Research article Special Issues

Deployment of AI-based RBF network for photovoltaics fault detection procedure

  • Received: 09 October 2019 Accepted: 15 November 2019 Published: 26 November 2019
  • In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Although, a rich amount of research is available in the field of PV fault detection using ANN, this paper presents a novel methodology based on only two inputs for the training, validating and testing of the Radial Basis Function (RBF) network achieving unprecedented detection accuracy of 98.1%. The proposed methodology goes beyond data normalisation and implements a ‘mapping of inputs’ approach to the data set before exposing it to the network for training. The accuracy of the proposed network is further endorsed through testing of the network in partial shading and overcast conditions.

    Citation: Muhammad Hussain, Mahmoud Dhimish, Violeta Holmes, Peter Mather. Deployment of AI-based RBF network for photovoltaics fault detection procedure[J]. AIMS Electronics and Electrical Engineering, 2020, 4(1): 1-18. doi: 10.3934/ElectrEng.2020.1.1

    Related Papers:

    [1] Qinyan shen, Jiang wang, Liangying zhao . To investigate the internal association between SARS-CoV-2 infections and cancer through bioinformatics. Mathematical Biosciences and Engineering, 2022, 19(11): 11172-11194. doi: 10.3934/mbe.2022521
    [2] Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110
    [3] Yongyin Han, Maolin Liu, Zhixiao Wang . Key protein identification by integrating protein complex information and multi-biological features. Mathematical Biosciences and Engineering, 2023, 20(10): 18191-18206. doi: 10.3934/mbe.2023808
    [4] Li-Sha Pan, Zacharia Ackbarkha, Jing Zeng, Min-Li Huang, Zhen Yang, Hao Liang . Immune marker signature helps to predict survival in uveal melanoma. Mathematical Biosciences and Engineering, 2021, 18(4): 4055-4070. doi: 10.3934/mbe.2021203
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094
    [7] Babak Khorsand, Abdorreza Savadi, Javad Zahiri, Mahmoud Naghibzadeh . Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network. Mathematical Biosciences and Engineering, 2020, 17(4): 3109-3129. doi: 10.3934/mbe.2020176
    [8] Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107
    [9] Jian-Di Li, Gang Chen, Mei Wu, Yu Huang, Wei Tang . Downregulation of CDC14B in 5218 breast cancer patients: A novel prognosticator for triple-negative breast cancer. Mathematical Biosciences and Engineering, 2020, 17(6): 8152-8181. doi: 10.3934/mbe.2020414
    [10] Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432
  • In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Although, a rich amount of research is available in the field of PV fault detection using ANN, this paper presents a novel methodology based on only two inputs for the training, validating and testing of the Radial Basis Function (RBF) network achieving unprecedented detection accuracy of 98.1%. The proposed methodology goes beyond data normalisation and implements a ‘mapping of inputs’ approach to the data set before exposing it to the network for training. The accuracy of the proposed network is further endorsed through testing of the network in partial shading and overcast conditions.




