Citation: Xin Yang Lu. Regularity of densities in relaxed and penalized average distance problem[J]. Networks and Heterogeneous Media, 2015, 10(4): 837-855. doi: 10.3934/nhm.2015.10.837
| [1] | L. Ambrosio, N. Gigli and G. Savaré, Gradient Flow in Metric Spaces and in the Space of Probability Measures, Second Editon, Lectures in Mathematics, ETH Zürich, Birkenhäuser Verlag, Basel, 2005. |
| [2] | G. Buttazzo, E. Mainini and E. Stepanov, Stationary configurations for the average distance functional and related problems, Control Cybernet., 38 (2009), 1107-1130. |
| [3] | G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, Progr. Nonlinear Differential Equations Appl., 51 (2002), 41-65. |
| [4] |
G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region, SIAM J. Math. Anal., 37 (2005), 514-530. doi: 10.1137/S0036141003438313
|
| [5] | G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi (ed. D. Pallara), Quaderni di Matematica, Seconda Università di Napoli, 14 (2004), 48-83. |
| [6] | G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 2 (2003), 631-678. |
| [7] |
P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay, Clustering large graphs via the singular value decomposition, Mach. Learn., 56 (2004), 9-33. doi: 10.1023/B:MACH.0000033113.59016.96
|
| [8] |
T. Duchamp and W. Stuetzle, Extremal properties of principal curves in the plane, Ann. Statist., 24 (1996), 1511-1520. doi: 10.1214/aos/1032298280
|
| [9] |
T. Duchamp and W. Stuetzle, Geometric properties of principal curves in the plane, in Robust Statistics, Data Analysis, and Computer Intensive Methods Lecture Notes in Statistics (ed. H. Rieder), Springer-Verlag, 109 (1996), 135-152. doi: 10.1007/978-1-4612-2380-1_9
|
| [10] |
A. Fischer, Selecting the length of a principal curve within a Gaussian model, Electron. J. Statist., 7 (2013), 342-363. doi: 10.1214/13-EJS775
|
| [11] |
W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math., {\bf177} (1996), 113-161. doi: 10.1007/BF02392620
|
| [12] | T. Hastie, Principal Curves and Surfaces, Ph. D Thesis, Stanford Univ., 1984. |
| [13] |
T. Hastie and W. Stuetzle, Principal curves, J. Amer. Statist. Assoc., 84 (1989), 502-516. doi: 10.1080/01621459.1989.10478797
|
| [14] | B. Kégl, Principal Curves: Learning, Design, and Applications, Ph.D thesis, Concordia Univ., 1999. |
| [15] | K. Kégl and K. Aetal, Learning and design of principal curves, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000), 281-297. |
| [16] |
A. Lemenant, A presentation of the average distance minimizing problem, J. Math. Sci. (N.Y.), 181 (2012), 820-836. doi: 10.1007/s10958-012-0717-3
|
| [17] | Rend. Sem. Mat. Univ. Padova, in press. |
| [18] |
X. Y. Lu and D. Slepčev, Properties of minimizers of average distance problem via discrete approximation of measures, SIAM J. Math. Anal., 45 (2013), 3114-3131. doi: 10.1137/130905745
|
| [19] | U. Ozertem and D. Erdogmus, Locally defined principal curves and surfaces, J. Mach. Learn. Res., 12 (2011), 1249-1286. |
| [20] |
E. Paolini and E. Stepanov, Qualitative properties of maximum and average distance minimizers in $\mathbbR^n$, J. Math. Sci. (N.Y.), 122 (2004), 3290-3309. doi: 10.1023/B:JOTH.0000031022.10122.f5
|
| [21] |
P. Polak and G. Wolanski, The lazy traveling salesman problem in $\mathbbR^2$, ESAIM: Control Optim. Calc. Var., 13 (2007), 538-552. doi: 10.1051/cocv:2007025
|
| [22] |
D. Slepčev, Counterexample to regularity in average-distance problem, Ann. Inst. H. Poincaré (C), 31 (2014), 169-184. doi: 10.1016/j.anihpc.2013.02.004
|
| [23] |
A. J. Smola, S. Mika, B. Schölkopf and R. C. Williamson, Regularized principal manifolds, J. Mach. Learn., 1 (2001), 179-209. doi: 10.1162/15324430152748227
|
| [24] |
R. Tibshirani, Principal curves revisited, Stat. Comput., 2 (1992), 183-190. doi: 10.1007/BF01889678
|
| [25] |
C. Villani, Optimal Transport, Old and New, Grundlehren der mathematischen Wissenschaften, Springer, 2009. doi: 10.1007/978-3-540-71050-9
|