|
[1]
|
Ergodic theorems for superadditive processes. J. Reine Angew. Math. (1981) 323: 53-67.
|
|
[2]
|
H. Ammari, P. Garapon, H. Kang and H. Lee, Effective viscosity properties of dilute suspensions of arbitrarily shaped particles, Asymptot. Anal., 80 (2012) 189–211.
|
|
[3]
|
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Soc., 2013.
|
|
[4]
|
Network approximation for effective viscosity of concentrated suspensions with complex geometry. SIAM J. Math. Anal. (2005) 36: 1580-1628.
|
|
[5]
|
Fictitious fluid approach and anomalous blow-up of the dissipation rate in a two-dimensional model of concentrated suspensions. Arch. Ration. Mech. Anal. (2009) 193: 585-622.
|
|
[6]
|
Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite. Arch. Ration. Mech. Anal. (2001) 159: 179-227.
|
|
[7]
|
L. Berlyand, A. G Kolpakov and A. Novikov, Introduction to the Network Approximation
Method for Materials Modeling, Cambridge University Press, 148, 2013.
|
|
[8]
|
Increase and decrease of the effective conductivity of two phase composites due to polydispersity. J. Stat. Phys. (2005) 118: 481-509.
|
|
[9]
|
Error of the network approximation for densely packed composites with irregular geometry. SIAM Journal on Mathematical Analysis (2002) 34: 385-408.
|
|
[10]
|
Strong and weak blow-up of the viscous dissipation rates for concentrated suspensions. Journal of Fluid Mechanics (2007) 578: 1-34.
|
|
[11]
|
B. Blaszczyszyn, Lecture notes on random geometric models. random graphs, point processes and stochastic geometry, 2017.
|
|
[12]
|
B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
|
|
[13]
|
Network approximation for transport properties of high contrast materials. SIAM J. Appl. Math. (1998) 58: 501-539.
|
|
[14]
|
Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (1986) 144: 347-389.
|
|
[15]
|
M. Duerinckx, Effective viscosity of random suspensions without uniform separation, arXiv: 2008.13188.
|
|
[16]
|
Corrector equations in fluid mechanics: Effective viscosity of colloidal suspensions. Arch. Ration. Mech. Anal. (2021) 239: 1025-1060.
|
|
[17]
|
M. Duerinckx and A. Gloria, On Einstein's effective viscosity formula, arXiv: 2008.03837.
|
|
[18]
|
M. Duerinckx and A. Gloria, Continuum percolation in stochastic homogenization and the effective viscosity problem, arXiv: 2108.09654.
|
|
[19]
|
D. Gérard-Varet, Derivation of the Batchelor-Green formula for random suspensions, Journal de Mathématiques Pures et Appliquées, 152 (2021), 211–250.
|
|
[20]
|
Analysis of the viscosity of dilute suspensions beyond Einstein's formula. Arch. Ration. Mech. Anal. (2020) 238: 1349-1411.
|
|
[21]
|
Mild assumptions for the derivation of Einstein's effective viscosity formula. Communications in Partial Differential Equations (2021) 46: 611-629.
|
|
[22]
|
D. Gérard-Varet and A. Mecherbet, On the correction to Einstein's formula for the effective viscosity, arXiv: 2004.05601.
|
|
[23]
|
L. Giovanni, A First Course in Sobolev Spaces, American Mathematical Society, Providence, RI, 2017.
|
|
[24]
|
The Effective conductivity of densely packed high contrast composites with inclusions of optimal shape. Continuum Models and Discrete Systems (2004) 158: 63-74.
|
|
[25]
|
A proof of Einstein's effective viscosity for a dilute suspension of spheres. SIAM Journal on Mathematical Analysis (2012) 44: 2120-2145.
|
|
[26]
|
Effective viscosity of a polydispersed suspension. Journal de Mathématiques Pures et Appliquées. Neuvième Série (2020) 138: 413-447.
|
|
[27]
|
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators, Springer-Verlag, Berlin Heidelberg, 1994.
|
|
[28]
|
A theorem on the conductivity of a composite medium. Journal of Mathematical Physics (1964) 5: 548-549.
|
|
[29]
|
S. Mischler, An introduction to evolution PDEs, (2017).
|
|
[30]
|
A local version of Einstein's formula for the effective viscosity of suspensions. SIAM J. Math. Anal. (2020) 52: 2561-2591.
|
|
[31]
|
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, 1994.
|