    [1] Di Piazza C, Viola F, Vitale G (2018) Evaluation of ground currents in a PV system with high frequency modeling. International Journal of Renewable Energy Research 8: 1770-1778.
    [2] Dhimish M, Holmes V, Mehrdadi B, et al. (2017) Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions. Renew Energ 113: 438-460. doi: 10.1016/j.renene.2017.06.014
    [3] Dhimish M, Mather P, Holmes V (2018) Evaluating power loss and performance ratio of hot-spotted photovoltaic modules. IEEE T Electron Dev 56: 5419-5427.
    [4] Schirone L, Califano FP, Pastena M (1994) Fault detection in a photovoltaic plant by time domain Reflectometry. Prog Photovoltaics 2: 35-44. doi: 10.1002/pip.4670020106
    [5] Silvestre S, da Silva MA, Chouder A, et al. (2014) New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators. Energ Convers Manage 86: 241-249. doi: 10.1016/j.enconman.2014.05.008
    [6] Li X, Wen H, Hu Y, et al. (2019) Drift-free current sensorless MPPT algorithm in photovoltaic systems. Sol Energy 177: 118-126. doi: 10.1016/j.solener.2018.10.066
    [7] Wu Y, Lan Q, Sun Y (2009) Application of BP neural network fault diagnosis in solar photovoltaic system. 2009 International conference on Mechatronics and Automation 2581-2585.
    [8] Chen Z, Chen Y, Wu L, et al. (2019) Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energ Convers Manage 198: 111793. doi: 10.1016/j.enconman.2019.111793
    [9] Dhimish M, Mather P, Holmes V, et al. (2018) CDF modelling for the optimum tilt and azimuth angle for PV installations: case study based on 26 different locations in region of the Yorkshire UK. IET Renewable Power Generation 13: 399-408.
    [10] Pan T, Chen J, Zhou Z, et al. (2019) A Novel Deep Learning Network via Multi-Scale Inner Product with Locally Connected Feature Extraction for Intelligent Fault Detection. IEEE T Ind Inform 9: 5119-5128.
    [11] Belaout A, Krim F, Mellit A, et al. (2018) Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renew Energ 127: 548-558. doi: 10.1016/j.renene.2018.05.008
    [12] Lapedes A (1987) Nonlinear signal processing using neural networks. Technical Report No. LA-UR-87-2662.
    [13] Polo O, Bermejo F, Fernández G, et al. (2015) Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models. Renew Energ 81: 227-238. doi: 10.1016/j.renene.2015.03.023
    [14] Sun Y, Xu, J, Qiang H, et al. (2019) Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement 141: 217-226. doi: 10.1016/j.measurement.2019.03.006
    [15] Yagi Y, Kishi H, Hagihara R, et al. (2003) Diagnostic technology and an expert system for photovoltaic systems using the learning method. Sol Energ Mat Sol C 75: 655-663. doi: 10.1016/S0927-0248(02)00149-6
    [16] Chine W, Mellit A, Lughi V, et al. (2016) A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew Energ 90: 501-512. doi: 10.1016/j.renene.2016.01.036
    [17] Tadj M, Benmouiza K, Cheknane A, et al. (2014) Improving the performance of PV systems by faults detection using GISTEL approach. Energ Convers Manage 80: 298-304. doi: 10.1016/j.enconman.2014.01.030
    [18] Mellit A, Sağlam S, Kalogirou A (2013) Artificial neural network-based model for estimating the produced power of a photovoltaic module. Renew Energ 60: 71-78. doi: 10.1016/j.renene.2013.04.011
    [19] Chine W, Mellit A, Lughi V, et al. (2016) A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew Energ 90: 501-512. doi: 10.1016/j.renene.2016.01.036
    [20] Chen Y, Yu G, Long Y, et al. (2019) Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor. Bioresource Technol 293: 122103. doi: 10.1016/j.biortech.2019.122103
    [21] Zhao Z, Lou Y, Chen Y, et al. (2019) Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN). Bioresource Technol 282: 262-268. doi: 10.1016/j.biortech.2019.03.044
    [22] Karmacharya M, Gokaraju R (2017) Fault location in ungrounded photovoltaic system using wavelets and ANN. IEEE T Power Deliver 33: 549-559.
    [23] Dhimish M, Holmes V, Mehrdadi B, et al. (2018) Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew Energ 117: 257-274. doi: 10.1016/j.renene.2017.10.066
    [24] Fadhel S, Delpha C, Diallo D, et al. (2019) PV shading fault detection and classification based on IV curve using principal component analysis: Application to isolated PV system. Sol Energy 179: 1-10. doi: 10.1016/j.solener.2018.12.048
    [25] Dhimish M, Chen Z (2019) Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm. IEEE J Photovolt 9: 1819-1827. doi: 10.1109/JPHOTOV.2019.2940892
  • This article has been cited by:

    1. Edward A. Rietman, Jacob G. Scott, Jack A. Tuszynski, Giannoula Lakka Klement, Personalized anticancer therapy selection using molecular landscape topology and thermodynamics, 2017, 8, 1949-2553, 18735, 10.18632/oncotarget.12932
    2. Edward A. Rietman, Sophie Taylor, Hava T. Siegelmann, Marco A. Deriu, Marco Cavaglia, Jack A. Tuszynski, Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age, 2020, 21, 1422-0067, 1116, 10.3390/ijms21031116
    3. Elizabeth J. Brant, Edward A. Rietman, Giannoula Lakka Klement, Marco Cavaglia, Jack A. Tuszynski, Xu-jie Zhou, Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks, 2020, 15, 1932-6203, e0226883, 10.1371/journal.pone.0226883
    4. J. James Frost, Kenneth J. Pienta, Donald S. Coffey, Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem, 2018, 9, 1949-2553, 11429, 10.18632/oncotarget.22939
    5. Edward A. Rietman, John Platig, Jack A. Tuszynski, Giannoula Lakka Klement, Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions, 2016, 42, 0092-0606, 339, 10.1007/s10867-016-9410-y
    6. Edward Rietman, Jack A. Tuszynski, 2018, Chapter 8, 978-3-319-74973-0, 139, 10.1007/978-3-319-74974-7_8
    7. Ellen Kure Fischer, Antonio Drago, A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia, 2017, 124, 0300-9564, 765, 10.1007/s00702-017-1730-y
    8. Chang Yu, Edward A. Rietman, Hava T. Siegelmann, Marco Cavaglia, Jack A. Tuszynski, Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy, 2021, 11, 2076-3417, 8059, 10.3390/app11178059
    9. Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino, José Carlos Pinto, A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases, 2023, 24, 1422-0067, 16098, 10.3390/ijms242216098
    10. Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski, Edward A. Rietman, A Systems Biology Analysis of Chronic Lymphocytic Leukemia, 2024, 4, 2673-7523, 163, 10.3390/onco4030013
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5851) PDF downloads(736) Cited by(12)

Article outline

Figures and Tables

Figures(14)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog