This paper proposes and analyzes a class of fractional optimal control problems for lung cancer therapy, which combines surgical intervention with the administration of autologous ex vivo expanded immune T lymphocytes. The proposed combined therapy facilitates tumor cell elimination, enhances patient survival rates, and—by leveraging autologous expanded immune cells—minimizes adverse effects, thereby enabling the effective treatment of cancer patients at minimal cost. In the treatment process, according to the individual differences of patients, the treatment plan should be adjusted promptly, such as adjusting the use of immunotherapy drugs or deciding whether a second operation is needed, to achieve personalized precision medicine and maximize the treatment effect. In the numerical solution part, $ L1 $ discretization and the Adams-Bashforth-Moulton method were used to solve fractional differential equations, and the sensitivity analysis of parameters were carried out by the Latin hypercube sampling method to determine the robustness of the model. In the control part, a genetic algorithm was used to control the input $ u(t) $. We found the optimal $ u(t) $ to minimize the target value.
Citation: Wen Fang, Xuewen Tan, Yanbin Feng. Analysis and optimization control of lung cancer treatment based on surgical resection and immune cell therapy[J]. Networks and Heterogeneous Media, 2025, 20(2): 356-386. doi: 10.3934/nhm.2025017
This paper proposes and analyzes a class of fractional optimal control problems for lung cancer therapy, which combines surgical intervention with the administration of autologous ex vivo expanded immune T lymphocytes. The proposed combined therapy facilitates tumor cell elimination, enhances patient survival rates, and—by leveraging autologous expanded immune cells—minimizes adverse effects, thereby enabling the effective treatment of cancer patients at minimal cost. In the treatment process, according to the individual differences of patients, the treatment plan should be adjusted promptly, such as adjusting the use of immunotherapy drugs or deciding whether a second operation is needed, to achieve personalized precision medicine and maximize the treatment effect. In the numerical solution part, $ L1 $ discretization and the Adams-Bashforth-Moulton method were used to solve fractional differential equations, and the sensitivity analysis of parameters were carried out by the Latin hypercube sampling method to determine the robustness of the model. In the control part, a genetic algorithm was used to control the input $ u(t) $. We found the optimal $ u(t) $ to minimize the target value.
| [1] |
R. Salgia, P. Rebecca, M. Isa, N. Arin, S. Martin, The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC), Cell Rep. Med., 2 (2021). https://doi.org/10.1016/j.xcrm.2020.100186 doi: 10.1016/j.xcrm.2020.100186
|
| [2] | R. L. Siegel, K. D. Miller, J. Ahmedin, Cancer statistics, 2015, CA: Cancer J. Clinicians, 65 (2015). |
| [3] |
H. K. Matthews, C. Bertoli, R. A. M. de Bruin, Cell cycle control in cancer, Nat. Rev. Mol. Cell Biol., 23 (2022), 74–88. https://doi.org/10.1038/s41580-021-00404-3 doi: 10.1038/s41580-021-00404-3
|
| [4] |
L. Galluzzi, E. Morselli, O. Kepp, I. Vitale, A. Rigoni, E. Vacchelli, et al., Mitochondrial gateways to cancer, Mol. Aspects Med., 31 (2010), 1–20. https://doi.org/10.1016/j.mam.2009.08.002 doi: 10.1016/j.mam.2009.08.002
|
| [5] |
D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57–70. https://doi.org/10.1016/s0092-8674(00)81683-9 doi: 10.1016/s0092-8674(00)81683-9
|
| [6] |
V. Koudelakova, M. Kneblova, R. Trojanec, J. Drabek, M. Hajduch, Non-small cell lung cancer-genetic predictors, Biomed. Pap. Med. Fac. Palacky Univ. Olomouc, 157 (2013), 125–136. https://doi.org/10.5507/bp.2013.034 doi: 10.5507/bp.2013.034
|
| [7] |
H. Qian, Y. Zhang, J. Xu, J. He, W. Gao, Progress and application of circulating tumor cells in non-small cell lung cancer, Mol. Ther. Oncolytics, 22 (2021), 72–84. https://doi.org/10.1016/j.omto.2021.05.005 doi: 10.1016/j.omto.2021.05.005
|
| [8] | Cancer Net., Lung Cancer—Non-Small Cell: Statistics, 2021. Available from: https://www.cancer.net/cancer-types/lungcancer-non-small-cell/statistics. |
| [9] |
T. Aasen, M. Mesnil, C. C. Naus, P. D. Lampe, D. W. Laird, Gap junctions and cancer: Communicating for 50 years, Nat. Rev. Cancer, 16 (2016), 775–778. https://doi.org/10.1038/nrc.2016.105 doi: 10.1038/nrc.2016.105
|
| [10] |
E. A. Akbay, S. Koyama, J. Carretero, A. Altabef, J. H. Tchaicha, C. L. Christensen, et al., Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors, Cancer Discovery, 3 (2013), 1355–1363. https://doi.org/10.1158/2159-8290.CD-13-0310 doi: 10.1158/2159-8290.CD-13-0310
|
| [11] |
K. Shinada, S. Murakami, Neoadjuvant PD-1 blockade in non-small cell lung cancer: Current perspectives and moving forward, OncoTargets Ther., 16 (2023), 99–108. https://doi.org/10.2147/OTT.S399657 doi: 10.2147/OTT.S399657
|
| [12] |
N. Howlader, G. Forjaz, M. J. Mooradian, R. Meza, C. Y. Kong, K. A. Cronin, et al., The effect of advances in lung-cancer treatment on population mortality, N. Engl. J. Med., 383 (2020), 640–649. https://doi.org/10.1056/NEJMoa1916623 doi: 10.1056/NEJMoa1916623
|
| [13] |
A. Das, K. Dehingia, H. K. Sarmah, K. Hosseini, An optimally controlled chemotherapy treatment for cancer eradication, Int. J. Modell. Simul., 44 (2024), 44–59. https://doi.org/10.1080/02286203.2022.2155601 doi: 10.1080/02286203.2022.2155601
|
| [14] |
U. Ledzewicz, H. Schättler, On the optimal control problem for a model of the synergy of chemo- and immunotherapy, Optim. Control. Appl. Methods, 25 (2024), 575–593. https://doi.org/10.1002/oca.3016 doi: 10.1002/oca.3016
|
| [15] |
D. Owen, J. E. Chaft, Immunotherapy in surgically resectable non-small cell lung cancer, J. Thorac. Dis., 10 (2018), S404. https://doi.org/10.21037/jtd.2017.12.93 doi: 10.21037/jtd.2017.12.93
|
| [16] |
A. Lahiri, A. Maji, P. D. Potdar, N. Singh, P. Parikh, B. Bisht, et al., Lung cancer immunotherapy: Progress, pitfalls, and promises, Mol. Cancer, 22 (2023), 40. https://doi.org/10.1186/s12943-023-01740-y doi: 10.1186/s12943-023-01740-y
|
| [17] |
R. Liu, S. Wang, X. Tan, X. Zou, Identifying optimal adaptive therapeutic schedules for prostate cancer through combining mathematical modeling and dynamic optimization, Appl. Math. Modell., 107 (2022), 688–700. https://doi.org/10.1016/j.apm.2022.03.004 doi: 10.1016/j.apm.2022.03.004
|
| [18] |
B. Daşbaşı, İ. Öztürk, Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response, SpringerPlus, 5 (2016), 1–17. https://doi.org/10.1186/s40064-016-2017-8 doi: 10.1186/s40064-016-2017-8
|
| [19] |
L. Anderson, S. Jang, J. Yu, . Qualitative behavior of systems of tumor–CD4+–cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330–4344. https://doi.org/10.1002/mma.3370 doi: 10.1002/mma.3370
|
| [20] |
J. J. Tyson, B. Novak, Temporal organization of the cell cycle, Curr. Biol., 18 (2008), R759–R768. https://doi.org/10.1016/j.cub.2008.07.001 doi: 10.1016/j.cub.2008.07.001
|
| [21] |
B. Ibrahim, Toward a systems-level view of mitotic checkpoints, Prog. Biophys. Mol. Biol., 117 (2015), 217–224. https://doi.org/10.1016/j.pbiomolbio.2015.02.005 doi: 10.1016/j.pbiomolbio.2015.02.005
|
| [22] |
Y. Shu, J. Huang, Y. Dong, Y. Takeuchi, Mathematical modeling and bifurcation analysis of pro-and anti-tumor macrophages, Appl. Math. Modell., 88 (2020), 758–773. https://doi.org/10.1016/j.apm.2020.06.042 doi: 10.1016/j.apm.2020.06.042
|
| [23] |
C. Geng, H. Paganetti, C. Grassberger, Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model, Sci. Rep., 7 (2017), 13542. https://doi.org/10.1038/s41598-017-13646-z doi: 10.1038/s41598-017-13646-z
|
| [24] |
N. Ophir, S. Yehuda, B. Raziel, S. E. Elimelech, S. Moriah, A new treatment for breast cancer using a combination of two drugs: AZD9496 and palbociclib, Sci. Rep., 14 (2024), 1307. https://doi.org/10.1038/s41598-023-48305-z doi: 10.1038/s41598-023-48305-z
|
| [25] |
B. Novák, J. Tyson, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9 (2008), 981–991. https://doi.org/10.1038/nrm2530 doi: 10.1038/nrm2530
|
| [26] | F. Irshad, N. Kumar, Role of ordinary and partial differential equations as mathematical models in tumor growth, AIJR Abstracts, (2022), 36. |
| [27] |
I. Öztürk, F. Özköse, Stability analysis of fractional order mathematical model of tumor-immune system interaction, Chaos, Solitons Fractals, 133 (2020), 109614. https://doi.org/10.1016/j.chaos.2020.109614 doi: 10.1016/j.chaos.2020.109614
|
| [28] |
Y. Pang, S. Liu, F. Liu, X. Zhang, T. Tian, Mathematical modeling and analysis of tumor-volume variation during radiotherapy, Appl. Math. Modell., 89 (2021), 1074–1089. https://doi.org/10.1016/j.apm.2020.07.028 doi: 10.1016/j.apm.2020.07.028
|
| [29] |
M. Ghita, D. Copot, C. M. Ionescu, Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup, J. Adv. Res., 32 (2021), 61–71. https://doi.org/10.1016/j.jare.2020.12.016 doi: 10.1016/j.jare.2020.12.016
|
| [30] |
A. Ahmad, M. O. Kulachi, M. Farman, M. Junjua, M. B. Riaz, S. Riaz, Mathematical modeling and control of lung cancer with IL2 cytokine and anti-PD-L1 inhibitor effects for low immune individuals, Plos One, 19 (2024), e0299560. https://doi.org/10.1371/journal.pone.0299560 doi: 10.1371/journal.pone.0299560
|
| [31] |
D. Amilo, B. Kaymakamzade, E. Hincal, A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches, Sci. Rep., 13 (2023), 12426. https://doi.org/10.1038/s41598-023-38814-2 doi: 10.1038/s41598-023-38814-2
|
| [32] |
P. Schlicke, C. Kuttler, C. Schumann, How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: Insights in immunotherapeutic treatment of non-small cell lung cancer, Theor. Biol. Med. Modell., 18 (2021), 11. https://doi.org/10.1186/s12976-021-00142-1 doi: 10.1186/s12976-021-00142-1
|
| [33] |
F. Özköse, S. Yılmaz, M. T. Şenel, M. Yavuz, S. Townley, M. D. Sarıkaya, A mathematical modeling of patient-derived lung cancer stem cells with fractional-order derivative, Phys. Scr., 99 (2024), 115235. https://doi.org/10.1088/1402-4896/ad80e1 doi: 10.1088/1402-4896/ad80e1
|
| [34] |
R. Salgia, I. Mambetsariev, B. Hewelt, S. Achuthan, H. Li, V. Poroyko, et al., Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models, Oncotarget, 9 (2018), 26226. https://doi.org/10.18632/oncotarget.25360 doi: 10.18632/oncotarget.25360
|
| [35] |
F. Özköse, S. Yılmaz, M. Yavuz, İ. Öztürk, M. T. Şenel, B. Bağcı, et al., A fractional modeling of tumor-immune system interaction related to lung cancer with real data, Eur. Phys. J. Plus, 137 (2022), 1–28. https://doi.org/10.1140/epjp/s13360-021-02254-6 doi: 10.1140/epjp/s13360-021-02254-6
|
| [36] |
M. Abaid Ur Rehman, J. Ahmad, A. Hassan, J. Awrejcewicz, W. Pawlowski, H. Karamti, et al., The dynamics of a fractional-order mathematical model of cancer tumor disease, Symmetry, 14 (2022), 1694. https://doi.org/10.3390/sym14081694 doi: 10.3390/sym14081694
|
| [37] |
A. V. Arutyunov, The Pontryagin maximum principle and sufficient optimality conditions for nonlinear problems, Differ. Equations, 39 (2003), 1671–1679. https://doi.org/10.1023/B:DIEQ.0000023546.85791.0c doi: 10.1023/B:DIEQ.0000023546.85791.0c
|
| [38] |
A. Sergey M, K. Arkadiy V, A. Ibrahim-Hashim, R. J. Gillies, R. A. Gatenby, et al., The Pontryagin maximum principle and optimal economic growth problems, Proc. Steklov Inst. Math., 257 (2007), 1–255. https://doi.org/10.1134/S0081543807020010 doi: 10.1134/S0081543807020010
|
| [39] |
A. R. Freischel, M. Damaghi, J. J. Cunningham, A. Ibrahim-Hashim, R. J. Gillies, R. A. Gatenby, et al., Frequency-dependent interactions determine outcome of competition between two breast cancer cell lines, Sci. Rep., 11 (2021), 4908. https://doi.org/10.1038/s41598-021-84406-3 doi: 10.1038/s41598-021-84406-3
|
| [40] |
X. Lai, A. Friedman, Exosomal miRs in lung cancer: A mathematical model, PLoS One, 11 (2016), e0167706. https://doi.org/10.1371/journal.pone.0167706 doi: 10.1371/journal.pone.0167706
|
| [41] |
Y. Xiao, X. Zou, Mathematical modeling and quantitative analysis of phenotypic plasticity during tumor evolution based on single-cell data, J. Math. Biol., 89 (2024), 34. https://doi.org/10.1007/s00285-024-02133-5 doi: 10.1007/s00285-024-02133-5
|
| [42] |
D. Amilo, K. Sadri, B. Kaymakamzade, E. Hincal, A mathematical model with fractional-order dynamics for the combined treatment of metastatic colorectal cancer, Commun. Nonlinear Sci. Numer. Simul., 130 (2024), 107756. https://doi.org/10.1016/j.cnsns.2023.107756 doi: 10.1016/j.cnsns.2023.107756
|
| [43] |
K. Pradhan, P. Chawla, S. Rawat, A deep learning-based approach for detection of lung cancer using self adaptive sea lion optimization algorithm (SA-SLnO), J. Ambient Intell. Hum. Comput., 14 (2023), 12933–12947. https://doi.org/10.1007/s12652-022-04118-y doi: 10.1007/s12652-022-04118-y
|
| [44] |
C. Y. Yang, C. Shiranthika, C. Y. Wang, K. W. Chen, S. Sumathipala, Reinforcement learning strategies in cancer chemotherapy treatments: A review, Comput. Methods Programs Biomed., (2023), 107280. https://doi.org/10.1016/j.cmpb.2022.107280 doi: 10.1016/j.cmpb.2022.107280
|
| [45] | M. Gen, L. Lin, Genetic algorithms and their applications, in Springer Handbook of Engineering Statistics, London: Springer London, (2023), 635–674. https://doi.org/10.1007/978-1-4471-7503-2_33 |
| [46] | M. M. Sati, D. Kumar, A. Singh, M. Raparthi, F. Y. Alghayadh, M. Soni, Two-Area power system with automatic generation control utilizing PID control, FOPID, particle swarm optimization, and genetic algorithms, in 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), (2024), 1–6. https://doi.org/10.1109/ICAECT60202.2024.10469671 |
| [47] | I. Petráš, Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, (2011), 55–97. |