We studied the dynamics of thermodynamic Cucker–Smale (TCS) particles moving with a constant speed constraint. The TCS model describes the collective dynamics of the population of birds with a time varying internal variable, and it was first introduced as the generalization of the Cucker–Smale (CS) model. In this paper, we considered a modification of the TCS model in which each agent moves at a constant speed, such as the Vicsek model, and we additionally considered the effect of time-delays due to the finiteness of the information propagation speed between agents. Then, we presented several sufficient conditions in terms of initial data and system parameters to exhibit asymptotic flocking. We presented two kinds of results for this purpose. One was an estimate of the diameter of the velocity and temperature configuration, and the other was an estimate of the diameter of the configuration within the time-delay bound τ.
Citation: Hyunjin Ahn, Woojoo Shim. Interplay of a unit-speed constraint and time-delay in the flocking model with internal variables[J]. Networks and Heterogeneous Media, 2024, 19(3): 1182-1230. doi: 10.3934/nhm.2024052
[1] | Zhun Han, Hal L. Smith . Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences and Engineering, 2012, 9(4): 737-765. doi: 10.3934/mbe.2012.9.737 |
[2] | Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651 |
[3] | Timothy C. Reluga, Jan Medlock . Resistance mechanisms matter in SIR models. Mathematical Biosciences and Engineering, 2007, 4(3): 553-563. doi: 10.3934/mbe.2007.4.553 |
[4] | Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445 |
[5] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[6] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289 |
[7] | Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188 |
[8] | Olga Vasilyeva, Tamer Oraby, Frithjof Lutscher . Aggregation and environmental transmission in chronic wasting disease. Mathematical Biosciences and Engineering, 2015, 12(1): 209-231. doi: 10.3934/mbe.2015.12.209 |
[9] | Maoxing Liu, Yuming Chen . An SIRS model with differential susceptibility and infectivity on uncorrelated networks. Mathematical Biosciences and Engineering, 2015, 12(3): 415-429. doi: 10.3934/mbe.2015.12.415 |
[10] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
We studied the dynamics of thermodynamic Cucker–Smale (TCS) particles moving with a constant speed constraint. The TCS model describes the collective dynamics of the population of birds with a time varying internal variable, and it was first introduced as the generalization of the Cucker–Smale (CS) model. In this paper, we considered a modification of the TCS model in which each agent moves at a constant speed, such as the Vicsek model, and we additionally considered the effect of time-delays due to the finiteness of the information propagation speed between agents. Then, we presented several sufficient conditions in terms of initial data and system parameters to exhibit asymptotic flocking. We presented two kinds of results for this purpose. One was an estimate of the diameter of the velocity and temperature configuration, and the other was an estimate of the diameter of the configuration within the time-delay bound τ.
Bacteriophage or virulent phage is a virus which can grow and replicate by infecting bacteria. Once residing in bacteria, phage grow quickly, which result in the infection of bacteria and drive the bacteria to die [17]. Thus, we can view them as bacteria predators and use them to cure the diseases induced by infecting bacteria [9,35]. Phage therapy has become a promising method because of the emergence of antibiotic resistant bacteria [12,9]. Indeed, as a treatment, phages have several advantages over antibiotics. Phages replicate and grow exponentially, while antibiotics are not [47]. Generally speaking, a kind of phages infect only particular classes of bacteria, and this limitation of their host is very beneficial to cure the diseases. Moreover, phages are non-toxic, and cannot infect human cells. Hence, there are fewer side effects as compared to antibiotics [12,35].
It is important to understand the interaction dynamics between bacteria and phage to design an optimal scheme of phage therapy. There have been a number of papers that study the mathematical models of bacteriophages (see, for example, [1,2,3,4,8,9,10,11,21,23,28,42] and the references cited therein). Campbell [11] proposed a deterministic mathematical model for bacteria and phage, which is a system of differential equations containing two state variables, susceptible bacteria
It was observed that phage can exert pressure on bacteria to make them produce resistance through loss or modification of the receptor molecule to which a phage binds with an inferior competition ability for nutrient uptake [25]. More recently, biological evidences are found that there exists an adaptive immune system across bacteria, which is the Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins [6,14,13,18,26,27,31,41]. In this system, phage infection is memorized via a short invader sequence, called a proto-spacer, and added into the CRISPR locus of the host genome. And, the CRISPR/Cas system admits heritable immunity [14,13,18,26,31]. The replication of infecting phage in bacteria is aborted if their DNA matches the crRNAs (CRISPR RNAs) which contains these proto-spacer. On the other hand, if there is no perfect pairing between the proto-spacer and the foreign DNA (as in the case of a phage mutant), the CRISPR/Cas system is counteracted and replication of the phage DNA can occur [19,34,33,39]. Therefore, the CRISPR/Cas system participates in a constant evolutionary battle between phage and bacteria [7,13,27,47].
Mathematical models are powerful in understanding the population dynamics of bacteria and phages. Han and Smith [23] formulated a mathematical model that includes a phage-resistant bacteria, where the resistant bacteria is an inferior competitor for nutrient. Their analytical results provide a set of sufficient conditions for the phage-resistant bacteria to persist. Recently, mathematical models have been proposed to study the contributions of adaptive immune response from CRISPR/Cas in bacteria and phage coevolution [27,29]. In these papers, numerical simulations are used to find how the immune response affects the coexistence of sensitive strain and resistance strain of bacteria. In the present paper, we extend the model in [23] by incorporating the CRISPR/Cas immunity on phage dynamics. Following [23], we focus on five state variables:
Let
˙R=D(R0−R)−f(R)(S+μM),˙S=−DS+f(R)S−kSP,˙M=−DM+μf(R)M+εkSP−k′MP,˙I=−DI+(1−ε)kSP+k′MP−δI,˙P=−DP−kSP−kMP+bδI, | (1) |
where a dot denotes the differentiation with respect to time
The paper is organized as follows. In the next section we present the mathematical analysis of the model that include the stability and bifurcation of equilibria. Numerical simulations are provided in Section
In this section, we present the mathematical analysis for the stability and bifurcations of equilibria of (1). We start with the positivity and boundedness of solutions.
Proposition 1. All solutions of model (1) with nonnegative initial values are nonnegative. In particular, a solution
Proof. We examine only the last conclusion of the proposition. First, we claim that
S(t)=S(0)e∫t0[−D−kP(θ)+f(R(θ))]dθ>0. |
In a similar way we can show the positivity of
Proposition 2. All nonnegative solutions of model (1) are ultimately bounded.
Proof. Set
L(t)=R(t)+S(t)+M(t)+I(t)+1bP(t). |
Calculating the derivative of
˙L(t)=DR0−DR(t)−DS(t)−DM(t)−DI(t)−1bDP(t) −1bkS(t)P(t)−1bkM(t)P(t)≤DR0−DL(t). |
It follows that the nonnegative solutions of
lim supt→∞L(t)≤R0. | (2) |
Therefore, the nonnegative solutions of model (1) are ultimately bounded.
m>D,f(R0)>D. | (3) |
Then
μm>D,μf(R0)>D. | (4) |
It is easy to see that (3) and (4) imply
λ1<μλ2<λ2. |
Thus, the competitive exclusion in the absence of phage infection holds [24], and the boundary equilibrium
The basic reproduction number
F=(0(1−ε)k(R0−λ1)00), |
and
V=(D+δ0−bδD+k(R0−λ1)), |
and is defined as the spectral radius of
R0=√bδ(1−ε)k(R0−λ1)(D+δ)[D+k(R0−λ1)]. |
Analogously, the basic reproduction number
RM0=√bδκ(R0−λ2)(D+δ)[D+k(R0−λ2)]. |
Theorem 2.1. The infection-free equilibrium
The proof of Theorem 2.1 is postponed to Appendix.
Theorem 2.2. The infection-free equilibrium
Proof. Define a Lyapunov function by
V(t)=R(t)−R1−∫RR1f(R1)f(ξ)dξ+S(t)−S1−S1lnSS1+M(t)+I(t)+1bP(t), |
where
˙V(t)=(1−f(R1)f(R))˙R(t)+(1−S1S)˙S(t)+˙M(t)+˙I(t)+1b˙P(t)=D(R0−R)−D(R0−R)f(R1)f(R)+(S+μM)f(R1)+(D+kP−f(R))S1−DS−DM−DI−DbP−kSP+kMPb=D(R0−R1)(2−f(R1)f(R)−f(R)f(R1))−D(R−R1)(1−f(R1)f(R))−D(1−μ)M−DI+(kS1−Db)P−kSP+kMPb. |
Since
D0={(R,S,M,I,P)∣˙V=0}. |
It is easy to examine that the largest invariant set in
{(R,S,M,I,P)∣R=λ1,S=S1,M=0,I=0,P=0}. |
It follow from the LaSalle's invariance principle [22] that
In this subsection, we consider the infection equilibria of system (1) which satisfy
D(R0−R)−f(R)S−μf(R)M=0,−DS+f(R)S−kSP=0,−DM+μf(R)M+εkSP−k′MP=0,−DI+(1−ε)kSP+k′MP−δI=0,−DP−kSP−kMP+bδI=0. | (5) |
If
D(R0−R3)−μf(R3)M3=0,−DM3+μf(R3)M3−k′M3P3=0,−DI3+k′M3P3−δI3=0,−DP3−kM3P3+bδI3=0. |
It follows that
P3=μf(R3)−Dk′,M3=D(R0−R3)μf(R3),I3=k′M3P3D+δ, |
and
−DP3−kM3P3+bδI3=P3(kA2M3−D)=0, |
where
g(R3):=R23+(a+mA−R0)R3−R0a=0, | (6) |
where
A=μkD+δbδκ−(D+δ). |
By direct calculations, we obtain
g(R0)=mAR0>0,g(λ2)=(λ2−R0)(λ2+a)+mAλ2. |
Since
A<(R0−λ2)(λ2+a)mλ2=μ(R0−λ2)D, |
which is equivalent to
Theorem 2.3. The infection equilibrium
To study the local stability of infection equilibria
a1=kM3+3D+δ+μM3f′(R3),a2=kM3(μM3f′(R3)+2D−μf(R3))+D(2D+δ)+(2D+δ+μf(R3))μM3f′(R3),a3=DkM3(μM3f′(R3)+D−μf(R3))+D(D+δ)(μf(R3)−D)+μf(R3)μM3f′(R3)(2D+δ),a4=kA2(D+δ)(μM3f′(R3)+D)(μf(R3)−D). | (7) |
Moreover, for
λ3=f−1(D(1−κ)/(μ−κ)). | (8) |
Theorem 2.4. The infection-resistant equilibrium
κ<μ,R3>λ3,a1a2>a3,(a1a2−a3)a3−a4a21>0, | (9) |
and is unstable when
κ<μ,R3<λ3,a1a2>a3,(a1a2−a3)a3−a4a21>0. | (10) |
The proof of Theorem 2.4 is given in Appendix.
Let us now consider the existence of coexistence equilibrium of (1). Denote such an equilibrium by
P4=f(R4)−Dk,M4=εD(R0−R4)(f(R4)−D)[D−μf(R4)+με(f(R4)−D)+k′P4]f(R4),S4=D(R0−R4)[k′P4+D−μf(R4)][D−μf(R4)+με(f(R4)−D)+k′P4]f(R4),I4=[(1−ε)kS4+k′M4]P4D+δ. | (11) |
Since
f(R4)>D,k′P4+D−μf(R4)>0. | (12) |
Note that
F(R4):=k′P4+D−μf(R4)=D(1−κ)+(κ−μ)f(R4), |
where
Note that
−D+(bδκD+δ−1)kM4+(bδ1−εD+δ−1)kS4=0. | (13) |
Set
A1=bδ(1−ε)/(D+δ)−1,A2=bδκ/(D+δ)−1. | (14) |
Using (11) and
G(R4):=k(R0−R4)(e1+e2Df(R4))−(e3f(R4)+e4)=0, |
where
e1=κA1−μA1+εA2,e2=A1−κA1−εA2,e3=με−μ+κ,e4=(1−με−κ)D. |
Let
Evidently,
G(λ2)=−D+kA2(R0−λ2)=(D+k(R0−λ2))(RM−1). |
Thus,
G(λ1)=−D+kA1(R0−λ1)=(D+k(R0−λ1))(R20−1). |
Hence,
For the case where
G(λ3)=D(R0−λ3)(e1+e2Df(λ3))−(e3f(λ3)+e4)=D(R0−λ3)εA2(1−μ)1−κ−μεD(1−μ)μ−κ. |
Since
λ3≥R0−μ(1−κ)A2(μ−κ), | (15) |
and
λ3<R0−μ(1−κ)A2(μ−κ). | (16) |
Solve
b∗=D+δδ((μ−κ)(R0−λ3)(1−κ)μ+1). |
Notice that
P4=f(λ3)−Dk=D(1−κ)k(μ−κ),M4=D(R0−λ3)(f(λ3)−D)μf(λ3),I4=k′M4P4D+δ. |
Set
R∗:=R0RM0=√(D+k(R0−λ2))(1−ε)(R0−λ1)κ(R0−λ2)(D+k(R0−λ1)). |
Solving
ε=ε∗:=1−κ(R0−λ2)(D+k(R0−λ1))(D+k(R0−λ2))(R0−λ1). |
Thus,
Let us consider three cases:
The following Theorem states the existence of infection equilibria of (1) according to the above discussions.
Theorem 2.5. Let
For
Proof. Note that
This theorem indicates that the system (1) exhibits a backward bifurcation as
Notice that the equilibrium
Theorem 2.6. Let
For
For
The proof of this Theorem is omitted because it is similar to it for Theorem 2.5.
