Simultaneous observability of infinitely many strings and beams

  • Published: 13 August 2020
  • Primary: 93B07; Secondary: 35L05, 74K10, 42A99

  • We investigate the simultaneous observability of infinite systems of vibrating strings or beams having a common endpoint where the observation is taking place. Our results are new even for finite systems because we allow the vibrations to take place in independent directions. Our main tool is a vectorial generalization of some classical theorems of Ingham, Beurling and Kahane in nonharmonic analysis.

    Citation: Vilmos Komornik, Anna Chiara Lai, Paola Loreti. Simultaneous observability of infinitely many strings and beams[J]. Networks and Heterogeneous Media, 2020, 15(4): 633-652. doi: 10.3934/nhm.2020017

    Related Papers:

  • We investigate the simultaneous observability of infinite systems of vibrating strings or beams having a common endpoint where the observation is taking place. Our results are new even for finite systems because we allow the vibrations to take place in independent directions. Our main tool is a vectorial generalization of some classical theorems of Ingham, Beurling and Kahane in nonharmonic analysis.



    加载中


    [1] Stabilization of star-shaped networks of strings,. Differential Integral Equations (2004) 17: 1395-1410.
    [2] Stability of a tree-shaped network of strings and beams,. Math. Methods Appl. Sci. (2018) 41: 7915-7935.
    [3] K. Ammari and S. Nicaise, Stabilization of Elastic Systems by Collocated Feedback,, Lecture Notes in Mathematics, 2124. Springer, Cham, 2015. doi: 10.1007/978-3-319-10900-8
    [4] Ingham type theorems and applications to control theory. Bol. Un. Mat. Ital. B (1999) 2: 33-63.
    [5] Généralisation d'un théorème de Beurling et application à la théorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. (2000) 330: 281-286.
    [6] Ingham–Beurling type theorems with weakened gap conditions. Acta Math. Hungar. (2002) 97: 55-95.
    [7] Nonharmonic Fourier series and the stabilization of distributed semilinear control systems,. Comm. Pure Appl. Math. (1979) 32: 555-587.
    [8] A vectorial Ingham–Beurling theorem. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. (2010) 53: 17-32.
    [9] A. Beurling, Interpolation for an Interval in ${\mathbb R}^1$, in The Collected Works of Arne Beurling, Vol. 2. Harmonic Analysis (eds. L. Carleson, P. Malliavin, J. Neuberger and J. Wermer) Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1989.
    [10] (1957) An Introduction to Diophantine Approximation. New York: Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press.
    [11] Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris Sér. I Math. (2001) 332: 621-626.
    [12] R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, , Springer Science & Business Media, Vol. 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3
    [13] Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. (1989) 68: 457-465.
    [14] Some trigonometrical inequalities with applications in the theory of series. Math. Z. (1936) 41: 367-379.
    [15] On a theorem of Ingham. Dedicated to the memory of Richard J. Duffin. J. Fourier Anal. Appl. (1997) 3: 577-582.
    [16] Singular internal stabilization of the wave equation. J. Differential Equations (1998) 145: 184-215.
    [17] Pseudo-périodicité et séries de Fourier lacunaires. Ann. Sci. de l'E.N.S. (1962) 79: 93-150.
    [18] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chicester, 1994.
    [19] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.
    [20] Multiple-point internal observability of membranes and plates. Appl. Anal. (2011) 90: 1545-1555.
    [21] J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-1-4612-0273-8
    [22] Exact controllability, stabilizability, and perturbations for distributed systems. Siam Rev. (1988) 30: 1-68.
    [23] J.-L. Lions, Contrôlabilité Exacte et Stabilisation de Systèmes Distribués I-II, Masson, Paris, 1988.
    [24] P. Loreti, On some gap theorems, European Women in Mathematics–Marseille 2003, 39–45, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005.
    [25] Critical length for a Beurling type theorem. Bol. Un. Mat. Ital. B (2005) 8: 251-258.
    [26] E. Sikolya, Simultaneous observability of networks of beams and strings, Bol. Soc. Paran. Mat., 21 (2003), 31–41. doi: 10.5269/bspm.v21i1-2.7505
    [27] The smallest Perron numbers,. Mathematics of Computation (2010) 79: 2387-2394.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2245) PDF downloads(389) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog