|
[1]
|
Finite plane deformations of thin elastic sheets reinforced with inextensible cords. Philos. Trans. R. Soc. London A (1956) 249: 125-150.
|
|
[2]
|
Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Ration. Mech. Anal. (1956) 5: 189-202.
|
|
[3]
|
A three-dimensional problem for highly elastic materials subject to constraints. Q. J. Mech. Appl. Math. (1958) 11: 88-97.
|
|
[4]
|
Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos. Trans. R. Soc. London A (1955) 248: 201-223.
|
|
[5]
|
H. Attouch, Variational Convergence for Functions and Operators, Appl. Math. Series. London, Pitman, 1984.
|
|
[6]
|
Homogenization of a soft elastic material reinforced by fibers. Asymptotic Anal (2002) 32: 153-183. |
|
[7]
|
J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and Examples, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 3. Springer, New York, 2006.
|
|
[8]
|
Elliptic problems on the Sierpinski gasket. Topics in Mathematical Analysis and Applications. Springer Optim. Appl. (2014) 94: 119-173.
|
|
[9]
|
The effect of a thin inclusion of high rigidity in an elastic body. Math. Methods Appl. Sci. (1980) 2: 251-270. |
|
[10]
|
Determination of the closure of the set of elasticity functionals,. Arch. Ration. Mech. Anal. (2003) 170: 211-245.
|
|
[11]
|
On diffusion in a fractured medium. Siam J. Appl. Math. (1971) 20: 434-448.
|
|
[12]
|
Insulating layers of fractal type. Differ. Integ. Equs (2013) 26: 1055-1076. |
|
[13]
|
Reinforcement problems for variational inequalities on fractal sets. Calc. Var. Partial Differential Equations (2015) 54: 2751-2783.
|
|
[14]
|
Dynamical quasi-filling fractal layers. SIAM J. Math. Anal. (2016) 48: 3931-3961.
|
|
[15]
|
Heat-flow problems across fractal mixtures: Regularity results of the solutions and numerical approximation. Differential Integral Equations (2013) 26: 1027-1054. |
|
[16]
|
G. Dal Maso, An Introduction to $\Gamma$-Convergence, PNLDEA 8, Birkhäuser, Basel, 1993.
|
|
[17]
|
Homogenization of a nonlinear elastic fibre-reinforced composite: A second gradient nonlinear elastic material. J. Math. Anal. Appl. (2013) 403: 487-505.
|
|
[18]
|
Homogenization of an elastic material reinforced with thin rigid von Kármán ribbons. Math. Mech. Solids (2019) 24: 1965-1991.
|
|
[19]
|
M. El Jarroudi, Homogenization of a quasilinear elliptic problem in a fractal-reinforced structure, SeMA, (2021).
|
|
[20]
|
Homogenization of elastic materials containing self-similar rigid micro-inclusions. Contin. Mech. Thermodyn. (2019) 31: 457-474.
|
|
[21]
|
Homogenization of elastic materials reinforced by rigid notched fibres. Appl. Anal. (2018) 97: 705-738.
|
|
[22]
|
K. Falconer, Techniques in Fractal Geometry, J. Wiley and Sons, Chichester, 1997.
|
|
[23]
|
Energy form on a closed fractal curve. Z. Anal. Anwendungen (2004) 23: 115-137.
|
|
[24]
|
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994.
|
|
[25]
|
On a spectral analysis for the Sierpinski gasket,. Potential Anal. (1992) 1: 1-35.
|
|
[26]
|
Phénomènes de transmission à travers des couches minces de conductivité élevée. J. Math. Anal. Appl. (1974) 47: 284-309.
|
|
[27]
|
Boundary value problems and Brownian motion on fractals. Chaos Solitons Fractals (1997) 8: 191-205.
|
|
[28]
|
The dual of Besov spaces on fractals. Studia. Math. (1995) 112: 285-300. |
|
[29]
|
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag New York, Inc., New York 1966.
|
|
[30]
|
Harmonization and homogenization on fractals. Comm. Math. Phys. (1993) 153: 339-357.
|
|
[31]
|
Homogenization for conductive thin layers of pre-fractal type. J. Math. Anal. Appl. (2008) 347: 354-369.
|
|
[32]
|
Numerical approximation of transmission problems across Koch-type highly conductive layers. Appl. Math. Comput. (2012) 218: 5453-5473.
|
|
[33]
|
Measures associées á une forme de Dirichlet. Appl., Bull. Soc. Math. (1978) 106: 61-112. |
|
[34]
|
Boundary homogenization of certain elliptic problems for cylindrical bodies. Bull Sci Math. (1992) 116: 399-426. |
|
[35]
|
Composite media and asymptotic Dirichlet forms. J. Funct. Anal. (1994) 123: 368-421.
|
|
[36]
|
Variational fractals,. Ann. Scuola Norm. Sup. Pisa, Special Volume in Memory of E. De Giorgi (1997) 25: 683-712. |
|
[37]
|
Lagrangian metrics on fractals. Proc. Symp. Appl. Math., Amer. Math. Soc. (1998) 54: 301-323.
|
|
[38]
|
Energy functionals on certain fractal structures. J. Conv. Anal. (2002) 9: 581-600. |
|
[39]
|
An example of fractal singular homogenization. Georgian Math. J. (2007) 14: 169-193.
|
|
[40]
|
Fractal reinforcement of elastic membranes. Arch. Ration. Mech. Anal. (2009) 194: 49-74.
|
|
[41]
|
Thin fractal fibers. Math. Meth. Appl. Sci. (2013) 36: 2048-2068.
|
|
[42]
|
Layered fractal fibers and potentials,. J. Math. Pures Appl. (2015) 103: 1198-1227.
|
|
[43]
|
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26. North-Holland Publishing Co., Amsterdam, 1992.
|
|
[44]
|
Plane strain of a net formed by inextensible cords. J. Rational Mech. Anal. (1955) 4: 951-974.
|
|
[45]
|
The deformation of a membrane formed by inextensible cords. Arch. Rational Mech. Anal. (1958) 2: 447-476.
|
|
[46]
|
The p-Laplacian on the Sierpinski gasket. Nonlinearity (2004) 17: 595-616.
|