We consider the Dirichlet problem for an elliptic multivalued maximal monotone operator $ {\mathcal A}_\varepsilon $ satisfying growth estimates of power type with a variable exponent. This exponent $ p_\varepsilon(x) $ and also the symbol of the operator $ {\mathcal A}_\varepsilon $ oscillate with a small period $ \varepsilon $ with respect to the space variable $ x $. We prove a homogenization result for this problem.
Citation: Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent[J]. Networks and Heterogeneous Media, 2020, 15(2): 281-305. doi: 10.3934/nhm.2020013
We consider the Dirichlet problem for an elliptic multivalued maximal monotone operator $ {\mathcal A}_\varepsilon $ satisfying growth estimates of power type with a variable exponent. This exponent $ p_\varepsilon(x) $ and also the symbol of the operator $ {\mathcal A}_\varepsilon $ oscillate with a small period $ \varepsilon $ with respect to the space variable $ x $. We prove a homogenization result for this problem.
| [1] |
Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. (2018) 7: 35-48.
|
| [2] | Regularity for general functionals with double phase. Calculus of Variations and Partial Differential Equations (2018) 57: 1-48. |
| [3] | F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear Functional Analysis, Amer. Math. Soc., Providence, R. I., (1976), 1–308. |
| [4] | Omogeneizzazione di integrali non coercivi. Ricerche Mat. (1983) 32: 347-368. |
| [5] |
Homogenization of nonlinear elliptic systems in nonreflexive Musielak-Orlicz spaces. Nonlinearity (2019) 32: 1073-1110.
|
| [6] |
Some properties of $\Gamma$-limits of integral functionals. Ann. Mat. Pura Appl. (1979) 122: 1-60.
|
| [7] |
Some properties of $\Gamma$-limits of integral functionals. Ann. Mat. Pura Appl. (1979) 122: 1-60.
|
| [8] | C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977. |
| [9] |
$G$-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire (1990) 7: 123-160.
|
| [10] |
Homogenization of monotone operators. Nonlinear Anal. (1990) 4: 717-732.
|
| [11] |
A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces. Nonlinear Analysis (2018) 175: 1-27.
|
| [12] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8
|
| [13] |
Density of smooth functions in $W^{k, p}(\Omega)$. Proc. Roy. Soc. London Ser. A (1992) 437: 229-236.
|
| [14] | I. Ekeland and R.Temam, Convex Analysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976. |
| [15] |
Some approximation properties in Orlicz-Sobolev spaces. Studia Math. (1982) 74: 17-24.
|
| [16] |
V. V. Jikov, S. M. Kozlov and O. A. Oleǐnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5
|
| [17] | On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslovak Mathematical Journal (1991) 41: 592-618. |
| [18] | J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
| [19] |
Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. (1978) 117: 139-152.
|
| [20] |
Regularity for elliptic equations with general growth conditions. Journal of Differential Equations (1993) 105: 296-333.
|
| [21] |
Elliptic operators with nonstandard growth condition: Some results and open problems. Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., Amer. Math. Soc., Providence, RI (2019) 734: 277-292.
|
| [22] | D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Martinus Nijhoff Publishers, The Hague, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. |
| [23] |
Operator estimates in nonlinear problems of reiterated homogenization. Proceedings of the Steklov Institute of Mathematics (2008) 261: 214-228.
|
| [24] |
Galerkin approximations in problems with anisotropic $p(\cdot)$-Laplacian. Applicable Anal. (2019) 98: 345-361.
|
| [25] |
On existence and uniqueness classes for the Cauchy problem for parabolic equations of the $p$-Laplace type. Commun. Pure Appl. Anal. (2013) 12: 1783-1812.
|
| [26] | V. V. Zhikov, Averaging of functionals of the calculus of vatiations and elasticity theory, Izvestiya Acad. Nauk of SSSR. Ser. Math., 50 (1986), 675–710,877. |
| [27] | Lavrentiev effect and the averaging of nonlinear variational problem. Differ. Equations (1991) 27: 32-39. |
| [28] |
On the density of smooth functions in Sobolev-Orlich spaces. J. Math. Sci. (2006) 132: 285-294.
|
| [29] |
On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. (2011) 173: 463-570.
|
| [30] |
Homogenization of a Navier-Stokes type system for electrorheological fluid. Complex Variables and Elliptic Equations (2011) 56: 545-558.
|
| [31] |
Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent. Sb. Math. (2008) 199: 1751-1782.
|
| [32] |
Homogenization of monotone operators under conditions of coercitivity and growth of variable order. Math. Notes (2011) 90: 48-63.
|
| [33] |
On the $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions. Sb. Math. (2014) 205: 488-521.
|
| [34] |
$\Gamma$-convergence of integrands with nonstandard coercivity and growth conditions. J. Math. Sci. (2014) 196: 535-562.
|
| [35] |
Homogenization and two-scale convergence in Sobolev space with oscillating exponent. St. Petersburg Mathematical Journal (2019) 30: 231-251.
|
| [36] |
Homogenization of degenerate elliptic equations. Sib. Math. J. (2008) 49: 80-101.
|
| [37] | On the homogenization of degenerate elliptic equations. Dokl. Akad. Nauk (2006) 410: 587-591. |