
Citation: Javier Olarte, Jean-Luc Dauvergne, Alvaro Herrán, Nicholas E. Drewett, Emilie Bekaert, Ekaitz Zulueta, Raquel Ferret. Validation of thermal imaging as a tool for failure mode detection development[J]. AIMS Energy, 2019, 7(5): 646-659. doi: 10.3934/energy.2019.5.646
[1] | Fathy H. Riad, Eslam Hussam, Ahmed M. Gemeay, Ramy A. Aldallal, Ahmed Z.Afify . Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Mathematical Biosciences and Engineering, 2022, 19(7): 6551-6581. doi: 10.3934/mbe.2022309 |
[2] | S. H. Sathish Indika, Norou Diawara, Hueiwang Anna Jeng, Bridget D. Giles, Dilini S. K. Gamage . Modeling the spread of COVID-19 in spatio-temporal context. Mathematical Biosciences and Engineering, 2023, 20(6): 10552-10569. doi: 10.3934/mbe.2023466 |
[3] | Kai Wang, Zhenzhen Lu, Xiaomeng Wang, Hui Li, Huling Li, Dandan Lin, Yongli Cai, Xing Feng, Yateng Song, Zhiwei Feng, Weidong Ji, Xiaoyan Wang, Yi Yin, Lei Wang, Zhihang Peng . Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis. Mathematical Biosciences and Engineering, 2020, 17(4): 3052-3061. doi: 10.3934/mbe.2020173 |
[4] | Sarah R. Al-Dawsari, Khalaf S. Sultan . Modeling of daily confirmed Saudi COVID-19 cases using inverted exponential regression. Mathematical Biosciences and Engineering, 2021, 18(3): 2303-2330. doi: 10.3934/mbe.2021117 |
[5] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[6] | Mohamed S. Eliwa, Buthaynah T. Alhumaidan, Raghad N. Alqefari . A discrete mixed distribution: Statistical and reliability properties with applications to model COVID-19 data in various countries. Mathematical Biosciences and Engineering, 2023, 20(5): 7859-7881. doi: 10.3934/mbe.2023340 |
[7] | Francisco Julian Ariza-Hernandez, Juan Carlos Najera-Tinoco, Martin Patricio Arciga-Alejandre, Eduardo Castañeda-Saucedo, Jorge Sanchez-Ortiz . Bayesian inverse problem for a fractional diffusion model of cell migration. Mathematical Biosciences and Engineering, 2024, 21(4): 5826-5837. doi: 10.3934/mbe.2024257 |
[8] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[9] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[10] | Xiaomei Feng, Jing Chen, Kai Wang, Lei Wang, Fengqin Zhang, Zhen Jin, Lan Zou, Xia Wang . Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study. Mathematical Biosciences and Engineering, 2020, 17(4): 3637-3648. doi: 10.3934/mbe.2020205 |
Data modeling has become extremely complicated in recent years as a result of the massive amount of data collected from many sectors, mainly in engineering, medicine, ecology, and renewable energy. The most popular option for analyzing count data sets is the Poisson distribution. The Poisson distribution has the drawback of being unable to represent overdispersed data sets. Overdispersion happens when the variation exceeds the mean. For count data sets, many researchers have presented mixed-Poisson distributions such as Poisson inverse Gaussian by [1], Conway–Maxwell–Poisson [2], Generalized Poisson Lindley [3], Poisson Weibull [4], Poisson Ishita [5], Poisson quasi-Lindley [6], Poisson Xgamma [7,8], Poisson XLindley [9], Poisson Moment Exponential [10], among authors. Even though there are several discrete models in the literature, there is still plenty of room to suggest a new discretized model that is acceptable under a variety of scenarios.
Let X be a random variable having Ramos and Louzada distribution [11] with the probability density function (PDF) given by
f(x;λ)=(τ2−2τ+x)τ2(τ−1)e−(xτ), τ≥2,x>0. | (1) |
where τ is the scale parameter.
In this study, a new one-parameter discrete distribution for modeling count observations is introduced by compounding the Poisson distribution with Ramous-Louzada (RL) distribution. The resulting model is called the Poisson Ramous-Louzada (PRL) distribution. The major reason for the selection of the RL distribution as a compounding distribution is because of its simple form, which is needed to compute the statistical properties of the proposed distribution and estimate the unknown parameter. The proposed model may be used to model count datasets, which are frequently seen in real-world data modeling. To build a mixed Poisson model, it is assumed that the Poisson model's parameter is a random variable (RV) with a continuous distribution, and the count variable is drawn from the Poisson distribution conditional on the random parameter. As a result, the count variable's marginal distribution is a mixed Poisson distribution.
The remainder of the paper is structured as follows: The new model is described in Section 2 and gives graphical representations of PMF, and HRF. Section 3 deduces several mathematical characteristics. Section 4 estimates the PRL parameter using the following classical estimation methods, maximum likelihood estimation (MLE), Anderson Darling (AD), Cramer von Mises (CVM), ordinary least-squares (OLS) and weighted least squares (WLS), and a simulation study is also given. Section 5 additionally discusses the Bayesian model formulation for the suggested distribution. Section 6 examines three real-world data sets to demonstrate the versatility of the PRL distribution. Section 6 also includes a Bayesian study of real-world data sets using Markov chain Monte Carlo methods. Section 7 concludes with some recommendations.
A random variable X is said to follow the Poisson Ramos-Louzada distribution if it possesses the following stochastic representation
(X|θ)∼Poisson(g(θ)) |
(θ|τ)∼RL(τ) |
We call the marginal distribution of X the Poisson Ramos-Louzada distribution. The model is denoted by PRL(τ).
Theorem 1: The PMF of PRL distribution is given by
P(X=x,τ)=(1+1τ)−x(x−1+τ(τ−1))(τ−1)(1+τ)2;x=0,1,2,3,…&τ≥2 |
Proof: The PMF of the new probability model can be obtained as
g(x|θ)=e−θθxx!;x=0,1,2,3,…&θ>0 |
when its parameter θ follows RL distribution
f(θ;τ)=(τ2−2τ+θ)τ2(τ−1)e−(θτ) |
We have
P(X=x,τ)=∞∫0g(x|θ)f(θ;τ)dθ =1x!τ2(τ−1)∞∫0e−θθx(τ2−2τ+θ)e−(θτ)dθ =1x!τ2(τ−1)((τ2−2τ)∞∫0e−θθxe−(θτ)dθ+∞∫0e−θθx+1e−(θτ)dθ) =1x!τ2(τ−1)((τ2−2τ)(1+1τ)−x−1Γ(1+x)+(1+1τ)−2−xΓ(2+x)) P(X=x,τ)=(1+1τ)−x(x−1+τ(τ−1))(τ−1)(1+τ)2;x=0,1,2,3,…&τ≥2. | (2) |
The PMF behavior of the Poisson Ramos-Louzada distribution for various parameter values is shown in Figure 1.
As can be seen, the PMF has a positively skewed and can be used to discuss the count data that is positively skewed. The corresponding CDF of the discrete Poisson Ramos-Louzada distribution is given as
F(X=x)=pr(X≤x)=1−∞∑v=x+1P(v) =1−(1+1τ)−xτ(x+τ2)(τ−1)(1+τ)2;x=0,1,2,…;τ≥2. | (3) |
The corresponding survival function is
S(x;τ)=(1+1τ)−xτ(x+τ2)(τ−1)(1+τ)2, | (4) |
The hazard rate function (HRF), and reversed hazard rate function can be expressed as
h(x;τ)=x+τ(τ−1)−1τ(x+τ2), | (5) |
and
r(x;τ)=1−x+τ−τ2xτ+τ3−(1+1τ)x(τ−1)(1+τ)2. | (6) |
The graphs below depict the behavior of the HRF of the discrete PRL distribution for various parameter values.
This section has examined some statistical measures of the PRL distribution. Moments, the moment generating function (MGF), and the probability generation function are among them (pgf).
Assume X is a PRL random variable, the rth factorial moments can be derived as
μ′(r)=E[E(X(r)|θ)], where X(r)=X(X−1)(X−2)…(X−r+1) |
=1τ2(τ−1)∞∫0[∞∑x=0x(r)e−θθxx!](τ2−2τ+θ)e−(θτ)dθ |
=1τ2(τ−1)∞∫0[θr∞∑x=re−θθx−r(x−r)!](τ2−2τ+θ)e−(θτ)dθ |
Taking x+r in place of x within the bracket, we get
μ′(r)=1τ2(τ−1)∞∫0[θr∞∑x=0e−θθxx!](τ2−2τ+θ)e−(θτ)dθ=1τ2(τ−1)∞∫0θr(τ2−2τ+θ)e−(θτ)dθ=τr(−1+r+τ)Γ(1+r)τ−1. | (7) |
The first four factorial moments can be expressed as
μ′(1)=τ2τ−1, |
μ′(2)=2τ2(1+τ)τ−1, |
μ′(3)=6τ3(2+τ)τ−1, |
and
μ′(4)=24τ4(3+τ)τ−1. |
The first four moments about the mean of the PRL distribution are obtained.
μ2=τ2(τ2+τ−3)(τ−1)2, | (8) |
μ3=τ2(2τ4+3τ3−14τ2+4τ+7)(τ−1)3, | (9) |
μ4=τ2(9τ6+18τ5−92τ4+41τ3+77τ2−41τ−15)(τ−1)4, | (10) |
Using Eqs (8)–(10), the Index of Dispersion (ID), coefficient of skewness (CS), and coefficient of Kurtosis (CK) can be derived in closed forms,
ID(X)=Var(X)Mean(X)=τ2+τ−3τ−1, | (11) |
CS(X)=μ3(μ2)3╱2=τ2(7+4τ−14τ2+3τ3+2τ4)(τ−1)3(τ2(−3+τ+τ2)(−1+τ)2)3/2, | (12) |
and
CK(X)=9τ6+18τ5−92τ4+41τ3+77τ2−41τ−15τ2(τ2+τ−3)2. | (13) |
The moment-generating function of RV X can be expressed as
MX(s)=∞∑x=0exsP(X=x,τ) =τ(τ−es(τ−2)−1)−1(τ−1)(1+τ−esτ)2. | (14) |
The probability-generating function of PRL distribution can be derived as
PX(t)=∞∑x=0txP(X=x,τ) =−1−τ+2tτ+τ2−tτ2(−1+τ)(−1−τ+tτ)2. | (15) |
Table 1 displays some computational statistics of the PRL distribution for sundry parameter values.
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
In this section, the parameter of PRL distribution is examined using some classical estimation approaches. The considered estimation approaches are maximum likelihood, Anderson-Darling, Cramer von Mises, least squares, and weighted least squares.
Let X1,X2,X3,…Xn be a random sample of failure times from PRL distribution, and the likelihood function for the parameter τ can be written as
L(τ|x)=∏ni=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2, | (16) |
and log-likelihood function is specified by
l(τ|x)=∑ni=1log(1+1τ)−xi+∑ni=1log(xi−1+τ(τ−1))−nlog(τ−1)−nlog(1+τ)2. | (17) |
We get the following equation by deriving Eq (17) with regard to parameter τ:
∂l∂τ=∑ni=1xi(1+1τ)τ2+∑ni=12τ−1xi+τ(τ−1)−1−n(τ−1)−2n(τ+1). | (18) |
The ML estimate is obtained by equating the above equation to zero and solving it for parameter τ. However, the ensuing expression has not a closed-form result and the required results can be obtained using iterative procedures.
The Anderson-Darling (AD) estimator ˆτ of parameter τ can be defined by minimizing the following expression
AD(τ)=−n−1nn∑i=1(2i−1)[log(F(x(i:n)|τ))+log(1−F(x(i:n)|τ))], |
AD(τ)=−n−1n∑ni=1(2i−1)[log(1−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2)+log((1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2)], |
Alternatively, the estimator can also be obtained by solving the following nonlinear equation
n∑i=1(2i−1)[ϕ(x(i:n)|τ)F(x(i:n)|τ)−ϕ(x(n+1−i:n)|τ)1−F(x(n+1−i:n)|τ)]=0 |
where ϕ(xi:n|τ)=ddτF(x(i:n)|τ) and it reduces to
ϕ(xi:n|τ)=(1+1τ)−x(i:n)(−x(i:n)2(τ−1)−(τ−3)τ2−x(i:n)(−1+τ−3τ2+τ3))(τ−1)2(1+τ)3 | (19) |
The ordinary least-square (OLS) estimator of the PRL model parameter can be obtained by minimizing
LSE(τ)=n∑i=1[F(x(i:n)|τ)−in+1]2, |
with respect to the parameter τ. Moreover, the LSE of τ is also obtained by solving
m∑i=1[1−i1+n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0, |
The WLS estimate (WLSE) of τ, say ˆτ, can be determined by minimizing
WLSE(τ)=n∑i=1(n+1)2(n+2)i(n−i+1)[F(x(i:n)|τ)−in+1]2, |
with respect to τ. The WLSE of τ can also be obtained by solving
n∑i=1(1+n)2(2+n)i(n−i+1)[1−i1+n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0, |
In which ϕ(xi:n|τ) is presented in (19).
The Cramer von Mises (CVM) is a minimum distance-based estimator. The CVM of the PRL distribution can be obtained by minimizing
CVM(τ)=112n+n∑i=1[log(F(x(i:n)|τ))−2i−12n]2, |
with respect to the parameter τ.
The CVME of τ is also obtained by solving
n∑i=1[1−2i−12n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0. |
In this section, we performed a simulation study to evaluate the accuracy of all considered estimators. In the simulation run, we generate 10,000 samples of size n = 10, 25, 50,100,200, and 300 from PRL distribution and then calculate the average estimates (AE), absolute bias (AB), mean relative error (MRE) and mean square error (MSE). For this purpose, we consider the six sets of values of parameter τ. The simulation results are presented in Tables 2–7.
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
The Bayesian parameter estimation technique is an alternate to classical maximum likelihood estimation. In Bayesian estimation, a prior distribution must be defined for each unknown parameter. Consider a set of data x=x1,x2,…,xn taken from discrete PRL distribution and the likelihood function is provided by
L(τ|x)=∏ni=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2. | (20) |
The Bayesian model is constructed by stating the prior distribution for the model parameter and then multiplying it with the likelihood function for the provided data using the Bayes theorem to generate the posterior distribution function. The prior distribution of parameter τ is denoted as p(τ).
p(τ|x)∝L(τ|x)p(τ). |
For the proposed distribution, the gamma distribution is considered a prior distribution with known hyperparameters such as τ∼Gamma(α,β). The posterior expression, up to proportionality, may be found by multiplying the likelihood by the prior, and this can be represented as
p(τ|x)∝βαΓ(α)τα−1exp(−τβ)n∏i=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2 |
The posterior density is not mathematically tractable; for inference purposes, we will utilize the Markov Chain Monte Carlo (MCMC) approach to mimic posterior samples, allowing for easy sample-based conclusions.
In the present study, we explore the application of MCMC algorithms implemented in the package MCMCpack of the R program to simulate samples from the joint posterior distribution. For this purpose, we generated 1006000 samples of the joint posterior distribution of interest. The effects of the initial values in the iterative process are eliminated after a burn-in phase of 6000 simulated samples. To achieve approximately independent samples, a thinning interval of size 300 was utilized. The parameter Bayes estimates were gained by taking the expected value of generated samples. Traceplots and the Geweke diagnostic were used to monitor the convergence of the simulated sequences. The asymptotic standard error of the difference divided by the difference between the two means of non-overlapping parts of a simulated Markov chain is the basis of the Geweke convergence diagnostic. We may say that a chain has reached convergence if its corresponding absolute z score is smaller than 1.96 since this z score asymptotically follows a typical normal distribution. The construction of interesting posterior summaries was done using the R software package MCMCpack.
This section is ardent to prove the usefulness of the discrete Poisson Ramos-Louzada distribution in the modeling of three datasets. We compare the fits of the proposed distribution with some renowned one-parameter discrete distributions, discrete Raleigh [12], Poisson, discrete Pareto [13] and discrete Burr-Hatke [14], discrete Inverted Topp-Leone [15]. The Kolmogorov-Smirnov (KS) test, Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to compare the fitted models. We also illustrate the estimation procedures based on censored samples proposed in the previous section with three examples from the literature.
A sample of the failure time of 15 electronic components in an acceleration life test [16]. The observations are 1, 5, 6, 11, 12, 19, 20, 22, 23, 31, 37, 46, 54, 60, and 66. The mean and variance of the first dataset are 27.533 and 431.94 respectively. The dispersion index value is 15.689 which indicates that the dataset is overdispersed. We determine the MLEs, standard errors (SE), and model selection measures (AIC, BIC, and KS) for the first dataset using the R software's maxLik package. These results are shown in Table 8 along with the model selection measures.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
For Bayesian data analysis, the parameter τ of the PRL distribution was assumed to have an approximate gamma as the prior distribution, that is, τ∼Gamma(0.001,0.1). Figure 4 depicts posterior samples for the parameter τ. The evaluation of the MCMC draws across iterations is assessed using traceplot, posterior density, and ACF plot. From the traceplot, it is interesting to note that the samples produced attained acceptable convergence. The ACF plot indicates that the posterior samples are uncorrelated. Furthermore, the z-score of the Geweke test is –0.2498, indicating that the samples have sufficiently converged to a stable distribution. The posterior mean for τ is τBayes=13.00418 with a standard deviation of 2.18641, and the corresponding 95% highest density interval is (9.008356, 17.3976). We observe that the ML and Bayesian estimates are quite similar.
A sample of 66 patients died due to COVID-19 in China from January 23, 2022, to March 28, 2020. The data are: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97,108, 97,146,121,143,142,105, 98,136,114,118,109, 97,150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3 and 5. Some descriptive measures (mean, variance, and dispersion index) for this dataset are 47.742, 1924.8, and 38.696. We acquire the ML estimates for the parameter, and model selection metrics (AIC, BIC, and KS) for the second dataset. These results are shown in Table 9.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
For Bayesian data analysis, the parameter tau of the PRL distribution was assumed to have a gamma prior distribution. The associated Geweke z-score is –0.08203, which likewise indicates that the samples have sufficiently converged to a stable distribution. The posterior mean for τ is τBayes=32.0684 with a standard deviation of 2.89397, and a 95% HDI of (26.20931, 37.44432). The ML and Bayesian estimates are discernibly similar to one another.
The third dataset is also about deaths due to COVID-19 in Pakistan from 18 March 2020 to 30 June 2020. The data are: 1, 6, 6, 4, 4, 4, 1, 20, 5, 2, 3, 15, 17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 20, 31, 42, 32, 23, 17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 30, 28, 35, 57, 78, 88, 60, 78, 67, 82, 68, 97, 67, 65,105, 83,101,107, 88,178,110,136,118,136,153,119, 89,105, 60,148, 59, 73, 83, 49,137 and 91. Some computational measures, mean, variance and index of dispersion for the third dataset are; 50.057, 1758.8, and 35.135. The MLEs and goodness-of-fit measures for this dataset are given in Table 10.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |
For the third dataset, the gamma distribution is again considered as the prior distribution, and the posterior samples for the parameter are described in Figure 8. Furthermore, the Geweke z-score is used as a diagnostic measure and its value is –0.03794, suggesting convergence of the samples to a stable distribution. The posterior mean for the third dataset is τBayes=46.96159 with a standard deviation of 4.92385. The corresponding 95% HDI (37.94273, 57.07319). The ML and Bayes estimate is quite similar to each other.
