Loading [MathJax]/jax/output/SVG/jax.js

Introduction: Special issue on computational intelligence methods for big data and information analytics

  • Published: 01 April 2017
  • Citation: Yang Yu. 2017: Introduction: Special issue on computational intelligence methods for big data and information analytics, Big Data and Information Analytics, 2(1): i-ii. doi: 10.3934/bdia.201701i

    Related Papers:

    [1] Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in h-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
    [2] Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-α integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624
    [3] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [4] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via (αs) exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [5] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [6] Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226
    [7] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [8] Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163
    [9] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
    [10] Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen . Certain exponential type m-convexity inequalities for fractional integrals with exponential kernels. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351


  • In recent years, the Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention much interest in elementary mathematics.

    The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [9,30, p.137]). These inequalities state that if f:IR is a convex function on the interval I of real numbers and a,bI with a<b, then

    f(a+b2)1babaf(x)dxf(a)+f(b)2. (1.1)

    Both inequalities hold in the reversed direction if f is concave.

    Over the last twenty years, the numerous studies have focused on to obtain new bound for left hand side and right and side of the inequality (1.1). For some examples, please refer to ([2,4,7,9,10,23,33,34,36,37,44])

    The overall structure of the paper takes the form of four sections including introduction. The remainder of this work is organized as follows: we first give weighted version of (1.1) and definitions of Riemann-Liouville fractional integral operators. We also mention fractional Hermite-Hadamard type inequalities obtained in earlier works. In Section 2, we establish two important weighted equalities for differentiable functions involving fractional integrals. Using an identity given Section 2, we obtain some weighted fractional trapezoid type inequalities in Section 3. In Section 4, we first mention classical and fractional Ostrowski inequalities for bounded variation. Then, utilizing other identity given Section 2, we obtain some fractional Ostrowski type inequalities for convex functions. We also give some fractional midpoint type inequalities.

    The weighted version of the inequalities (1.1), so-called Hermite-Hadamard-Fejér inequalities, was given by Fejer in [13] as follow:

    Theorem 1.1. f:[a,b]R, be a convex function, then the inequality

    f(a+b2)bag(x)dxbaf(x)g(x)dxf(a)+f(b)2bag(x)dx (1.2)

    holds, where g:[a,b]R is non-negative, integrable, and symmetric about x=a+b2 (i.e., g(x)=g(a+bx)).

    Tseng et al. give the following Lemma and by using this Lemma they obtain several weighed inequalities in [51].

    Lemma 1. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and let g:[a,b]R. If f,gL[a,b], then for all x[a,b] we have the following equality for fractional integrals

    f(a)xag(t)dt+f(b)bxg(t)dtbaf(t)g(t)dt=ba(txg(s)ds)f(t)dt. (1.3)

    In the following we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper.

    Definition 1. Let fL1[a,b]. The Riemann-Liouville integrals Jαa+f and Jαbf of order α>0 with a0 are defined by

    Jαa+f(x)=1Γ(α)xa(xt)α1f(t)dt,  x>a

    and

    Jαbf(x)=1Γ(α)bx(tx)α1f(t)dt,  x<b

    respectively. Here, Γ(α) is the Gamma function and J0a+f(x)=J0bf(x)=f(x).

    For more information about fraction calculus please refer to [14,21,27,35].

    In [40], Sarikaya et al. first gave the following interesting integral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

    Theorem 2. Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following inequalities for fractional integrals hold:

    f(a+b2)Γ(α+1)2(ba)α[Jαa+f(b)+Jαbf(a)]f(a)+f(b)2 (1.4)

    with α>0.

    On the other hand, Işcan gave following Lemma and using this Lemma he proved the following Fejer type inequalities for Riemann-Liouville fractional integrals in [18].

    Lemma 2. If g:[a,b]R is integrable and symmetric to (a+b)/2 with a<b, then

    Jαa+g(b)=Jαbg(a)=12[Jαa+g(b)+Jαbg(a)]

    with α>0.

    Theorem 3. Let f:[a,b]R be convex function with 0a<b and fL1[a,b]. If g:[a,b]R is non-negative, integrable and symmetric to (a+b)/2, then the following inequalities for fractional integrals hold

    f(a+b2)[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]f(a)+f(b)2[Jαa+g(b)+Jαbg(a)] (1.5)

    with α>0

    Whereupon Sarikaya et al. obtained the Hermite-Hadamard inequality for Riemann-Lioville fractional integrals, many authors have studied to generalize this inequality and establish Hermite-Hadamard inequality other fractional integrals such as k-fractional integral, Hadamard fractional integrals, Katugampola fractional integrals, Conformable fractional integrals, etc. For some of them, please see ([3,8,12,17,18,19,20,22,28,32,41,42,43,46,47,52,53,56]).

    In this section, we prove two identities which will be used frequently in Section 3 and Section 4 to obtain weighted fractional inequalities.

    Lemma 3. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f,gL[a,b], then for all x[a,b] and α>0 we have the following equality for fractional integrals

    f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]=1Γ(α)[xa(tx(xs)α1g(s)ds)f(t)dt+bx(tx(sx)α1g(s)ds)f(t)dt]. (2.1)

    Proof. Integrating by parts, we have

    xa(tx(xs)α1g(s)ds)f(t)dt=(tx(xs)α1g(s)ds)f(t)|xaxa(xt)α1g(t)f(t)dt=(xa(xs)α1g(s)ds)f(a)xa(xt)α1g(t)f(t)dt=Γ(α)[f(a)Jαa+g(x)Jαa+(fg)(x)]. (2.2)

    Similarly, we get

    bx(tx(sx)α1g(s)ds)f(t)dt=Γ(α)[f(b)Jαbg(x)Jαb(fg)(x)]. (2.3)

    By the identities (2.2) and (2.3), we obtain the required result (2.1).

    Remark 1. If we choose α=1 in Lemma 3, then the identity (2.1) reduces to identity (1.3) proved by Tseng et al. in [51].

    Corollary 1. In Lemma 3, let g be symmetric to a+b2 and let x=a+b2. Then (2.1) can be written as

    [Jαa+g(a+b2)+Jαbg(a+b2)]f(a)+f(b)2[Jαa+(fg)(a+b2)+Jαb(fg)(a+b2)]=1Γ(α)[a+b2a(ta+b2(a+b2s)α1g(s)ds)f(t)dt+ba+b2(ta+b2(sa+b2)α1g(s)ds)f(t)dt].

    Proof. If we take x=a+b2 in Lemma 3, since g is symmetric to a+b2, then we have

    Jαa+g(a+b2)=1Γ(α)a+b2a(a+b2s)α1g(s)ds=1Γ(α)ba+b2(ua+b2)α1g(a+bu)ds=1Γ(α)ba+b2(ua+b2)α1g(u)ds=Jαbg(a+b2).

    This completes the proof.

    Corollary 2. Under assumptions of Lemma 3, we have the following equality

    f(a)Jαa+g(b)+f(b)Jαbg(a)[Jαa+(fg)(b)+Jαb(fg)(a)]=1Γ(α)[ba(ta(sa)α1g(s)ds)f(t)dt+ba(tb(bs)α1g(s)ds)f(t)dt].

    Proof. If we write the equality (2.1) for x=a and x=b, then we have the identities

    f(b)Jαbg(a)Jαb(fg)(a)=1Γ(α)ba(ta(sa)α1g(s)ds)f(t)dt (2.4)

    and

    f(a)Jαa+g(b)Jαa+(fg)(b)=1Γ(α)ba(tb(bs)α1g(s)ds)f(t)dt, (2.5)

    respectively. By adding the equalities (2.4) and (2.5), we obtain desired result.

    Corollary 3. In Lemma 3, let g(t)=1 for all t[a,b]. Then we have the following identity

    (xa)αf(a)+(bx)αf(b)Γ(α+1)[Jαa+f(x)+Jαbf(x)]=[xa(xt)αf(t)dt+bx(tx)αf(t)dt].

    Lemma 4. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f,gL[a,b], then for all x[a,b] and α>0 we have the following equality for fractional integrals

    [Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]=1Γ(α)[xa(ta(xs)α1g(s)ds)f(t)dt+bx(tb(sx)α1g(s)ds)f(t)dt]. (2.6)

    Proof. Integrating by parts, we have

    xa(ta(xs)α1g(s)ds)f(t)dt=(ta(xs)α1g(s)ds)f(t)|xaxa(xt)α1g(t)f(t)dt=(xa(xs)α1g(s)ds)f(x)xa(xt)α1g(t)f(t)dt=Γ(α)[f(x)Jαa+g(x)Jαa+(fg)(x)]. (2.7)

    Similarly, we get

    bx(tb(sx)α1g(s)ds)f(t)dt=Γ(α)f(x)[Jαbg(x)Jαb(fg)(x)]. (2.8)

    By the identities (2.7) and (2.8), we obtain the required result (2.6).

    Remark 2. If we choose α=1 in Lemma 4, then we have

    f(x)bag(t)dtbaf(t)g(t)dt=xa(tag(s)ds)f(t)dt+bx(tbg(s)ds)f(t)dt.

    Corollary 4. If we choose g(t)=1 for all t[a,b] in Lemma 4, then we have

    ((xa)α+(bx)αba)f(x)Γ(α+1)ba[Jαa+f(x)+Jαbf(x)]=1ba[xa((xa)α(xt)α)f(t)dt+bx((bx)α(tx)α)f(t)dt].

    Corollary 5. Under assumption of Lemma 4, let g be symmetric to a+b2. Then we have the following identity

    f(a)+f(b)2[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]=1Γ(α)[ba(ta(bs)α1g(s)ds)f(t)dt+ba(tb(sa)α1g(s)ds)f(t)dt]. (2.9)

    Proof. If we apply the identity (2.6) for x=a and x=b, then we obtain the equalities

    f(a)Jαbg(a)Jαb(fg)(a)=1Γ(α)ba(tb(sa)α1g(s)ds)f(t)dt (2.10)

    and

    f(b)Jαa+g(b)Jαa+(fg)(b)=1Γ(α)ba(ta(bs)α1g(s)ds)f(t)dt (2.11)

    respectively. If we add the equalities (2.10) and (2.11), then by using Lemma 2, we establish the desired result (2.9).

    The inequality (2.9) is the same result which is given by İşcan in [18].

    In this section, we obtain some weighted trapezoid inequalities involving Riemann-Liouviille fractional integral operators. We also give some special cases of our results.

    Theorem 4. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and fL[a,b]. If g:[a,b]R is continuous and if |f| is convex on [a,b], then for all x[a,b] and α>0 we have the following inequality for fractional integrals,

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1(ba)Γ(α+3)×{[(xa)α+1[(α+2)(bx)+(α+1)(xa)]g[a,x],+(bx)α+2g[x,b],]|f(a)|+[(xa)α+2g[a,x],+(bx)α+1[(α+1)(bx)+(α+2)(xa)]g[x,b],]|f(b)|}g(ba)Γ(α+3){[((xa)α+1[(α+2)(bx)+(α+1)(xa)]+(bx)α+2)|f(a)|+((xa)α+2+(bx)α+1[(α+1)(bx)+(α+2)(xa)]|f(b)|)}. (3.1)

    Proof. By taking modulus in Lemma 3, we have

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1Γ(α)[|xa(tx(xs)α1g(s)ds)f(t)dt|+|bx(tx(sx)α1g(s)ds)f(t)dt|]1Γ(α)[xa|tx(xs)α1g(s)ds||f(t)|dt+bx|tx(sx)α1g(s)ds||f(t)|dt]1Γ(α)[g[a,x],xa|tx(xs)α1ds||f(t)|dt+g[x,b],bx|tx(sx)α1ds||f(t)|dt]=1Γ(α+1)[g[a,x],xa(xt)α|f(t)|dt+g[x,b],bx(tx)α|f(t)|dt]. (3.2)

    Since |f| is convex on [a,b], we get

    |f(t)|=|f(btbaa+tabab)|btba|f(a)|+taba|f(b)|. (3.3)

    By using (3.3) in (3.2), we obtain

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|g[a,x],(ba)Γ(α+1)xa(xt)α[(bt)|f(a)|+(ta)|f(b)|]dt+g[x,b],(ba)Γ(α+1)bx(tx)α[(bt)|f(a)|+(ta)|f(b)|]dt. (3.4)

    By simple calculations, one can establish

    xa(xt)α(bt)dt=(xa)α+1[(α+2)(bx)+(α+1)(xa)](α+1)(α+2), (3.5)
    xa(xt)α(ta)dt=(xa)α+2(α+1)(α+2), (3.6)
    bx(tx)α(bt)dt=(bx)α+2(α+1)(α+2) (3.7)

    and

    bx(tx)α(ta)dt=(bx)α+1[(α+1)(bx)+(α+2)(xa)](α+1)(α+2). (3.8)

    By substituting the equalities (3.5)–(3.8) in (3.4), we obtain

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|g[a,x],(ba)Γ(α+3)[(xa)α+1[(α+2)(bx)+(α+1)(xa)]|f(a)|+(xa)α+2|f(b)|]+g[x,b],(ba)Γ(α+3)[(bx)α+2|f(a)|+(bx)α+1[(α+1)(bx)+(α+2)(xa)]|f(b)|]=1(ba)Γ(α+3)×{[(xa)α+1[(α+2)(bx)+(α+1)(xa)]g[a,x],+(bx)α+2g[x,b],]|f(a)|+[(xa)α+2g[a,x],+(bx)α+1[(α+1)(bx)+(α+2)(xa)]g[x,b],]|f(b)|}

    which completes the proof of first inequality in (3.1).

    From the facts that

    g[a,x],g[a,b],=g and g[x,b],g[a,b],=g (3.9)

    for all x[a,b], the proof of the second inequality in (3.1) is obvious.

    Remark 3. If we choose α=1 in Theorem 4, then we have the weighted inequality

    |f(a)xag(t)dt+f(b)bxg(t)dtbaf(t)g(t)dt|[(xa)2(3b2ax6(ba))g[a,x],+(bx)36(ba)g[x,b],]|f(a)|+[(xa)36(ba)g[a,x],+(bx)2(2b3a+x6(ba))g[x,b],]|f(b)|[((xa)2(3(bx)+2(xa))+(bx)36(ba))|f(a)|+((xa)3+(bx)2(2(bx)+3(xa))6(ba)|f(b)|)]g

    which is proved by Tseng et. al in [51].

    Corollary 6. In Theorem 4, let g be symmetric to a+b2 and let x=a+b2. Then we have the following "weighted fractional trapezoid inequality"

    |[Jαa+g(a+b2)+Jαbg(a+b2)]f(a)+f(b)2[Jαa+(fg)(a+b2)+Jαb(fg)(a+b2)]|(ba)α+12α+2Γ(α+3)×[((2α+3)g[a,x],+g[x,b],)|f(a)|+(g[a,x],+(2α+3)g[x,b],)|f(b)|](ba)α+12αΓ(α+2)|f(a)|+|f(b)|2.

    Corollary 7. Under assumptions of Theorem 4, we have the following inequality

    |f(a)Jαa+g(b)+f(b)Jαbg(a)[Jαa+(fg)(b)+Jαb(fg)(a)]|(ba)α+12αΓ(α+2)[|f(a)|+|f(b)|].

    Proof. If we write the inequality (3.1) for x=a and x=b, then we have the inequalities

    |f(b)Jαbg(a)Jαb(fg)(a)|(ba)α+1gΓ(α+3)[|f(a)|+(α+1)|f(b)|] (3.10)

    and

    |f(a)Jαa+g(b)Jαa+(fg)(b)|(ba)α+1gΓ(α+3)[(α+1)|f(a)|+|f(b)|] (3.11)

    respectively. By adding the inequalities (3.10) and (3.11) and using triangle inequality, we obtain

    |f(a)Jαa+g(b)+f(b)Jαbg(a)[Jαa+(fg)(b)+Jαb(fg)(a)]|(ba)α+1gΓ(α+3)[|f(a)|+(α+1)|f(b)|]+(ba)α+1gΓ(α+3)[(α+1)|f(a)|+|f(b)|]=g(ba)α+12αΓ(α+2)[|f(a)|+|f(b)|]

    which completes the proof.

    Remark 4. If we choose α=1 in Corollary 7, then we have the following weighted trapezoid inequality

    |f(a)+f(b)2bag(t)dtbaf(t)g(t)dt||f(a)|+|f(b)|8g

    which is given by Tseng et al. in [51].

    Corollary 8. In Theorem 4, let g(t)=1 for all t[a,b]. Then we have the following identity

    |(xa)αf(a)+(bx)αf(b)Γ(α+1)[Jαa+f(x)+Jαbf(x)]|1(ba)(α+1)(α+2)×[((xa)α+1[(α+2)(bx)+(α+1)(xa)]+(bx)α+2)|f(a)|+((xa)α+2+(bx)α+1[(α+1)(bx)+(α+2)(xa)]|f(b)|).

    Theorem 5. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and fL[a,b]. If g:[a,b]R is continuous and if |f|q, q>1, is convex on [a,b], then for all x[a,b] and α>0 we have the following inequality for fractional integrals,

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1Γ(α+1)(1pα+1)1p×[g[a,x],(xa)α+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+g[x,b],(bx)α+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q]gΓ(α+1)(1pα+1)1p[(xa)α+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+(bx)α+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q] (3.12)

    where 1p+1q=1.

    Proof. By using the well-known Hölder inequality in (3.2), we have

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1Γ(α+1)[g[a,x],xa(xt)α|f(t)|dt+g[x,b],bx(tx)α|f(t)|dt]1Γ(α+1)[g[a,x],(xa(xt)pαdt)1p(xa|f(t)|qdt)1q+g[x,b],(bx(tx)pαdt)1p(bx|f(t)|qdt)1q]=1Γ(α+1)[g[a,x],(xa)α+1p(pα+1)1p(xa|f(t)|qdt)1q+g[x,b],(bx)α+1p(pα+1)1p(bx|f(t)|qdt)1q]. (3.13)

    Since |f|q is convex on [a,b], we get

    |f(t)|q=|f(btbaa+tabab)|qbtba|f(a)|q+taba|f(b)|q. (3.14)

    Then it follows that

    |f(a)Jαa+g(x)+f(b)Jαbg(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1Γ(α+1)(1pα+1)1p×[g[a,x],(xa)α+1p(xa((bt)|f(a)|q+(ta)|f(b)|qba)dt)1qg[x,b],(bx)α+1p(bx((bt)|f(a)|q+(ta)|f(b)|qba)dt)1q]1Γ(α+1)(1pα+1)1p×[g[a,x],(xa)α+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+g[x,b],(bx)α+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q].

    This completes the proof of first inequality in (3.12). The proof of second inequality is obvious from the inequalities (3.9).

    Remark 5. If we choose α=1 in Theorem 5, then we obtain the following weighted inequality

    |f(a)xag(t)dt+f(b)bxg(t)dtbaf(t)g(t)dt|(1p+1)1p[g[a,x],(xa)1+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+g[x,b],(bx)1+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q](1p1+1)1p[(xa)1+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+(bx)1+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q]g.

    Corollary 9. In Theorem 5, let g be symmetric to a+b2 and let x=a+b2. Then we have the following weighted fractional trapezoid inequality

    |[Jαa+g(a+b2)+Jαbg(a+b2)]f(a)+f(b)2[Jαa+(fg)(a+b2)+Jαb(fg)(a+b2)]|1Γ(α+1)(1pα+1)1p(ba2)α+1×[g[a,a+b2],(3|f(a)|q+|f(b)|qdt4)1q+g[x,b],(|f(a)|q+3|f(b)|q4)1q]gΓ(α+1)(1pα+1)1p(ba2)α+1×[(3|f(a)|q+|f(b)|qdt4)1q+(|f(a)|q+3|f(b)|q4)1q]gΓ(α+1)(4pα+1)1p(ba2)α+1[|f(a)|+|f(b)|] (3.15)

    where 1p+1q=1.

    Proof. The proof of the first and second inequalities in (3.15) is obvious. For the proof of third inequality, let a1=3|f(a)|q, b1=|f(b)|q, a2=|f(a)|q and b2=3|f(b)|q. Using the facts that,

    nk=1(ak+bk)snk=1ask+nk=1bsk, 0s<1

    and 31q+14, the desired result can be obtained straightforwardly.

    Corollary 10. Under assumptions of Theorem 4, we have the following equality

    |f(a)Jαa+g(b)+f(b)Jαbg(a)[Jαa+(fg)(b)+Jαb(fg)(a)]|2gΓ(α+1)(1pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q.

    Proof. If we write the equality (3.1) for x=a and x=b, then we have the inequalities

    |f(b)Jαbg(a)Jαb(fg)(a)|gΓ(α+1)(1pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q (3.16)

    and

    |f(a)Jαa+g(b)Jαa+(fg)(b)|gΓ(α+1)(1pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q, (3.17)

    respectively. By adding the inequalities (3.16) and (3.17) and using triangle inequality, we obtain

    |Jαa+g(b)f(a)+Jαbg(a)f(b)[Jαa+(fg)(b)+Jαb(fg)(a)]|2gΓ(α+1)(1pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q.

    This completes the proof.

    Remark 6. If we choose α=1 in Corollary 10, then we have the following weighted trapezoid inequality

    |f(a)+f(b)2bag(t)dtbaf(t)g(t)dt|(1p+1)1p(ba)2(|f(a)|q+|f(b)|q2)1qg

    which is given by Tseng et al. in [51].

    Corollary 11. In Theorem 5, let g(t)=1 for all t[a,b]. Then we have the following inequality

    |(xa)αf(a)+(bx)αf(b)Γ(α+1)[Jαa+f(x)+Jαbf(x)]|(1pα+1)1p[(xa)α+1p((xaba)(ba+x2)|f(a)|q+(xa)22(ba)|f(b)|qdt)1q+(bx)α+1p((bx)22(ba)|f(a)|q+(bxba)(x+b2a)|f(b)|q)1q].

    In this section, we obtain some weighted fractional Ostrowski type inequalities and we give some weighted fractional midpoint type inequalities as special cases.

    First, we give the classical and fractional Ostrowski inequalities:

    Ostrowski [31] gave the following classical integral inequality associated with the differentiable mappings:

    Theorem 6. Let f:[a,b]R be a differentiable mapping on (a,b) whose derivative f:(a,b)R is bounded on (a,b), i.e., f=supt(a,b)|f(t)|<. Then, the inequality holds:

    |f(x)1babaf(t)dt|[14+(xa+b2)2(ba)2](ba)f (4.1)

    for all x[a,b]. The constant 14 is the best possible.

    In [45], Set obtained the following Ostrowski inequality for fractional integrals:

    Theorem 7. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and fL[a,b]. If |f| is convex on [a,b] and |f(x)M|, x[a,b] then the following inequality for fractional integrals with α>0 holds:

    |((xa)α+(bx)αba)f(x)Γ(α+1)ba[Jαx+f(b)+Jαxf(a)]|Mba[(xa)α+1+(bx)α+1α+1].

    In recent years, several papers have devoted to Ostrowski type inequalities for several type fractional integrals, for some of them please see [1,5,6,11,15,16,24,26,29,38,39,48,50,25,49,54,55].

    Theorem 8. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and fL[a,b]. If g:[a,b]R is continuous and if |f| is convex on [a,b], then for all x[a,b] and α>0 we have the following "weighted fractional Ostrowski inequality"

    |[Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|g(ba)Γ(α+1)[(xa)α+1((ba+x2)(α+2)(bx)+(α+1)(xa)(α+1)(α+2))+(bx)α+2(121(α+1)(α+2))]|f(a)|+[(bx)α+1((x+b2a)(α+1)(bx)+(α+2)(xa)(α+1)(α+2))+(xa)α+2(121(α+1)(α+2))]|f(b)|. (4.2)

    Proof. From Lemma 4, we have

    |[Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|1Γ(α)[|xa(ta(xs)α1g(s)ds)f(t)dt|+|bx(tb(sx)α1g(s)ds)f(t)dt|]1Γ(α)[xa|ta(xs)α1g(s)ds||f(t)|dt+bx|tb(sx)α1g(s)ds||f(t)|dt]1Γ(α+1)[g[a,x],xa((xa)α(xt)α)|f(t)|dt+g[x,b],bx((bx)α(tx)α)|f(t)|dt]gΓ(α+1)[xa((xa)α(xt)α)|f(t)|dt+bx((bx)α(tx)α)|f(t)|dt]. (4.3)

    Since |f| is convex on [a,b], then we get

    xa((xa)α(xt)α)|f(t)|dt1baxa((xa)α(xt)α)[(bt)|f(a)|+(ta)|f(b)|]dt=|f(a)|baxa((xa)α(xt)α)(bt)dt+|f(b)|baxa((xa)α(xt)α)(ta)dt=(xa)α+1ba[(ba+x2)(α+2)(bx)+(α+1)(xa)(α+1)(α+2)]|f(a)|+(xa)α+2ba[121(α+1)(α+2)]|f(b)|. (4.4)

    Similarly we can obtain

    bx((bx)α(tx)α)|f(t)|dt1baxa((bx)α(tx)α)[(bt)|f(a)|+(ta)|f(b)|]dt=(bx)α+2ba[121(α+1)(α+2)]|f(a)|+(bx)α+1ba[(x+b2a)(α+1)(bx)+(α+2)(xa)(α+1)(α+2)]|f(b)|. (4.5)

    If we substitute the equalities (4.4) and (4.5) in (4.3), then we obtain the required inequality (4.2).

    Remark 7. If we choose α=1 in Theorem 8, then we have the following weighted Ostrowski inequality

    |f(x)bag(t)dtbaf(t)g(t)dt|g(ba)Γ(α+1)[(xa)22(ba+2x3)+(bx)33]|f(a)|+[(bx)α+12(2x+b3a)+(xa)α+23]|f(b)|.

    Corollary 12. If we choose x=a+b2 in Theorem 8, then we have the following "weighted fractional midpoint inequality"

    |[Jαa+g(a+b2)+Jαbg(a+b2)]f(a+b2)[Jαa+(fg)(a+b2)+Jαb(fg)(a+b2)]|gΓ(α+1)(ba2)α+1[|f(a)|+|f(b)|].

    Corollary 13. If we choose g(t)=1 for all t[a,b] in Theorem 8, then we have the following new version of fractional Ostrowski type inequality

    |((xa)α+(bx)αba)f(x)Γ(α+1)ba[Jαa+f(x)+Jαbf(x)]|1(ba)2Γ(α+1)[(xa)α+1((ba+x2)(α+2)(bx)+(α+1)(xa)(α+1)(α+2))+(bx)α+2(121(α+1)(α+2))]|f(a)|+[(bx)α+1((x+b2a)(α+1)(bx)+(α+2)(xa)(α+1)(α+2))+(xa)α+2(121(α+1)(α+2))]|f(b)|.

    Corollary 14. Under assumption of Theorem 8, let g be symmetric to a+b2. Then we have the following inequality

    |f(a)+f(b)2[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]|(ba)α+1gΓ(α+1)(11α+1)[|f(a)|+|f(b)|] (4.6)

    Proof. If we apply the inequality (4.2) for x=a and x=b, then we obtain the inequalities

    |f(a)Jαbg(a)Jαb(fg)(a)|(ba)α+1gΓ(α+1)[(121(α+1)(α+2))|f(a)|+(121α+2)|f(b)|] (4.7)

    and

    |f(b)Jαa+g(b)Jαa+(fg)(b)|(ba)α+1gΓ(α+1)[(121α+2)|f(a)|+(121(α+1)(α+2))|f(b)|] (4.8)

    respectively. If we add the inequalities (4.7) and (4.8), then by using triangle inequality and Lemma 2, we have

    |f(a)+f(b)2[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]|(ba)α+1gΓ(α+1)[(121(α+1)(α+2))|f(a)|+(121α+2)|f(b)|]+(ba)α+1gΓ(α+1)[(121α+2)|f(a)|+(121(α+1)(α+2))|f(b)|]=(ba)α+1gΓ(α+1)(11α+1)[|f(a)|+|f(b)|]

    which completes the proof.

    Theorem 9. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b and fL[a,b]. If g:[a,b]R is continuous and if |f|q, q>1, is convex on [a,b], then for all x[a,b] and α>0 we have the following inequality for fractional integrals,

    |[Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|g(ba)1qΓ(α+1)(11pα+1)1p[(xa)α+1((ba+x2)|f(a)|q+xa2|f(b)|q)1q+(bx)α+1(bx2|f(a)|q+(x+b2a)|f(b)|q)1q] (4.9)

    where 1p+1q=1.

    Proof. By applying Hölder inequality in (4.3) and by using the fact that

    (AB)pApBp

    for any A>B0 and p1, we obtain

    |[Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|gΓ(α+1)[(xa((xa)α(xt)α)pdt)1p(xa|f(t)|qdt)1q+(bx((bx)α(tx)α)pdt)1p(bx|f(t)|qdt)1q]gΓ(α+1)[(xa((xa)pα(xt)pα)dt)1p(xa|f(t)|qdt)1q+(bx((bx)pα(tx)pα)dt)1p(bx|f(t)|qdt)1q]. (4.10)

    By simple calculations, we establish

    xa((xa)pα(xt)pα)dt=(xa)pα+1(11pα+1) (4.11)

    and

    bx((bx)pα(tx)pα)dt=(bx)pα+1(11pα+1). (4.12)

    Since |f|q is convex on [a,b], then we get

    xa|f(t)|qdt1baxa((bt)|f(a)|q+(ta)|f(b)|q)xaba[(ba+x2)|f(a)|q+xa2|f(b)|q] (4.13)

    and similarly

    bx|f(t)|qdtbxba[bx2|f(a)|q+(x+b2a)|f(b)|q]. (4.14)

    If we put (4.11)–(4.11) in (4.10), then we have

    |[Jαa+g(x)+Jαbg(x)]f(x)[Jαa+(fg)(x)+Jαb(fg)(x)]|gΓ(α+1)[((xa)pα+1(11pα+1))1p(xaba[(ba+x2)|f(a)|q+xa2|f(b)|q])1q+((bx)pα+1(11pα+1))1p(bxba[bx2|f(a)|q+(x+b2a)|f(b)|q])1q]=g(ba)1qΓ(α+1)(11pα+1)1p[(xa)α+1((ba+x2)|f(a)|q+xa2|f(b)|q)1q+(bx)α+1(bx2|f(a)|q+(x+b2a)|f(b)|q)1q]

    which completes the proof.

    Remark 8. If we choose α=1 in Theorem 9, then we have the following weighted Ostrowski inequality

    |f(x)bag(t)dtbaf(t)g(t)dt|g(ba)1q(11p+1)1p[(xa)2((ba+x2)|f(a)|q+xa2|f(b)|q)1q+(bx)2(bx2|f(a)|q+(x+b2a)|f(b)|q)1q].

    Corollary 15. If we choose x=a+b2 in Theorem 9, then we have the following "weighted fractional midpoint inequality"

    |[Jαa+g(a+b2)+Jαbg(a+b2)]f(a+b2)[Jαa+(fg)(a+b2)+Jαb(fg)(a+b2)]|gΓ(α+1)(11pα+1)1p(ba2)α+1×[(3|f(a)|q+|f(b)|q4)1q+(|f(a)|q+3|f(b)|q4)1q]gΓ(α+1)(44pα+1)1p(ba2)α+1[|f(a)|+|f(b)|]. (4.15)

    Proof. The proof of the first inequality in (4.15) is obvious. For the proof of second inequality, let a1=3|f(a)|q, b1=|f(b)|q, a2=|f(a)|q and b2=3|f(b)|q. Using the facts that

    nk=1(ak+bk)snk=1ask+nk=1bsk, 0s<1

    and 31q+14, the desired result can be obtained straightforwardly.

    Corollary 16. If we choose g(t)=1 for all t[a,b] in Theorem 9, then we have

    |((xs)α+(bx)αba)f(x)Γ(α+1)ba[J]αa+f(x)+Jαbf(x)|(11pα+1)1p(ba)1+1qΓ(α+1)[(xa)α+1((ba+x2)|f(a)|q+xa2|f(b)|q)1q+(bx)α+1(bx2|f(a)|q+(x+b2a)|f(b)|q)1q]

    Corollary 17. Under assumption of Theorem 9, let g be symmetric to a+b2. Then we have the following inequality

    |f(a)+f(b)2[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]|2(ba)α+1Γ(α+1)(11pα+1)1p(|f(a)|q+|f(b)|2q)1qg. (4.16)

    Proof. If we write the inequality (4.9) for x=a and x=b, then we obtain the inequalities

    |f(a)Jαbg(a)Jαb(fg)(a)|gΓ(α+1)(11pα+1)1p(ba)α+1(|f(a)|q+|f(b)|2q)1q (4.17)

    and

    |f(b)Jαa+g(a)Jαa+(fg)(b)|gΓ(α+1)(11pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q (4.18)

    respectively. If we add the inequalities (4.7) and (4.8), then by using triangle inequality and Lemma 2, we have

    |f(a)+f(b)2[Jαa+g(b)+Jαbg(a)][Jαa+(fg)(b)+Jαb(fg)(a)]|gΓ(α+1)(11pα+1)1p(ba)α+1(|f(a)|q+|f(b)|2q)1q+gΓ(α+1)(11pα+1)1p(ba)α+1(|f(a)|q+|f(b)|q2)1q=2(ba)α+1Γ(α+1)(11pα+1)1p(|f(a)|q+|f(b)|2q)1qg.

    This completes the proof.

    The authors declare no conflict of interest.

  • This article has been cited by:

    1. Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, 2022, 7, 2473-6988, 3303, 10.3934/math.2022184
    2. Bhagwat R. Yewale, Deepak B. Pachpatte, Tariq A. Aljaaidi, Wilfredo Urbina, Chebyshev-Type Inequalities Involving ( k , ψ )-Proportional Fractional Integral Operators, 2022, 2022, 2314-8888, 1, 10.1155/2022/3966177
    3. Atiqe Ur Rahman, Khuram Ali Khan, Ammara Nosheen, Muhammad Saeed, Thongchai Botmart, Nehad Ali Shah, Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales, 2022, 7, 2473-6988, 16657, 10.3934/math.2022913
    4. Rozana Liko, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Artion Kashuri, Eman Al-Sarairah, Soubhagya Kumar Sahoo, Mohamed S. Soliman, Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions, 2022, 11, 2075-1680, 727, 10.3390/axioms11120727
    5. Humaira Kalsoom, Muhammad Amer Latif, Some weighted Hadamard and Ostrowski-type fractional inequalities for quasi-geometrically convex functions, 2023, 37, 0354-5180, 5921, 10.2298/FIL2318921K
    6. Fatih Hezenci, Martin Bohner, Hüseyin Budak, Fractional midpoint-type inequalities for twice-differentiable functions, 2023, 37, 0354-5180, 8131, 10.2298/FIL2324131H
    7. Ghulam Farid, Hafsa Tariq, Ferdous M. O. Tawfiq, Jong-Suk Ro, Saira Zainab, A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function, 2023, 12, 2075-1680, 795, 10.3390/axioms12080795
    8. Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040
    9. YUNXIU ZHOU, JIAGEN LIAO, TINGSONG DU, THE WEIGHTED PARAMETERIZED INEQUALITIES IN RELATION TO TWICE DIFFERENTIABLE MAPPINGS IN THE FRACTAL DOMAINS ALONG WITH SOME APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23500925
    10. Fatih Hezenci, Inequalities with parameters for twice-differentiable functions involving Riemann-Liouville fractional integrals, 2024, 38, 0354-5180, 3275, 10.2298/FIL2409275H
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2552) PDF downloads(409) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog