Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Estimating leaf area of Jatropha nana through non-destructive allometric models

  • Jatropha nana is an endemic, threatened under-shrub possessing significant economic potential. In spite of this economic importance, there has been no allometric equation described till date to estimate its leaf area. We address this lacuna by describing a method of estimating the leaf area directly, without using expensive leaf meters. For the two leaf morphotypes of J. nana (monolobed and trilobed), developing and mature leaves were collected from field and an allometric relationship was developed, using length (L), width (W) and LW as independent variables. For the described equations, the coefficient of determination (Ra2) between true leaf area and leaf dimensions ranged from 0.8356 to 0.9963. After applying certain statistical criteria we report that the equations Ŷ = 0.6942*(LW) and Ŷ = 0.6426*(LW) are the best for estimating the monolobed and trilobed leaf area respectively. These equations could be further simplified by considering only one leaf dimension (W). Thus the equation Ŷ = 1.2890*(W)1.8794 for monolobed leaves and Ŷ = 1.1089*(W)1.8030 for trilobed leaves estimate leaf area of J. nana with high precision, accuracy, random dispersion pattern of residuals and without any bias. These equations will be vital for addressing several further questions on this under-researched species.

    Citation: Marcelo F. Pompelli, José N. B. Santos, Marcos A. Santos. Estimating leaf area of Jatropha nana through non-destructive allometric models[J]. AIMS Environmental Science, 2019, 6(2): 59-76. doi: 10.3934/environsci.2019.2.59

    Related Papers:

    [1] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [2] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [3] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [4] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
    [5] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [6] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
    [7] M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
    [8] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [9] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [10] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
  • Jatropha nana is an endemic, threatened under-shrub possessing significant economic potential. In spite of this economic importance, there has been no allometric equation described till date to estimate its leaf area. We address this lacuna by describing a method of estimating the leaf area directly, without using expensive leaf meters. For the two leaf morphotypes of J. nana (monolobed and trilobed), developing and mature leaves were collected from field and an allometric relationship was developed, using length (L), width (W) and LW as independent variables. For the described equations, the coefficient of determination (Ra2) between true leaf area and leaf dimensions ranged from 0.8356 to 0.9963. After applying certain statistical criteria we report that the equations Ŷ = 0.6942*(LW) and Ŷ = 0.6426*(LW) are the best for estimating the monolobed and trilobed leaf area respectively. These equations could be further simplified by considering only one leaf dimension (W). Thus the equation Ŷ = 1.2890*(W)1.8794 for monolobed leaves and Ŷ = 1.1089*(W)1.8030 for trilobed leaves estimate leaf area of J. nana with high precision, accuracy, random dispersion pattern of residuals and without any bias. These equations will be vital for addressing several further questions on this under-researched species.


    Fractional differential equations (FDEs) provide many mathematical models in physics, biology, economics, and chemistry, etc [1,2,3,4]. In fact, it consists of many integrals and derivative operators of non-integer orders, which generalize the theory of ordinary differentiation and integration. Hence, a more general approach is allowed to calculus and one can say that the aim of the FDEs is to consider various phenomena by studying derivatives and integrals of arbitrary orders. For intercalary specifics about the theory of FDEs, the readers are referred to the books of Kilbas et al.[2] and Podlubny [4]. In the literature, several concepts of fractional derivatives have been represented, consisting of Riemann-Liouville, Liouville-Caputo, generalized Caputo, Hadamard, Katugampola, and Hilfer derivatives. The Hilfer fractional derivative [5] extends both Riemann-Liouville and Caputo fractional derivatives. For applications of Hilfer fractional derivatives in mathematics and physics, etc see [6,7,8,9,10,11]. For recent results on boundary value problems for fractional differential equations and inclusions with the Hilfer fractional derivative see the survey paper by Ntouyas [12]. The ψ-Riemann-Liouville fractional integral and derivative operators are discussed in [1], while the ψ-Hilfer fractional derivative is discussed in [13]. Recently, the notion of a generalized proportional fractional derivative was introduced by Jarad et al. [14,15,16]. For some recent results on fractional differential equations with generalized proportional derivatives, see [17,18].

    In [19], an existence result was proved via Krasnosel'ski˘i's fixed-point theorem for the following sequential boundary value problem of the form

    {HDα,ς,ψ[HDβ,ς,ψp(w)ϕ(w,p(w))ni=1Iνi;ψhi(w,p(w))]=Υ(w,p(w)),w[a,b],p(a)=0,HDb,ς,ψp(a)=0,p(b)=τp(ζ), (1.1)

    where HDω,ς,ψ indicates the ψ-Hilfer fractional derivative of order ω{α,β}, with 0<α1, 1<β2, 0ς<1, Iνi;ψ is the ψ-Riemann–Liouville fractional integral of order νi>0, for i=1,2,,n, hiC([0,1]×R,R), for i=1,2,,n, ϕC([0,1]×R,R{0}), ΥC([0,1]×R,R), τR and ζ(a,b). In [16], the consideration of Hilfer-type generalized proportional fractional derivative operators was initiated.

    Coupled systems of fractional order are also significant, as such systems appear in the mathematical models in science and engineering, such as bio-engineering [20], fractional dynamics [21], financial economics [22], etc. Coupled systems of FDEs with diverse boundary conditions have been the focus of many researches. In [23], the authors studied existence and Ulam-Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Existence and uniqueness results are derived in [24] for a coupled system of Hilfer-Hadamard fractional differential equations with fractional integral boundary conditions. Recently, in [25] a coupled system of nonlinear fractional differential equations involving the (k,ψ)-Hilfer fractional derivative operators complemented with multi-point nonlocal boundary conditions were discussed. Moreover, Samadi et al. [26] have considered a coupled system of Hilfer-type generalized proportional fractional differential equations.

    In this article, motivated by the above works, we study a coupled system of ψ-Hilfer sequential generalized proportional FDEs with boundary conditions generated by the problem (1.1). More precisely, we consider the following coupled system of nonlinear proportional ψ-Hilfer sequential fractional differential equations with multi-point nonlocal boundary conditions of the form

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2), (1.2)

    where HDν,ϑ1;ς;ψ denotes the ψ-Hilfer generalized proportional derivatives of order ν{ν1,ν2,ν3,ν4}, with parameters ϑl, 0ϑl1, l{1,2,3,4}, ψ is a continuous function on [t1,t2], with ψ(w)>0, pIη,ς,ψ is the generalized proportional integral of order η>0, η{ηi,ηj}, θ1,θ2R, ξ1,ξ2[t1,t2], Φ1,Φ2C([t1,t2]×R×R,R{0}) and Hi,Gj,Υ1,Υ2C([t1,t2]×R×R,R), for i=1,2,,n and j=1,2,,m.

    We emphasize that:

    ● We study a general system involving ψ-Hilfer proportional fractional derivatives.

    ● Our equations contain fractional derivatives of different orders as well as sums of fractional integrals of different orders.

    ● Our system contains nonlocal coupled boundary conditions.

    ● Our system covers many special cases by fixing the parameters involved in the problem. For example, taking ψ(w)=w, it will reduce to a coupled system of Hilfer sequential generalized proportional FDEs with boundary conditions, while if ς=1, it reduces to a coupled system of ψ-Hilfer sequential FDEs. Besides, by taking Φ1,Φ2=1 in the problem (1.2), then we obtain the following new coupled system of the form:

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2).

    In obtaining the existence result of the problem (1.2), first the problem (1.2) is converted into a fixed-point problem and then a generalization of Krasnosel'ski˘i's fixed-point theorem due to Burton is applied.

    The structure of this article has been organized as follows: In Section 2, some necessary concepts and basic results concerning our problem are presented. The main result for the problem (1.2) is proved in Section 3, while Section 4 contains an example illustrating the obtained result.

    In this section, we summarize some known definitions and lemmas needed in our results.

    Definition 2.1. [17,18] Let ς(0,1] and ν>0. The fractional proportional integral of order ν of the continuous function F is defined by

    pIν,ς,ψF(w)=1ςνΓ(ν)wt1eς1ς(ψ(w)ψ(s))(ψ(w)ψ(s))ν1F(s)ψ(s)ds,t1>w.

    Definition 2.2. [17,18] Let ς(0,1], ν>0, and ψ(w) is a continuous function on [t1,t2], ψ(w)>0. The generalized proportional fractional derivative of order ν of the continuous function F is defined by

    (pDν,ς,ψF)(w)=(pDn,ς,ψ)ςnνΓ(nν)wt1eς1ς(ψ(w)ψ(s))(ψ(w)ψ(s))nν1F(s)ψ(s)ds,

    where n=[ρ]+1 and [ν] denotes the integer part of the real number ν, where Dn,ς,ψ=Dς,ψDς,ψntimes.

    Now the generalized Hilfer proportional fractional derivative of order ν of function F with respect to another function ψ is introduced.

    Definition 2.3. [27] Let ς(0,1], F,ψCm([t1,t2],R) in which ψ is positive and strictly increasing with ψ(w)0 for all w[t1,t2]. The ψ-Hilfer generalized proportional fractional derivative of order ν and type ϑ for F with respect to another function ψ is defined by

    (HDν,ϑ,ς,ψF)(w)=pIϑ(nν),ς,ψ[pDn,ς,ψ(pI(1ϑ)(nν),ς,ψF)](w),

    where n1<ν<n and 0ϑ1.

    Lemma 2.4. [27] Let m1<ν<m,nN, 0<ς1, 0ϑ1 and m1<γ<m such that γ=ν+mϑνϑ. If FC([t1,t2],R) and pI(mγ,ς,ψ)FCm([t1,t2],R), then

    (pIν,ς,ψHDν,ϑ,ς,ψF)(w)=F(w)nj=1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γjςγjΓ(γj+1)(pIjγ,ς,ψF)(t1).

    To prove the main result we need the following lemma, which concerns a linear variant of the ψ-Hilfer sequential proportional coupled system (1.2). This lemma plays a pivotal role in converting the nonlinear problem in system (1.2) into a fixed-point problem.

    Lemma 2.5. Let 0<ν1,ν31, 1<ν2,ν42, 0ϑi1, γi=νi+ϑi(1νi), i=1,3 and γj=νj+ϑj(2νj), j=2,4, Θ=M1N2M2N10, ψ is a continuous function on [t1,t2], with ψ(w)>0, and Q1,Q2C([t1,t2],R), Φ1,Φ2C([t1,t2]×R×R,R{0}) and Hi,Gj,Q1,Q2C([t1,t2]×R×R,R), for i=1,2,,n and j=1,2,,m, and pI(1γi,ς,ψ)QjCm([t1,t2],R),i=1,2,3,4,j=1,2. Then the pair (p1,p2) is a solution of the system

    {HDν1,ϑ1;ς;ψ[HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Q1(w),w[t1,t2],HDν3,ϑ3;ς;ψ[HDν4,ϑ4;ς;ψp1(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Q2(w),w[t1,t2],p1(t1)=HDν2,ϑ2;ς;ψp1(t1)=0,p1(t2)=θ1p2(ξ1),p2(t1)=HDν4,ϑ4;ς;ψp2(t1)=0,p2(t2)=θ2p1(ξ2),

    if and only if

    p1(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψQ1(w))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))
    ×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))×(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]} (2.1)

    and

    p2(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(mj=1pIˉηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψQ2(w))
    +eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ2(t2,p1(t2),p2(t2))×(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))×(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2))]}, (2.2)

    where

    M1=eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ21ςγ21Γ(γ2),M2=θ1eς1ς(ψ(ξ1)ψ(t1))(ψ(ξ1)ψ(t1))γ41ςγ41Γ(γ4),N1=θ2eς1ς(ψ(ξ2)ψ(t1))(ψ(ξ2)ψ(t1))γ21ςγ21Γ(γ2),N2=eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ41ςγ41Γ(γ4). (2.3)

    Proof. Due to Lemma 2.4 with m=1, we get

    HDν2,ϑ2;ς;ψp1(w)Φ1(w,p1(w),p2(w))ni=1pIηi,ς,ψHi(w,p1(w),p2(w))=pIν1;ς;ψQ1(w)+c0eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ11ςγ11Γ(γ1),HDν4,ϑ4;ς;ψp2(w)Φ2(w,p1(w),p2(w))mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))=pIν3;ς;ψQ2(w)+d0eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ31ςγ31Γ(γ3), (2.4)

    where c0,d0R. Now applying the boundary conditions

    HDν2,ϑ2;ς;ψp1(t1)=HDν4,ϑ4;ς;ψp1(t1)=0,

    we get c0=d0=0. Hence

    HDν2,ϑ2;ς;ψp1(w)=Φ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)),HDν4,ϑ4;ς;ψp2(w)=Φ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)). (2.5)

    Now, by taking the operators pIν2,ς,ψ and pIν4,ς,ψ into both sides of (2.5) and using Lemma 2.4, we get

    p1(w)=pIν2;ς;ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w))+c1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21ςγ21Γ(γ2)+c2eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ22ςγ22Γ(γ21),p2(w)=pIν4;ς;ψΦ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w))+d1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41ςγ41Γ(γ4)+d2eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ42ςγ42Γ(γ41). (2.6)

    Applying the conditions p1(t1)=p2(t1)=0 in (2.6), we get c2=d2=0 since γ2[ν2,2] and γ4[ν4,2]. Thus we have

    p1(w)=pIν2;ς;ψ(Φ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1;ς;ψQ1(w)))+c1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21ςγ21Γ(γ2),p2(w)=pIν4;ς;ψ(Φ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3;ς;ψQ2(w)))+d1eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41ςγ41Γ(γ4). (2.7)

    In view of (2.7) and the conditions p1(t2)=θ1p2(ξ1) and p2(t2)=θ2p1(ξ2), we get

    pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2))+c1eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ21ςγ21Γ(γ2)=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))+d1θ1eς1ς(ψ(ξ1)ψ(t1))(ψ(ξ1)ψ(t1))γ41ςγ41Γ(γ4), (2.8)

    and

    pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+Iν3,ς,ψQ2(t2))+d1eς1ς(ψ(t2)ψ(t1))(ψ(t2)ψ(t1))γ41ςγ21Γ(γ2)=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))+c1θ2eς1ς(ψ(ξ2)ψ(t1))(ψ(ξ2)ψ(t1))γ21ςγ21Γ(γ2). (2.9)

    Due to (2.3), (2.8), and (2.9), we have

    c1M1d1M2=M,c1N1+d1N2=N, (2.10)

    where

    M=θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψQ2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψQ1(t2)),N=θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψQ1(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψQ2(t2)).

    By solving the above system, we conclude that

    c1=1Θ[N2M+M2N],d1=1Θ[M1N+N1M].

    Replacing the values c1 and d1 in Eq (2.7), we obtain the solutions (2.1) and (2.2). The converse is obtained by direct computation. The proof is complete.

    Let Y=C([t1,t2],R)={p:[t1,t2]Ris continuous}. The space Y is a Banach space with the norm p=supw[t1,t2]|p(w)|. Obviously, the space (Y×Y,(p1,p2)) is also a Banach space with the norm (p1,p2)=p1+p2.

    Due to Lemma 2.5, we define an operator V:Y×YY×Y by

    V(p1,p2)(w)=(V1(p1,p2)(w)V2(p1,p2)(w)), (3.1)

    where

    V1(p1,p2)(w)=pIν2,ς,ψΦ1(w,p1(w),p2(w))(ni=1pIηi,ς,ψHi(w,p1(w),p2(w))+pIν1,ς,ψΥ1(w,p1(w),p2(w)))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2){N2[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1)))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M2[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ1),p2(ξ2)))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w[t1,t2],

    and

    V2(p1,p2)(w)=pIν4,ς,ψΦ2(w,p1(w),p2(w))(mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))+pIν3,ς,ψΥ2(w,p1(w),p2(w)))+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4){N1[θ1pIν4,ς,ψΦ2(ξ1,p1(ξ1),p2(ξ1))×(mj=1pI¯ηj,ς,ψGj(ξ1,p1(ξ1),p2(ξ1))+pIν3,ς,ψΥ2(ξ1,p1(ξ1),p2(ξ1))))pIν2,ς,ψΦ1(t2,p1(t2),p2(t2))(ni=1pIηi,ς,ψHi(t2,p1(t2),p2(t2))+pIν1,ς,ψΥ1(t2,p1(t2),p2(t2)))]+M1[θ2pIν2,ς,ψΦ1(ξ2,p1(ξ2),p2(ξ2))×(ni=1pIηi,ς,ψHi(ξ2,p1(ξ2),p2(ξ2))+pIν1,ς,ψΥ1(ξ2,p1(ξ2),p2(ξ2))))pIν4,ς,ψΦ2(t2,p1(t2),p2(t2))(mj=1pI¯ηj,ς,ψGj(t2,p1(t2),p2(t2))+pIν3,ς,ψΥ2(t2,p1(t2),p2(t2)))]},w[t1,t2].

    To prove our main result we will use the following Burton's version of Krasnosel'ski˘i's fixed-point theorem.

    Lemma 3.1. [28] Let S be a nonempty, convex, closed, and bounded set of a Banach space (X,) and let A:XX and B:SX be two operators which satisfy the following:

    (i) A is a contraction,

    (ii) B is completely continuous, and

    (iii) x=Ax+By,ySxS.

    Then there exists a solution of the operator equation x=Ax+Bx.

    Theorem 3.2. Assume that:

    (H1) The functions Φk:[t1,t2]×R2R{0}, Υk:[t1,t2]×R2R for k=1,2 and hi,gj:[t1,t2]×R2R for i=1,2,,n,j=1,2,,m, are continuous and there exist positive continuous functions ϕk, ωk:[t1,t2]R, k=1,2, hi:[t1,t2]R, gj:[t1,t2]R i=1,2,,nj=1,2,,m, with bounds ϕk, ωk, k=1,2, and hi, i=1,2,,m, gj,j=1,2,,m, respectively, such that

    |Φ1(w,u1,u2)Φ1(w,¯u1,¯u2)|ϕ1(w)(|u1¯u1|+|u2¯u2|),|Φ2(w,u1,u2)Φ2(w,¯u1,¯u2)|ϕ2(w)(|u1¯u1|+|u2¯u2|),|Υ1(w,u1,u2)Υ1(w,¯u1,¯u2|ω1(w)(|u1¯u1|+|u2¯u2|),|Υ2(w,u1,u2)Υ2(w,¯u1,¯u2|ω2(w)(|u1¯u1|+|u2¯u2|),|Hi(w,u1,u2)Hi(w,¯u1,¯u2)|hi(w)(|u1¯u1|+|u2¯u2|),|Gj(w,u1,u2)Gj(w,¯u1,¯u2)|gj(w)(|u1¯u1|+|u2¯u2|), (3.2)

    for all w[t1,t2] and ui,¯uiR, i=1,2.

    (H2) There exist continuous functions Fk,Lk,k=1,2, λi,μj,i=1,2,,n,j=1,2,,m such that

    |Φ1(w,u1,u2)|F1(w),|Φ2(w,u1,u2)|F2(w),|Hi(w,u1,u2)|λi(w),|Gj(w,u1,u2)|μj(w),|Υ1(w,u1,u2)|L1(w),|Υ2(w,u1,u2)|L2(w), (3.3)

    for all w[t1,t2] and u1,u2R.

    (H3) Assume that

    K:={(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]+(N1+M1|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)}×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]+{(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)+(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)]}×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]<1,

    where Fk=supt[t1,t2]|Fk(t)|, Lk=supt[t1,t2],k=1,2, λi=supt[t1,t2], i=1,2,,n, and μj=supt[t1,t2], j=1,2,,m.

    Then the ψ-Hilfer sequential proportional coupled system (1.2) has at least one solution on [t1,t2].

    Proof. First, we consider a subset S of Y×Y defined by S={(p1,p2)Y×Y:(p1,p2)r}, where r is given by

    r=R1+R2 (3.4)

    where

    R1=[1+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)(N2+M2|θ2|)]F1(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1))+[N2|θ1|+M2](ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)F2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))

    and

    R2=[1+(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)(N1|θ1|+M1)]F2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))+[N1+M1|θ2|](ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)).

    Let us define the operators:

    Hi(p1,p2)(w)=ni=1pIηi,ς,ψHi(w,p1(w),p2(w)),w[t1,t2],
    Gj(p1,p2)(w)=mj=1pI¯ηj,ς,ψGj(w,p1(w),p2(w)),w[t1,t2],
    Y1(p1,p2)(w)=pIν1,ς,ψΥ1(w,p1(w),p2(w)),w[t1,t2],
    Y2(p1,p2)(w)=pIν3,ς,ψΥ2(w,p1(w),p2(w)),w[t1,t2],

    and

    F1(p1,p2)(w)=Φ1(w,p1(w),p2(w)),w[t1,t2],
    F2(p1,p2)(w)=Φ2(w,p1(w),p2(w)),w[t1,t2].

    Then we have

    |Hi(¯p1,¯p2)(w)Hi(p1,p2)(w)|ni=1pIηi,ς,ψ|Hi(w,¯p1(w),¯p2(w))Hi(w,p1(w),p2(w))|ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)(¯p1p1+¯p2p2)

    and

    |Hi(p1,p2)(w)|ni=1pIηi,ς,ψ|Hi(w,p1(w),p2(w))|ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1).

    Also, we obtain

    |Gj(¯p1,¯p2)(w)Gj(p1,p2)(w)|mj=1pI¯ηj,ς,ψ|Gj(w,¯p1(w),¯p2(w))Gj(w,p1(w),p2(w))|mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)(¯p1p1+¯p2p2)

    and

    |Gj(p1,p2)(w)|mj=1pI¯ηi,ς,ψ|Hi(w,p1(w),p2(w))|mj=1μj(ψ(t2)ψ(t1))¯ηiς¯ηiΓ(¯ηi+1).

    Moreover, we have

    |Y1(¯p1,¯p2)(w)Y1(p1,p2)(w)|pIν1,ς,ψ|Υ1(w,¯p1(w),¯p2(w))Υ1(w,p1(w),p2(w))|ω1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)(¯p1p1+¯p2p2),
    |Y1(p1,p2)(w)|pIν1,ς,ψ|Υ1(w,p1(w),p2(w))|L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1),

    and

    |Y2(¯p1,¯p2)(w)Y2(p1,p2)(w)|pIν3,ς,ψ|Υ2(w,¯p1(w),¯p2(w))Υ2(w,p1(w),p2(w))|ω2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)(¯p1p1+¯p2p2),
    |Y2(p1,p2)(w)|pIν1,ς,ψ|Υ2(w,p1(w),p2(w))|L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1).

    Finally, we get

    |F1(¯p1,¯p2)(w)F1(p1,p2)(w)||Φ1(w,¯p1(w),¯p2(w))Φ1(w,p1(w),p2(w))|ϕ1(¯p1p1+¯p2p2),
    |F1(p1,p2)(w)||Φ1(w,p1(w),p2(w))|F1,

    and

    |F2(¯p1,¯p2)(w)F2(p1,p2)(w)||Φ2(w,¯p1(w),¯p2(w))Φ2(w,p1(w),p2(w))|ϕ2(¯p1p1+¯p2p2),
    |F2(p1,p2)(w)||Φ2(w,p1(w),p2(w))|F2.

    Now we split the operator V as

    V1(p1,p2)(w)=V1,1(p1,p2)(w)+V1,2(p1,p2)(w),V2(p1,p2)(w)=V2,1(p1,p2)(w)+V2,2(p1,p2)(w),

    with

    V1,1(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]},V1,2(p1,p2)(w)=pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M2[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]},V2,1(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Hi(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Gj(p1,p2)(w)]},

    and

    V2,2(p1,p2)(w)=pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ41Θςγ41Γ(γ4)×{N1[θ1pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)]+M1[θ2pIν2,ς,ψF1(p1,p2)(w)Y1(p1,p2)(w)pIν4,ς,ψF2(p1,p2)(w)Y2(p1,p2)(w)]}.

    In the following, we will show that the operators V1 and V2 fulfill the assumptions of Lemma 3.1. We divide the proof into three steps:

    Step 1. The operators V1,1 and V2,1 are contraction mappings. For all (p1,p2),(¯p1,¯p2)Y×Y we have

    |V1,1(¯p1,¯p2)(w)V1,1(p1,p2)(w)|(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|
    +(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2){N1|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)
    F2(p1,p2)(w)Gj(p1,p2)(w)|+(N2+M2|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|
    +M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)F2(p1,p2)(w)Gj(p1,p2)(w)|}(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]
    ×|F1(¯p1,¯p2)(w)Hi(¯p1,¯p2)(w)F1(p1,p2)(w)Hi(p1,p2)(w)|+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×|F2(¯p1,¯p2)(w)Gj(¯p1,¯p2)(w)F2(p1,p2)(w)Gj(p1,p2)(w)|
    (ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[|F1(¯p1,¯p2)(w)||Hi(¯p1,¯p2)(w)Hi(p1,p2)(w)|+|Hi(p1,p2)(w)||F1(¯p1,¯p2)(w)F1(p1,p2)(w)]+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×[|F2(¯p1,¯p2)(w)||Gj(¯p1,¯p2)(w)Gj(p1,p2)(w)|
    +|Gj(p1,p2)(w)||F2(¯p1,¯p2)(w)F2(p1,p2)(w)|](ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)(¯p1p1+¯p2p2)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1(¯p1p1+¯p2p2)]
    +(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)(¯p1p1+¯p2p2)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2(¯p1p1+¯p2p2)]
    ={(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)[1+(N2+M2|θ2|)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)]×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]+(N2|θ1|+M2)(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjς¯ηiΓ(¯ηj+1)+mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]}×(¯p1p1+¯p2p2).

    Similarly we can find

    |V2,1(¯p1,¯p2)(w)V2,1(p1,p2)(w)|{(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)[1+(N1|θ1|+M1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)]×[F2mj=1gj(ψ(t2)ψ(t1))¯ηjςηiΓ(¯ηj+1)+nj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηj+1)ϕ2]+(N1+M1|θ2|)(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)×[F1ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)ϕ1]}×(¯p1p1+¯p2p2).

    Consequently, we get

    (V1,1,V2,1)(¯p1,¯p2)(V1,1,V2,1)(p1,p2)K(¯p1p1+¯p2p2),

    which means that (V1,1,V2,1) is a contraction.

    Step 2. The operator V2=(V1,2,V2,2) is completely continuous on S. For continuity of V1,2, take any sequence of points (pn,qn) in S converging to a point (p,q)S. Then, by the Lebesgue dominated convergence theorem, we have

    limnV1,2(pn,qn)(w)=pIν2,ς,ψlimnF1(pn,qn)(w)limnY1(pn,qn)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψlimnF2(pn,qn)(w)limnY2(pn,qn)(w)pIν2,ς,ψlimnF1(pn,qn)(w)limnY1(pn,qn)(w)]+M2[θ2pIν2,ς,ψlimnF1(pn,qn)(w)limnY1(pn,qn)(w)pIν4,ς,ψlimnF2(pn,qn)(w)limnY2(pn,qn)(w)]}=pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)+eς1ς(ψ(w)ψ(t1))(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2)×{N2[θ1pIν4,ς,ψF2(p,q)(w)Y2(p,q)(w)pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)]+M2[θ2pIν2,ς,ψF1(p,q)(w)Y1(p,q)(w)pIν4,ς,ψF2(p,q)(w)Y2(p,q)(w)]}=V1,2(p,q)(w),

    for all w[t1,t2]. Similarly, we prove limnV2,2(pn,qn)(w)=V2,2(p,q)(w) for all w[t1,t2]. Thus V2(pn,qn)=(V1,2(pn,qn),V2,2(pn,qn)) converges to V2(p,q) on [t1,t2], which shows that V2 is continuous.

    Next, we show that the operator (V1,2,V2,2) is uniformly bounded on S. For any (p1,p2)S we have

    |V1,2(p1,p2)(w)|pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|+(ψ(w)ψ(t1))γ21Θςγ21Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(p1,p2)(w)Y2(p1,p2)(w)|+pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(p1,p2)(w)Y1(p1,p2)(w)|+pIν4,ς,ψ|F2(p1,p2)(w)Y2(p1,p2)(w)|]}(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)×{N2|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)}:=Λ1.

    Similarly we can prove that

    |V2,2(p1,p2)(w)|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)+(ψ(t2)ψ(t1))γ41Θςγ21Γ(γ2)×{N1|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)+N1(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M1|θ2|F1ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M1(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)}:=Λ2.

    Therefore V1,2+V2,2Λ1+Λ2,(p1,p2)S, which shows that the operator (V1,2,V2,2) is uniformly bounded on S. Finally we show that the operator (V1,2,V2,2) is equicontinuous. Let τ1<τ2 and (p1,p2)S. Then, we have

    |V1,2(p1,p2)(τ2)V1,2(p1,p2)(τ1)||1ςν2Γ(ν2)τ1t1ψ(s)[(ψ(τ2)ψ(s))ν21(ψ(τ1)ψ(s))ν21]×|F1(p1,p2)(s)Y1(p1,p2)(s)|ds+1ςν2Γ(ν2)τ2τ1ψ(s)(ψ(τ2)ψ(s))ν21|F1(p1,p2)(s)Y1(p1,p2)(s)|ds|+|(ψ(τ2)ψ(t1))γ21(ψ(τ1)ψ(t1))γ21|Θςγ21Γ(γ2)W1ςν2Γ(ν2+1)ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)[|(ψ(τ2)ψ(t1))ν2(ψ(τ1)ψ(t1))ν2|+2(ψ(τ2)ψ(τ1))ν2]+|(ψ(τ2)ψ(t1))γ21(ψ(τ1)ψ(t1))γ21|Θςγ21Γ(γ2)W,

    where

    W=N2|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|F1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1).

    As τ2τ10, the right-hand side of the above inequality tends to zero, independently of (p1,p2). Similarly we have |V2,2(p1,p2)(τ2)V2,2(p1,p2)(τ1)|0 as τ2τ10. Thus (V1,2,V2,2) is equicontinuous. Therefore, it follows by the Arzelá-Ascoli theorem that (V1,2,V2,2) is a completely continuous operator on S.

    Step 3. We show that the third condition (iii) of Lemma 3.1 is fulfilled. Let (p1,p2)Y×Y be such that, for all (¯p1,¯p2)S

    (p1,p2)=(V1,1(p1,p2),V2,1(p1,p2))+(V1,2(¯p1,¯p2,V2,2(¯p1,¯p2)).

    Then, we have

    |p1(w)||V1,1(p1,p2)(w)|+|V1,2(¯p1,¯p2)(w)|pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(p1,p2)(w)Gj(p1,p2)(w)|+pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(p1,p2)(w)Hi(p1,p2)(w)|+pIν4,ς,ψ|F2(p1,p2)(w)Gj(p1,p2)(w)|]}+pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2){N2[|θ1|pIν4,ς,ψ|F2(¯p1,¯p2)(w)Y2(¯p1,¯p2)(w)|+pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|]+M2[|θ2|pIν2,ς,ψ|F1(¯p1,¯p2)(w)Y1(¯p1,¯p2)(w)|+pIν4,ς,ψ|F2(¯p1,¯p2)(w)Y2(¯p1,¯p2)(w)|]}(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)×{N2|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)F2+N2(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+M2|θ2|F1ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)}+(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)×{N2|θ1|(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)+N2(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2|θ2|F1ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1)+M2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1)}=[1+(ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)(N2+M2|θ2|)]F1(ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1))+[N2|θ1|+M2](ψ(t2)ψ(t1))γ21Θςγ21Γ(γ2)F2(ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))=R1.

    In a similar way, we find

    |p2(w)||V2,1(p1,p2)(w)|+|V2,2(¯p1,¯p2)(w)|[1+(ψ(t2)ψ(t1))γ41Θςγ41Γ(γ4)(N1|θ1|+M1)](ψ(t2)ψ(t1))ν4ςν4Γ(ν4+1)F2×(mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηΓ(¯η+1)+mj=1L2(ψ(t2)ψ(t1))ν3ςν3Γ(ν3+1))+[N1+M1|θ2|](ψ(t2)ψ(t1))ν2ςν2Γ(ν2+1)F1(ψ(t2)ψ(t1))γ41ςγ41Γ(γ4)×(ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)+ni=1L1(ψ(t2)ψ(t1))ν1ςν1Γ(ν1+1))=R2.

    Adding the previous inequalities, we obtain

    p1+p2R1+R2=r.

    As (p1,p2)=p1+p2, we have that (p1,p2)r and so condition (iii) of Lemma 3.1 holds.

    By Lemma 3.1, the ψ-Hilfer sequential proportional coupled system (1.2) has at least one solution on [t1,t2]. The proof is finished.

    Let us consider the following coupled system of nonlinear sequential proportional Hilfer fractional differential equations with multi-point boundary conditions:

    {HD13,15;37;logw[HD54,25;37;logwp1(w)Φ1(w,p1(w),p2(w))2i=1pIηi,ς,ψHi(w,p1(w),p2(w))]=Υ1(w,p1(w),p2(w)),w[12,72],HD23,35;37;logw[HD74,45;37;logwp1(w)Φ2(w,p1(w),p2(w))2j=1pI¯ηj,ς,ψGj(w,p1(w),p2(w))]=Υ2(w,p1(w),p2(w)),w[12,72],p1(12)=HD54,25;37;logwp1(12)=0,p1(72)=25p2(32),p2(12)=HD74,45;37;logwp2(12)=0,p2(72)=23p1(52), (4.1)

    where

    2i=1pIηi,ς,ψHi(w,p1,p2)=2i=1pI2(i+1)5,37,logw(|p1|(w+i2)(i+|p1|)+|p2|(w+i3)(i+|p2|)),2j=1pI¯ηj,ς,ψGj(w,p1,p2)=2j=1pI2(j+1)7,37,logw(|p1|(w2+j2)(j+|p1|)+|p2|(w2+j3)(j+|p2|)),Φ1(w,p1,p2)=1100(10w+255)(|p1|1+|p1|+|p2|1+|p2|+12),Φ2(w,p1,p2)=25(2w+99)2(|p1|1+|p1|+|p2|1+|p2|+14),Υ1(w,p1,p2)=1w+2(|p1|3+|p1|)+12(w+1)sin|p2|+13,Υ2(w,p1,p2)=1w2+4(12tan1|p1|+|p2|2+|p2|)+15.

    Next, we can choose ν1=1/3, ν2=5/4, ν3=2/3, ν4=7/4, ϑ1=1/5, ϑ2=2/5, ϑ3=3/5, ϑ4=4/5, ς=3/7, ψ(w):=logw=logew, t1=1/2, t2=7/2, θ1=2/5, and θ2=2/3. Then, we have γ1=7/15, γ2=31/20, γ3=13/15, γ4=39/20, M10.1930945138, M20.2307306625, N10.1816223751, N20.3208292984, and Θ0.02004452646. Now, we analyse the nonlinear functions in the fractional integral terms. We have

    |Hi(w,p1,p2)Hi(w,¯p1,¯p2)|1i(w+i2)(|p1¯p1|+|p2¯p2|)

    and

    |Gj(w,p1,p2)Gj(w,¯p1,¯p2)|1j(w2+j2)(|p1¯p1|+|p2¯p2|),

    from which hi(w)=1/(i(w+i2)) and gj(w)=1/(j(w2+j2)), respectively. Both of them are bounded as

    |Hi(w,p1,p2)|2w+i2and|Gj(w,p1,p2)|2w2+j2.

    Therefore λi(w)=2/(w+i2) and μj=2/(w2+j2). Moreover, we have

    ni=1hi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)3.021061781,
    ni=1λi(ψ(t2)ψ(t1))ηiςηiΓ(ηi+1)7.281499952,
    mj=1gj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηi+1)2.776491121

    and

    mj=1μj(ψ(t2)ψ(t1))¯ηjς¯ηjΓ(¯ηi+1)7.220966978.

    For the two non-zero functions Φ1 and Φ2 we have

    |Φ1(w,p1,p2)Φ1(w,¯p1,¯p2)|1100(10w+255)(|p1¯p1|+|p2¯p2|),|Φ2(w,p1,p2)Φ2(w,¯p1,¯p2)|25(2w+99)2(|p1¯p1|+|p2¯p2|),
    |Φ1(w,p1,p2)|140(10w+255),and|Φ2(w,p1,p2)|910(2w+99)2,

    from which we get ϕ1=1/26000, ϕ2=1/25000, F1=1/10400, F2=9/100000, by setting ϕ1(w)=1/(100(10w+255)), ϕ2(w)=2/(5(2w+99)2), F1(w)=1/(40(10w+255)), and F2(w)=9/(10(2w+99)2), respectively.

    Finally, for the nonlinear functions of the right sides in problem (4.1) we have

    |Υ1(w,p1,p2)Υ1(w,¯p1,¯p2)|12(w+1)(|p1¯p1|+|p2¯p2|),|Υ2(w,p1,p2)Υ2(w,¯p1,¯p2)|12(w2+4)(|p1¯p1|+|p2¯p2|),

    which give ω1(w)=1/(2(w+1)), ω2(w)=1/(2(w2+4)) and

    |Υ1(w,p1,p2)|1w+2+12(w+1)+13:=L1(w),

    and

    |Υ2(w,p1,p2)|1w2+4(π4+1)+15:=L2(w).

    Therefore, using all of the information to compute a constant K in assumption (H3) of Theorem 3.2, we obtain

    K0.9229566975<1.

    Hence, the given coupled system of nonlinear proportional Hilfer-type fractional differential equations with multi-point boundary conditions (4.1), satisfies all assumptions in Theorem 3.2. Then, by its conclusion, there exists at least one solution (p1,p2)(w) to the problem (4.1) where w[1/2,7/2].

    In this paper, we have presented the existence result for a new class of coupled systems of ψ-Hilfer proportional sequential fractional differential equations with multi-point boundary conditions. The proof of the existence result was based on a generalization of Krasnosel'ski˘i's fixed-point theorem due to Burton. An example was presented to illustrate our main result. Some special cases were also discussed. In future work, we can implement these techniques on different boundary value problems equipped with complicated integral multi-point boundary conditions.

    The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.

    This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with contract no. KMUTNB-FF-66-11.

    Professor Sotiris K. Ntouyas is an editorial board member for AIMS Mathematics and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.



    [1] Sabandar CW, Ahmat N, Jaafar FM, et al. (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry, 85, 7–29.
    [2] Balakrishnan NP, Chakrabarty T. (2017) The family Euphorbiaceae in India: a synopsis of its profile, taxonomy and bibliography, Bishen Singh Mahendra Pal Singh, Dehradun.
    [3] Bahadur B, Sujatha M, Carels N Jatropha.(2012) Challenges for a New Energy Crop: Volume 2: Genetic Improvement and Biotechnology, Springer Science & Business Media, New York.
    [4] Nerlekar AN. (2015) Lectotypification of Jatropha nana (Euphorbiaceae) with notes on its threats, and the status of Jatropha nana var. benghalensis. Phytotaxa, 213, 155–158.
    [5] Banerji R. (1991) Jatropha nana seed oil for energy. Biomass Bioenerg, 1, 247–247.
    [6] Kirtikar KR, Basu BD. (1918) Indian Medicinal Plants Vol-3., Bishen Singh Mahendra Pal Singh, Dehradun.
    [7] Mishra DK, Singh NP. (2001) Endemic and Threatened plants of Maharashtra, Botanical Survey of India, Calcutta.
    [8] Nerlekar AN, Kumar A, Venu P. (2016) Jatropha nana. The IUCN Red List of Threatened Species 2016. In, Vol 2017.
    [9] Asner GP, Scurlock JMO, Hicke JA.(2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr, 12, 191–205.
    [10] Blanco FF, Folegatti MV. (2005) Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Sci Agr, 62, 305–309.
    [11] Cristofori V, Rouphael Y, Mendoza-de Gyves E, et al. (2007) A simple model for estimating leaf area of hazelnut from linear measurements. Sci Hort, 113, 221–225.
    [12] Bréda NJJ. (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot, 54, 2403–2417.
    [13] Díaz S, Kattge J, Cornelissen JHC, et al. (2016) The global spectrum of plant form and function. Nature, 529, 167–171.
    [14] Koyama K, Kikuzawa K. (2009) Is whole‐plant photosynthetic rate proportional to leaf area? A test of scalings and a logistic equation by leaf demography census. Am Nat, 173, 640–649.
    [15] Pompelli MF, Antunes WC, Ferreira DTRG, et al. (2012) Allometric models for non-destructive leaf area estimation of the Jatropha curcas. Biomass Bioenerg, 36, 77–85.
    [16] Peksen E. (2007) Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Sci Hortic-Amsterdam, 2007, 113, 322–328.
    [17] Thomson VP, Cunningham SA, Ball MC, et al. (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia, 134, 167–175.
    [18] De Swart EAM, Groenwold R, Kanne HJ, Stam P, et al. (2004) Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. J Hortic Sci Biotech, 79, 764–770.
    [19] Antunes WC, Pompelli MF, Carretero DM, et al. (2008) Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Ann Appl Biol, 153, 33–40.
    [20] Severino LS, Vale LS, Beltrão NEM. (2007) A simple method for measurement of Jatropha curcas leaf area. Rev Bras Ol Fibros, 11, 9–14.
    [21] Achten WMJ, Maes WH, Reubens B, et al. (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenerg, 34, 667–676.
    [22] Champion HG, Seth SK. (1968) A revised survey of the forest types of India, Government of India Pblication, Delhi.
    [23] Zuur AF, Elena NI, Elphick CS. (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol, 1, 3–14.
    [24] Durbin J, Watson GS. (1950) Testing for serial correlation in least squares regression I. Biometrika, 37, 409–428.
    [25] Akaike H. (1974) A new look at the statistical model identification. Transac Autom Control, 19, 716–723.
    [26] Walther BA, Moore JL. (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28, 815–829.
    [27] Graybill FA. (2000) Theory and application of the linear model, Duxbury Press, Pacific Grove.
    [28] Ahmed N, Khan D. (2011) Leaf area estimation in Jatropha curcas L. Int J Biol Biotech, 8, 401–407.
    [29] Chatterjee S, Hadi AS. (2006) Regression Analysis by Example, John Wiley & Sons, Hoboken.
    [30] Beerling DJ, Fry JC. (1990) A comparison of the accuracy, variability and speed of five different methods for estimating leaf area. Ann Bot, 65, 483–488.
    [31] Campostrini E, Yamanishi OK. (2001) Estimation of papaya leaf area using the central vein length. Sci Agric, 58, 39–42.
    [32] Kandiannan K, Parthasarathy U, Krishnamurthy KS, et al. (2009) Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Sci Hortic-Amsterdam, 120, 532–537.
    [33] Negash M, Starr M, Kanninen M, et al. (2013) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst, 87, 953–966.
    [34] Kandiannan K, Kailassam C, Chandaragiri KK, et al. (2002) Allometric model for leaf area estimation in black pepper (Piper nigrum L.). J Agron Crop Sci, 188, 138–140.
    [35] Williams IIIL, Martinson TE. (2003) Nondestructive leaf area estimation of 'Niagara' and 'DeChaunac' grapevines. Sci Hortic-Amsterdam, 98, 493–498.
    [36] Bosco LC, Bergamaschi H, Cardoso LS, et al. (2012) Selection of regression models for estimating leaf area of 'Royal gala' and 'Fuji suprema' apple trees under hail net and in open sky. Rev Bras Frutic, 34, 504–514.
    [37] Sangoi L, Schmitt A, Zanin CG. (2007 )Área foliar e rendimento de grãos de híbridos de milho em diferentes populações de planta. Rev Bras Milho e Sorgo, 6, 263–271.
    [38] Souza LF, Santos JGD, Alexandrino E, et al. (2015) Practical and efficient method to estimate leaf area index in tropical forage grasses. Arch Zootec, 64, 83–85.
    [39] Peters CA. (2001) Statistics for Analysis of Experimental Data. In, Vol 2017. S.E. Powers, Ed., Champaign
    [40] Francis CA, Rutger JN, Palmer AFE. (1969) A rapid method for plant leaf area estimation in maize (Zea mays L.). Crop Sci, 9, 537–539.
    [41] Elsner EA, Jubb Jr, GL. (1988) Leaf area estimation of concord grape leaves from simple linear measurements. Am J Enol Vitic, 39, 95–97.
    [42] Lu HY, Lu CT, Wei ML, et al. (2004) Comparison of different models for nondestructive leaf area estimation in taro. Agron J, 96, 448–453.
    [43] Rouphael Y, Colla G, Fanasca S, et al. (2007) Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45, 306–308.
    [44] Kumar R. (2009) Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Sci Hortic-Amsterdam, 122, 142–145.
    [45] Barros RS, Maestri M, Vieira M, et al. (1973) Determinação da área de folhas do café (Coffea arabica L. cv. 'Bourbon Amarelo'). Rev Ceres, 20, 44–52.
    [46] Kurt O, Uysal H, Uzun S. (2005) Non-destructive leaf area estimation of flax (Linun usitatissimum L.). Pak J Bot, 37, 837–841.
    [47] Serdar Ü, Demirsoy H. (2006) Non-destructive leaf area estimation in chestnut. Sci Hortic-Amsterdam, 108, 227–230.
    [48] Rouphael Y, Mouneimne AH. A I, et al. (2010) Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica, 48, 9–15.
    [49] Keramatlou I, Sharifani M, Sabouri H, et al. (2015) A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Sci Hort, 184, 36–39.
    [50] Souza MC, Amaral CL. (2015) Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less. Braz J Biol, 75, 152–156.
    [51] Boisbunon A, Canu S, Fourdrinier D, et al. (2014) Akaike's information criterion, Cp and estimators of loss for elliptically symmetric distributions. Int Stat Rev, 82, 422–439.
    [52] Vasconcellos ES, Cruz CD, Regazzi AJ, et al. (2010) Regression models grouping for genotype adaptability and stability analysis. Pesq Agrop Bras, 45, 1357–1362.
  • This article has been cited by:

    1. Saleh S Redhwan, Mohammed A Almalahi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Nonlinear dynamics of the complex periodic coupled system via a proportional generalized fractional derivative, 2024, 99, 0031-8949, 125270, 10.1088/1402-4896/ad9088
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5372) PDF downloads(797) Cited by(2)

Figures and Tables

Figures(7)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog