Citation: Allen L. Nazareno, Raymond Paul L. Eclarin, Eduardo R. Mendoza, Angelyn R. Lao. Linear conjugacy of chemical kinetic systems[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8322-8355. doi: 10.3934/mbe.2019421
[1] | G. Craciun, F. Nazarov and C. Pantea Persistence and permanence of mass action and power law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329. |
[2] | A. Sorribas, B. Hernández-Bermejo, E. Vilaprinyo, et al., Cooperativity and saturation in biochemical systems: a saturable formalism using Taylor series approximation, Biotechnol. Bioeng., 97 (2007), 1259-1277. |
[3] | G. Craciun and C. Pantea, Identifiability of chemical reaction networks, J. Math. Chem., 44 (2008), 244-259. |
[4] | G. Farkas, Kinetic lumping schemes, Chem. Eng. Sci., 54 (1999), 3909-3915. |
[5] | M. D. Johnston, D. Siegel and G. Szederkényi, Computing weakly reversible linearly conjugate networks with minimal deficiency, Math. Biosci., 241 (2013), 88-98. |
[6] | A. Gábor, K. M. Hangos, J. R. Banga, et al., Reaction network realizations of rational biochemical systems and their structural properties, J. Math. Chem., 53 (2015), 1657-1686. |
[7] | M. J. Cortez, A. Nazareno and E. Mendoza, A computational approach to linear conjugacy in a class of power law kinetic systems, J. Math. Chem., 56 (2018), 336-357. |
[8] | C. P. Arceo, E. Jose, A. Marin-Sanguino, et al., Chemical reaction network approaches to biochemical systems theory, Math. Biosci., 269 (2015), 135-152. |
[9] | M. Feinberg and F. J. Horn, Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces, Arch. Ration. Mech. An., 66 (1977), 83-97. |
[10] | C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685- 1721. |
[11] | E. Feliu and C. Wiuf, Preclusion of switch behavior in networks with mass-action kinetics, Appl. Math. Comput., 219 (2012), 1449-1467 |
[12] | C. P. Arceo, E. Jose, A. Lao, et al., Reactant subspaces and kinetics of chemical reaction networks, J. Math. Chem., 56 (2018), 395-422. |
[13] | M. D. Johnston and D. Siegel, Linear conjugacy of chemical reaction networks, J. Math. Chem., 49 (2011), 1263-1282. |
[14] | F. Brouers, The fractal (BSf) kinetic equations and its approximations, J. Modern Phys., 5 (2014), 1594-1601. |
[15] | G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. |
[16] | C. P. Arceo, E. Jose, A. Lao, et al., Reaction networks and kinetics of biochemical systems, Math. Biosci., 283 (2017), 13-29. |
[17] | S. Müller and G. Regensburger, Generalized mass action systems and positive solutions of polynomial equations with real and symbolic exponents (invited talk), In: Proceedings of the International Workshop on Computer Algebra in Scientific Computing, 2014 September, Springer, 8660, 302-323. |
[18] | N. Fortun, E. Mendoza, L. Razon, et al., A Deficiency Zero Theorem for a class of power law kinetic systems with non-reactant determined interactions, Commun. Math. Comput. Chem. (MATCH), 81 (2019), 621-638. |
[19] | B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51 (2013), 153-178. |
[20] | N. Fortun, E. Mendoza, L. Razon, et al., Multistationarity in earth's pre-industrial carbon cycle models, Manila J. Sci., 11 (2018), 81-96. |
[21] | M. D. Johnston, Translated chemical reaction networks. Bull. Math. Biol., 76 (2014), 1081-1116. |
[22] | D. A. Talabis, C. P. Arceo and E. Mendoza, Positive equilibria of a class of power law kinetics, J. Math. Chem., 56 (2018), 358-394. |
[23] | J. J. Heijnen, Approximative kinetic formats used in metabolic network modeling, Biotechnol. Bioeng., 91 (2005), 534-545. |
[24] | V. Hatzimanikatis and J. E. Bailey, MCA has more to say, J. Theor. Biol., 182 (1996), 233-242. |
[25] | M. D. Johnston, D. Siegel and G. Szederkényi, A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks, J. Math. Chem., 50 (2012), 274-288. |
[26] | A. Gábor, K. M. Hangos and G. Szederkényi, Linear conjugacy in biochemical reaction networks with rational reaction rates. J. Math. Chem., 54 (2016), 1658-1676. |
[27] | M. D. Johnston, A linear programming approach to dynamical equivalence, linear conjugacy, and the deficiency one theorem, J. Math. Chem., 54 (2016), 1612-1631. |
[28] | M. D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77 (2015), 1065-1100. |