In this paper, we introduce a one-parameter discrete distribution by compounding Poisson with the Ramos-Louzada distribution. The proposed distribution is showing unimodal and positively skewed behavior. The failure rate of new distribution is increasing pattern. Some statistical properties derived include the moment-generating function, probability-generating function, factorial moments, dispersion index, skewness and kurtosis. The model parameter is estimated using the maximum likelihood estimation approach and the behavior of the derived estimator is assessed via a simulation study. The usefulness of the proposed distribution is carried out using three real-life datasets. The proposed distribution provides more efficient results than all considered competitive distributions. The Bayesian analysis is also performed by taking the MCMC approximation approach.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare there is no conflict of interest.
[1] |
Doh CH, Kim DH, Kim HS, et al. (2008) Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J Power Sources 175: 881-885. doi: 10.1016/j.jpowsour.2007.09.102
![]() |
[2] |
Zaghib K, Dontigny M, Guerfi A, et al. (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sources 216: 192-200. doi: 10.1016/j.jpowsour.2012.05.025
![]() |
[3] |
Kim HJ, Lee JH, Baek DH, et al. (2017) A study on thermal performance of batteries using thermal imaging and infrared radiation. J Ind Eng Chem 45: 360-365. doi: 10.1016/j.jiec.2016.10.003
![]() |
[4] | Chatterjee K, Majumdar P, Schroeder D, et al. (2018) Performance analysis of Li-ion battery under various thermal and load conditions. J Electrochem Energy Convers Storage 16: 21006-21007. |
[5] | Bharathan D, Pesaran A, Vlahinos A, et al. (2005) Improving battery design with electro-thermal modeling. In 2005 IEEE Vehicle Power and Propulsion Conference, 1-8. |
[6] |
Kim US, Shin CB, Kim CS (2009) Modeling for the scale-up of a lithium-ion polymer battery. J Power Sources 189: 841-846. doi: 10.1016/j.jpowsour.2008.10.019
![]() |
[7] | Wang Z, Li Z, Liu Q (2011) Infrared thermography non-destructive evaluation of lithium-ion battery. In Proc SPIE, 81934I1. |
[8] |
Kim US, Yi J, Shin CB, et al. (2013) Modeling the thermal behaviors of a lithium-Ion battery during constant-power discharge and charge operations. J Electrochem Soc 160: A990-A995. doi: 10.1149/2.146306jes
![]() |
[9] | Yi J, Kim US, Shin CB, et al. (2013) Three-dimensional thermal modeling of a lithium-Ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J Electrochem Soc 160: A437-A443. |
[10] |
Murashko K, Pyrhönen J, Laurila L (2013) Three-dimensional thermal model of a lithium ion battery for hybrid mobile working machines: Determination of the model parameters in a pouch cell. IEEE Trans Energy Convers 28: 335-343. doi: 10.1109/TEC.2013.2255291
![]() |
[11] | Giegerich M, Koffel S, Filimon R, et al. (2013) Electrothermal modeling and characterization of high capacity lithium-ion battery systems for mobile and stationary applications. InIECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 6721-6727. |
[12] |
Yi J, Lee J, Shin CB, et al. (2015) Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling. J Power Sources 277: 379-386. doi: 10.1016/j.jpowsour.2014.12.028
![]() |
[13] | Pesaran AA, Keyser M (2001) Thermal characteristics of selected EV and HEV batteries. In Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533), 219-225. |
[14] |
Waldmann T, Bisle G, Hogg BI, et al. (2015) Influence of cell design on temperatures and temperature gradients in lithium-ion cells: An in operando study. J Electrochem Soc 162: A921-A927. doi: 10.1149/2.0561506jes
![]() |
[15] |
Zhang X, Klein R, Subbaraman A, et al. (2019) Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method. J Power Sources 412: 552-558. doi: 10.1016/j.jpowsour.2018.11.064
![]() |
[16] | Keyser M, Pesaran A, Oweis S, et al. (2019) Thermal evaluation and performance of high-power lithium-ion cells. In NREL/CP-540-26616, 1-12. |
[17] |
Daino MM, Lu Z, LaManna JM, et al. (2011) Through-Plane water transport visualization in a PEMFC by visible and infrared imaging. Electrochem Solid-State Lett 14: B51-B54. doi: 10.1149/1.3560163
![]() |
[18] |
Obeisun OA, Meyer Q, Robinson J, et al. (2014) Development of open-cathode polymer electrolyte fuel cells using printed circuit board flow-field plates: Flow geometry characterisation. Int J Hydrogen Energy 39: 18326-18336. doi: 10.1016/j.ijhydene.2014.08.106
![]() |
[19] |
Guo H, Wang MH, Liu JX, et al. (2015) Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed. J Power Sources 273: 775-783. doi: 10.1016/j.jpowsour.2014.09.159
![]() |
[20] |
Robinson JB, Darr JA, Eastwood DS, et al. (2014) Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. J Power Sources 252: 51-57. doi: 10.1016/j.jpowsour.2013.11.059
![]() |
[21] | Robinson JB, Shearing PR, Brett DJ (2016) Thermal imaging of electrochemical power systems: A review. J Imaging 2: 1-20. |
[22] | Keil P, Rumpf K, Jossen A (2013) Thermal impedance spectroscopy for Li-ion batteries with an IR temperature sensor system. In 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 1-11. |
[23] |
Zhang G, Tian H, Ge S, et al. (2018) Visualization of self-heating of an all climate battery by infrared thermography. J Power Sources 376: 111-116. doi: 10.1016/j.jpowsour.2017.11.052
![]() |
[24] | Vantuch T, Fulneček J, Holuša M, et al. (2018) An examination of thermal features' relevance in the task of battery-fault detection. Appl Sci 8: 1-16. |
[25] | Maldague XPV (1993) Nondestructive Evaluation of Materials by Infrared Thermography. Springer Science & Business Media. |
[26] |
Grinzato E, Vavilov V, Kauppinen T (1998) Quantitative infrared thermography in buildings. Energy Build 29: 1-9. doi: 10.1016/S0378-7788(97)00039-X
![]() |
[27] |
Hung YY, Chen YS, Ng SP, et al. (2009) Review and comparison of shearography and active thermography for nondestructive evaluation. Mater Sci Eng R Reports 64: 73-112. doi: 10.1016/j.mser.2008.11.001
![]() |
[28] | Eaton JW, Bateman D, Hauberg S, et al. (2019) GNU Octave version 5.1.0. Available from: https://www.gnu.org/software/octave/doc/v5.1.0/. |
[29] |
Bouad N, Chapon L, Marin-Ayral R-M, et al. (2003) Neutron powder diffraction study of strain and crystallite size in mechanically alloyed PbTe. J Solid State Chem 173: 189-195. doi: 10.1016/S0022-4596(03)00017-3
![]() |
[30] |
Filatov S, Bendeliani N, Albert B, et al. (2005) High-pressure synthesis of α-PbO2 and its crystal structure at 293, 203, and 113 K from single crystal diffraction data. Solid State Sci 7: 1363-1368. doi: 10.1016/j.solidstatesciences.2005.08.007
![]() |
[31] | Pavlov D, Nikolov P (2012) Lead-carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty. J Electrochem Soc 159: A1215-A1225. |
[32] |
Yang J, Hu C, Wang H, et al. (2017) Review on the research of failure modes and mechanism for lead-acid batteries. Int J Energy Res 41: 336-352. doi: 10.1002/er.3613
![]() |
[33] |
Wagner R (1995) Failure modes of valve-regulated lead/acid batteries in different applications. J Power Sources 53: 153-162. doi: 10.1016/0378-7753(94)01983-3
![]() |
[34] | Glaize C, Genies S (2012) Lead and Nickel Electrochemical Batteries. Wiley. |
[35] |
May GJ, Davidson A, Monahov B (2018) Lead batteries for utility energy storage: A review. J Energy Storage 15: 145-157. doi: 10.1016/j.est.2017.11.008
![]() |
[36] |
Culpin B, Rand DAJ (1991) Failure modes of lead/acid batteries. J Power Sources 36: 415-438. doi: 10.1016/0378-7753(91)80069-A
![]() |
[37] |
Brik K, ben Ammar F (2013) Causal tree analysis of depth degradation of the lead acid battery. J Power Sources 228: 39-46. doi: 10.1016/j.jpowsour.2012.10.088
![]() |
1. | Fatimah M. Alghamdi, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain, Eslam Hussam, Ehab M. Almetwally, Hassan M. Aljohani, Manahil SidAhmed Mustafa, Etaf Alshawarbeh, M. Yusuf, Discrete Poisson Quasi-XLindley distribution with mathematical properties, regression model, and data analysis, 2024, 17, 16878507, 100874, 10.1016/j.jrras.2024.100874 | |
2. | Osama Abdulaziz Alamri, Classical and Bayesian estimation of discrete poisson Agu-Eghwerido distribution with applications, 2024, 109, 11100168, 768, 10.1016/j.aej.2024.09.063 | |
3. | Amani Alrumayh, Marco Costa, Bernoulli Poisson Moment Exponential Distribution: Mathematical Properties, Regression Model, and Applications, 2024, 2024, 0161-1712, 10.1155/2024/5687958 | |
4. | Seth Borbye, Suleman Nasiru, Kingsley Kuwubasamni Ajongba, Vladimir Mityushev, Poisson XRani Distribution: An Alternative Discrete Distribution for Overdispersed Count Data, 2024, 2024, 0161-1712, 10.1155/2024/5554949 | |
5. | Waheed Babatunde Yahya, Muhammad Adamu Umar, A new poisson-exponential-gamma distribution for modelling count data with applications, 2024, 0033-5177, 10.1007/s11135-024-01894-x | |
6. | Yingying Qi, Dan Ding, Yusra A. Tashkandy, M.E. Bakr, M.M. Abd El-Raouf, Anoop Kumar, A novel probabilistic model with properties: Its implementation to the vocal music and reliability products, 2024, 107, 11100168, 254, 10.1016/j.aej.2024.07.035 | |
7. | Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain, A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications, 2024, 10, 24058440, e36764, 10.1016/j.heliyon.2024.e36764 | |
8. | Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096 | |
9. | Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123 | |
10. | Tabassum Naz Sindhu, Anum Shafiq, Abdon Atangana, Tahani A. Abushal, Alia A. Alkhathami, Control Charts for Overdispersed Count Data: Exploring the Poisson Chris‐Jerry Distribution in Agriculture and Medicine, 2025, 0748-8017, 10.1002/qre.3745 | |
11. | Abdullah M. Alomair, Muhammad Ahsan-ul-Haq, Analysis of radiation and corn borer data using discrete Poisson Xrama distribution, 2025, 18, 16878507, 101388, 10.1016/j.jrras.2025.101388 | |
12. | Muteb Faraj Alharthi, Samirah Alzubaidi, A novel discrete statistical model with applications on medical and health real data, 2025, 125, 11100168, 42, 10.1016/j.aej.2025.04.026 | |
13. | Abdullah M. Alomair, Muhammad Ahsan-ul-Haq, Modeling radiation and electronic devices data with Poisson-Darna distribution, 2025, 18, 16878507, 101661, 10.1016/j.jrras.2025.101661 | |
14. | Ali M. Mahnashi, Abdullah A. Zaagan, Poisson copoun distribution: An alternative discrete model for count data analysis, 2025, 128, 11100168, 571, 10.1016/j.aej.2025.05.085 |
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |