We study positive solutions to the integral system
$ \begin{cases} u(x) = \int\limits_{ \mathbb R^N}\frac{K(y)v^{-p}(y)}{ |x-y|^{N-\alpha}} dy\quad\text{ for all }x\in \mathbb R^N, \\ v(x) = \int\limits_{ \mathbb R^N}\frac{L(y)u^{-q}(y)}{ |x-y|^{N-\beta}} dy\quad\text{ for all }x\in \mathbb R^N, \end{cases} $
where $ p, q > 0 $, $ \alpha, \beta\in (0, N) $ and $ K, L: \mathbb R^N\to (0, \infty) $ are continuous functions which satisfy $ C_1(1+|x|)^{-\gamma}\leq K(x), L(x)\leq C_2(1+|x|)^{-\gamma} $ in $ \mathbb R^N $, for some $ \gamma > 0 $ and constants $ C_2 > C_1 > 0 $. We discuss the existence, nonexistence, and uniqueness of positive solutions to the above system with respect to $ \alpha, \beta, p, q, $ and $ \gamma $. We also classify the finite and infinite total mass solutions of the system.
Citation: Changhong Li. An integral system of Matukuma type with negative exponents[J]. Networks and Heterogeneous Media, 2025, 20(2): 566-589. doi: 10.3934/nhm.2025025
We study positive solutions to the integral system
$ \begin{cases} u(x) = \int\limits_{ \mathbb R^N}\frac{K(y)v^{-p}(y)}{ |x-y|^{N-\alpha}} dy\quad\text{ for all }x\in \mathbb R^N, \\ v(x) = \int\limits_{ \mathbb R^N}\frac{L(y)u^{-q}(y)}{ |x-y|^{N-\beta}} dy\quad\text{ for all }x\in \mathbb R^N, \end{cases} $
where $ p, q > 0 $, $ \alpha, \beta\in (0, N) $ and $ K, L: \mathbb R^N\to (0, \infty) $ are continuous functions which satisfy $ C_1(1+|x|)^{-\gamma}\leq K(x), L(x)\leq C_2(1+|x|)^{-\gamma} $ in $ \mathbb R^N $, for some $ \gamma > 0 $ and constants $ C_2 > C_1 > 0 $. We discuss the existence, nonexistence, and uniqueness of positive solutions to the above system with respect to $ \alpha, \beta, p, q, $ and $ \gamma $. We also classify the finite and infinite total mass solutions of the system.
| [1] | T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (in Japanese). |
| [2] | T. Matukuma, The Cosmos, Tokyo: Iwanami Shoten, 1938 (in Japanese). |
| [3] |
Y. Li, On the positive solutions of the Matukuma equation, Duke Math. J., 70 (1993), 575–589. https://doi.org/10.1215/S0012-7094-93-07012-3 doi: 10.1215/S0012-7094-93-07012-3
|
| [4] |
Y. Li, W. M. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations, Arch. Ration. Mech. Anal., 108 (1989), 175–194. https://doi.org/10.1007/BF01053462 doi: 10.1007/BF01053462
|
| [5] |
L. Li, Y. Lei, On integral equations of Matukuma type, J. Differ. Equations, 377 (2023), 888–933. https://doi.org/10.1016/j.jde.2023.10.015 doi: 10.1016/j.jde.2023.10.015
|
| [6] |
Y. Hu, G. Du, Classification and symmetry of positive solutions for weighted integral system, Nonlinear Anal., 222 (2022), 113005. https://doi.org/10.1016/j.na.2022.113005 doi: 10.1016/j.na.2022.113005
|
| [7] |
D. Li, P. Niu, R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015), 915–931. https://doi.org/10.1016/j.jmaa.2014.11.029 doi: 10.1016/j.jmaa.2014.11.029
|
| [8] |
S. Tang, J. Dou, Classification of positive solutions to an integral system with the poly-harmonic extension operator, Sci. China Math., 61 (2018), 1603–1616. https://doi.org/10.1007/s11425-017-9236-x doi: 10.1007/s11425-017-9236-x
|
| [9] |
Y. Y. Li, Remark on some conformally invariant integral equtions: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153–180. https://doi.org/10.4171/jems/6 doi: 10.4171/jems/6
|
| [10] |
J. Villavert, Qualitative properties of solutions for an integral system related to the Hardy–Sobolev inequality, J. Differ. Equations, 258 (2015), 1685–1714. https://doi.org/10.1016/j.jde.2014.11.011 doi: 10.1016/j.jde.2014.11.011
|
| [11] |
X. Xu, Exact solution of nonlinear conformally invariant integral equation in $ \mathbb R^3$, Adv. Math., 194 (2005), 485–503. https://doi.org/10.1016/j.aim.2004.07.004 doi: 10.1016/j.aim.2004.07.004
|
| [12] |
X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95–109. https://doi.org/10.1016/j.jfa.2007.03.005 doi: 10.1016/j.jfa.2007.03.005
|
| [13] |
Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391 (2012), 209–222. https://doi.org/10.1016/j.jmaa.2012.02.016 doi: 10.1016/j.jmaa.2012.02.016
|
| [14] |
M. Ghergu, C. Li, An integral equation with negative exponent, Discrete Contin. Dyn. Syst. Series S, 18 (2025), 2211–2236. https://doi.org/10.3934/dcdss.2024204 doi: 10.3934/dcdss.2024204
|
| [15] |
Y. Hu, Z. Liu, J. Ma, Liouville type theorem for weighted integral system with negative exponents, J. Math. Anal. Appl., 519 (2023), 126759. https://doi.org/10.1016/j.jmaa.2022.126759 doi: 10.1016/j.jmaa.2022.126759
|
| [16] |
J. Ma, Y. Hu, Liouville type theorems for general weighted integral system with negative exponents, Commun. Pure Appl. Anal., 22 (2023), 3120–3138. https://doi.org/10.3934/cpaa.2023103 doi: 10.3934/cpaa.2023103
|
| [17] |
J. Dou, M. Zhu, Reversed Hardy-Littewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696–9726. https://doi.org/10.1093/imrn/rnu241 doi: 10.1093/imrn/rnu241
|
| [18] |
Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039–1057. https://doi.org/10.3934/dcds.2015.35.1039 doi: 10.3934/dcds.2015.35.1039
|
| [19] |
Q. A. Ngo, V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on $ \mathbb R^N$, Israel J. Math., 220 (2017), 189–223. https://doi.org/10.1007/s11856-017-1515-x doi: 10.1007/s11856-017-1515-x
|
| [20] |
J. Dou, F. Ren, J. Villavert, Classification of positive solutions to a Lane-Emden type integral system with negative exponents, Discrete Contin. Dyn. Syst., 36 (2016), 6767–6780. https://doi.org/10.3934/dcds.2016094 doi: 10.3934/dcds.2016094
|
| [21] |
J. Dou, C. Qu, Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions, Sci. China Math., 54 (2011), 753–768. https://doi.org/10.1007/s11425-011-4177-x doi: 10.1007/s11425-011-4177-x
|
| [22] |
M. Ghergu, Superharmonic functions in the upper half space with a nonlocal boundary condition, Discrete Contin. Dyn. Syst., 45 (2025), 3195–3216. https://doi.org/10.3934/dcds.2025016 doi: 10.3934/dcds.2025016
|
| [23] |
Y. Hu, Z. Liu, Classification of positive solutions for an integral system on the half space, Nonlinear Anal., 199 (2020), 111935. https://doi.org/10.1016/j.na.2020.111935 doi: 10.1016/j.na.2020.111935
|
| [24] |
Z. Liu, Symmetry and monotonicity of positive solutions for an integral system with negative exponents, Pac. J. Math., 300 (2019), 419–430. https:///doi.org/10.2140/pjm.2019.300.419 doi: 10.2140/pjm.2019.300.419
|
| [25] | Y. Mizuta, Potential Theory in Euclidean Spaces, Gakkutosho, 1996. |
| [26] | A. Taheri, Function Spaces and Partial Differential Equations: Volume 1—Classical Analysis, Oxford University Press, 2015. https://doi.org/10.1093/acprof: oso/9780198733133.001.0001 |
| [27] |
M. Ghergu, P. Karageorgis, G. Singh, Positive solutions for quasilinear elliptic inequalities and systems with nonlocal terms, J. Differ. Equations, 268 (2020), 6033–6066. https://doi.org/10.1016/j.jde.2019.11.013 doi: 10.1016/j.jde.2019.11.013
|
| [28] |
N. Miyake, Effect of decay rates of initial data on the sign of solutions to Cauchy problems of polyharmonic heat equations, Math. Ann., 387 (2023), 265–289. https://doi.org/10.1007/s00208-022-02466-w doi: 10.1007/s00208-022-02466-w
|