Theorem 2.6 presents the conditions for a forward bifurcation of the infection-free equilibrium and a transcritical bifurcation of the coexist equilibrium. Note that for
We now explore the persistence and extinction of phages in the case where
Theorem 2.7. Let
(
limt→∞(R(t),S(t),M(t),I(t),P(t))=(λ1,R0−λ1,0,0,0) |
if
(
lim inft→∞S(t)>η,lim inft→∞M(t)>η,lim inft→∞I(t)>η,lim inft→∞P(t)>η. |
Proof.
f∞=lim supt→∞f(t),f∞=lim inft→∞f(t). |
First, we claim that a positive solution of (1) admits
˙S≤−DS+f(R)S≤−DS+f(R0+η0−S)S,for all large t, |
where
˙I≤−DI+(1−ε)k(R0−λ1+η1)P−δI,˙P≤−DP−k(R0−λ1−η1)P+bδI, | (17) |
where
˙I=−DI+(1−ε)k(R0−λ1+η1)P−δI,˙P=−DP−k(R0−λ1−η1)P+bδI. | (18) |
The Jacobian matrix of (18) is
J1:=(−(D+δ)(1−ε)k(R0−λ1+η1)bδ−(D+k(R0−λ1−η1)). |
Since
˙R=D(R0−R)−f(R)(S+μM),˙S=−DS+f(R)S,˙M=−DM+μf(R)M. | (19) |
Since
X={(R,S,M,I,P):R≥0,S≥0,M≥0,I≥0,P≥0},X0={(R,S,M,I,P)∈X:I>0,P>0},∂X0=X∖X0. |
We wish to show that (1) is uniformly persistent with respect to
By Proposition 1, we see that both
J∂={(R,S,M,I,P)∈X:I=0,P=0}. |
It is clear that there are three equilibria
Note that (3) and (4) imply that a positive solution of (1) cannot approach
˙I≥−DI+(1−ε)k(R0−λ1−η2)P−δI,˙P≥−DP−k(R0−λ1+η2)P+bδI, | (20) |
where
J2:=(−(D+δ)(1−ε)k(R0−λ1−η2)bδ−(D+k(R0−λ1+η2)). |
Since
˙I=−DI+(1−ε)k(R0−λ1−η2)P−δI,˙P=−DP−k(R0−λ1+η2)P+bδI | (21) |
tend to infinity as
By adopting the same techniques as above, we can show that the population
˙M≥−DM+εkSP. |
This, together with the uniform persistence of population
In this section, we implement numerical simulations to illustrate the theoretical results and explore more interesting solution patterns of model (1). Take the same parameter values as those in [23] where
To demonstrate the second case where
To show the case
With the help of
As discussed above, a bistable coexistence between the infection-free equilibrium and an infection equilibrium may occur when
In this paper, we have developed a bacteriophage mathematical model based on CRISPR/Cas immune system. By combining theoretical analysis and numerical simulations, we have found that the model exhibits some new dynamical behaviors than the model without the immune responses in [23]. More specifically, the introduction of the CRISPR/Cas immune system induces a backward bifurcation from the infection-free equilibrium or a transcritical bifurcation from the coexist equilibrium, which means that although the basic infection reproduction number is below unity, the phage could coexist with bacteria. The coexistence of a stable infection-free equilibrium with a stable infection equilibrium(or stable coexist equilibrium), the bistable phenomenon of a stable infection-free equilibrium and a stable periodic solution are found, which are shown in panel (a) of Fig. 4 and panel (b) of Fig. 4. They provide reasonable explanations for the complexity of phage therapy [9,29] or bacteria-phages coevolution [13], and the coexistence of bacteria with phage in the biological experiments [20,29]. In contrast, there is no the backward bifurcation or bistable phenomena in the models of previous studies [23,42] where the immune response is ignored.
For case
The mathematical analysis for the stability and bifurcation of equilibria of (1) in this paper present some insights into the underlying phage infection mechanisms by considering the CRISPR/Cas system in bacteria. It will be interesting to consider the analytical conditions for the Hopf bifurcation and the homoclinic bifurcation of the model and reveal how the immune response affect these bifurcations. It will be also interesting to consider the effect of latent period of infection like it in [23] or the nonlinear death rates like those in [29]. We leave these as future researches.
We are very grateful to the anonymous referees for careful reading and valuable comments which have led to important improvements of our original manuscript.
Proof Theorem 2.1. Let
J(E1)=(−D−S1f′(λ1)−D−μD00S1f′(λ1)000−kS100−D+μD0εkS1000−D−δ(1−ε)kS1000bδ−D−kS1), |
where
(ω+D)(ω+S1f′(λ1))[ω2+(2D+δ+kS1)ω+f0](ω+D(1−μ))=0, |
where
f0=(D+kS1)(D+δ)(1−R20). |
Since
Proof Theorem 2.4. Evaluating the Jacobian of (1) at
J(E3)=(−D−μM3f′(R3)−f(R3)−μf(R3)000−D+f(R3)−kP3000μM3f′(R3)εkP300−k′M30(1−ε)kP3k′P3−D−δk′M30−kP3−kP3bδ−D−kM3). |
Using
(ω−f(R3)+kP3+D)(ω4+a1ω3+a2ω2+a3ω+a4)=0, |
where
F1(ω)=ω−f(R3)+kP3+D,F2(ω)=ω4+a1ω3+a2ω2+a3ω+a4. |
Note that
f(R3)−kP3−D=(1−μκ)f(R3)+(1κ−1)D:=F0(ω). |
It is easy to see
f(R3)>D(1−κ)μ−κ, |
which is equivalent to
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185. https://doi.org/10.1103/RevModPhys.77.137 doi: 10.1103/RevModPhys.77.137
![]() |
[2] |
H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with a unit-speed constraint, Discrete Contin. Dyn. Syst. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
![]() |
[3] |
H. Ahn, Asymptotic flocking of the relativistic Cucker-Smale model with time-delay, Netw. Heterog. Media, 18 (2023), 29–47. https://doi.org/10.3934/nhm.2023002 doi: 10.3934/nhm.2023002
![]() |
[4] |
G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, et al., Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math Models Methods Appl Sci, 29 (2019), 1901–2005. https://doi.org/10.1142/S0218202519500374 doi: 10.1142/S0218202519500374
![]() |
[5] |
A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelic, S. Melillo, et al., Information transfer and behavioural inertia in starling flocks, Nat. Phys., 10 (2014), 691–696. https://doi.org/10.1038/nphys3035 doi: 10.1038/nphys3035
![]() |
[6] |
J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562–564. https://doi.org/10.1038/211562a0 doi: 10.1038/211562a0
![]() |
[7] |
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
![]() |
[8] |
P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
![]() |
[9] |
A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, et al., Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci., 107 (2010), 11865–11870. https://doi.org/10.1073/pnas.1005766107 doi: 10.1073/pnas.1005766107
![]() |
[10] |
H. Cho, J. G. Dong, S. Y. Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock with a time-delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196. https://doi.org/10.1002/mma.7771 doi: 10.1002/mma.7771
![]() |
[11] |
S. H. Choi, S. Y. Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale flocking, J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788 doi: 10.1063/1.4996788
![]() |
[12] |
S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4. doi: 10.4310/CMS.2016.v14.n4.a4
![]() |
[13] |
Y. P. Choi, J. Haskovec, Cucker–Smale model with normalized communication weights and time-delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040
![]() |
[14] |
Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time-delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018
![]() |
[15] |
J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39–73. https://doi.org/10.1142/S0219530515400023 doi: 10.1142/S0219530515400023
![]() |
[16] |
K. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592–627. https://doi.org/10.1016/0022-247X(82)90243-8 doi: 10.1016/0022-247X(82)90243-8
![]() |
[17] |
F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
![]() |
[18] |
P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989–1022. https://doi.org/10.1007/s10955-008-9529-8 doi: 10.1007/s10955-008-9529-8
![]() |
[19] |
G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571–585. https://doi.org/10.1007/BF00164052 doi: 10.1007/BF00164052
![]() |
[20] |
E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel motion control method, Adapt. Behav., 20 (2012), 460–477. https://doi.org/10.1177/1059712312462248 doi: 10.1177/1059712312462248
![]() |
[21] |
A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
![]() |
[22] |
S. Y. Ha, D. Ko, Y. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763–2793. https://doi.org/10.3934/dcds.2018116 doi: 10.3934/dcds.2018116
![]() |
[23] |
S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
![]() |
[24] |
S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
![]() |
[25] |
J. Hale, N. Sternberg, Onset of chaos in differential delay equations, J. Comput. Phys., 77 (1988), 221–239. https://doi.org/10.1016/0021-9991(88)90164-7 doi: 10.1016/0021-9991(88)90164-7
![]() |
[26] |
T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math Models Methods Appl Sci, 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
![]() |
[27] |
S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923–947. https://doi.org/10.1007/s10955-011-0285-9 doi: 10.1007/s10955-011-0285-9
![]() |
[28] | E. A. Ok, Real Analysis with Economics Applications, Princeton University Press, Princeton, 2007,306. https://doi.org/10.1515/9781400840892 |
[29] |
R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Contr., 51 (2006), 401–420. https://doi.org/10.1109/TAC.2005.864190 doi: 10.1109/TAC.2005.864190
![]() |
[30] | A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1119/1.1475332 |
[31] |
T. Ruggeri, S. Simić, On the Hyperbolic System of a Mixture of Eulerian Fluids: A Comparison Between Single and Multi-Temperature Model, Math. Methods Appl. Sci., 30 (2007), 827–849. https://doi.org/10.1002/mma.813 doi: 10.1002/mma.813
![]() |
[32] |
S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4 doi: 10.1016/S0167-2789(00)00094-4
![]() |
[33] |
J. Toner, Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828–4858. https://doi.org/10.1103/PhysRevE.58.4828 doi: 10.1103/PhysRevE.58.4828
![]() |
[34] |
C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424
![]() |
[35] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226
![]() |
[36] |
T. Vicsek, A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71–140. https://doi.org/10.1016/j.physrep.2012.03.004 doi: 10.1016/j.physrep.2012.03.004
![]() |
[37] | A. T. Winfree, The geometry of biological time, Springer, New York, 1980. https://doi.org/10.1007/978-1-4757-3484-3 |
[38] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. https://doi.org/10.1016/0022-5193(67)90051-3 doi: 10.1016/0022-5193(67)90051-3
![]() |
1. | Jingjing Wang, Hongchan Zheng, Yunfeng Jia, Dynamical analysis on a bacteria-phages model with delay and diffusion, 2021, 143, 09600779, 110597, 10.1016/j.chaos.2020.110597 | |
2. | WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010 | |
3. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280 | |
4. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87 |