange Rate Misalignment and Economic Growth in Pakistan: The Role of Financial Development. Pakistan Dev Rev 59: 81-99. doi: 10.30541/v59i1pp.81-99
![]() |
[52] | Kamin SB, Klau M (1998) Some multi-country evidence on the effects of real exchange rates on output. FRB International Finance Discussion Paper. |
[53] |
Kapetanios G, Shin Y, Snell A (2003) Testing for a unit root in the nonlinear STAR framework. J Econometrics 112: 359-379. doi: 10.1016/S0304-4076(02)00202-6
![]() |
[54] | Karimo TM, Ogbonna OE (2017) Financial deepening and economic growth nexus in Nigeria: Supply-leading or demand-following? Economies 5: 4. |
[55] | Kassi DF, Sun G, Gnangoin YT, et al. (2019) Dynamics between Financial development, Energy consumption and Economic growth in Sub-Saharan African countries: Evidence from an asymmetrical and nonlinear analysis. |
[56] |
King RG, Levine R (1993) Finance and growth: Schumpeter might be right. Q J Econ 108: 717-737. doi: 10.2307/2118406
![]() |
[57] |
Lawal AI, Somoye RO, Babajide AA (2016) Impact of oil price shocks and exchange rate volatility on stock market behavior in Nigeria. Binus Bus Rev 7: 171-177. doi: 10.21512/bbr.v7i2.1453
![]() |
[58] |
Bahmani-Oskooee M, Nasir MA (2020) Asymmetric J-curve: evidence from industry trade between US and UK. Appl Econ 52: 2679-2693. doi: 10.1080/00036846.2019.1693700
![]() |
[59] | Moses TK, Victor OU, Uwawunkonye EG, et al. (2020) Does Exchange Rate Volatility Affect Economic Growth in Nigeria? Int J Econ Financ 12: 1-54. |
[60] |
Nasir MA, Leung M (2021) US trade deficit, a reality check: New evidence incorporating asymmetric and non-linear effects of exchange rate dynamics. World Econ 44: 818-836. doi: 10.1111/twec.12986
![]() |
[61] |
Nasir MA, Simpson J (2018) Brexit associated sharp depreciation and implications for UK's inflation and balance of payments. J Econ Stud 45: 231-246. doi: 10.1108/JES-02-2017-0051
![]() |
[62] |
Nasir MA, Jackson K (2019) An inquiry into exchange rate misalignments as a cause of major global trade imbalances. J Econ Stud 46: 902-924. doi: 10.1108/JES-03-2018-0102
![]() |
[63] | Nnanna OJ (2002) Monetary policy and exchange rate stability in Nigeria. |
[64] | Nsofor ES, Takon SM, Ugwuegbe SU (2017) Modeling Exchange Rate Volatility and Economic Growth in Nigeria. Noble Int J Econ Financ Res 2: 88-97. |
[65] | Nwosu NCF (2016) Impact of exchange rate volatility on economic growth in Nigeria, 1987-2014 (unpublished Ph. D Thesis). Department of Banking and Finance, University of Nigeria, Enugu. |
[66] | Obeng CK (2017) Effects of Exchange Rate Volatility on Non-Traditional Exports in Ghana. |
[67] | Obstfeld M, Rogoff KS, Wren-Lewis S (1996) Foundations of international macroeconomics. Cambridge, MA: MIT press. |
[68] |
Odusola AF, Akinlo AE (2001) Output, inflation, and exchange rate in developing countries: An application to Nigeria. Dev Econ 39: 199-222. doi: 10.1111/j.1746-1049.2001.tb00900.x
![]() |
[69] |
Ohlan R (2017) The relationship between tourism, financial development and economic growth in India. Future Bus J 3: 9-22. doi: 10.1016/j.fbj.2017.01.003
![]() |
[70] |
Oloyede JA, Fapetu O (2018) Effect of exchange rate volatility on economic growth in Nigeria (1986-2014). Afro-Asian J Financ Account 8: 404-412. doi: 10.1504/AAJFA.2018.095243
![]() |
[71] | Owolabi SA, Adegbite RO (2013) Nigeria and the Structural Adjustment Programme. Nigerian Economic Structure, Growth and Development., Benin City, 387-402. |
[72] |
Ozer M, Kamisli M (2016) Frequency domain causality analysis of interactions between financial markets of Turkey. Int Bus Res 9: 176-186. doi: 10.5539/ibr.v9n1p176
![]() |
[73] |
Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Appl Econometrics 16: 289-326. doi: 10.1002/jae.616
![]() |
[74] | Phiri A (2018) Nonlinear relationship between exchange rate volatility and economic growth (No. 08/2018). EERI Research Paper Series. |
[75] |
Rebelo S (1991) Long-run policy analysis and long-run growth. J Political Econ 99: 500-521. doi: 10.1086/261764
![]() |
[76] |
Rhodd RT (1993) The effect of real exchange rate changes on output: Jamaica's devaluation experience. J Int Dev 5: 291-303. doi: 10.1002/jid.3380050305
![]() |
[77] |
Sehrawat M, Giri AK (2016) Financial development, poverty and rural-urban income inequality: evidence from South Asian countries. Qual Quant 50: 577-590. doi: 10.1007/s11135-015-0164-6
![]() |
[78] | Sekkat K (2012) Exchange rate undervaluation, financial development and growth. In Economic Research Forum, Working Paper (No. 742). |
[79] | Serven L (1997) Irreversibility, uncertainty and private investment: Analytical issues and some lessons for Africa. J Afr Econ 6: 229-268. |
[80] |
Shahbaz M, Van Hoang TH, Mahalik MK, et al. (2017) Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis. Energy Econ 63: 199-212. doi: 10.1016/j.eneco.2017.01.023
![]() |
[81] | Shin Y, Yu B, Greenwood-Nimmo M (2009) Modelling asymmetric cointegration and dynamic multipliers in an ARDL framework, In: International Conference on Applied Economics and Time Series Econometrics. |
[82] |
Velasco C (1999) Gaussian semiparametric estimation of non‐stationary time series. J Time Series Anal 20: 87-127. doi: 10.1111/1467-9892.00127
![]() |
[83] | World Bank (2020) World Development Indicators (dataset). Available from: https://databank.worldbank.org/source/world-development-indicators. |
[84] | Yakub MU, Sani Z, Obiezue TO, et al. (2019) Empirical investigation on exchange rate volatility and trade flows in Nigeria. Central Bank Nigeria Econ Financ Rev 57: 23-46. |
[85] | Yakubu AS, Aboagye AQ, Mensah L, et al. (2018) Effect of financial development on international trade in Africa: Does measure of finance matter? J Int Trade Econ Dev 27: 917-936. |
[86] | Zhou P, Qi Z, Zheng S, et al. (2016) Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv: 1611.06639. |
1. | Shenxing Li, Wenhe Li, Dynamical Behaviors of a Stochastic Susceptible-Infected-Treated-Recovered-Susceptible Cholera Model with Ornstein-Uhlenbeck Process, 2024, 12, 2227-7390, 2163, 10.3390/math12142163 |